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Abstract

In general, the word approximation means a representation of something that is not exact,
but still close enough to be useful.

Approximations may be used because incomplete information prevents use of exact
representations, since many problems in mathematics are either too complex to solve
analytically, or impossible to solve using the available analytical tools. Thus, even when
the exact representation is known, an approximation may yield a sufficiently accurate
solution while reducing the complexity of the problem significantly; therefore, an
approximate answer may be good enough? What exactly we mean here by a good enough
solution? That depends on what are we working on.

As we know, in mathematics it is better for us to deal with simple functions, but taking into
account the accuracy of the given solution in which it is the most significant thing in the
whole work, for example the polynomials are very easy to handle since they have any
property you may be looking for.

On the other hand, the trigonometrical functions are of the most smooth functions that are
easy to handle too, but in the first place it depends on the way of approximation, kind of
approximation and other things, for example to approximate a function of period 2m its
more convenient to us to treat with the sine and cosine functions than the polynomials, its
not significant reduction of the polynomials but it is the most appropriate.

In this thesis, we are dealing of that kind of functions, the periodic functions, so it is better
for us to concentrate on the trigonometrical approximation methods.

Our investigation centered on approximating a periodic function in the weighted LP spaces,
and we will use among our work many methods of approximation, however, they all
depend on the Fourier series of these functions, but the main topic we must focus on is the
degree of approximation, and we denote here that the degree is at most n™%,0 < a < 1,
and n is the degree of the mean of the Fourier series.
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Introduction

Our aim in this research is discussing many methods of approximating any function in the
weighted LP spaces, so we first introduce some auxiliary information as a base for this
thing.

In chapter one we submit a little helpful ideas about the Lebesgue integral as well as some
of its valuable properties, where all of the integrals in this thesis is considered Lebesgue
integrals, so it is remarkable that we discuss these ideas.

Chapter two deals with the most important subject that one needed to understand the idea
of this thesis as our work is focusing on the trigonometrical series, in sections 1 and 2 we
introduce the concept of the trigonometric series, section 3 talks about the modulus of
continuity in which it is the most important here since as we will see later all the functions
we approximate should gain the property that the modulus of continuity must be less than
or equal to the bound C6%,0 < a < 1.

In chapter three we begin by the known definition of the vector spaces and normed vector
spaces, then we study many critical ideas and some formulas that will be helpful in the
sequel, also we give a brief but critical ideas about some classes of functions and we
mention her the weighted LP and the Muckenhoupt class which has in turn a huge
importance in many fields in analysis.

To investigate the general case, | think we have be know a lot of information about the
special case, that is what we see in chapter four where we concentrate on the
approximation in the non-weighted LP spaces, also we consider many methods of
approximation that we will use in the proceeding chapter, in fact our work will be just a
generalization of some theorems from the LP spaces to the weighted LP spaces.

At the end we do the task, that is, we develop the work in chapter four to more general
class of function, i.e. the approximation in the weighted LP spaces.

vi



Chapter One
Lebesgue Integration

With a basic knowledge of the Lebesgue measure theory, for more details one can refer to
[5], we now proceed to establish the Lebesgue integration theory.

In this chapter, unless otherwise stated, all sets considered will be assumed measurable.

1.1 Simple functions

Recall that the characteristic function X40f any set Ais defined by

1, x €A
Xa = {O, otherwise

A function ¢@:E — Ris said to be simpleif there exists aq,a,,...,a, € Rand
E\,E;,...,E, € E such that ¢ = }I_; a; X, Note that here the E;’s are implicitly assumed
to be measurable, so a simple function shall always be measurable.

Theorem1.1.1: A function ¢: E — Ris simple if and only if it takes only finitely many
distinct valuesaq, a,, ..., a, and(p‘l{ai} is a measurable set foralli = 1,2,...,n.

With the above proposition, we see that every simple function ¢can be written uniquely in

the form
n
Y= Z ai‘in
i=1

Where the a;’s are all non-zero and distinct, and the E;’s are disjoint. (Simply take
E; = ¢ Ya;} fori = 1,2,...,n where ay,a,,...,a, are all the distinct values of ¢. We
say this is the canonical representation of ¢.

Definition 1.1.2: A function f : E — Ris said to vanish outside a set of finite measureif
there exists a set Awith m(4) < oo such that fvanishes outside 4, i.e.
f=0o0onE\A

Or equivalently f(x) = Oforallx € E\ A. We denote the set of all simple functions
defined on E which vanish outside a set of finite measure by S, (E).

We are now ready for the definition of the Lebesgue integral of such functions.

Definition 1.1.3: For any ¢ € Sy(E) and any A € E, we define the Lebesgue integral of

@over Aby
n
f ¢ = Z a;m(E; N A)
A i=1



wherep = Y%, a;Xg, is the canonical representation of ¢ (From now on we shall adopt
the convention that 0-co = 0. We need this convention here because it may happen that one
a;is zero while the corresponding E; N Ahas infinite measure. Also note that here Ais
implicitly assumed to be measurable so m(E; N A) makes sense. We shall never integrate
over non-measurable sets.)

It follows readily from the above definition that

f <0=] PXy
A E

forany ¢ € Sy(F) and forany A € E.
We now establish some major properties of this integral (with monotonicity and linearity
being probably the most important ones). We begin with the following lemma.

Lemma 1.1.4:Suppose ¢ = Y., a; Xy, € So(E) where the E;’s are disjoint, then for any

A C E,
n
f Q= Zaim(Ei NnA)
A i=1

holds even if the a;’s are not necessarily distinct.

Theorem1.1.5.(Properties of the Lebesgue integral)Suppose ¢, € S,(E). Then for
any A € E,

(a) fA (p +¢) = fA o + fA . (Note thatp + P € S,(F) too by the vector space
structure of Sy (E) ).

() [, ap=a [, p(foralla € R.(Note ap € So(E) again)

(c) Ifp < pae onAthenf, ¢ < [ .

(d) Ifp = ya.e. onAthean Q = fA Y.

(e) Ifp = Oa.e.onAande ¢ = 0,thengp = Oa.e.onA.

@ |I, 0| <J, lol.Wote |p| € Sy(EY).

Remark. (a)and(b) are known as the linearity property of the integral, while (c¢) is known
as the monotonicity property. Furthermore, Lemma 1.1.4 is now seen to hold by the
linearity of the integral even without the disjointness assumption on the E;’s.

1.2 Bounded measurable functions

Resembling the construction of the Riemann integral (using simple functions in place of
step functions), we define the upper and lower Lebesgue integrals.



Definition 1.2.1:Let f : E — Rbe a bounded function, which vanish outside a set of finite
measure. Forany A € E, we define the upper integral and the lower integralof f on Aby

f_f =inf{f Y:f <YonAy ESO(E)}
A A

f f=sup{f p:f=@poni, @ ESO(E)}
—-A A

If the two values agree, we denote the common value by [ [+ (Again the set Ais implicitly

assumed to be measurable so that [ , Yand ) |, ¢ make sense.)

Note that both the infimum and the supremum in the definitions of the upper and lower
integrals exist because fis bounded and vanishes outside a set of finite measure. (This is
why f has to be a bounded function here) It is evident that for the functions we
investigated in Section 1 (namely simple functions vanishing outside a set of finite
measure) have their upper and lower integrals both equal to their integral as defined in the

last section. In other words, if ¢ € So(E) then [, ¢ = [ ¢ = [, ¢ .Itis also clear

that —oo < [ f < [ f < oo whenever they are defined.
We investigate when [, f = [, f.

Theorem1.2.2: Let f be as in the above definition. Then

f f =f fforallA € E
A -A
if and only if f is measurable.

Notation: We shall denote the set of all (real-valued) bounded measurable functions
defined on E which vanishes outside a set of finite measure byB,(E).

So from now on forf € By(E), implies that

ff=inf{f l/):fSl/)ESO(E)}=Sup{f (p:fZ(pESO(E)}
A A A
forany A € E.

Theorem1.2.3:(Properties of the Lebesgue integral) Supposef,g € By(E), then
f+g,af, |f| €By(E), and for anyA S E, we have

@ LE+9=[f+],9
(b) fA a’f=afA f foralla €R.

(¢ If B<S Aandf > Oa.e.onAthenfB f SfA f.



(d) Iff < gaeonAthenf f < [ g.
() Iff = gaeonAthenf, f = [ g

() Iff =2 0aeondandf, f = O,thenf = Oa.e.onA.

® |f, f] <0

Theorem 1.2.4:(Bounded Convergence Theorem)Let (f,,) be a sequence of measurable
functions defined on a set E of finite measure, and suppose that there is a real number M
such that |f,| < M for all n and for all x. If f(x) = lim,_,, f,,(x) for each x in E, then

GugLﬁ=Lf

1.3 Integration of non-negative measurable functions

We integrate non-negative measurable functions through approximation by bounded
measurable functions vanishing outside a set of finite measure, which we studied in the last
section.

Definition 1.3.1: For a non-negative measurable function f : E — [0,] (where E is a
set which may be of finite or infinite measure), we define

ff=sup{f qo:goSfonA,(peBO(E)}
A A
foranyA € E

Note that for non-negative bounded measurable functions vanishing outside a set of finite
measure, this definition agrees with the old one. Also, note that we allow the functions to
take infinite value here.

Theorem 1.3.2: Suppose f,g: E = [0, o] are non-negative measurable and A <

(@ Iff < gaeonAthen[ f < [ g
(b) Fora > 0,f + g and af are non-negative measurable functions and

Lv+m=Lf+Lg
=<

Theorem 1.3.3:(Monotone Convergence Theorem) If {f,,} is an increasing sequence of
non-negative measurable functions defined on E and f,, » f a.e. on E, then

ff—mn fu

n—-oo
Corollary 1.3.4: Let u, be a sequence of nonnegativemeasurable functions, and let
f = Yn1 Uy, then



1.4 Extended real-valued integrable functions

In the last section, we integrated non-negative measurable functions, and in this section, we
wish to drop the non-negative requirement. Recall that it is a natural requirement that our
integral be linear, and now we can integrate a general non-negative measurable function, so
it is tempting to define the integral of a general (not necessarily non-negative) measurable
function f to be f* — f~where f* = fVvO0,and f~ = (—f) VO, since f*, f"are non-
negative measurable and they sum up to f. But it turns out that we cannot always do that,
because it may well happen that fTand f ~are both infinite, in which case their difference
would be meaningless (Remember that co—oo is undefined.)

Definition 1.4.1:For any function f: E — [—o, ], denote f* =fvO0and f~ = (—f)V
0. Then f is said to be integrable if and only if both fE f* and fE f~ are finite, in which
case we define the integral of f by

for=lor=lor

Notation: We shall denote the class of all (extended real-valued) integrable functions
defined on E by L(E).

forany A C E.

Note that in the above definition, f* and f ~are both non-negative measurable, so for any
set AC E, [, f* and [, f~ are both defined. Furthermore, [, f* < [ f* <oo,

similarly [ [~ < oo,80 their difference makes sense now.

We provide an alternative characterization of integrable functions.

Theorem1.4.2: A measurable function f defined on E is integrable if and only if

[ ri<e
E
Theorem 1.4.3:Let f, g be integrable functions over E, then

L+ =)+, g
2. [ af =a [, f.

3. Furthermore, iff < ga.e on E then fE f < fE g



Chapter Two

Trigonometric Series

2.1 Introduction to Trigonometric Series

Definition 2.1.1. Trigonometrical series are series of the form

[00]
1
(1) > o + Z(ak cos kx + by, sin kx),
k=1

Where the coefficients ag, a4, ..., b1, by, ... are independent of the real variable x. It is
convenient to provide the constant term of the trigonometrical series with the factor 1/2.
Since the terms of (1) are of period 2, it is sufficient to study trigonometrical series in any
interval of length 2.

A finite trigonometric sum

n
1
T(x) = 2o + Z(ak cos kx + by, sin kx),
k=1
is called a trigonometrical series of order n. Every T (x) is a real part of an ordinary power
polynomial

n
1
P(2) = ao+ Z(ak —iby)z* .
k=1

of degree n, where z = e'*. The fact that trigonometrical series are the real parts of power
series facilitates in many cases finding the sum of the former.
For example, the series [3]

1 (00} [o¢]
(2)P.(x) = >+ Z rk coskx, Q,(x) = z r¥ sin kx,
k=1 k=1
where0 < r < 1, are the real and imaginary parts of the series
1 gt g? = 11+2z
| 2 T ETE T T
where z = re'*, and we obtained by simple calculations the two relations
(3)P()—1 1—r? ) = 7 sin x
T o " 2rcosx + 12’ Qrlx ~1-2rcosx +1?

If we denote the nth-partial sums of (3) as D,,(x), D, (x),n = 0,1,2 ... of the series (2) we
obtain with r = 1 by the same argument that
sin (n + %) x _
(4)Dy(x) = — 1 Dy (x) = 1
2 sin 5% 2 sin 5%

1 1
cos;x — Ccos (n +E)x

From (4) we see that D, (x), D, (x)are uniformly boundedon any interval 0 < & < x <
2w — €.



Lemma 2.1.2: [3] let uy, v;, be any two sequences in R then for 0 < m < n, the formula
n n—-1

Z UV = Z Uk — Vis1) = Uy - U + Upy,
k=m k=m

is valid for any k > 0, where U, = uy + uy + -+ + uy, and U_; £ 0. This relation is called
Abel's transformation or summation by parts which can be easily verified and it is very
useful tool in the general theory of series.

Definition 2.1.3: We say that a sequence v = (vg, V4, ..., Uy, ... ) is of bounded variation if

the series.
0
ZWk — V| S M.
k=1

Since the previous series is absolutely convergent, then it is convergent series, so
Y1 (v — vi_1) is converges to some constant c, thus we have.

n

¢ = lm ) (v = ve-y) = lm [0y = v) + -+ (W = vyp)]
k=1
= lim (v, — vy)
n—-oo

Therefore, any sequence of bounded variation is convergent.

Lemma2.1.4.[3]

a) If a series uy(x) + u; (x) + -+ converges uniformly, and{v,} is of bounded variation,the
series uyvy + u v + -+ converges uniformly.

b) If ug(x) + uy(x) + -+ has its partial sums uniformly bounded, {v;} is of bounded
variation, and v, — 0, the series uy,vy + u,v; + -+ converges uniformly.

2.2 The trigonometrical system

Note: The integral we used here is the Lebesgue integral and we introduced the concept of
integral in the first chapter. In addition, we assume that f is a periodic function of period
2T,

A system of real functions gg, g1, - - , 9n, - defined in an interval (a, b)is said to be
orthogonal in this interval if for some 7 € R.
b
0, m#n
© | aa)gnCIdx = {7 mEN n =01,

The importance of the orthogonal systems is based on the following fact. Suppose that a
series ¢y go(x) + ¢191(x) + -+, where ¢y, ¢y, ... are constants, and converges to a function
f(x) in(a, b). Then by multiplying each side of the formula



(6) fx) =cogo(x) + c191(x) + - ¢ gn(x) + -
byg, (x) and integrating over the interval (a, b), we find, by means of (5), that

b
(MNec, = %L f(x)g,(x)dx n=0,1,..

We call the numbers c,, the Fourier coefficients off, and the relation (6) the Fourier series
off with respect to the system {g,,}.

Not that the system of functions 1,cosx,sinx,cos2x ,sin2x,...,that is, the
trigonometrical system is orthogonal in (—, 7).

In fact, let Iy, = f_nn sinmxsinnxdx, and let I, = f_nn cosmx sinnx dx, I}, , =
ffn cos mx cos nx dx.Integrating the formula
2 sinmx sinnx = cos(m — n)x — cos(m + n)x
and taking into account the periodicity of trigonometrical functions, we find that
Imn = 0 whenm # n,

Moreover, I, = 0 = Iy ,foranym,n = 0,1, ..., so we may write (6) in means of the
trigonometrical system as

1 (0.0)
(8) flx) = 5% + Z(ak cos kx + by, sin kx)
k=1

In addition, we define

Day, = % f f(x) cos kx dx,

Vs
1
by = ff(x) sin kx dx,

In virtue of relation (9), we see that the problems of the theory of Fourier series are closely
connected with the notation of integrals; in the last relation, we assumed that
f(x) coskx, f(x) sin kx were integrable.

Every integrable function f(x) (0 < x < 2m) has its Fourier series as it is defined in (8).
Two functions f and g which are equal a.e have the same Fourier series and we call them
equivalent g = f and do not distinguish between them.

Notation: The partial sum of the Fourier series of any function, sayf, denoted by s, (f)
and given by the formula



n
sn(f) = %ao + Z(ak cos kx + by, sin kx)
while we shall denote by S[f] to the F oﬁrzit:r series of f.
This series of partial sum can be written as the following form
n n T n
sn(f(x)) = % f f()dt + %Z cos kx f f(t) cos kt dt + sin kx ] f(t)sinktdt
“n k=1 n “n

T

= %i f®at +%ki1 j:f(t) cos kx cos kt dt + j:f(t) sin kx sin kt dt
:%_Zf(t)dt+%kzn::1 _f:f(t)[coskxcoskt+sinkxsinkt]dt
=%j:f(t)dt+%z j:f(t)[cosk(t—x)]dt

1 nf(t) %+ Zcos k(t — x)] dt = %j:f(t)Dn(t — x)dt

Y
Y

=~ [ re+ o0

where
sin (n + l) X
N 2/

Dn(x) = 1
ZSII‘IEX

The functionD,, (x)is called the Drichlet's function.

a, cosnx+by, sinnx
Lets) =s —( L I
n n 2

now the difference s; —s,, tends uniformly to O so it is slightly more convenient to
consider the modification expression.

) be the modified partial sum of the Fourier series of f,

Note 2.2.1: [3] Let f be measurable function that belongs to the LP space,p > 1, and
sp(f) is the partial sum of it is Fourier series then

Isn (D)l < 2411l

wheres,, (f) is the modified partial sum of s,, (f).

Consider any trigonometric polynomial, say t,, then we may write



n ' n

sp(f) —t, = —0 Z ay cos kx + by, sin kx) — %o _ Z(a}c cos kx + by, sin kx)

2 2
k=1
= ao + Z([ak — ay] cos kx + [by — by] sin kx)
= Sn(f - tn)

also we may write

1 1
snf = )0 = 1 [+ ) = b+ 01D e

if we set k = u + 27 on the interval (—m, 0), and k = u on the interval (0, ) and noting
that f is 27 periodic, . Then
0

nlf =60 = | [+ = ta(u+ 201, (0
+ f[f(u +x) — ty(u + x)]1 Dy (w)du
d
_1 f [F(k + %) — t,(k + %)]D,, (w)du
+ fn[f(k + x) — t,(k + x)]D,,(k)dk
0

2m
f [f (k + x) — t,(k + x)]D,, (k)dk |.
0

Theorem 2.2.2: [3] If f and g have the same Fourier series then f = g.

Since if they have the same Fourier series then the difference between these functions will
cancel all coefficients in the Fourier series for which the difference will be equivalent to
zero and so they are equivalent.

Theorem 2.2.3: [3]Let f be continuous function, if G[f] converges uniformly then it
converges to f.

Noting that the convergent will be to the images of f at the points of continuity and to the
average value of the left-right limit of the point in which the function f is discontinuous.

Suppose that f(x) is an integral function i.e. is absolutely continuous. Therefore, it is
Fourier series given by(8).Integrating the first formula in (9) by parts, we get

10



T s
1 1 1
a = ff(x)coskxdx=a ff’(x)sinkxdx=;b,’l
- -

Therefore, b, = kay, the same manner we deduce that aj, = —kby,.

Since fis periodic then ay = 0, so we have

co

f'(x) = Z(a’k cos kx + b’ sin kx)

k=1

= Z k(ay sinkx — by, coskx), k=1.2,..
k=1

In other words, if G&[f] is the Fourier series of f, and &'[f] is the resulting of
differentiating S[f]term by term then we have &'[f] = S[f’]. With the same argument,
we see that if f is a k~th integral, then ¥ [f] = S[f¥].

Theorem 2.2.4: [3] Let f be periodic and F is the integral of f. since

X421
F(x+2m)—F(x) = f f(t)dt,

then a necessary and sufficient condition for the periodicity of F is that the constant term of
S[f] should vanishes.

2.3 Modulus of continuity

Definition 2.3.1: [3] Let f(x) be a function defined for a < x < b, then Vx,y € (a,b)
such that |[x — y| < §, we define the function
w(6) = w(6; f) = max|f(x) — f(y)|to be the modulus of continuity of f(x).

Example 2.3.2: Consider the function f(x) = x? x € (0,3), then the modulus of
continuity of f is
w(8) = max|x? — y?| = max|(x —y)(x + y)| < 6 6.

Theorem 2.3.3: [3] A function f is continuous iff w(§) - 0as§ — 0.

Definition 2.3.4: With the same notation above, if w(§) < C6%, 0 < a < 1, and C denotes
a number independent of §, then we say that f satisfies Lipschitz condition of order «, or

f € Lip(a)in(a, b).
For simplicity, we suppose that (a, b) is the interval (0,27), since we are dealing with a

trigonometrical system that is of period 2m. Moreover, any interval of period 2w will be
sufficient.
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Definition 2.3.5: Let w,(6) = w,(5; f) = max fomlf(x +h) — f(x)|dx, forall 0 < h <
§.The function w (&) will be called the integral modulus of continuity of f.

Theorem 2.3.6: [3] For any integrable function f(x),
(lsl_% w,(6) =0.

In addition, if for any € > 0 we have f = f; + f,, where w,(J;f;) »0asd — 0, and
1(f2) 2 [Ifz] < &, then w,(5;f) = 0.

In fact:

w1(8; f) < w1(6; f1) + w1(6; f2) < w1(6; f1) + 21(f2) < 3e,

if0 < § < §,(¢).

2.4 "'Big O" notation and Test of convergence

The object of this section is to establish some conditions for the convergence of the Fourier
series. It will be convenient to collect here a few elementary theorems on series concerning
the BigO notation, which will be used in the sequel.

"Big " notation describes the limiting behavior of a function, when the argument tends
toward a particular value or infinity, usually in terms of simpler functions.

Big O notation characterizes functions according to their growth rates, different functions
with the same growth rate may be represented using the same O notation. The letter Ois
used because the growth rate of a function is also referred to as order of the function. A
description of a function in terms of big O notation usually only provides an upper bound
on the growth rate of the function.

Definition 2.4.1: Let f(x) and g(x) be two functions defined for some x > x, in addition,
let g(x) # 0 there. The symbol

fx) =0(g(x))
means that f(x)/g(x) is bounded for x large enough, the same notation is used when x
tends to a finite limit, or to —oo. i.e. f(x) = 0(g(x)) if and only if there exists a positive
real number M and a real number x, such that

f(x) < M|g(x)| forallx > x,

In particular O (1) means that a function is bounded.

12



Chapter Three

Classes of Functions

3.1 Vector space

Definition 3.1.1. Let VV be a set with two operations, the operation "addition", denoted by
"+", which maps each pair(x,y)in V X V into V, and the operation "scalar multiplication",
denoted by a dot " - ", which maps each pair (¢, x) in R X V into V. Thus, a scalar is a real
or complex number. The set V is called a real vector space if the addition and
multiplication operations involved satisfy the following rules, for allx,y and z inV, and
for all scalars a,,b,and cin R :

@Qx+y=y+x

b)yx+(@y+z2)=x+y)+z

(c) There is a unique zero vector 0 in V such that x + 0 = x

(d) For each x there exists a unique vector —x in V such that x + (—x) = 0

e)l-x=x

(® (ab)-x=a-(b-x)

(@a-(x+y)=a-x+ta-y

(hy(a+b)-x=a-x+b-x

It is trivial to verify that the Euclidean space R™ is a real vector space. However, the notion
of a vector space is much more general. For example, let IV be the space of all continuous
functions on R, with pointwise addition and scalar multiplication defined the same way as
for real numbers. Then it is easy to see that this space is a real vector space.

Another example of a vector space is the space V' of positive real numbers with the

"addition" operation x + y = x - y and the "scalar multiplication" ¢ - x = x°. In this case

the zero vector 0 is the number 1, and -x = % .

Now if we consider the set F = {f|f:R — R} of all real valued functions of one variable
then F is a vector space under the operations:

f+9)) =fl)+g9M)
(a-H)x)=a-fx)

One more example we need to show here is that of the [P space of sequences, let p = 1 be
fixes real number, by definition each element in this space is a sequence x = (x,)7° =
(x1, %y, ...) of numbers such that };2,|x;|P converges, and the addition and scalar
multiplication are defined as

x+y =1 +y,%+Yy, )
a-x = (ax;,axy,..)
for any x,y € [P,

13



Note that a vector space must have at least the zero vector, thus, the one element vector
space is the smallest one possible.

It is not difficult to see that these properties yield other fundamental properties of vector
addition and scalar multiplication of position vectors. For example, a - 0 = 0 for any real
number a, also we state another which can be deduced from the last definition easily.

i 0-x=0

ii. Ifa-x=0,theneithera = 0orx = 0,orboth
iii. a-(—x)=-a-x

iv. (-a)-x=-a-x

v. (a—b):x=a-x—b-x
vi a-(x—y)=a-x—a-y

Definition 3.1.2: A subspace W of a vector space V is a non-empty subset ofV/, which
satisfies the following two requirements:

(a) Forany pairx,yinW ,x +yisin W.
(b)  Forany x in W and any scalar a in the field , a - x is in W.
Thus, a subspace W of a vector space Vis closed under linear combinations in W.

3.2 Normed vector space

Definition 3.2.1: (Normed space, Banach space). A normed space V is a vector space with
a norm defined on its elements. A Banach space is a complete normed space. Here a norm
on a vector space V is a real valued function whose values at any element x € Vis defined
as ||x|| and which satisfies the properties.

(A1) llx][ =0

(A2) ||x]] = 0iffx =0

(A3) lla - x|l = lalllx|l

(A4) |lx + yIl < [lx|l + [Iyl (Triangle inequality)

Here x and y are arbitrary vectors in VV and a is any scalar in the field R.

Example 3.2.2: Depending on the definition above, deduce the following inequality.

Myl = llxlll < lly — xII
Solution: Using (A4) above, we may write

llxll = llx =y + yll < llx =yl + Iyl
Thus,

llxll = iyl < llx = yll = lly — Il

by the same way one can deduce that

14



Iyl = llxll < lly — Il

so by the last two inequalities we have

=lly = xll < llyll = llxIl < [ly — I

and the inequality follows. m

Another critical property of the norm is its continuity, which can be seen from the previous
example, that is, x — ||x|| is a continuous function on the normed space (V, ||+|])into R.

Examples 3.2.3:

1.

The space R™ and the unitary space C" are normed spaces with the norm defined

for both by
n 2
Il = (lem)
i=1

2. The space [P is a normed space with the norm

1
e P
ell = ) l?
i=1

3. Norms on the space C[a, b] of continuous real valued function, for 1 < p <
1

b )
Ifll, = (f |f|pdx) Mflleo = supxeqap) (1fD

4. Other norms on R" can be constructed; for example

llacll = 2021 | + /31 [2 + max (|1, 2x4])2

is a norm on R*.

The norm on the [®space, of all bounded sequences of complex numbers, that is
every element in the space is of the form x = (x,x,,...),x; € C, such that for
each i = 1,2,3.... we have |x;| < M, where M, is a bound that depends only on
the sequence x, the norm is given as

lIxlloo = suplx;]

3.3 The LP space

The LP spaces are function spaces defined using a natural generalization of the p-norm for
finite-dimensional vector spaces, we will assume all functions in this space to be of period
2m, but it is not always the case, since we approximate these functions by cosine and sine
functions so it is preferable to periodic of period 2.
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Definition 3.3.1: Let p be a positive real number, then the set of all measurable functions
defined on a fixed interval [a, b] such that the integral

b
f FIP < oo

are said to belong the LP space. Thus, the L' space consists precisely of the Lebesgue
integrable function on the interval [a, b].

Since|f + g|P < 2P(|f|P + |g|?), will show that later, we say that the sum of two
functions in LP is a gain in LP whenever f and g are. In addition, we point here that
af € LP whenever f is. Thus we have that af + bg € LP whenever f and g are. The last
statement ensures that the LP space is a vector space.

Note that since LP space is a vector space, so we can define a norm on it. Here we give the
norm of any function f € LP by

p

b
171l = IfIL, = j Tk

It is clear that || f|| = 0 ifff = 0 a.e, if a is a constant then||laf|| = |al||f]|, we derive two
inequalities, the first of which state that.

If +gll, < Ifll, + llgllp

Unfortunately, norms for the LP spaces do not satisfy the second requirement (A2) of being
a norm, for from ||f|| = 0 we only conclude thatf = 0 a.e. We shall however, consider
two measurable functions to be equivalent if they are equal almost everywhere; and, if we
do not distinguish between equivalent functions, then the LP spaces are normed vector
spaces.

It is convenient to denote by L* the space of all bounded measurable functions on [a, b]
(or rather all measurable functions, which are bounded except possibly on a subset of
measure zero). Then L* is a vector space, and it becomes a normed vector space if we
define

IF Il = lIfll = ess suplf ()l

Where ess sup|f(t)| is the infimum of sup g(t) as g ranges over all functions which are
equal to f almost everywhere. Thus
esssup|f(t)| = inf{M € R:m{t: f(t) > M} = 0}

Example 3.3.2: Show that inL*, the relation

If + gllec < Mlflleo + llglleo

1s valid.

Proof: If |f(t)| < M; a.eand |g(t)| £ M, a.e, then
If(@®) + g©)| < M; + M, ae.
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So|lf + glle < M; + M,. Note that |f(t)]| < ||f]| a.e. and |g(t)| < ||g||w a.e. Thus
I1f + glle <|IfI], + [lgl|_.m

Example 3.3.3: Iff € L'and g € L®, then
f|fg| <1f - gl

Solution: Suppose f € Liandg € L. Then since |g| < ||gl|. we see that

[ital < [iflgle = ligll,, [1r1 = sl ligl],,m

Theorem 3.3.4: [3] (Minkowski Inequality) If f and g in LP with 1 < p < oo, then so is
f+gand
If +gll, < Ifll, + llgllp

If 1 < p < o, then equality can hold only if there are nonnegative constants a and b such
that bf = ag.

Proof : The case when p = o is elementary (see example 3.3.2), as are the cases when
[If]l =0 or|lg|l = 0. Thus, we assume that 1 < p < oo,and ||f||=a #0,]lgll = b # 0.
Then there are functions fyandg, such that |f| = af;, |g| = bge, and ||foll = llgoll = 1.
Setp =a/(a+ b). Then (1 — p) = b/(a + b),and we have

If )+ gIP < (f]+1g()DP = [afo(x) + bge(x)]?
=(a+b)P[p fo(x) + (1 = p)go(x)]?

< (a+b)P [p fo(x)? + (1= p)go(x)?]

by the convexity of the function 8(t) = tP on [0,00] for 1 < p < o0, if 1 < p < o, this
inequality is strict unless f;(x) = go(x) andsgn f(x) = sgn g(x). Integrating both sides
of this inequality gives

If +glI” < (a+b)P[pllifoll” + (1 =p)ligollP’] < (a+b)? = (lIfll + llglD?
Taking p-th roots gives
If +gll < lIfIl + llgll.

If 1 < p < oo, the inequality is strict unless f, = g, a.e. And sgn(f) = sgn(g) a.e. But
this means that the inequality is strict unless bf = agm.

Lemma 3.3.5: [5] Letl < p < oo. Then for a, b, t nonnegative we have

(a + th)? > aP + ptbaP?
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For the proof, see [5].

Theorem 3.3.6: [5] (Holder inequality)Ifp and q are nonnegative extended real numbers
such that

1 1
—+-=1,
P q
andif f € LP and g € L9, then f - g € L'and
[1ral <11, - gl
Equality holds if and only if for some constanta and b, not both zero, we have a|f|P =

blg|?a.e.
For the proof, see [5].

3.4 The weighted L? space

We assume throughout that our functions f(x) are measurable periodic with the period 2,
that is f(x) = f(x + 2m), unless otherwise stated.

Definition 3.4.1: Letl € R be an open interval, and f:I — R be a measurable function, if
the function f on [ satisfies

1<

i.e. its Lebesgue integral is finite, for all compact subsets I’ € I, then f is locally integrable
Definition 3.4.2: A weight function w is an almost everywhere positive function that is
locally integrable. In other words, it is a measurable functionw: R — [0, o] such that the
set w™1({0, 0}) has Lebesgue measure zero.

Example 3.4.3:Consider the function e”*, for any x € R, it is positive everywhere (so we
can assume that it is a.e positive since the Lebesgue measure of the empty set is zero) and
it is locally integrable on any compact interval in R.

Definition 3.4.4: The weighted LP space is the space of all measurable 2m-periodic
function f, for which it is denoted by L} [0,27], where 1 < p < o0, and w is a weight

function.

The norm defined on LF, = LP [0,2m]is given by

21 1/p
”f”p,w = (J |f(X)|pW(X)dX) <
0
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Note that Minkowski and Holder inequalities hold here, since for any functions f, g € L?,
and knowing that w is positive then

21 1/p
If +gllpw = (f |f(x) + g(X)IpW(X)dX>
0
2m 1/p
= < f If (x) + g(x)lp(wl/P(x))”dx>
0

21 1/p
B ( (|f Cow/P(x) + g(x)wl/p(x)l)pdx)
0
_ 1/ 1/
= [lfwt/® + gwt/||
< [lrwt ]| + lgw /],

= fllpw + lgllpw-

Also noting that % + é = 1, we have

[1rgtwax = [1rwogwvalax < |lfw 2], - lgw/a], = I, - gl

3.5 The Muckenhoupt weight A,

Definition 3.5.1: Let f be a locally integrable function, which is defined on the interval
[0,27], then for any x € [ € [0,2m], the Hardy-Littlewood maximal operator M for any
functionf is given by

1
M) = sup Ty f F(Olde
1

and the supremum is taken over all subintervals Iof [0,27].

The class of Muckenhoupt weights A, consists of those weights w for which the Hardy-
Littlewood maximal operator is bounded onLﬁ,. That is; A, is the class of all positive,
locally integrable weighted functions such that there is a constant K with

M llpw < KIIFllpw
Equivalently,

[ wedx <k [1rPweod,
Proposition 3.5.2: [9]If w € A, then it is necessary and sufficient condition that w

satisfied the inequality
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-1

p
sup <|Tllf, w(x)dx) (%J; [w(x)]_l/p-ldx> < oo,

where the supremum is taken over all intervals I with length |I| < 2.

When we assume the domain of w to be any subset of R" then the condition on w will be
such that for any point x

-1

P
sup (%L W(x)dx> (%L [w(x)]_l/P—ldx> < oo,

for all balls B(x,r) € R™ where r > 0, while | B| means the measure of the ball B.

Example 3.5.3: One of the most examples of an.A,weight is given by

w,(x) =1x|%, x€R™, —n<a<n(p-1).

3.6 Theclass Ly

Definition 3.6.1: Letp(x),¥(x),x = 0be two functions, continuous, vanishes at the
origin, strictly increasing, tending to infinity, and inverse to each other, then we say that
@(x), P(x) are Young's functions.

Forall a,b = 0, we have the inequality due to Young

a b
(D ab < ®(a) + Y(b)where®(a) = f e(t)dt ,¥(b) = f Y(t)dt.
0 0

Note that the equality in (1) holds if and only ifb = ¢(a).The functions ®(x), ¥ (x) will
be called complementary functions. If we set,

o) =u%p) =v/*(a>0), p=1l+a p =1+1/a
we get the inequality

!

P pp
) ab < —+-—(a,b > 0),
p D

where the complementary exponentsp, p’ both exceed 1 and they connected by the relation
1 1
—+ —=
p p
If p=p' =2, (2) reduces to the familiar inequality 2-a-b < a?+ b2%Ifp - 1,
thenp’ — o0,and conversely.
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Definition 3.6.2: A function f(x) defined on an open interval (a, b)is said to be convex if
for each x,y € (a,b) andeach 4, 0 < 4 < 1 we have

fOx+ A =Dy) <Af(x) + A =D Q).

In other words, if for each point on the chord between the (x, f (x)), and (y, f(y)) is
above the graph off.

For example f(x) = xP,p = 1 is convex function on (0, o).

As a consequence of the last definition, for any set of points p;, p,, ..., P, and for any set
of points x4, x5, ..., X, in (a, b). We have

<p1x1 +Dpyxy + o pnxn> < p1f (x1) + p2f (x2) + -+ puf (x)
prtp+ -+ s B prtp,++p,

This inequality is called Jensen's inequality. For n = 2, the inequality implies the
definition, and for n > 2, it follows by induction.

Note: By the last inequality, let p;, p,, p3be three ordered points on the convex curve f(x),
in the order indicated. Since p, is below or on the chord p;p;, the slope of p;p,does not
exceed that ofp; p;. Hence if a point p approaches p, from the right then the slope ofp,p is
non-increasing. Thus, the right-hand side derivative exists for any point a < x < b and is
less than o0.Also, there are many properties of convex functions, which are very useful in
many fields in mathematics, and we here introduce few of them.

Theorem 3.6.3: [5] If f(x) is convex on (a, b), then f(x) is absolutely continuous on each
closed subinterval of (a, b). The right (left) hand side derivatives of f exists at each point
of (a,b) and are equal to each other except on a countable set. The left (right) hand
derivatives are monotone increasing functions, and at each point the left-hand derivative is
less than or equal to the right —hand.

Theorem 3.6.4:[5]Iff is a continuous function on (a, b) and if one derivative of f (the left
or right) is non-decreasing, then f is convex.

Corollary 3.6.5:[5] Let f have a second derivative at each point of (a,b). Then f is
convex on (a, b) if and only if f"'(x) = 0 for each x € (a, b).

Theorem 3.6.6: [5] (Jensen’s Inequality for integrals) Let ¢ be a convex function on
(—00,0) andfan integrable function on [0,1]. then

[ o= o[ rou]

Antoni Zygmund [3] states in his book the same theorem with slightly different conditions.
That is, if ¢@(x) is convex in an interval a < x < b, and a < f(x) < b at each point
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a < x < f,p(x) is non-negative and not identically zero, and that all integrals in the next
inequality exist. Then

2 Fop(x)dx 5 I ol (0lp(x)dx
Pr@dx |7 [Fpeodx

Theorem 3.6.7: [3] A necessary and sufficient condition that ¢ (x),a < x < b, should be
convex is that it should be the integral of a non-decreasing function.

Let now ¢(x), x = 0, be an arbitrary function, non-negative, non-decreasing, vanishes at
x = 0 and tending to +oo with x, the curve y = @(x) may possess discontinuities and
stretches of constancy, if at each point x, of discontinuity of ¢ we adjoin to the curve
y = @(x) the vertical segment x = x, (xo —0) <y < ¢(x, + 0), obtain a continuous
curve, and we may define a function ¥(y) inverse to @(x) by definingyy(y,)(0 < y, <
) to be any x, such that the point (x,, y,) is continuous curve, The stretches of constancy
of ¢ then correspond to discontinuities of 1, and conversely. The function ¥(y) is defined
uniquely except for the y ‘swhich correspond to the stretches of constancy of ¢.But since
the set of such stretches is denumerable, our choice of Y (y) has no influence upon the
integral W(y)of y(y),and it is easy to see that Young's inequality is valid in this slightly
more general case.

From 3.6.7 it follows that every function ®(x), x = 0,which is non-negative, convex, and
satisfies the relation ®(0) = Oand®(x)/x — co,may be considered as a Young's function.

More precisely to every such function corresponds another function W(x) with similar
properties such that
ab < ®(a) + ¥ (b)

For every a > 0,b > 0. it is sufficient to take for W(y) the integral over (0,y) of the
function ¥ (x) inverse to @ (x) = D*®(x). since ®(x) /x — cowith x. It is easy to see that
@(x) and P(x) also tend to +co with x. We have ab = ®(a) + W (b)if and only if the

point (a, b) is on the continuous curve obtained from the function y = ¢ (x).

Definition 3.6.8: Let ®(u) = 0 for u = 0.We say that a measurable function f(x),0 <
x < 2m, belongs to the classLg (0,2m) if the function ®(|f]) is integrable over (0,27).
That is, the class Lg,(0,27) = Lg is the set of all measurable functions such that

f O(If (0))dx < oo

This class may fail to be vector space; it may fail to be closed under scalar multiplication,
due to the function ®(u).

Example 3.6.9: If we set ®(u) = uP, then¥(v) = v/P(p > 0).So, the class Lg(0,27) is
identical with the L space.

Integrating the inequality
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Ifgl < @fD +¥dgD
overa < x < b, we get that fg is integrable over (a, b) if f € Ly (a,b), g € Ly(a,b).

Throughout the text, we will write®|u| + W|u|, for®(Ju|) + ¥(|u|) for simplicity.

Definition 3.6.10: If f(x) is measurable and such that foanDIfIdx exists, f(x) is said to

belong to the space L4 (0, 2m). If f(x) is such that the product f(x)g(x) is integrable for
every g(x) € Ly, thenf (x) € L.

For this space, the norm is given by
2

Ifllo = sup f(x)g(x) dx
0

for all measurable g(x) with p,; = [ Ozanl gldx < 1. This space is a vector space, and also
complete [5]. If f(x) € Ly, we put for§ > 0,

we(8; f) = supllf(x + h) — f(X)lle for 0 < |h| < 6.

When p > 1, then LP is a classLy.
Inl?,p =1,
wp(8; f) =supllf(x + b) = fOOIl,
~sup| [l 4 0 - F0P
0

1/p

Ifw,(8; f) = 0(6%), 6 = 0, f(x) is said to belong to the class Lip(a, p).

The limiting case ofLip(a,p), denotedLip(a, ) is identical with Lip(a).For brevity, we
shall write||f|| for||f]|whenever it will not lead to confusion.
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Chapter Four

Trigonometric Approximation in the LP Spaces

4.1 Introduction

So far, we introduced many concepts, classes of functions, Trigonometric series, and
Lebesgue integral, in which they are the basic building blocks in the field of approximation
by trigonometrical functions; on the other hand, we will not cover the whole branch of
approximation in the LPspace and our argument in this subject will be a basic theorems and
lemmas that will qualify us to study the approximation in the weighted L space.

Throughout this chapter, we will assume any function to be periodic of period 2. Also we
define s,,(f; x) to be the n-th partial sum of the Fourier series of the function f(x).

We already defined the Lipschitz class for 0 < a < 1 to be the class of all functions such
that w(6) < C6%, for some constant C.i.e

w(6; f) =0(5%)
Letl <p <oo,w €A, f €LPand 0 < a < 1, we define the Lipschitz classLip(a, p) as

Lip(a,p) = {f € LP: w,(f;8) = 0(6%),6 > 0}.

Definition 4.1.1: (Noérlund method) [10].Each sequence pg,p;,... of real or complex
constants for which B, = pg + p; + -+ p, # 0 for each n defines a Norlund method
(transformation) of summability by means by the formula

1 n
Nalf52) =5 ) presic(f3 ).
k=0

The class of Norlund transformation is identical with the class of triangular matrix

transformations
n
Pn = Z Ak Sk

k=0
for which

anig = 0,fork <n,a,, =0,fork>n(k,n=0,1,..)
and

n
Z Ay = 1 n=01.2,..

k=0
where

A= [al-,,-]:.:l
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is a lower triangular infinite matrix of real numbers.

Definition 4.1.2: (Riesz method) [10] Each sequencep,, p;, ... for which B, = py + p; +
-+ + p, # 0, determines a Riesz transformation as

1 n
R, (f;x) = P—Z PrSk(f; X).
" k=0

Definition 4.1.3 :(Ces aro method) [10] If we setp,, = 1for eachn then both of the
Norlund and of Riesz transformations coincide with the Ces'aro transformation

1 n
an(f5x) =n_H;)Sk(f; x).

4.2 Trigonometrical approximation in the mean

In this section, the investigation will be in approximating functions in the LP spaces,
especially for the class Lip (a,p) where the functions has the property that the modulus of
continuity is less than C§%, and the approximation will be done here in two methods, the
first will involve the Norlund means and the second is more general method of matrix
transformation in which it implies the previous one, we note that we are concerning with a
degree of error to be 0(5%).

The following theorem is stated without proof by G. H. Hardy and J. E. Littlewood.

Theorem 4.2.1: [4] The class Lip (a,p) is identical with the class of functionsf (x)
approximable in the mean p~th power, with error O (n~%),by trigonometrical polynomials
of degree n.

In the following s, = s,(f) = s,(x; f) denotes the n-th partial sum of the Fourier series

of f(x) and 0,, = 0,,(x; f) denotes the Ces'aro mean for the function fi.e.
n

1
o6 f) = kzzosn(f(x)).

Theorem 4.2.2: [4] If f € L% possesses a derivative of order r, say f ™ (x), in L%, where 1
is appositive integer or zero, then, for any positive integer n, f (x) may be approximated in
Ly by a trigonometrical polynomial t, (x), of order n at most, such that

If —tn(lle =0 <n‘rw¢ (%;f(r)))
Proof: Let A = E] and u(t) = Y4 o anf (x + %)

The A + 1 constants a;, k = 0,1,...1 being so determined that u(0) = f(x), u>9(0) = 0,
s =1,2,... , A.The trigonometrical polynomial t,,(x) is defined by the equation

25



2A+4

)= | ()

ot 27+4

A +2) = f(SI—nt) dt

where

t

— 0o

The order n of t,,(x) is (A + 2)2*m — 1.Sinceu(0) = f(x), we may write

00~ ) =i | #(5) e

| [ 2 [u( Y a -

| Y e [
g ) e

|G e [
g ()

-l (G ) - o (5]

- () -0 2™

sl PR ]

where

)=+ ru(E) 20

KOO = Y e (3m5) 1O (x4 37)

k=0

with these definitions

and
FOW@) =uM@) + u™(=t), 1 iseven

FO@) = @) = p (=) = 2u7(0), 7 isodd

Consequently if r is odd then
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IFC @l

e = u®(=t) - 2u(r><0)||

2 2
_ 1 ) _|_ ) _E
= U\ 5tk—Dr o\ x A Z(k o)\ x oK
k=0 k=0
1 ()
‘Zzak(w)f 2
k=0
yl
lal 2t 2t
() My =)= 2fF(™
= 2 zevr ||/ (x4 58) =1 (2= 58) - 20|
Z la| 2t
a
< Y ([ (e ) -0 + 2 (x-2) - oo
by the same way when 7 is even
/1
|ak| 2t 2t
oo Z o (<310 - )
/_1 la| 2t
a
= e [0 (x4 30) - FO@ + O - 10 (x - 2|
k=
/10

< g (0 (e ) 1o+ o (- 55) - o))
=0

but the expressions in the norms above are the modulus of continuity of f so we may write

IFO@] < 2 s (z% (52 f<r>)> 0 <w¢ (g;f@)) = 0 (0o (265 £))

also we have, forr > 1,
t t1 tr—

F(t)_ff f IF" (W)l dudt,_; ... dt,dt,

Therefor,

t t1 tr—1
IIF(t)||<ff ] Fr(wdudt,_; ...dt,dt,

tt1 tr—1

00

Thus we have
t t1 tr—1

1
||F< —ff f f(r)>dudtr 1 dtydty
mr
0

Now since £ (x) is perlodlc then

Wy (in f(r)> < Qu+ 1wy (; f(r))

Thus we have
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t1 tr—1

t

t 1 1 ™

”F(E>”=0 mr Yo (E;f )ff v | Qu+ 1)dudt,_q ...dt,dty
00 0
t t tr—1
1 1 ™
=0 W“’fb(%if )ff . f ududt,_; ...dt,dt;

00 0

-0 (7))

Now we see that
2A+4

sint
e = 1l = (55)

s )

]
m m T(1+2) ) t
=0 (% We (%;f(”))f tzt;t% (sint)?A*4dt
0
=0 (% We (%;f(”))f tf:‘* (sint)?*M4dt
0
ol )

sincem = (n + 1)(A1 + 2)7*274, we have
1 1 )
lt, — fll=0 _nrw“’(ﬁ;f ) [ ]

Theorem 4.2.3: [4]If f(x) € Lip(a,p), p = 1,0 < a < 1, then, for any positive integer
n, f (x) may be approximated in LP by a trigonometrical polynomial, t,,(x), of order n such
that

If = tall, = O(n™).
Proof:If we put 7 =0 and w, G;f(r)) = Mn~?% in the last theorem (4.2.2) then all
conditions of the previous theorem is satisfied and so the result holds.m

Lemma 4.2.4: [4] If f(x) € LP and t,(x) is an arbitrary trigonometric polynomial of
degree n > 1 at most, then

(i)if p> 1, ”f - Sn”p = A”f - tTl”p;
(@if p = LIIf = snlly < AQ +logn)If = tylly
whereA is independent of f(x) and n.

Proof:Case 1:We may write

”f_sn” = ”f_tn +t, _Sn” < ”f_ tn” + ”tn _Sn”-

Hencewhen p > 1, we have
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a, cosnx + b, sinnx

s PN = |5+ ( . | = 15200 + £ < s Pl + IF GO
using (2.2.1) we have

s (Ol < llsp (Ol +1f GOl < 2KNFCOllp + I1F Gl = @K + DIFCOl,

Butthe trigonometric polynomial s, ( f) — t,(x) = s,(f — t;,). Thus we have

sn(F) = tally = llsn(f = tll, < CK + DIIf (x) = tull, < Allf (0) = tall,

Case Il: When p = 1, we have
1
In = tall = [
n n T 0 0

whereD,, (u) is the Drichlet's kernel. Interchanging the order of integration, we have

21

[f(x +uw) —t,(x +w)]D,(w)du

21

dx,

2 / 2m
! f (f [f(x +u) —t,(x+ u)]dx) D, (w)du
0 0

”Sn - tn”l = E

e
=1 = tall

-fo ann (w)du

2

1
< If = tall [ IDaGIdu < ACL+ logllf = ],
0

Since [3]

1 (%" 4
Efo IDn(u)IduEFlogn+O(1).l

Theorem 4.2.5: [4] If f(x) € Lip(a,p),0 < a < 1, then
() whenp > L|If —sull, = 0(n™);

(it) whenp =1,||f — sull, = 0(n™*logn).

Proof: combining theorem 4.2.3 and 4.2.4 we have
Case I:

”f - Sn”p = A”f - tn”p = O(n_a)

Case Il: By the same way, we see that,

If — sl <A@ +logn)||f —tull; = 0(n~*logn)m

Theorem 4.2.6: [4] If f(x) € Lip(a,p),0 < a < 1, then

@Difp>lorifp=1La<1l|lf —onll, =0n™%);

1
@ if p=a=LIf —oull = 0(=2")
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Lemma4.2.7: [4]If f € Lip(1,p)(p > 1),then

lon(F) = sn (Nl = 0(7H).

Lemma 4.2.8: [8] Let (p,,) be positive and non-increasing. Then, for 0 < a < 1,
n
D Ky = 0By
k=1

Proof: Let r denote the integral part of l n.Then

Zk “pnk—Zk Dnci + Z 3 “pnk<pnr2k (1) ank

k=r+1
= o(nl Npp—y + 0N~ *)B, = O(n‘“)Pn.

sincep,, is non-increasing.m
We shall use the notation App, = Pr, — Prs1-

Lemma 4.2.9: Given any positive sequence (p,), then for any function f, the Norlund
mean

n
1
NaF) =5 ) Prit
" k=0

whereu,, are the k-th element in the Fourier series of f, and B, = Y.}_, P«-

Proof: The Norlund mean is defined as

n
1
N, (f) = P_Z Pn—kSk
n
k=0
Using Abel's transformation, we have the following

M) = 5 Z :
n =75 Pn-kSk = 5~
by B

SnPn + Z(pn + et pn—m)(sk - Sk+1)]
k=0

n-1
(uO + -t un)P + z _uk+1(pn + et pn—m)]
k=0
[uOP + -+ unP UiPn — uz(Pn + pn—l) -t un(pn + -t pl)]

;Ulb—\ 3“U|r—x "U|»—x

[uOPn 0+u1Pn 1+un n— n]_P Zukpn kN

Lemma 4.2.10: Let s,,(f) be the partial sum of the Fourier series of f, then
n

z kg (f) = (n + 1) (5. (f) = 0 (H))
k=1
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Proof:By definition, the Caseros mean is given by

1 n
on(f;x) = n—+12 sk (f)
l=0

Thus

00 () =50 () = 2 D 50 = 5u () = —
k=0

n+1

(S0 ++ 5n) = sa(f)

= 1 (ug + -+ [ug + - up]) — (g + -+ uy)

n+1

1
:n_l_1[(n+1)u0+---+un]—(u0+-~+un)

1
=n+1[(n+1)u0+---+un—(n+1)(u0+---+un)]
=n+1[(n+1)u0+---+un—(n+1)u0+---+(n+1)un]

n

1uy + 2uy + -+ nu, 1

B n+1 B n+1kz_1kuk(f)

Therefore,

Y k() = 1+ D(5a () = 0u(F)m
k=1

Theorem 4.2.11: [8]Let f € Lip(a,p) and let (p,) be positive such that

€y (n+ Dp, = 0(Py).
If either

(i) p>1, 0<a<1and(ii)(p,)is monotonic

or

(i) p=1, 0<a<1and(ii)(p,)is non decreasing

Then
(2) If = Na(Oll, = 0(n™%)
Proof:Case l'p > 1and0 < a < 1.
since
n
1
F0) =5 Puif (@)
n
k=0
then

MaFi) = £ = 5 Y Puce L5320 = FGO)
" k=0

and hence we get
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If - N(f)llp_—zpn llf = sk (Pl

[UnN

=5 D Puoilf =Pl + 5 pnllf Pl

k=1

3

1 —ar L Pn
:_an—ko(k a)+_'h
nk=1 PTL
1 — 0P % +0 (p">
~ P, P,

=0n™®+0n)=0n"*)+0n"% =0Mn"9%),

wherel||f — so(f)l, < h =constant, and using (1) and Lemma 4.2.8 and theorem 4.2.6.
Casell:p > 1landa = 1

By lemma 4.2.9 we haveN,,(f) = PLZ’,Z:O P _i Uy

where
n

1 n
S (i) = ) we(Fi2) =5 ) Py (f3 )
" k=0

k=0
hence

1% 1< (P, —P,_
(320 = Na () = 5 ) (B = Pucsdue () = - (5 b (0
k=1 k=1

by Abel’s transformation and convention P_y O We deduce that

Z ke () + Z e (k) 2 mum(f)]

1[p,—P -
=[ °Zkuk(f>— " Zkuk(f>+ ()

sn(f3 %) = Nu(f5%) = 5

Therefore,

Olsn(f) = No (Ol < _i|Ak(@>|

k=1

"
m=1

i kuy ()
k=1

p

N 1

n+1
P
And by lemma 4.2.10
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(B0, = (i) = = ——= > kug (f3),
Z

we have by Lemma 4.2.7,

>k ()
k=1 p

Now, combining (3) and (5), we get

n

Ol () = Ml =0 (o) D [ (B7)] + 067

N k=1

(5) =+ Dllon(f) = sn (Dl = 0(1)

However,

e (25

k k+1
_ Pn Pn Pn—k Pn—k—l

k k+1 k k+1

Pn Pn—k Pn—k—l Pn—k—l Pn—k—l

Pn—k) Pn_Pn—k Pn_Pn—k—l
k

Tkk+D kT k ko k+1
_ Pn Pn—k Pn—k—l Pn—k—l
= —_ + —
k(k+1) k k k(k + 1)
_ Po—=Pn g1 Ppg—1—Pri
k(k + 1) k

_ Pn - Pn—k—l + —Pn-k
k(k+ 1) k

= m{(Pn - Pn—k—l) - (k + 1)pn—k}

1 n
= m{( Z Pk,) - (k + 1)pn—k};

which is non-negative or non-positive whenever (p,,) is non-decreasing or non-increasing

respectively. Hence
{Pn _ Pn_m}n+1
m m=1

is monotonic whenever (p,,) is monotonic and this implies that
n
P,_P,_ P,
8 Z |A n n _
® ) [ = o
by using convention P_; = 0. Thus using (8) and (1) in (6), we get

Dllsn(H) = No(Dll, = 0(n™H)
Finally, by using (9) and Theorem 4.2.5, we get (2) witha = 1.

Caselll:p = 1and0 < a < 1.
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By Abel’s transformation and using convention p_; = 0,we get
n

Muf52) = FG) = Piz Pucelse(f) — FGO)

n k
1
=5 pOZ(sk(f) £() +ZAkpn DAGE f(x)}]
m 0
k
~ & |wo+p- aZ(sk(f) f() +2Akpn . E{skm f(x)}]

k

BPuk ) {5e(F) = FG9)

m=0

By P [Z Se(f) = (n+ l)f(x)]
0 m=0

I
=~°| —
-

b

(k + DA, pr—ilon(f; x) — f(x)}

3~U|i—\ 3~U|D—\

Nl

=
O\“
=}

Hence, by theorem 4.2.6, we get
n

Z k + DIAppillloe (5 2) = FO Il

If () = Np(f5 01 <

nl- n 1-a
:0< 23 RZOMkPn—H 0( ) ) (pn)
nl—a Pn
- 0< P, >'0<?>
= 0(n™%),

Since p,, non-decreasing and using (1)
This completes the proof.m

Theorem 4.2.12: [8] Let f € Lip(a,1),0 < @ < 1.And let (p,) be positive non-
decreasing sequence with(n + 1)p,, = O0(P,).Then

If = RNl = 0(n™).
Proof: Forp = 1 and 0 < a < 1.We get by Abel's transformation

f=Ra(P) = PEpk(f—skU))— ZAPk<2f—Sk(f)> p"Z[f—sk(fn

Tl—l

:~°|’—‘
MiT

=

Apr((n+ Df — (n + Do () + ((n +1Df — (n+ Doy ()

S &

Apk(n + D(f — () + (n + D(f — o (N)

k=

:~°|'—‘
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Thus we have

If = Ra(OllL =

2 Bpn+ D(f = 0 (D) + 5 (0 + D(F = 0u(1)
"

1

n—-1

1

P—nkz_o|Apk|<n + DIIf = o (Olly +—<n + DIIf = 0Ol
n-1

- P_nz AP (n + 1DO(M™) + 0(1) - O(n%)

—0(n*) + 0% = O(n"%). m

4.3 Approximation by general class of triangular matrices using
trigonometrical polynomials

In this section, we shall weaken the conditions of monotonicity given by theorems (4.2.11)
and (4.2.12); we see that these theorems assumed the sequence p,to be monotonic. Here
we will give a less strength conditions on p,, but keeping the degree of estimate. Before we
do that, we introduce some concepts about sequences.

Definition 4.3.1: [6] A positive sequence p: = (p,,) is called almost monotone decreasing
(increasing) if there exists a constant K:= K(p), depends only on p, such that for all
n=zm

Pn < Kppm(Kpp 2 ppo).
Such sequences will be denoted as p € AMDS and p € AMIS, respectively.

We shall also use the notation
Agn = gn — Gn+1
An auxiliary lemma is needed to proof the next theorem.
Lemma 4.3.2: [6]Let{p,,} € AMDS, or let{p,,} € AMIS and satisfy(12). Then, for0 < a <
1,
n
Z K™pni = 0(n™Ry)
Proof: Let r denote the integral part ofn / 2.Then, if {p, } € AM DS

Zm pnm<Kpnrzm‘“+(r+1) * Z Pn-m

m r+1

< Kpn—r 2 m*+@r+1)7¢ Z Pn-m
m=1 m=0

= O(nl_a)pn—r + O(n_a)Pn
=0n %P, + 0(n"*)B,
=0(n"%R).
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If{pn} € AMDS, and (1) is valid, then

Zm‘ Pn-m < Kpnzm + @ +1)7¢ Z Pn-m
m=1

m r+1

< Kp, Z m*+(r+1)¢ 2 Pn-m

= 0(P,/n) Z m=® + 0(n"")P,

= 0(P, /n)O(n1 )+ 0(n"*)P,
=0(n"%R).

The proof is complete. m

In the previous section, an approximation in the LP space is established by conditions
involving the monotonicity of the positive sequence (p,,), the next theorem will give a
generalization of theorem 4.2.13 by weakened the conditions on the sequence (p,,), note
that the non-increasing sequence is AMDS and the non-decreasing sequence is AMIS.

Theorem 4.3.3: [6] Let f € Lip (a, p) and let {p,, }be positive. If one of the conditions
(i) P>10< a < land{p,} € AMDS,
(i) p>10< a < land {p,} € AMIS and (1)holds,

n—1
(iid)p>1,a=1and Z k|Ap,| =0(B,),
k=0
n-—1
(iv)p>1l,a= l,z |Apy| = 0(P,/n) and(1) holds
k=0

n-1
Mp=10<a<l1 andz |Apy| = O(B,/n)
k=—1

maintains, then

A0S = Na(Hllp = 0(n™).

Proof:We prove the cases (i) and (ii) together utilizing theorem 4.2.5 and lemma 4.3.2.
Since

AN = F ) =5 3 a5 = FG)
" k=0

Thus

1 n
INu(f30) = FOlp < 5 D Prcillsic(fi0 = FCO
" k=0
1\ 1
= 2 Pucillse (50 = F@ly + 5 pallso (0 = Ol
ni= n

1 n
= 5> Bak0K™) + 0(pn/Py) = 0(n™).
=1
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Next, we consider the case (iv).By Lemma 4.2.9,
n
1
NalFi0) =5 > Puse ()
n
k=0
and thus
1 n
$u(F32) = Nalf3 ) = 5 > (By = P ()
=1

hence, again by Abel’s transformation and P_; = 0,

050~ (i) = - S, (B Pt i () + =S k1)
k=1 m=1 k=1

therefor,

(A2)lsn(f) = N. (f)llp

NN Zmumm

by Lemma 4.2.10 and Lemma 4.2.7 we have
= (n+ Dllon(f;2) = sn(f; )l = 0(D).

n
Z ku, (f; x)
k=1 P
Combining (12) and (13), we obtain that

ADlIsn(f; %) = Nu(f50)l, = 0 (Pin) i

(13)

P,—P,_
NE

An elementary calculation yields that (see(7) )
—P n—k) _
k k(k+1)

m=n—k
Next we shall verify by induction that

(15)2, (P”

pm] - (k + 1)pn—k}

(16) 2 P = (e + D Emlpn me1 = Pl
m=n-k
If k =1, then

= |pn - pn—ll-

( zn: pm> — 2Pn-1

m=n-1

Thus (16) holds.

Now let us assume that ( 16 ) is proved for k = v and we verify it for k =v + 1(< n).

Since
n
( Z pm) - (17 + 1)pn—(v+1)

n
< Z pm) -+ 2)pn—(v+1) =
m=n—(v+1) m=n-v

( zn: pm> - W+ Dpny

m=n-—v

<

+ |(U + 1)pn—v - (U + 1)pn—(v+1)
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v
< Z m|pp—m+1 = Pn-ml| + (0 + 1)|pn—v — Pn-(w+1) |

m=1

Thus (16) is proved form = v + 1.
Using this and (15), we get that

n n k
1
ZlAk(k_l(Pn - Pn—k))| < Z m Z M|Pp_m+1 — Pn-ml
k=1 k=1 m=1 o
1
klpn—k+1 — Pkl Z mm+ D
= m=k

= > 1ml
k=0

Now combining this, the assumption

n—-1
D 14wl = 0(Ru/m)
k=0

S

]

33X
[SYEY

and (14), we get
s, (f; x) — N (f; x)”p = O(n_l)

this and Theorem 4.2.5 witha = 1 yield (10). Here with the case(iv)is proved.

In the proof of the case(iii), we first verify that the condition

n-1
D klapel = 0(By)
k=1

implies that

n—-1

(17)B,, := Z |Ak (MN — 0(P,/n).

k
k=0
For simplicity we shall write Ap,,_j, instead of p,,_; — Pn—r+1,0y (15) and (16)

n 1 k
P g T oy
k=1 m=1
denote again by r the integer part of n/2.  Then, we have

r 1 k r n-1
Z—k(k T Z m|App_m| < ZlApn—kl < 2 |Apic| = 0(Po/m).
k=1 m=1 k=1 k=r-2

at the last step we have used the condition

n-1
> klapel = 0(By)
k=1

On the other hand,
n T n T T
N s> Mgl S Y mip ol + Y mIAp
k(k + 1) m pn—m — k(k + 1) m pn—m m pn—m
k=r m=1 k=r m=1 m=r

=. Bnl + an
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Furthermore, using again our assumption, we get

Bu < ) G+ D7 ) 18pl = 0(R/m)
k=r m=r-2

and

B < Z(k+ O ZMpn nl = 00 D{18pg] +21p;] + -+ (- + DIBp4a ]}

k=r m=r
= 0(R./n).
summing up our partial results, we verified (17). Thus, (14) and theorem 4.2.5 again yield
(10).

Finally, the prove of the case (v). Utilizing (10),p_; = 0 and the Abel’s transformation,
we get

M) = FG) = 5 D Brupacm) Y (56 2) = £00)
m=0 k=0

"U|._\

n
=5 2 M+ D)o () = G}
m:
Hence, by theorem 4. 6 e have that

If = Nu(Olls < ) Z (m + DIAnpp-mlllf = om (Nl
m=0

n
1

=0 (P_> Z (m + 1)1_a|Ampn—m|
n

m=0
=0<

) 2 18Dl = 00,
Here with the case (v) is also verified, and thus the proof is complete. m

m=-1

Theorem 4.3.4: [6]Let f € Lip (a,1),0 < a < 1.Ifthe positive{p,} satisfies (1)and
the condition

D 1wl = 0(Ru/m)
k=0
holds, then

(AB8)[If = Ra(Hll1 = 0(n™%).

Proof: Since

Ru(F) ~ () = 5 pilsic() — )
" k=0

Thus following the consideration of the case (v) of Theorem 4.3.3, we get
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If () = Ru(Dl1 = —sk(f)}

1

-1
1
P—kz C + DI = o Fi 0l + O+ DI = a0l

< )EMPH +0(n% =0(n"9).
k=0

This proves the theorem. m

It is very easy to examine that all of the conditions in theorem 4.3.3 and 4.3.4 claim less
than the requirements of Theorems 4.2.11 and 4.2.12. Since if we consider the first part of
theorem 4.2.11, that is, for p > 1,0 < a < 1, (p,,)is non-decreasing then it is obvious that
the sequence is AMIS, for which the condition ii of 4.3.3 is satisfied.

Also for p > 1,0 < a <1,(p,) is non-increasing sequence, then(p,) is AMDS and
condition I of 4.2.3 holds. Moreover, if p > 1,a = 1, (p,,) is non-increasing then we may

write
n-1 n-1

D KIApl = ) ki = D) = 1001 = p2) + 202 = p3) + 4 (1 = Doy = Pr)
k=1 k=1

=pi+prt+tpp—(—1p,

=P+ D2+ Ppot +pu— (Wpn = Py —npy < B, = 0(Ry).

and that is condition III of 4.3.3.

Now ifp > 1,a =1, (p,) is non-decreasing and satisfying condition 12 then we have
n-1

me Z(Pkﬂ PR = (1 =) + (P2 = 1) + -+ (B = Pacy)

:—P0+Pn:Pn_Po§Pn:0<n/n>-

so condition IV of 4.3.3 is satisfied.

Finally, if the second condition in 4.2.11 holds, that is, if p =1, 0 < a < 1 and (p,) is
non-decreasing and 12 holds, then

n-1 n-1

D 18D = D @irs =) = @o = p1) + (1 = Po) + -+ (o = P

k=—1 k=—1

=Pn = <P”/n>

Since by definition p_; = 0, therefore, the last condition of 4.3.3 is satisfied.

By the same we can see that theorem 4.3.4 is more general that the corresponding theorem
4.2.12, for which if p=1,0<a <1, and (p,) is non-decreasing with (n+ 1)p,, =
O (Py).
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Then

n-1 n-1
D18l = D Brrs =P = @1 = Po) + (2 = P2+ + (P~ P)
k=0 k=0

=Pn— Do = (P”/n>

In the last two theorems we obtain the same degree of approximation for any function
f € Lip(a,p), by weakened conditions, we now will treat the same theorems (4.2.11,
4.2.12) with a general class of triangular matrices, thus we can deduce these two theorems
as a corollaries of our next theorems.

Let A = (an'k) be a lower triangular regular matrix with non-negative entries and row
sums;. such a matrix A is said to have monotone rows if, for each n, {a,;} is either non-
increasing or non-decreasing in k,0 < k < n.Also we call the matrix A = (a,y) has
almost monotone increasing (decreasing) rows if there exists a constant K, depending only
on 4, suchthata,, < Ka,n,(anm < Kayyg) foreachnand0 < k < m < n.

Lemma 4.3.5: [7] Let A have monotone rows and satisfies the relation

(19)(n+1) max{an,o,an,r} =0(1), r=[n/2]

thenfor0 < a < 1,
n
(20) Z s (k +1)7% = 0(n~9).
k=0

Proof:Let r: = [n/2],then
n

r n

Z ek + 1) = Z ek + 1) + Z (e + 1)

k=0 k=0 k=r+1
Case L:If {a, ; } is non-decreasing in k. Then, using (19), we have
n n

N
Z ek + 17 < ay,r Z(k + D)+ T+ D Z ok
k=0

k=0 k=r+1

n
< ay, Z(k 1) 4 (r + 1)"%sA
k=0

=0((n+ D)™ Ho((n+ D" +0n)"*=0n)"¢

Case IL:If {a,, ;} is non-increasing in k. Then, using (28),
n

Dk + D S ang ) (k+ D™+ 0@ ) = 0(7). m

k=0 k=0

With same notation previously stated, we define the matrix transformation T2 (f)
as follows
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n

T = D angsi(f )

k=0

For a given positive sequence (p,), if we consider the lower triangular matrix
with entries apy = Pn—k/Pr, Py = Xk=oPr-Then the Norlund transform can be
regarded as a matrix transform, so this transformation is more general than the
Norlund transformations, also we note that the row sum of this matrix is clearly 1

since
n n
51‘;1 = Zan,k = Epn—k/Pn = Pn/Pn =1

k=0 k=0
Theorem 4.3.6: [7]Letf € Lip(a,p), and let A have monotone rows and satisfy

QDIsA — 1] = 0(n9).

If one of the conditions
@ if p>1, 0<a<l, and A also satisfies

n+1) max{an’o, an’r} = 0(1),wherer:= [n/2],
(ii) if p>1, a=1,

(iit) if p=1, 0<a<l, and A also satisfies
(22)(n + 1) max{a, o, an,} = 0(1),
holds. Then

@INf = Tu(Dllp = 0(n™%).

Proof:Casel:lp > 1, 0 < a < 1.
n

To(f) = f = ) anesi(f) = st fG) + (=D f)
k=0

n n

=D s = ) ane )+ (s =1 - ()
k:O k=0

= e (5P = F)) + G5t = D) - ()
k=0

Using (21) and Theorem 4.2.5 and Lemma 4.3.5,
n

ITa() = Fllp < D aniellse ) = fllp + Isi = 11111,

k=0
n

- Z 4 0((k + 1)) + 0(n™) = 0(n™%) + 0(n™) = 0 (%)
k=0

Casell:p > 1,a = 1.
T () = flly < N Tw(f) = sn(DIlp + Isn(f) = fllp-

form theorem 4.2.5, when a = 1,
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lsn(f) = fll, = 0(n™")

Therefore, it remains to prove that

IT2(f) = sn (Dl =0(n™H)

n
An,k = Z Ani,
i=k

Define
and using the fact that

then we may write

n n k

T = ) @nese(F) = ) ange ) ui()
i=0

k=0 k=0

= ApolUp + an,l(uo + ul) + -t an,n(uO +

= Uy (an,O + e an,n) + et un(an,n)

= > Asue(f; ).
k=0

also,

n

() = ) welfix) = ) Angwe (50 + ) (1= Ano)ue(fi )
k=0 k=0

k=0

= ZAn,Ouk(f; x)+ (1 -s2) Zuk(f; x)
k=0 k=0

= Z Ao (f; x) + (1 = 57)8,(f 5 %).
k=0

Now since [|s,|l, < [If]l,, then

”Tn(f) - Sn(f)”p

= 1D A 520 = ) Anotsc (0 + (52 = Ds(f3)
k=0 k=0

+u,)

n n
<D A0 = D Ao F0|| +11 = silllsa (501,
k=0 k=0 P
n
<[> i = Anoduers ||+ 11 = s,
k=1

p
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Define foreach 1 < k < n,

A, —A
bn,k — n,kk n,O'

Using summation by parts (Abel’s transformation), by setting ku, = v,

Z(Ank nO)uk(f x) Z Tnokuk(f x) = Z b nkVk
=Z(bnk nk+1)zv]+bnn vk
k=1
n—-1
(bn,k - bn,k+1) Zjuj + bn,n Z kuk

k=1
n n-—1
= bn,nz ku (f; x) + Z Ay nkz_]u](f x).
k=1
Therefore
n n-1 k
IT2(H) = 50y < {[bun Y K (Fi0| + (1D b Y jus (50
k=1 p k=1 j=1
p
+0(n™1)
Now from Lemma 4.2.7 and 4.2.10,
n
PRGE] I [CERNEAGEEAG)( R
j=1 »
=(m+10Mn™Y)
= 0(1).
Note that
1 1
|bn,n| = E'An,o - An,nl = E|ST(I,A) - an,n|
1 1
(4)
S;|sn - 1| +;|1 —an_n|
1
= EO(n‘l) +k= (n)"to().
Thus
n
bun ) i (F50)|| = 0@,
k=1 P
We may write
Ak —Ano  Apks1 — Ano
Akbn,k=bn,k—bn,k+1 = & = - 1:_1_1 “
— An,k - An,O + An,k+1 - An,k+1 + An,O - An,O _ An,k+1 - An,O
k k+1
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An,k - An,O - An,k+1 + An,O + An,k+1 - An,O _ An,k+1 - An,O
k k k+1

1 Ank+1_An0 Ank+1_An0
=—A.(A ' 0T '
(i) + = k1

1 Ank+1_An0
=_A A —_—
k K(Ani) + k(k + 1)

1
“TGTD [+ 1A (Ange) + Ap et — Ano]

1
- m [(k + 1)(An,k - An,k+1) + (An,k+1 - An,o)]

k
1
= m k(Ank _Ank+1) + (Ank nk+1) Z anr]

r=k+1 r=k+1

k
(k + 1)an,k - Z an,r]

r=0

1 1
= R+ D) |Gk F g~ Z)a"f] T k(k+ 1)
| r=

If {an,k} is non increasing in k,then A, b, , < 0, and if {an,k} non-decreasing in k implies
that Agby, = 0, so that

n—-1
Z|Akbn,k| = |bn,1 - bn,nl = |A
k=1

0(1)
n

An,n -

A An,n - An,O
n1l -~ “dn0 —

0 S |An'1 - An'0| + n

=0(n™ Y+
and (23) is satisfied.

=0(nb).

Caselll: p = 1,0 < a < 1, From (21), using Abel's transformation, Lemma 4.2.6 , and
the fact that a,, ,41 = 0,

ITa(H) = Fll = || anslsiclth) = )+ (1 = sf
f:(l) k ' n
= 11> Acans (Z (i) - f)) + @ ) ()= )
k=0 i=0 k=0

+11 = sDIf

ZAkankZ(sl(f) pa-sdr|
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k

i Bt ) (5:() = f)
k=0

< +11 = s llIf 1l

=0

1

< )k + Dldeanelloe ) = (Pl + 067
k=0

= ) [B4ani Ok + D) + 0™
k=0

= 0((n+ D) Y [Myns] + 00
k=0

If {a, x} is non-increasing ink, then

n n—1
Z|Akan,k| = app t Z(an,k - an,k+1) = App t Ano — App = Anyo
k=0 k=0

If a,, ) is non-decreasing ink, then
n

|Akan,k| =0ann +au, — Ano < Zan,n
k=0

Using (22),

IT.(f) = flli=0((n+ 1)) =0(n"%). =

It easy to examine that all conditions of theorem 4.3.6 is more general than theorem 4.2.11,
since if we consider the entries of the matrix A to be a,; = pn—k/ p, then A can be
n

considered as a Norlund matrix, that is, a matrix that defines a Norlund means by it is
rows, for this matrix s = 1, so (21) is satisfied.

Let us consider the case one of 4.2.11,that is, when p > 1,0 < a < 1, (1) holds, and (p,,)
is non-decreasing then a,, ; is non-increasing sequence in k so

(n+1) max{an_o, anlr} =+ 1Dayo=Mn+1) I;—n =0(1)
n

Thus apart of condition I of theorem 4.3.6 is satisfied.

Now assume for the same conditions but for a non-increasing sequence (p,) then a,  is
non-decreasing in k, and we may write

n+1D(Mn—-—r+ Dp,_,
n—r+1)P,_,

(n+1) max{an,o, an,r} < =0(1)

for which the case one is satisfied.
Note that condition II of theorem 4.3.6 is always hold here whenever p > 1,a = 1.
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If we assume the last condition of 4.2.11, that is, for p = 1,0 < @ < 1, condition (1) holds
and p,, is non-decreasing sequence, then a,, ; is non-increasing and
(n+ D max{a, g an} = n+ Daye = (n+ 1) l;—" =0(1).
n
and that is condition III of 4.3.6, so by the previous argument we saw that theorem 4.3.6 is

more general than theorem 4.2.11, also we can deduce it from this theorem when we
restrict the matrix A to be Norlund matrix.
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Chapter Five

Trigonometric Approximation in the Weighted LP Spaces

5.1 Trigonometrical approximation in the means

So far the theorems stated are giving the approximation of function in the non-weighted
Lebesgue space, we discussed two ways, approximation in the means (N6rlund means) and
the by matrix transformation, in this section an extension of these theorems is discussed,
that is, the approximation will be for function in the weighted Lebesgue space, we note
here that following theorems are just a generalization of the proceeding ones by giving
conditions in weighted Lebesgue space.

The same theorems stated before, namely 4.2.11 and 4.2.12, are investigated here with
more general class of functions, the weighted LPspace, again we develop these theorems by
offering different manners of approximation, specially the matrix transformation method.

Note: In the weighted L? space, we use the Muckenhoupt weights A, this kind of weights
plays a critical rule in many different aspects of mathematics.

Definition 5.1.1: Let 1 <p < o, w € A, and let f € Lﬁ,.Then the modulus of continuity
is defined as

wpw(f;6) = supllAp(Hllpw, for & > 0.

and the supremum is taken over all h such that |h| < §, where

h

1
(PG =5 [If G+ 0 = Flde

0

Note: The Lipschitz class Lip(a,p,w) for 0 < a < 1 is given by
Lip(a,p,w) = {f € L},: 0y, (f; 6) = 0(6%),5 > 0}

We shall use the same notation as before, also we will do the approximation on the same
means specially Norlund and Riesz means.

Lemma 5.1.2: [2] Letl < p < o, w € Ap, 0 < a < 1.Then the estimate

If = sn(Nllpw = 0M™%)
holds for every f € Lip(a,p,w) andn = 1,2, ...

Lemma5.1.3: [2] Let 1 < p < o0, w € A,.Then, for f € Lip(1, p, w) the estimate

”sn(f) - Un(f)”p,w = O(n_l) n=12,..
holds.
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Theorem 5.1.4: [2] Letl < p < o, w € A,,0 < a < 1,and let(p,); be a monotonic
sequence of positive real numbers such that

(D + Dp, = 0(Py)
then, for f € Lip(a, p, w) the estimate

”f - Nn(f)”p,w = O(n_a) n=12..
holds.

Proof:Let0 < a < 1.Since

1 n
F@ =5 Z Promf ()

we have

F) =MD = Z Pamlf () = sm(HEO)

by Lemma 5.1.2, Lemma 4.2.8 (sec 4.2) and condltlon (1) we obtain

IF = Nl < 5 Z Promllf = sm (Pl

1 2 .,
=5 2 Punllf = 5Dl + FIf = 50l

| —_

-7 Z O(m-“)+’;—:||f—so(f)||p,w

pio( - ”)J’O(n}q)
=0(n™%)

Now let « = 1, it is clear that (by Lemma 4.2.9)
n

1
Naf) =5 ) Pt () ()
" m=0
by Abel transform,

1 n
50 (- Na(H) = 5 > (B = Pacn)tm ()
nm=1

=Pinzn: (Pn _,:n_m_Pn mi(1m+1)> Zkuk(f) +—zkuk ¢

m=1

and hence

2 (f) = No(Dllp,0

n
<1ZA

=1

N 1
n+1

p,w

nm|

i kuy (f)
k=1

i kuy (f)
k=1

b,w
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Since by lemma 4.2.10
n
1
5. (N = 3 (HE) = ——= > ku(HG),
k=1
Thus by Lemma 5.1.3 we get

i ke (£)
k=1 Pw

= @M+ Dlisp(f) = 0 (Hllpw = 01

Hence,
n
1 P Pn - Pn—(m+1)
2 — N, — Z o(1 o(n~?!
@Is¢) = Na(Dllpo < 3 — o) +0(nY)
m=
n
(1) Z Pn _ Pn - Pn—(m+1)
m+1

m=1
+0(n™h)
By a simple computation, one can see that

Pn_Pn—m Pn_Pn—(m+1)

m  m+1 m(m+1)< Z Pi — mpnm>

—m+1
which shows that

(Pn _ Pn_m>n+1
m m=1

is non-increasing whenever (p,,)is non-decreasing and non-decreasing whenever (p,,)is
non-increasing. This implies that

n
Pn_Pn—m Pn_Pn—(m+1) Pn
— = P
Zl m m+1 P 1l T n+t OFn)
m=
This and the inequality (2) yield
n
Pn Pn - Pn—(m+1) _
) = MaPllpa = 0 (5) D by o)
X m=1
=0 (P—)—O(P ) +0(n)
1
=0 (—) +0(n™)
n
= 0(n1)

Combining the last estimate with that of Lemma 5.1.2 we obtain

”f - Nn(f)”p,w < ”f - Sn(f)”p,w + ”Sn(f) - Nn(f)”p,w = O(n_l).

Theorem 5.1.5: [2] Letl < p < o, w € Ap, 0 < a < 1,and let(p,) be a sequence of
positive real numbers satisfying the relation
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-1
P Py P,
D) sl = o)
3) m+1 m+2 n+1
m=0
Then, for f € Lip(a, p, w) the estimate

If = Rn(Dllp =0(n™%) n=12,..
1s satisfied.

Proof: Let 0 < a < 1,by definition of R,,(f) ().
n

1
fG) = R =5 D () = sm(N@)}

from Lemma 5.1.2, we get

(4)||f - Rn(f)”p,w <

=h°|'—‘
NgE

pm”f - Sm(f)”p,w

m=0
1 4
=0(5) . B+ 2201F = 56 (Pl
P 1
m=1
1 -a
=0 (P_n) Pmm
m=1
by Abel transform,
n n-—1
z Pmm % = Z pm{m ™% -(m+1)"*} +n"%p,
m=1 m=1
n-1
—a Pm _
< a a
< Z m ——1 + P,
m=1
n-—1 P P m P n-1
m m+1 — n — —
— — k a a CZP
Z<m+1 m+2)(z >+n+1 meAn
m=1 k=1 m=1
= (n—apn)
by condition (3).This yield
n-1
pmm™* = 0(n""F,)
m=1
and from this and (4) we get
If = Ra(Dllpw = 00™)
Let us consider the case @ = 1.By Abel transform,
n-1
1
Rn(f)(x) = P_ {Pm(sm(f)(x) - Sm+1(f)(x)) + Pnsn(f)(x)}
" m=0
n-1
1
= P_ Pm(_um+1(f)(x))+5n(f)(x);
" m=o0

Hence
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1 n-1
Ru(NE = 50N = =5 > Putlma (D)
" m=0

Using Abel transform again yield

n-1 n-1
2
D Bt (NG = )~ (m+ Dty (HE)
m=0 m=0
n-1 m 1
- P Pt P,
= TZO (m 1t 2) (kzo(k + 1)uk+1(f)(X)> T kz=0(k + Dy (FH(X)

Thus, by considering lemma 5.1.3 and (3) we obtain

n-1 n-1 P p m
Y Bt = Y = Y et D ()
m=0 pow  mM=0 k=0 pw
n-1
Py
+= k+ D (D
k=0 pw
<P, P
= 2 [ = ] 0+ 25 () = s (Dl
m:
+ Pnllsn(f) - an(f)llp,w
n-1
P,  Ppu P
o ) |- o %)
o) m+1 m+2 +0 n
m=0
This gives
1 n-1
1RA(F) = 50 (Pllpo = o || D P s ()
™ llm=o0 P
1, (E)
P, n

-of})

combining this estimate with Lemma 5.1.2 yields

If = Ra(O)lpw < MIf = sn(Ollpw + 1R () = sn(Pllpw = 0(n"H)m

5.2 Approximation by matrix transformation

In the proceeding section we introduce the approximation by means, here we extend the
method to the general case in which the matrix transformation is involved, with the same
notations stated before we assume that A is a lower infinite triangular matrix and T, is
given by

n

TA) = ) nesn(h)

k=0
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Lemma 5.2.1: [1]Let A = (a, ) be an infinite lower triangular matrix and 0 < a < 1.
If one of the conditions
1. A has almost monotone decreasing rows and

(n + Daye = 0(1),
2. A has almost monotone increasing rows,
n
(TL + 1)an,r = 0(1) wherer 1= [E]'
and
s~ 1| = 0.
holds, then

(6) ) K “ans = 0™ ).
k=1

Proof: Condition 1: since
n

Z k= = 0(n*"%)anda,, < Kayofork =1,..,n
k=1

we get

n n
Z k™%an, < Kap Z k=«
k=1 k=1

—0 (n—}rl) 0(n'-)
=0(n"%).

Condition 2: Since

ank < Ka, fork=1,..,r and|s,(lA) — 1| =0(n™%).

We have
n T n
Z k_a an'k = Z k_a an,k + Z k_a an'k
k=1 k=1 k=r+1
r n
<Ka,, Z k=" +(@r+1)“ Z Ak
k=1 k=r+1
n n
<Ka,, Z k=" +(@r+1)« Z Ak
k=1 k=0
1 - —an (A
=0 <—n n 1) 0(n'=%) + 0(n~%)sW
=0(n"%.m
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Theorem 5.2.2: [l]Let 1<p <o, wWE A, 0<a<1, f€lLip(a,p,w)and A =
(ank) be a lower triangular regular matrix with

|s,(lA) — 1| =0(n"%).

If one of the conditions

i. Ahas almost monotone decreasing rows and
(n + Danoe = 0(1),

ii. Ahas almost monotone increasing rows and
(n + Da,, = 0(1) wherer := [n/2],

holds, then
|r -] =om™.
p.w

Proof: By definition of TﬁEA) (f), we have
n

TN = £ = ) anesi(N@ = F@)

k=0

= D s = F) +50£ () = s )
k=0

= D anesi(N) = s + 500 = £(0)
k=0

= D s = ) ane f + (58 = 1)f @)
k=0 k=0

= (s = ) + (80 - 1)f (),
k=0

Hence, by Lemma 5.1.2 and Lemma 5.2.1 we obtain
n

[ =12D|, < D anslsth) = Fllpas + [5G = 1[Il

k=0
= anillsetP) = Fllpso + anollso(F) = Fl + |52 = 111 e
k=1
c _ Pn _
= a0k~ )+ 0| =) +0(n™%)
kZl k (Pn)
1 1
= 0(n) +0 (n—-l-l) +OM%) = 0(n=%) + 0 (E) = 0(n~9)

Since |s,(lA) - 1| =0(n"%.m

Theorem 5.2.3: [1]Let 1 <p < oo,w € Ay, f € Lip(1,p,w) and A = (an)be a lower

triangular regular matrix With|s,(LA) - 1| = 0(n~1).If one of the conditions
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@ Z|an,k—1 - an,k' = 0("—_1)'
k=1

awikn—kﬂ%kq—mml=omx
hold:‘zhen

lr-m2m] , =om™
Proof: By Lemma 5.1.2
|r-m20] | =l =50 +sn -2
< s =D+ = 50Dl
= [s:n -0 +ow™.

Thus, we have to show that

D5 -T2 =0m™

p.w
n
An,k = Z Anm
m=k

n n k
T = ) anese () = ) an [Z um(fxx)]
k=0 m=0

k=0

Set

Hence,

= an,OuO + an,l(uo + ul) + -4 an'n(uo + Uy + ...un)

= uo(an_o + - +an,n) + ul(am1 + - +an,n) wtuya,

n n
k=0 Lm=k

On the other hand,

sn (N = ) we(f)x)

W (N = ) Ay
k=0

DI

wu () +A4n0 ) we(f) — An,OEuk(f)

0 k=0 k=0

Ang ) we(F) + (1= Ay) Z (N

k=0

=
1l

= D Aot (D@ + (1= 5)sn (N .
Thus, =
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T = 50D = ) At (DG = D Angue(HE) = (1= 58 )su (N
k=0 k=0

= (Ank = Ang)ua (D) + (58 = 1)5,(HG0)
k=

0

= D (Anic = An) (NG + (58 = 1)su (N
k=1

By boundedness of the partial sums in the space L (see [9]) we get

® 52N =D =D (Ank = AnoJ(HE + (57 = 1)sa (G0
’ k=1

bw

IA

Z(An,k - An,O)uk(f)(x) + |Sr(1A) - 1|||f||pW
k=1

p.w

= Dtk = AnoduP@|  + 0@,
k=1

p,w
Thus, the problem reduced to proving that
n

D (Anie = AN =0

k=1 pw
If we set

App—A
by = % k=1,..,n,

Abel transform yields

> (A = Ano)ue ) = Y bk ()
k=1 k=1

= E(bn,k - bn,k+1) (i mum(f)) + byn i My, (f)
k=1 m=1 m=1

p;W>

Hence,

Z (An,k - An,O)uk (f)
k=1

pw
i ku ()
k=1

we have by Lemma 4.2.10

< |bpa|

i Mt (f)

n-1
+ Z |bn,k - bn,k+1|
k=1

pw

> k() = (n+ Dlsy - 3
k=1

56



Therefore,considering Lemma 5.1.3,
n
Y kA = 0t Dlisalh) = 0u (Pl
k=1 pw
=Mm+1Domn™1)
=0(1).
This and the previous inequality yield

> (e = Ano)ur(HE
k=1

n-1

= 0Dyl + 01 Y [br = brers]
k=1

b.w

Since |ST(LA) - 1| =0(n™Y),

|An,n - An,0| _ |an,n B Sr(lA)| _ l(S(A) —a ) < lS(A)
n nn) = Sn

|bn’"| - n n n

= l0(1) =0(n1).
n

Therefore, it is remained to prove that

n—1
9 ) B = bugesa| = 0.
k=1

A simple calculation yields

An,k - An,O An,k+1 - An,o

bn,k - bn,k+1 = k - k + 1
— kAn,k + An,k - kAn,O - An,O - kAn,k+1 + kAn,O
k(k+1)
_ kAn,k + Z?n:k Anm — Zﬁ:o Ank — kAn,k+1
k(k+1)
— Z?n:k an,m - (2%:]{ an,k + an:o an,k - an,k) + kan,k
k(k+1)
— - anzo an,k + an,k + kan,k
k(k+1)
k
1
= m{(k + 1)an,k — Z an'm}.
m=0
n-1
DLet Y Janss = ane| = 0™
k=0
Let’s verify by induction that
k k
(10) <Z an,m) —(k+Dayy| < Z m|apm_1 — Q| fork =1,...,n.
m=0 m=1

If k = 1, then
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1
(Z an,m) - (2)an,1 = |an,0 —an1

m=0

thus (10) holds.
Now let us assume that (10) is true fork = v.Fork = v + 1,

v+1 v
<Z an,m) - (17 + 2)an,v+1 = (Z an,m) - (17 + 1)an,v+1

m=0 m=0
v
< <Z an,m) - (17 + 1)an,v + |(17 + l)an,v - (17 + 1)an,v+1|
m=0
v
< (Z mlan,m—l - an,ml) + (U + 1)|an,v - an,v+1|
m=1
v+1
= z mlan,m—l - an,m|'
m=1

and hence (10) holds for k = 1,...,n. Therefore,

Zlbnk nk+1| Z k(k D) {(k + Dany — Zk: an,m}

m=0
n—-1 k
1
= LkkTD <Z an,m) —(k+Day,
k=1 m=0
n-—1
= k(k 1) Z m|dnm-1 = Gnm|
=1

Set m|an_m_1 - an’m| = ¢, for simplicity, by expanding we got

1 1 1 1
kzlmzlcm T2t 5@te)+- +ﬁ(cl+'“+cn—1)
= m=

1 1 1
=(3++; ( —1))Cl+"Jr (-1t
n—1 n—1 1 n—-1 n—-1 1
- ZC’” k(k+1) Zmla’””‘l a"mlz k(k + 1)
m=1 k=m m=1 .
n-—1 [ee] n—-1
1
= Z m |anm—1 an.ml Z k(k + 1) Z |anm—1 anm|
m=1 k=m =
— O(n—l)

so relation (9) holds, thus

|ssth -0 = +0(n™)

Z (An,k - An,O)uk ()
k=1

p.w

=0nH+o0mH=0n"
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Finally, we have

[O-m2®| | < [satHe-12@| | +om™
S =om+om™)

=0(n™).
n-1
()Lt " (n = )|ani-1 = ane| = O(1)
k=1

By (9),

Zlbnk nk+1|—zk(k+1)zm|anm 1 anm|
Z k(k ) Z @ mes = G|
" Z k(k +1D Z m|anm-1 = G|
wherer := [n/2]. By Abel transform,
r k r
1
Z k(k + 1) Z m|an,m—1 - an,ml < Zlan,k—l - an,kl
k=1 m=1 k:l
_ Z 1
B n—k

k=1

(n— k)lan,k—l - an,kl

r

Z(n - k)|an,k—1 - an,k|

1 k=1
=——0(1) = 0™,
n—r

<

n—r

On the other hand

Z k(k 1 Z mlanm-1 = @uml
k
Z k(k +1) {Z mldnm-1 = Gnm| + ;Tmlan.m-l - an,ml}
2 k(k +1) 2 mlanm-1 = @nm]

+ Z k(k—+1) Z mlan,m—l - an,m| = Inl + ITLZ-
k=r mer
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Now since

r
Z|an,k—1 - an,kl = O(n_l):

n—1
Inlszk(k-}-l)Zmlanm 1 anm|
n

)Z anm-1 @l

kzr(
i
< ( + ) Z |anm 1 anml
k=r n— 1
=0(n1) =0(n"H(n - r)r _|1_ 1= o(n™1).

— (k+1)

Let us also estimatel,,,.

n-1 1 k
Ly = k(k + 1) Z m|anm—1 anml
k=r m=r
n-1 k
1 m
- Z Gt D L T |mme1 = Gl
k=r m=r
n-1 k
1
< k_-l-l Z |an m—1 anm|
k=r m=r
n-1 k
1
ST+1 <Z|an,m—1 anml)
k=r \m=r
n-1 k
< 2 z |
= E Anm-1 anm|
k=r \m=r
n-1
2
= ;Z(n - k)lank—l ankl
k=r
n-1
2
< E (n - k)|an,k—1 - an,k|
k=1
_2 -1
—0(1) =0(n™")
TL
Thus
n-1 k
1 -1
Z k(k + 1) Z mlan,m—l - an,m' = O(n )I
k=r m=1
and hence
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n—1
> |buk = bugaa| = 0.
k=1

Therefore,

[ssthw -0 = +o@m™)

D (Anse = Ano)u (N
k=1

=0nH+o0nH=0n"H)

b,w

Finally,
|O -T2 <@ -1PP|| +om
b,w p.w

=0(nH+o0mn"MH)
=0(nb).

and the proof is completem
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