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Abstract 

In general, the word approximation means a representation of something that is not exact, 
but still close enough to be useful.  
 
Approximations may be used because incomplete information prevents use of exact 
representations, since many problems in mathematics are either too complex to solve 
analytically, or impossible to solve using the available analytical tools. Thus, even when 
the exact representation is known, an approximation may yield a sufficiently accurate 
solution while reducing the complexity of the problem significantly; therefore, an 
approximate answer may be good enough? What exactly we mean here by a good enough 
solution? That depends on what are we working on. 
 
As we know, in mathematics it is better for us to deal with simple functions, but taking into 
account the accuracy of the given solution in which it is the most significant thing in the 
whole work, for example the polynomials are very easy to handle since they have any 
property you may be looking for. 
 
On the other hand, the trigonometrical functions are of the most smooth functions that are 
easy to handle too, but in the first place it depends on the way of approximation, kind of 
approximation and other things, for example to approximate a function of period 2ߨ its 
more convenient to us to treat with the sine and cosine functions than the polynomials, its 
not significant reduction of the polynomials but it is the most appropriate. 
 
In this thesis, we are dealing of that kind of functions, the periodic functions, so it is better 
for us to concentrate on the trigonometrical approximation methods. 
 
Our investigation centered on approximating a periodic function in the weighted ܮ௣ spaces, 
and we will use among our work many methods of approximation, however, they all 
depend on the Fourier series of these functions, but the main topic we must focus on is the 
degree of approximation, and we denote here that the degree is at most ݊ିఈ, 0 ൏ ߙ ൏ 1, 
and ݊ is the degree of the mean of the Fourier series. 
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  الموزون ௣ܮالتقريب في فضاء 
  

  يحيى احمد حسين أبو لطيفة: اعداد

  

  جميل جمال. د: شرافا

  
  :ملخص

  

ونظرا . التقريب وبشكل عام لا يعطي القيمة الحقيقية للإقترانات، ولكنها تكون قريبة من القيمة الحقيقية
وقتها  لوجود مسائل في الرياضيات تكون فيها الحسابات معقدة ويصعب حلها أو التعامل معها فإننا نلجأ

  .لعملية التقريب وعادة ما يعطينا ذلك إجابة قريبة بشكل آاف

  

من الأفضل في الرياضيات التعامل مع الإقترانات البسيطة، ولكن مع الأخذ بعين الاعتبار دقة 
على سبيل المثال آثيرات الحدود تعتبر إقترانات . التقريب، والتي تعتبر الأآثر أهمية في هذا المجال

  .انها تملك خصائص جيدة آثيرة وبالتالي فانه يسهل التعامل معها ثميزة بحيسهلة جدا وم

  

في المقابل، الإقترانات المثلثية تعد من الإقترانات التي تملك خصائص مميزة أيضا، ولكن في المقام 
فعلى سبيل المثال لتقريب اقتران . الأول هذا يعتمد على طريقة التقريب ونوع التقريب وعوامل أخرى

  .فإنه من الأفضل استخدام الإقترانات المثلثية 2πدوري ودورته 
  

لذلك  ،الموزون ௣ܮوفضاء  ௣ܮفي هذه الرسالة ما نقوم به هو تقريب الإقترانات الدورية في فضاء 
وسيتم استخدام اآثر من طريقة لتقريب تلك  ،من الأفضل استخدام الإقترانات المثلثية لهذا الغرض

المتسلسلة ولكن آل الطرق تعتمد في المقام الأول على  ،الإقترانات والتي تخضع لشروط معينة
 ఈି݊وما يجب الترآيز عليه هنا هو درجة التقريب والتي لا تتجاوز  ،للاقتران المراد تقريبه فورييهال

0بحيث ان  ൏ ߙ ൑   .هو عدد طبيعي يمثل درجة المتسلسلة الفورييه ݊و  1
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Introduction 

Our aim in this research is discussing many methods of approximating any function in the 
weighted ܮ௣ spaces, so we first introduce some auxiliary information as a base for this 
thing. 
 
In chapter one we submit a little helpful ideas about the Lebesgue integral as well as some 
of its valuable properties, where all of the integrals in this thesis is considered Lebesgue 
integrals, so it is remarkable that we discuss these ideas. 
 
Chapter two deals with the most important subject that one needed to understand the idea 
of this thesis as our work is focusing on the trigonometrical series, in sections 1 and 2 we 
introduce the concept of the trigonometric series, section 3 talks about the modulus of 
continuity in which it is the most important here since as we will see later all the functions 
we approximate should gain the property that the modulus of continuity must be less than 
or equal to the bound ߜܥఈ, 0 ൏ ߙ ൑ 1. 
 
In chapter three we begin by the known definition of the vector spaces and normed vector 
spaces, then we study many critical ideas and some formulas that will be helpful in the 
sequel, also we give a brief but critical ideas about some classes of functions and we 
mention her the weighted ܮ௣ and the Muckenhoupt class which has in turn a huge 
importance in many fields in analysis. 
 
To investigate the general case, I think we have be know a lot of  information about the 
special case, that is what we see in chapter four where we concentrate on the 
approximation in the non-weighted ܮ௣ spaces, also we consider many methods of 
approximation that we will use in the proceeding chapter, in fact our work will be just a 
generalization of some theorems from the ܮ௣ spaces to the weighted ܮ௣ spaces. 
 
At the end we do the task, that is, we develop the work in chapter four to more general 
class of function, i.e. the approximation in the weighted ܮ௣ spaces. 
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Chapter One 

Lebesgue Integration 
 

With a basic knowledge of the Lebesgue measure theory, for more details one can refer to 
[5], we now proceed to establish the Lebesgue integration theory. 

In this chapter, unless otherwise stated, all sets considered will be assumed measurable. 

 

1.1 Simple functions 
 
Recall that the characteristic function ஺ࣲof any set ܣis defined by 

஺ࣲ ൌ ቄ1,                  ݔ א ܣ
0, otherwise 

A function ߮: ܧ ՜  ࣬is said to be simpleif there exists ܽଵ, ܽଶ, … , ܽ௡ א  ࣬and 
,ଵܧ ,ଶܧ . . . , ௡ܧ ؿ ߮ such that ܧ ൌ ∑ ܽ௜ࣲா೔

௡
௜ୀଵ . Note that here the ܧ௜’ݏ are implicitly assumed 

to be measurable, so a simple function shall always be measurable.  
 
Theorem1.1.1: A function ߮: ܧ ՜ ࣬is simple if and only if it takes only finitely many 
distinct valuesܽଵ, ܽଶ, . . . , ܽ௡ and߮ିଵሼܽ௜ሽ is a measurable set for all ݅ ൌ  1,2, . . . , ݊. 
 
With the above proposition, we see that every simple function ߮can be written uniquely in 
the form 

߮ ൌ ෍ ܽ௜ࣲா೔

௡

௜ୀଵ

 

Where the ܽ௜’ݏ are all non-zero and distinct, and the ܧ௜’ݏ are disjoint. (Simply take 
௜ܧ ൌ  ߮ିଵሼܽ௜ሽ   ݂ݎ݋ ݅ ൌ  1,2, . . . , ݊ where ܽଵ, ܽଶ, . . . , ܽ௡ are all the distinct values of ߮. We 
say this is the canonical representation of ߮. 
 

Definition 1.1.2:  A function ݂ ׷ ՜ ܧ  ࣬is said to vanish outside a set of finite measureif 
there exists a set ܣwith ݉ሺܣሻ  ൏  ∞ such that ݂vanishes outside ܣ, i.e. 

݂ ൌ  ܣ \ ܧ ݊݋  0 

 

Or equivalently ݂ሺݔሻ  ൌ  0 for all א ݔ  We denote the set of all simple functions .ܣ \ ܧ 
defined on ܧ which vanish outside a set of finite measure by ܵ଴ሺܧሻ. 
 
We are now ready for the definition of the Lebesgue integral of such functions. 

Definition 1.1.3: For any ߮ א  ܵ଴ሺܧሻ and any ك ܣ  we define the Lebesgue integral of ,ܧ 
߮over ܣby 

න ߮
஺

ൌ ෍ ܽ௜݉ሺܧ௜ ת ሻܣ
௡

௜ୀଵ
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where߮ ൌ ∑ ܽ௜ࣲா೔
௡
௜ୀଵ   is the canonical representation of ߮ (From now on we shall adopt 

the convention that 0·∞ = 0. We need this convention here because it may happen that one 
ܽ௜is zero while the corresponding ܧ௜ ת  isܣ has infinite measure. Also note that hereܣ 
implicitly assumed to be measurable so ݉ሺܧ௜ ת  ሻ makes sense. We shall never integrateܣ 
over non-measurable sets.) 
 
It follows readily from the above definition that 

න ߮ ൌ න ߮ ஺ࣲ
ா஺

 

for any ߮ א  ܵ଴ሺܧሻ and for any ك ܣ  .ܧ 
We now establish some major properties of this integral (with monotonicity and linearity 
being probably the most important ones). We begin with the following lemma. 

 
Lemma 1.1.4:Suppose  ߮ ൌ ∑ ܽ௜ࣲா೔

௡
௜ୀଵ א ܵ଴ሺܧሻ where the ܧ௜’ݏ are disjoint, then for any 

ك ܣ  ,ܧ 

න ߮
஺

ൌ ෍ ܽ௜݉ሺܧ௜ ת ሻܣ
௡

௜ୀଵ

 

holds even if the ܽ௜’ݏ are not necessarily distinct. 

Theorem1.1.5.(Properties of the Lebesgue integral)Suppose  ߮, א ߰  ܵ଴ሺܧሻ. Then for 

any ك ܣ  ,ܧ 

(a) ׬ ሺ߮ ൅  ߰ሻ஺  ൌ ׬  ߮஺  ൅ ׬  ߰஺ . (Note that߮ ൅ א ߰   ܵ଴ሺܧሻ too by the vector space 

structure of S଴ሺEሻ ሻ. 

(b) ׬ ߮ߙ ൌ ׬ ߙ ߮஺஺ (for all א ߙ ࣬. (Note ߮ߙ א ܵ଴ሺܧሻ  again) 

(c) If߮ ൑  ߰a.e. on ܣ then׬ ߮஺ ൑ ׬  ߰஺ . 

(d) If߮ ൌ  ߰a.e. onܣthen׬ ߮஺  ൌ ׬  ߰஺ . 

(e) If ߮ ൒  0 a. e. on ܣ and ׬  ߮஺  ൌ  0, then ߮ ൌ  0 a. e. on ܣ. 

(f) ቚ׬ ߮஺ ቚ  ൑ ׬ |߮|஺ . ሺܰ݁ݐ݋ |߮| א  ܵ଴ሺܧሻሻ. 

 

Remark. ሺܽሻandሺܾሻ are known as the linearity property of the integral, while (c) is known 
as the monotonicity property. Furthermore, Lemma 1.1.4 is now seen to hold by the 
linearity of the integral even without the disjointness assumption on the ܧ௜’ݏ. 
 
1.2 Bounded measurable functions 
 
Resembling the construction of the Riemann integral (using simple functions in place of 
step functions), we define the upper and lower Lebesgue integrals. 
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Definition 1.2.1:Let ݂ ׷ ՜ ܧ  ࣬be a bounded function, which vanish outside a set of finite 
measure. For any ك ܣ  byܣ we define the upper integral and the lower integralof ݂ on ,ܧ 

න ݂
ି 

஺
ൌ inf ቊන ߰: ݂ ൑ ,ܣ ݊݋ ߰ ߰ א ܵ଴ሺܧሻ

஺
ቋ 

න ݂
ି஺

ൌ sup ቊන ߮
஺

: ݂ ൒ ,ܣ ݊݋ ߮ ߮ א ܵ଴ሺܧሻቋ 

If the two values agree, we denote the common value by ׬ ݂஺ . (Again the set ܣis implicitly 

assumed to be measurable so that ׬ ߰஺ and ׬ ߮஺  make sense.) 
 
Note that both the infimum and the supremum in the definitions of the upper and lower 
integrals exist because ݂is bounded and vanishes outside a set of finite measure. (This is 
why ݂ has to be a bounded function here) It is evident that for the functions we 
investigated in Section 1 (namely simple functions vanishing outside a set of finite 
measure) have their upper and lower integrals both equal to their integral as defined in the 

last section. In other words, if ߮ א  ܵ଴ሺܧሻ then ׬ ߮ି 
஺  ൌ ׬  ߮ି஺  ൌ ׬  ߮஺  .It is also clear 

that െ∞ ൏ ׬ ݂ି஺  ൑ ׬  ݂ି 
஺ ൏ ∞ whenever they are defined.  

 

We investigate when ׬ ݂ି஺ ൌ ׬ ݂ି 
஺ . 

 
Theorem1.2.2: Let ݂ be as in the above definition. Then 

න ݂
ି 

஺
 ൌ න ݂

ି஺
for all ك ܣ  ܧ 

if and only if ݂ is measurable. 
 
Notation: We shall denote the set of all (real-valued) bounded measurable functions 
defined on ܧ which vanishes outside a set of finite measure byܤ଴ሺܧሻ. 
 
So from now on for݂ א    ሻ, implies thatܧ଴ሺܤ 

න ݂ 
஺

ൌ inf ቊන ߰:
஺

݂ ൑ ߰ א ܵ଴ሺܧሻቋ ൌ sup ቊන ߮
஺

: ݂ ൒ ߮ א ܵ଴ሺܧሻቋ 

for any ك ܣ  .ܧ 
 
Theorem1.2.3:(Properties of the Lebesgue integral)  Suppose݂, א ݃  ሻ, thenܧ଴ሺܤ

݂ ൅ ݃, ,݂ߙ |݂| א ك ܣሻ, and for anyܧ଴ሺܤ  we have ,ܧ 

ሺaሻ ׬ ሺ݂ ൅  ݃ሻ ൌ ׬  ݂஺ ൅ ׬ ݃஺஺ . 

ሺbሻ ׬ ݂ߙ ൌ ߙ ׬ ݂஺஺  for all א ߙ ܴ. 

ሺcሻ ك ܤ ݂ܫ and ݂ ൒ ܣ   0 a. e. on ܣ then ׬ ݂஻  ൑ ׬ ݂஺ . 
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ሺdሻ If ݂ ൑  ݃ a. e. on ܣ then ׬ ݂஺  ൑ ׬  ݃஺ . 

ሺeሻ ݂ܫ ݂ ൌ  ݃ a. e. on ܣ then ׬ ݂஺  ൌ ׬  ݃஺ . 

ሺfሻ ݂ܫ ݂ ൒  0 a. e. on ܣ and ׬ ݂஺  ൌ  0, then ݂ ൌ  0 a. e. on ܣ. 

ሺgሻ ቚ׬ ݂஺ ቚ  ൑ ׬  |݂|஺ . 

 

Theorem 1.2.4:(Bounded Convergence Theorem)Let ۃ ௡݂ۄ be a sequence of measurable 
functions defined on a set E of finite measure, and suppose that there is a real number M 
such that | ௡݂| ൑ ሻݔIf ݂ሺ .ݔ for all ݊ and for all ܯ ൌ lim௡՜ஶ ௡݂ሺݔሻ for each ݔ in ܧ, then  

ሺ5ሻ lim
௡՜ஶ

න ௡݂
ா

ൌ න ݂
ா

 

 
1.3 Integration of non-negative measurable functions 
 
We integrate non-negative measurable functions through approximation by bounded 
measurable functions vanishing outside a set of finite measure, which we studied in the last 
section. 

Definition 1.3.1: For a non-negative measurable function ݂ ׷ ՜ ܧ   ሾ0, ∞ሿ (where ܧ is a 
set which may be of finite or infinite measure), we define 

න ݂
஺

ൌ sup ቊන ߮
஺

: ߮ ൑ ,ܣ ݊݋ ݂ ߮ א  ሻቋܧ଴ሺܤ

for any ك ܣ  .ܧ 
 
Note that for non-negative bounded measurable functions vanishing outside a set of finite 
measure, this definition agrees with the old one. Also, note that we allow the functions to 
take infinite value here. 

Theorem 1.3.2: Suppose ݂, ՜ ܧ :݃  ሾ0, ∞ሿ are non-negative measurable and ك ܣ  .ܧ 

ሺaሻ If ݂ ൑  ݃ a.e. on ܣ then ׬ ݂஺  ൑ ׬  ݃஺ . 
ሺbሻ For ߙ ൐  0, ݂ ൅  ݃ and ݂ߙ are non-negative measurable functions and 

න ሺ݂ ൅ ݃ሻ ൌ න ݂
஺஺

൅ න ݃
஺

 

න ݂ߙ
஺

ൌ ߙ  න ݂
஺

 

Theorem 1.3.3:(Monotone Convergence Theorem) If ሼ ௡݂ሽ is an increasing sequence of 
non-negative measurable functions defined on E and ௡݂ ՜  ݂ a.e. on E, then 

න ݂
ா

ൌ lim
௡՜ஶ

න ௡݂
୉

. 

Corollary 1.3.4: Let ݑ௡ be a sequence of nonnegativemeasurable functions, and let 
݂ ൌ ∑ ௡,ஶݑ

௡ୀଵ  then 
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න ݂ ൌ ෍ න ௡ݑ

ஶ

௡ୀଵ

 

 
1.4 Extended real-valued integrable functions 
 
In the last section, we integrated non-negative measurable functions, and in this section, we 
wish to drop the non-negative requirement. Recall that it is a natural requirement that our 
integral be linear, and now we can integrate a general non-negative measurable function, so 
it is tempting to define the integral of a general (not necessarily non-negative) measurable 
function ݂ to be ݂ା െ ݂ିwhere ݂ା ൌ  ݂ ש 0, and ݂ି ൌ  ሺെ݂ሻ ש 0, since ݂ା, ݂ିare non-
negative measurable and they sum up to ݂. But it turns out that we cannot always do that, 
because it may well happen that ݂ାand ݂ିare both infinite, in which case their difference 
would be meaningless (Remember that ∞−∞ is undefined.) 

Definition 1.4.1:For any function ݂: ܧ ՜ ሾെ∞, ∞ሿ, denote ݂ା ൌ ݂ ש 0 and ݂ି ൌ ሺെ݂ሻ ש

0. Then ݂ is said to be integrable if and only if both׬ ݂ା
ா  and׬ ݂ି

ா  are finite, in which 
case we define the integral of ݂ by 

න ݂
஺

ൌ න ݂ା

஺
െ න ݂ି

஺
 

for any A ك E. 
 
Notation: We shall denote the class of all (extended real-valued) integrable functions 
defined on E by ࣦሺܧሻ. 
 
Note that in the above definition, ݂ା and ݂ିare both non-negative measurable, so for any 
set ܣ ك ,ܧ  ׬ ݂ା

஺  and ׬ ݂ି
஺  are both defined. Furthermore, ׬ ݂ା

஺ ൑ ׬ ݂ା
ா ൏ ∞, 

similarly ׬ ݂ି
஺ ൏ ∞,so their difference makes sense now. 

 
We provide an alternative characterization of integrable functions. 

Theorem1.4.2:A measurable function ݂ defined on ܧ is integrable if and only if  

න |݂|
ா

൏ ∞ 

Theorem 1.4.3:Let ݂, ݃ be integrable functions over ܧ, then 

׬ .1 ሺ݂ ൅ ݃ሻா  ൌ ׬  ݂ா  ൅ ׬ ݃ா  

׬ .2 ா݂ߙ  ൌ ׬ ߙ  ݂ா . 

3. Furthermore, if݂ ൑  ݃a.e on ܧ then ׬ ݂ா  ൑ ׬  ݃ா . 
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Chapter Two 

Trigonometric Series 

 

2.1 Introduction to Trigonometric Series 

 

Definition 2.1.1. Trigonometrical series are series of the form  

ሺ1ሻ
1
2 ܽ଴ ൅ ෍ሺܽ௞ cos ݔ݇ ൅ ܾ௞ sin ሻݔ݇

ஶ

௞ୀଵ

, 

Where the coefficients ܽ଴, ܽଵ, … , ܾଵ, ܾଶ, … are independent of the real variable ݔ. It is 
convenient to provide the constant term of the trigonometrical series with the factor 1 2⁄  . 
Since the terms of (1) are of period 2ߨ, it is sufficient to study trigonometrical series in any 
interval of length 2ߨ. 

A finite trigonometric sum 

ܶሺݔሻ ൌ  
1
2

ܽ଴ ൅ ෍ሺܽ௞ cos ݔ݇ ൅ ܾ௞ sin ሻݔ݇
௡

௞ୀଵ

, 

is called a trigonometrical series of order n. Every ܶሺݔሻ is a real part of an ordinary power 
polynomial 

ܲሺݖሻ ൌ
1
2 ܽ଴ ൅ ෍ሺܽ௞ െ ܾ݅௞ሻݖ௞

௡

௞ୀଵ

. 

of degree ݊, where ݖ ൌ ݁௜௫. The fact that trigonometrical series are the real parts of power 
series facilitates in many cases finding the sum of the former. 
For example, the series [3] 

ሺ2ሻ ௥ܲሺݔሻ ൌ
1
2 ൅ ෍ ௞ݎ cos ݔ݇

ஶ

௞ୀଵ

, ܳ௥ሺݔሻ ൌ ෍ ௞ݎ sin ݔ݇
ஶ

௞ୀଵ

, 

where0 ൑ ݎ ൏ 1, are the real and imaginary parts of the series 
1
2

൅ ݖ ൅ ଶݖ ൅ ڮ ൌ
1
2

1 ൅ ݖ
1 െ ݖ

, 

where ݖ ൌ   ௜௫, and we obtained by simple calculations the two relations݁ݎ

ሺ3ሻ ௥ܲሺݔሻ ൌ
1
2

1 െ ଶݎ

1 െ ݎ2 cos ݔ ൅ ଶݎ ,       ܳ௥ሺݔሻ ൌ
ݎ sin ݔ

1 െ ݎ2 cos ݔ ൅  .ଶݎ

If we denote the nth-partial sums of (3) as ܦ௡ሺݔሻ, ,ሻݔ෩௡ሺܦ ݊ ൌ 0,1,2 … of the series (2) we 
obtain with ݎ ൌ 1 by the same argument that  

ሺ4ሻܦ௡ሺݔሻ ൌ
sin ቀ݊ ൅ ଵ

ଶ
ቁ ݔ

2 sin ଵ
ଶ

ݔ
ሻݔ෩௡ሺܦ          , ൌ

cos ଵ
ଶ

ݔ െ cos ቀ݊ ൅ ଵ
ଶ
ቁ ݔ

2 sin ଵ
ଶ

ݔ
 

 
From (4) we see that ܦ௡ሺݔሻ, ሻare uniformly boundedon any interval 0ݔ෩௡ሺܦ ൏ ߝ ൑ ݔ ൑
ߨ2 െ  .ߝ



7 
 

 

Lemma 2.1.2: [3] let ݑ௞, ௞ be any two sequences in ࣬ then for 0ݒ ൑ ݉ ൑ ݊, the formula 

෍ ௞ݒ௞ݑ

௡

௞ୀ௠

ൌ ෍ ܷ௞ሺݒ௞ െ ௞ାଵሻݒ
௡ିଵ

௞ୀ௠

െ ܷ௠ିଵ · ௠ݒ ൅ ܷ௡ݒ௡, 

is valid for any ݇ ൒ 0, where ܷ௞ ൌ ଴ݑ ൅ ଵݑ ൅ ڮ ൅ ௞, and ܷିଵݑ ؜ 0. This relation is called 
Abel's transformation or summation by parts which can be easily verified and it is very 
useful tool in the general theory of series. 
 
Definition 2.1.3: We say that a sequence ݒ ൌ ሺݒ଴, ,ଵݒ … , ,௡ݒ … ሻ is of bounded variation if 
the series. 

෍|ݒ௞ െ |௞ିଵݒ
ஶ

௞ୀଵ

൑  .ܯ

 
Since the previous series is absolutely convergent, then it is convergent series, so 
∑ ሺݒ௞ െ ௞ିଵሻஶݒ

௞ୀଵ  is converges to some constant c, thus we have. 

ܿ ൌ lim
௡՜ஶ

෍ሺݒ௞ െ ௞ିଵሻݒ
௡

௞ୀଵ

ൌ lim
௡՜ஶ

ሾሺݒଵ െ ଴ሻݒ ൅ ڮ ൅  ሺݒ௡ െ ௡ିଵሻሿݒ

ൌ lim
௡՜ஶ

ሺݒ௡ െ  ଴ሻݒ
Therefore, any sequence of bounded variation is convergent. 

 

Lemma 2.1.4. [3] 

a) If a series ݑ଴ሺݔሻ ൅ ሻݔଵሺݑ ൅  ௞ሽ is of bounded variation,theݒconverges uniformly, andሼ ڮ
series ݑ଴ݒ଴ ൅ ଵݒଵݑ ൅  .converges uniformly ڮ
b) If ݑ଴ሺݔሻ ൅ ሻݔଵሺݑ ൅  ௞ሽ is of boundedݒhas its partial sums uniformly bounded, ሼ ڮ
variation, and ݒ௞ ՜ 0, the series ݑ଴ݒ଴ ൅ ଵݒଵݑ ൅  .converges uniformly ڮ

 

2.2 The trigonometrical system 

 
Note: The integral we used here is the Lebesgue integral and we introduced the concept of 
integral in the first chapter. In addition, we assume that ݂ is a periodic function of period 
 .ߨ2

A system of real functions ݃଴, ݃ଵ, … … , ݃௡, … defined in an interval ሺܽ, ܾሻis said to be 
orthogonal in this interval if for some ߬ א ࣬. 

ሺ5ሻ න ݃௡ሺݔሻ݃௠ሺݔሻ݀ݔ ൌ
௕

௔
ቄ0,                  ݉ ് ݊
 ߬,                  ݉ ൌ ݊    ݉, ݊ ൌ 0,1, … 

The importance of the orthogonal systems is based on the following fact. Suppose that a 
series ܿ଴݃଴ሺݔሻ ൅ ܿଵ ଵ݃ሺݔሻ ൅ ,where ܿ଴ ,ڮ ܿଵ, … are constants, and converges to a function 
݂ሺݔሻ inሺܽ, ܾሻ. Then by multiplying each side of the formula 
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ሺ6ሻ                       ݂ሺݔሻ ൌ ܿ଴ ݃଴ሺݔሻ ൅ ܿଵ ଵ݃ሺݔሻ ൅ ڮ ܿ௡ ݃௡ሺݔሻ ൅  ڮ

by݃௡ሺݔሻ and integrating over the interval ሺܽ, ܾሻ, we find, by means of (5), that  

ሺ7ሻܿ௡ ൌ
1
߬ න ݂ሺݔሻ݃௡ሺݔሻ݀ݔ

௕

௔
                ݊ ൌ  0,1, … 

 
We call the numbers ܿ௡ the Fourier coefficients of݂, and the relation ሺ6ሻ the Fourier series 
of݂ with respect to the system ሼ݃௡ሽ. 
 

Not that the system of functions 1, cos ݔ , sin ݔ , cos ݔ2  , sin ݔ2 , … ,that is, the 
trigonometrical system is orthogonal in ሺെߨ,  .ሻߨ
 
In fact, let ܫ௠,௡ ൌ ׬ sin ݔ݉ sin ݔ݊ గݔ݀

ିగ , and let ܫ௠,௡
ᇱ ൌ ׬ cos ݔ݉ sin ݔ݊ గݔ݀

ିగ , ௠,௡ܫ
ᇱᇱ ൌ

׬ cos ݔ݉ cos ݔ݊ గݔ݀
ିగ .Integrating the formula 

2 sin ݔ݉ sin ݔ݊ ൌ cosሺ݉ െ ݊ሻݔ െ cosሺ݉ ൅ ݊ሻݔ 

and taking into account the periodicity of trigonometrical functions, we find that 

௠,௡ܫ  ൌ 0 when ݉ ് ݊,  

Moreover, ܫ௠,௡
ᇱ ൌ 0 ൌ ௠,௡ܫ

ᇱᇱ for any ݉, ݊ ൌ 0,1, … , so we may write (6) in means of the 
trigonometrical system as 

ሺ8ሻ                                      ݂ሺݔሻ ൌ
1
2 ܽ଴ ൅ ෍ሺܽ௞ cos ݔ݇ ൅ ܾ௞ sin ሻݔ݇

ஶ

௞ୀଵ

 

In addition, we define 

ሺ9ሻܽ௞ ൌ
1
ߨ න ݂ሺݔሻ cos ݔ݇ ,ݔ݀

గ

ିగ

 

ܾ௞ ൌ
1
ߨ න ݂ሺݔሻ sin ݔ݇ ݔ݀

గ

ିగ

, 

 

In virtue of relation (9), we see that the problems of the theory of Fourier series are closely 
connected with the notation of integrals; in the last relation, we assumed that 
݂ሺݔሻ cos ݔ݇ , ݂ሺݔሻ sin  .were integrable ݔ݇
 
Every integrable function ݂ሺݔሻ ሺ0 ൑ ݔ ൑  .ሻ has its Fourier series as it is defined in ሺ8ሻߨ2
Two functions ݂ and ݃ which are equal a.e have the same Fourier series and we call them 
equivalent ݃ ؠ  ݂ and do not distinguish between them. 
 
Notation: The partial sum of the Fourier series of any function, say݂, denoted by ݏ௡ሺ݂ሻ 
and given by the formula 
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௡ሺ݂ሻݏ ൌ
1
2 ܽ଴ ൅ ෍ሺܽ௞ cos ݔ݇ ൅ ܾ௞ sin ሻݔ݇

௡

௞ୀଵ

 

while we shall denote by ्ሾ݂ሿ to the Fourier series of ݂. 

This series of partial sum can be written as the following form 

ሻ൯ݔ௡൫݂ሺݏ ൌ
1

ߨ2 න ݂ሺݐሻ݀ݐ
గ

ିగ

൅
1
ߨ ෍ ቌcos ݔ݇ න ݂ሺݐሻ cos ݐ݇ ݐ݀

గ

ିగ

൅ sin ݔ݇ න ݂ሺݐሻ sin ݐ݇ ݐ݀
గ

ିగ

ቍ
௡

௞ୀଵ

ൌ
1

ߨ2 න ݂ሺݐሻ݀ݐ
గ

ିగ

൅
1
ߨ ෍ ቌ න ݂ሺݐሻ cos ݔ݇ cos ݐ݇ ݐ݀

గ

ିగ

൅ න ݂ሺݐሻ sin ݔ݇ sin ݐ݇ ݐ݀
గ

ିగ

ቍ
௡

௞ୀଵ

ൌ
1

ߨ2 න ݂ሺݐሻ݀ݐ
గ

ିగ

൅
1
ߨ ෍ ቌ න ݂ሺݐሻሾcos ݔ݇ cos ݐ݇ ൅ sin ݔ݇ sin ݐሿ݀ݐ݇

గ

ିగ

ቍ
௡

௞ୀଵ

ൌ
1

ߨ2 න ݂ሺݐሻ݀ݐ
గ

ିగ

൅
1
ߨ ෍ ቌ න ݂ሺݐሻሾcos ݇ሺݐ െ ݐሻሿ݀ݔ

గ

ିగ

ቍ
௡

௞ୀଵ

ൌ
1
ߨ න ݂ሺݐሻ ൥

1
2 ൅ ෍ cos ݇ሺݐ െ ሻݔ

௡

௞ୀଵ

൩ ݐ݀
గ

ିగ

ൌ
1
ߨ න ݂ሺݐሻܦ௡ሺݐ െ ݐሻ݀ݔ

గ

ିగ

ൌ
1
ߨ න ݂ሺݐ ൅ ݐሻ݀ݐ௡ሺܦሻݔ

గ

ିగ

, 

where 

ሻݔ௡ሺܦ ൌ
sin ቀ݊ ൅ ଵ

ଶ
ቁ ݔ

2 sin ଵ
ଶ

ݔ
. 

 
The functionܦ௡ሺݔሻis called the Drichlet's function. 
Let ݏ௡

כ ൌ ௡ݏ െ ቀ௔೙ ୡ୭ୱ ௡௫ା௕೙ ୱ୧୬ ௡௫
ଶ

ቁ be the modified partial sum of the Fourier series of ݂, 
now the difference ݏ௡

כ െ  ௡ tends uniformly to 0 so it is slightly more convenient toݏ
consider the modification expression. 
 
Note 2.2.1: [3] Let ݂ be measurable function that belongs to the ܮ௣ space, ݌ ൐ 1 , and 
  ௡ሺ݂ሻ is the partial sum of it is Fourier series thenݏ

ԡݏ௡
ሺ݂ሻԡ௣כ ൑  ԡ݂ԡ௣ܣ2

whereݏ௡
௡ݏ ሺ݂ሻ is the modified partial sum ofכ ሺ݂ሻ. 

 
Consider any trigonometric polynomial, say ݐ௡, then we may write 
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௡ሺ݂ሻݏ െ ௡ݐ ൌ
ܽ଴

2 ൅ ෍ሺܽ௞ cos ݔ݇ ൅ ܾ௞ sin ሻݔ݇
௡

௞ୀଵ

െ
ܽ଴

ᇱ

2 െ ෍ሺܽ௞
ᇱ cos ݔ݇ ൅ ܾ௞

ᇱ sin ሻݔ݇
௡

௞ୀଵ

ൌ
ܽ଴ െ ܽ଴

ᇱ

2 ൅ ෍ሺሾܽ௞ െ ܽ௞
ᇱ ሿ cos ݔ݇ ൅ ሾܾ௞ െ ܾ௞

ᇱ ሿ sin ሻݔ݇
௡

௞ୀଵ
ൌ ௡ሺ݂ݏ െ  ௡ሻݐ

also we may write  

௡ሺ݂ݏ െ ሻݔ௡ሻሺݐ ൌ
1
ߨ නሾ݂ሺݑ ൅ ሻݔ െ ݑ௡ሺݐ ൅ ݑሻ݀ݑ௡ሺܦሻሿݔ

గ

ିగ

 

if we set ݇ ൌ ݑ ൅ ,ߨon the interval ሺെ ߨ2 0ሻ, and ݇ ൌ ,on the interval ሺ0 ݑ  ሻ and notingߨ
that ݂ is 2ߨ periodic, . Then  

௡ሺ݂ݏ െ ሻݔ௡ሻሺݐ ൌ
1
ߨ ቌ නሾ݂ሺݑ ൅ ሻݔ െ ݑ௡ሺݐ ൅ ݑሻ݀ݑ௡ሺܦሻሿݔ

଴

ିగ

൅ නሾ݂ሺݑ ൅ ሻݔ െ ݑ௡ሺݐ ൅ ݑሻ݀ݑ௡ሺܦሻሿݔ
గ

଴

ቍ

ൌ
1
ߨ ቌන ሾ݂ሺ݇ ൅ ሻݔ െ ௡ሺ݇ݐ ൅ ݑሻ݀ݑ௡ሺܦሻሿݔ

ଶగ

గ

൅ නሾ݂ሺ݇ ൅ ሻݔ െ ௡ሺ݇ݐ ൅ ௡ሺ݇ሻ݀݇ܦሻሿݔ
గ

଴

ቍ

ൌ
1
ߨ ቌන ሾ݂ሺ݇ ൅ ሻݔ െ ௡ሺ݇ݐ ൅ ௡ሺ݇ሻ݀݇ܦሻሿݔ

ଶగ

଴

ቍ. 

 
 
Theorem 2.2.2: [3] If ݂ and ݃ have the same Fourier series then ݂ ؠ ݃. 
 

Since if they have the same Fourier series then the difference between these functions will 
cancel all coefficients in the Fourier series for which the difference will be equivalent to 
zero and so they are equivalent. 

 

Theorem 2.2.3: [3]Let ݂ be continuous function, if ्ሾ݂ሿ converges uniformly then it 
converges to ݂. 
 
Noting that the convergent will be to the images of ݂ at the points of continuity and to the 
average value of the left-right limit of the point in which the function ݂ is discontinuous. 
 
Suppose that ݂ሺݔሻ is an integral function i.e. is absolutely continuous. Therefore, it is 
Fourier series given byሺ8ሻ.Integrating the first formula in (9) by parts, we get  
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ܽ௞ ൌ
1
ߨ න ݂ሺݔሻ cos ݔ݇ ݔ݀

గ

ିగ

ൌ
1

݇ߨ න ݂ᇱሺݔሻ sin ݔ݇ ݔ݀
గ

ିగ

ൌ
1
݇ ܾ௡

ᇱ  

 
Therefore, ܾ௞

ᇱ ൌ ݇ܽ௞, the same manner we deduce that ܽ௞
ᇱ ൌ െܾ݇௞. 

 
Since ݂is periodic then ܽ଴

ᇱ ൌ 0, so we have 

݂ᇱሺݔሻ ൌ ෍ሺܽᇱ
௞ cos ݔ݇ ൅ ܾᇱ

௞ sin ሻݔ݇
ஶ

௞ୀଵ

ൌ ෍ ݇ሺܽ௞ sin ݔ݇ െ ܾ௞ cos ሻݔ݇
ஶ

௞ୀଵ

,      ݇ ൌ 1,2, … 

 

In other words, if  ्ሾ݂ሿ is the Fourier series of ݂, and ्ᇱሾ݂ሿ is the resulting of 
differentiating ्ሾ݂ሿterm by term then we have ्ᇱሾ݂ሿ ൌ  ्ሾ݂ᇱሿ. With the same argument, 
we see that if ݂ is a ݇~݄ݐ integral, then ्௞ሾ݂ሿ ൌ  ्ሾ݂௞ሿ. 
 
Theorem 2.2.4: [3] Let ݂ be periodic and ܨ is the integral of ݂. since  

ݔሺܨ ൅ ሻߨ2 െ ሻݔሺܨ ൌ න ݂ሺݐሻ݀ݐ
௫ାଶగ

௫
, 

then a necessary and sufficient condition for the periodicity of F is that the constant term of 
्ሾ݂ሿ should vanishes. 

 
2.3 Modulus of continuity 

 
Definition 2.3.1: [3] Let ݂ሺݔሻ be a function defined for ܽ ൑ ݔ ൑ ܾ, then ݔ׊, ݕ א ሺܽ, ܾሻ 
such that |ݔ െ |ݕ ൑  we define the function ,ߜ
߱ሺߜሻ ൌ ߱ሺߜ; ݂ሻ ൌ max|݂ሺݔሻ െ ݂ሺݕሻ|to be the modulus of continuity of ݂ሺݔሻ. 
 
Example 2.3.2: Consider the function ݂ሺݔሻ ൌ ,ଶݔ ݔ א ሺ0,3ሻ, then the modulus of 
continuity of ݂ is  

߱ሺߜሻ ൌ max|ݔଶ െ |ଶݕ ൌ max|ሺݔ െ ݔሻሺݕ ൅ |ሻݕ ൑ 6 ·  .ߜ
 
Theorem 2.3.3: [3] A function ݂ is continuous iff  ߱ሺߜሻ ՜ ߜ ݏܽ 0 ՜ 0. 
 
Definition 2.3.4: With the same notation above, if ߱ሺߜሻ ൏ ,ఈߜܥ 0 ൏ ߙ ൑ 1, and ܥ denotes 
a number independent of ߜ, then we say that ݂ satisfies Lipschitz condition of order ߙ, or 
݂ א ,ሻinሺܽߙሺ݌݅ܮ ܾሻ. 
 
For simplicity, we suppose that ሺܽ, ܾሻ is the interval ሺ0,2ߨሻ, since we are dealing with a 
trigonometrical system that is of period 2ߨ. Moreover, any interval of period 2ߨ will be 
sufficient. 
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Definition 2.3.5: Let ߱ଵሺߜሻ ൌ ߱ଵሺߜ; ݂ሻ ൌ max ׬ |݂ሺݔ ൅ ݄ሻ െ ݂ሺݔሻ|ଶగ
଴ for all 0 ,ݔ݀ ൏ ݄ ൑

 .݂ ሻ will be called the integral modulus of continuity ofߜThe function  ߱ଵሺ.ߜ
 

Theorem 2.3.6: [3] For any integrable function ݂ሺݔሻ, 

lim
ఋ՜଴

߱ଵሺߜሻ ൌ 0. 

In addition, if for any ߝ ൐ 0 we have ݂ ൌ ଵ݂ ൅ ଶ݂, where ߱ଵሺߜ; ଵ݂ሻ ՜ ߜ ݏܽ 0 ՜ 0, and 
ሺܫ ଶ݂ሻ ؜ |׬ ଶ݂| ൏ ;ߜthen ߱ଵሺ ,ߝ ݂ሻ ՜ 0.  
 

In fact: 

߱ଵሺߜ; ݂ሻ ൑ ߱ଵሺߜ; ଵ݂ሻ ൅ ߱ଵሺߜ; ଶ݂ሻ ൑ ߱ଵሺߜ; ଵ݂ሻ ൅ ሺܫ2 ଶ݂ሻ ൏  ,ߝ3
 
if0 ൏ ߜ ൑  .ሻߝ଴ሺߜ
 

 
2.4 "Big O" notation and Test of convergence 

 
The object of this section is to establish some conditions for the convergence of the Fourier 
series. It will be convenient to collect here a few elementary theorems on series concerning 
the Bigܱ notation, which will be used in the sequel.  

"Big  " notation describes the limiting behavior of a function, when the argument tends 
toward a particular value or infinity, usually in terms of simpler functions. 

Big ܱ notation characterizes functions according to their growth rates, different functions 
with the same growth rate may be represented using the same ܱ notation. The letter ܱis 
used because the growth rate of a function is also referred to as order of the function. A 
description of a function in terms of big ܱ notation usually only provides an upper bound 
on the growth rate of the function. 

 
Definition 2.4.1: Let ݂ሺݔሻ and ݃ሺݔሻ be two functions defined for some ݔ ൒  ,଴ in additionݔ
let ݃ሺݔሻ ് 0 there. The symbol 

݂ሺݔሻ ൌ ܱሺ݃ሺݔሻሻ 
means that ݂ሺݔሻ ݃ሺݔሻ⁄  is bounded for ݔ large enough, the same notation is used when ݔ 
tends to a finite limit, or to െ∞. i.e. ݂ሺݔሻ ൌ  ܱሺ݃ሺݔሻሻ if and only if there exists a positive 
real number ܯ and a real number ݔ଴ such that 

݂ሺݔሻ ൑ ݔ ݈݈ܽ ݎ݋݂    |ሻݔሺ݃|ܯ ൐  ଴ݔ
 
In particular ܱሺ1ሻ means that a function is bounded. 
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Chapter Three 

Classes of Functions 
 

3.1 Vector space 
 
Definition 3.1.1. Let ܸ be a set with two operations, the operation "addition", denoted by 
"+", which maps each pairሺݔ , ܸ ሻinݕ ൈ ܸ into ܸ, and the operation "scalar multiplication", 
denoted by a dot " · ", which maps each pair ሺܿ, ࣬ ݊݅ ሻݔ ൈ ܸ into ܸ. Thus, a scalar is a real 
or complex number. The set ܸ is called a real vector space if the addition and 
multiplication operations involved satisfy the following rules, for allݔ,  and ,ܸ ݊݅ ݖ ݀݊ܽ ݕ
for all scalars ܽ , ܾ, and ܿ in ࣬  ׷

(a) ݔ ൅ ݕ ൌ ݕ ൅  ݔ
(b) ݔ ൅ ሺݕ ൅ ሻݖ ൌ ሺݔ ൅ ሻݕ ൅  ݖ
(c) There is a unique zero vector 0 in V such that ݔ ൅ 0 ൌ  ݔ
(d) For each x there exists a unique vector – ݔ  in V such that ݔ ൅ ሺെݔሻ ൌ 0 
(e) 1 · ݔ ൌ  ݔ
(f) ሺܾܽሻ · ݔ ൌ ܽ · ሺܾ ·  ሻݔ
(g) ܽ · ሺݔ ൅ ሻݕ ൌ ܽ · ݔ ൅ ܽ ·  ݕ
(h) ሺܽ ൅ ܾሻ · ݔ ൌ ܽ · ݔ ൅ ܾ ·  ݔ

 
It is trivial to verify that the Euclidean space ࣬௡ is a real vector space. However, the notion 
of a vector space is much more general. For example, let ܸ be the space of all continuous 
functions on ࣬, with pointwise addition and scalar multiplication defined the same way as 
for real numbers. Then it is easy to see that this space is a real vector space. 

 
Another example of a vector space is the space ܸ of positive real numbers with the 
"addition" operation ݔ ൅ ݕ ൌ ݔ · ܿ "and the "scalar multiplication ݕ · ݔ ൌ  ௖. In this caseݔ
the zero vector 0 is the number 1, and – ൌ ݔ  ଵ

௫
 . 

 
Now if we consider the set ܨ ൌ  ሼ݂|݂: ࣬ ՜  ࣬ሽ of all real valued functions of one variable 
then ܨ is a vector space under the operations: 

ሺ݂ ൅ ݃ሻሺݔሻ ൌ ݂ሺݔሻ ൅ ݃ሺݔሻ 

ሺܽ · ݂ሻሺݔሻ ൌ ܽ · ݂ሺݔሻ 
 
One more example we need to show here is that of the ݈௣ space of sequences, let ݌ ൒ 1 be 
fixes real number, by definition each element in this space is a sequence ݔ ൌ ሺݔ௡ሻଵ

ஶ ൌ
ሺݔଵ, ,ଶݔ … ሻ of numbers such that ∑ ௜|௣ஶݔ|

௜ୀଵ  converges, and the addition and scalar 
multiplication are defined as  

ݔ ൅ ݕ ൌ ሺݔଵ ൅ ,ଵݕ ଶݔ ൅ ,ଶݕ … ሻ 
ܽ · ݔ ൌ ሺܽݔଵ, ,ଶݔܽ … ሻ 

for any ݔ, ݕ א ݈௣. 
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Note that a vector space must have at least the zero vector, thus, the one element vector 
space is the smallest one possible. 
 
It is not difficult to see that these properties yield other fundamental properties of vector 
addition and scalar multiplication of position vectors. For example, ܽ · 0 ൌ 0 for any real 
number ܽ, also we state another which can be deduced from the last definition easily. 

i. 0 · ݔ ൌ 0 
ii. ݂ܫ ܽ · ݔ ൌ 0, then either ܽ ൌ ݔ ݎ݋ 0 ൌ 0, or both 

iii. ܽ · ሺെݔሻ ൌ െܽ ·  ݔ
iv. ሺ– ܽሻ · ݔ ൌ െܽ ·  ݔ
v. ሺܽ െ ܾሻ · ݔ ൌ ܽ · ݔ െ ܾ ·  ݔ

vi. ܽ · ሺݔ െ ሻݕ ൌ ܽ · ݔ െ ܽ ·  ݕ
 

Definition 3.1.2: A subspace ܹ of a vector space ܸ is a non-empty subset ofܸ, which 
satisfies the following two requirements: 

(a)      For any pair ݔ, ݔ , inܹ ݕ ൅  .ܹ is in ݕ
(b)      For any ݔ in ܹ and any scalar a in the field , ܽ ·  .ܹ is in ݔ

Thus, a subspace ܹ of a vector space ܸis closed under linear combinations in ܹ. 

 
3.2 Normed vector space 

 
Definition 3.2.1: (Normed space, Banach space). A normed space ܸ is a vector space with 
a norm defined on its elements. A Banach space is a complete normed space. Here a norm 
on a vector space ܸ is a real valued function whose values at any element ݔ א ܸis defined 
as ԡݔԡ and which satisfies the properties. 
(A1) ԡݔԡ ൒ 0 
(A2) ԡݔԡ ൌ 0 iff ݔ ൌ 0 
(A3) ԡܽ · ԡݔ ൌ |ܽ|ԡݔԡ 
(A4) ԡݔ ൅ ԡݕ ൑ ԡݔԡ ൅ ԡݕԡ  (Triangle inequality) 
 
Here ݔ and ݕ are arbitrary vectors in ܸ and a is any scalar in the field ࣬. 
 

Example 3.2.2: Depending on the definition above, deduce the following inequality. 

|ԡݕԡ െ ԡݔԡ| ൑ ԡݕ െ  ԡݔ
Solution:  Using (A4) above, we may write  

ԡݔԡ ൌ ԡݔ െ ݕ ൅ ԡݕ ൑ ԡݔ െ ԡݕ ൅ ԡݕԡ 

Thus, 

ԡݔԡ െ ԡݕԡ ൑ ԡݔ െ ԡݕ ൌ ԡݕ െ  ԡݔ

by the same way one can deduce that  
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ԡݕԡ െ ԡݔԡ ൑ ԡݕ െ  ԡݔ

so by the last two inequalities we have  

െԡݕ െ ԡݔ ൑ ԡݕԡ െ ԡݔԡ ൑ ԡݕ െ  ԡݔ

and the inequality follows. ז 
 
Another critical property of the norm is its continuity, which can be seen from the previous 
example, that is, ݔ ՜ ԡݔԡ is a continuous function on the normed space ሺܸ, ԡ·ԡሻinto ࣬. 
 
Examples 3.2.3: 

1. The space ࣬௡ and the unitary space ܥ௡ are normed spaces with the norm defined 
for both by 

ԡݔԡ ൌ ൭෍|ݔ௜|ଶ
௡

௜ୀଵ

൱

భ
మ

 

 
2. The space ݈௣ is a normed space with the norm 

ԡݔԡ ൌ ൭෍|ݔ௜|௣
ஶ

௜ୀଵ

൱

భ
೛

 

 
3. Norms on the space ܥሾܽ, ܾሿ of continuous real valued function, for 1 ൑ ݌ ൏ ∞ 

ԡ݂ԡ௣ ൌ ቆන |݂|௣݀ݔ
௕

௔
ቇ

భ
೛

, ԡ݂ԡஶ ൌ sup௫אሾ௔,௕ሿ ሺ|݂|ሻ 

4. Other norms on ࣬௡ can be constructed; for example 
 

ԡݔԡ ൌ |ଵݔ|2 ൅ ඥ3|ݔଵ|ଶ ൅ max ሺ|ݔଷ|,  ସ|ሻଶݔ|2
 

is a norm on ࣬ସ. 
 

5. The norm on the ݈ஶspace, of all bounded sequences of complex numbers, that is 
every element in the space is of the form ݔ ൌ ሺݔଵ, ,ଶݔ . . . ሻ, ௜ݔ א  such that for ,ܥ
each ݅ ൌ 1,2,3 …. we have |ݔ௜| ൑  ௫ is a bound that depends only onܯ ௫ whereܯ
the sequence ݔ, the norm is given as  

ԡݔԡஶ ൌ sup|ݔ௜| 
 
3.3 The ࢖ࡸ space 
 

The ܮ௣ spaces are function spaces defined using a natural generalization of the p-norm for 
finite-dimensional vector spaces, we will assume all functions in this space to be of period 
 but it is not always the case, since we approximate these functions by cosine and sine ,ߨ2
functions so it is preferable to periodic of period 2ߨ. 
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Definition 3.3.1: Let ݌ be a positive real number, then the set of all measurable functions 
defined on a fixed interval ሾܽ, ܾሿ such that the integral 

න|݂ሺݔሻ|௣

௕

௔

൏ ∞ 

are said to belong the ܮ௣ space. Thus, the ܮଵ space consists precisely of the Lebesgue 
integrable function on the interval ሾܽ, ܾሿ. 
 
Since|݂ ൅ ݃|௣ ൑ 2௣ሺ|݂|௣ ൅ |݃|௣ሻ, will show that later, we say that the sum of two 
functions in ܮ௣ is a gain in ܮ௣ whenever ݂ and ݃ are. In addition, we point here that 
א ݂ܽ ݂ܽ ௣ whenever ݂ is. Thus we have thatܮ ൅ ܾ݃ א  ௣ whenever ݂ and ݃ are. The lastܮ
statement ensures that the ܮ௣ space is a vector space. 
 
Note that since ܮ௣ space is a vector space, so we can define a norm on it. Here we give the 
norm of any function ݂ א  ௣ byܮ

ԡ݂ԡ ൌ ԡ݂ԡ௣ ൌ ቎න|݂|௣

௕

௔

቏

భ
೛

 

It is clear that ԡ݂ԡ ൌ 0 iff݂ ൌ 0 a.e, if ܽ is a constant thenԡ݂ܽԡ ൌ |ܽ|ԡ݂ԡ, we derive two 
inequalities, the first of which state that. 

ԡ݂ ൅ ݃ԡ௣ ൑ ԡ݂ԡ௣ ൅ ԡ݃ԡ௣ 

Unfortunately, norms for the ܮ௣ spaces do not satisfy the second requirement (A2) of being 
a norm, for from ԡ݂ԡ ൌ 0 we only conclude that݂ ൌ 0 a.e. We shall however, consider 
two measurable functions to be equivalent if they are equal almost everywhere; and, if we 
do not distinguish between equivalent functions, then the ܮ௣ spaces are normed vector 
spaces. 
 
It is convenient to denote by ܮஶ the space of all bounded measurable functions on ሾܽ, ܾሿ 
(or rather all measurable functions, which are bounded except possibly on a subset of 
measure zero).  Then ܮஶ is a vector space, and it becomes a normed vector space if we 
define  

ԡ݂ԡ ൌ ԡ݂ԡஶ ൌ ݏݏ݁ sup|݂ሺݐሻ| 

Where ݁ݏݏ sup|݂ሺݐሻ| is the infimum of ݌ݑݏ ݃ሺݐሻ as ݃ ranges over all functions which are 
equal to ݂ almost everywhere. Thus 

ݏݏ݁ sup|݂ሺݐሻ| ൌ inf ሼܯ א ࣬: ݉ሼݐ: ݂ሺݐሻ ൐ ሽܯ ൌ 0ሽ 

 
Example 3.3.2:  Show that inܮஶ, the relation  

ԡ݂ ൅ ݃ԡஶ ൑ ԡ݂ԡஶ ൅ ԡ݃ԡஶ 

is valid.  

Proof: If |݂ሺݐሻ| ൑ |ሻݐଵ a.e and |݃ሺܯ  ൑  ଶ a.e, thenܯ 
|݂ሺݐሻ  ൅  ݃ሺݐሻ| ൑ ଵܯ   ൅  .ଶ a.eܯ 
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So ||݂ ൅  ݃||ஶ  ൑ ଵܯ   ൅ |ሻݐଶ. Note that |݂ሺܯ  ൑ ||݂||ஶ a.e. and |݃ሺݐሻ| ൑ ||݃||ஶ a.e. Thus 
||݂ ൅  ݃||ஶ  ൑ ห|݂|หஶ  ൅ ห|݃|หஶ.  ז
 

Example 3.3.3:  If݂ א ݃ ଵandܮ א   ஶ, thenܮ

න|݂݃| ൑ ԡ݂ԡଵ . ԡ݃ԡஶ 

Solution: Suppose ݂ א א ଵand݃ܮ  |݃| ஶ. Then sinceܮ  ൑ ԡ݃ԡஶ we see that 

න|݂݃| ൑  න|݂|ԡ݃ԡஶ  ൌ  ห|݃|หஶ න|݂|  ൌ  ห|݂|หଵ. ห|݃|หஶז 

 

Theorem 3.3.4: [3] (Minkowski Inequality) If ݂ and ݃ in ܮ௣ with 1 ൑ ݌ ൑ ∞, then so is 
݂ ൅ ݃ and  

ԡ݂ ൅ ݃ԡ௣ ൑ ԡ݂ԡ௣ ൅ ԡ݃ԡ௣ 

If 1 ൏ ݌ ൏ ∞, then equality can hold only if there are nonnegative constants ܽ and ܾ such 
that ܾ݂ ൌ ܽ݃. 
 
Proof : The case when ݌ ൌ ∞  is elementary (see example 3.3.2), as are the cases when 
ԡ݂ԡ ൌ 0 orԡ݃ԡ ൌ 0. Thus, we assume that 1 ൑ ݌ ൏ ∞,and ԡ݂ԡ ൌ ܽ ് 0 , ԡ݃ԡ ൌ ܾ ് 0. 
Then there are functions ଴݂and݃଴ such that |݂| ൌ ܽ ଴݂, |݃| ൌ ܾ݃଴, and ԡ ଴݂ԡ ൌ ԡ݃଴ԡ ൌ 1. 
Set ߩ ൌ ܽ ሺܽ ൅ ܾሻ⁄ . Then ሺ1 െ ሻߩ ൌ ܾ ሺܽ ൅ ܾሻ,⁄ and we have  

|݂ሺݔሻ ൅ ݃ሺݔሻ|௣ ൑ ሺ|݂ሺݔሻ| ൅ |݃ሺݔሻ|ሻ௣  ൌ  ሾܽ ଴݂ሺݔሻ ൅ ܾ݃଴ሺݔሻሿ௣

ൌ ሺܽ ൅ ܾሻ௣ሾ ߩ ଴݂ሺݔሻ ൅ ሺ1 െ ሻሿ௣ݔሻ݃଴ሺߩ

൑ ሺܽ ൅ ܾሻ௣ ሾ ߩ ଴݂ሺݔሻ௣ ൅ ሺ1 െ  ሻ௣ ሿݔሻ݃଴ሺߩ

by the convexity of the function ߠሺݐሻ ൌ ,௣ on ሾ0ݐ ∞ሿ for 1 ൑ ݌ ൏ ∞, if 1 ൏ ݌ ൏ ∞, this 
inequality is strict unless ଴݂ሺݔሻ ൌ ݃଴ሺݔሻ and݊݃ݏ ݂ሺݔሻ  ൌ  ሻ. Integrating both sidesݔሺ݃ ݊݃ݏ 
of this inequality gives 

ԡ݂ ൅ ݃ԡ௣ ൑ ሺܽ ൅ ܾሻ௣ሾߩԡ ଴݂ԡ௣ ൅ ሺ1 െ ሻԡ݃଴ԡ௣ሿߩ  ൑  ሺܽ ൅ ܾሻ௣ ൌ ሺԡ݂ԡ ൅ ԡ݃ԡሻ௣ 

Taking ݌-th roots gives 
ԡ݂ ൅ ݃ԡ ൑ ԡ݂ԡ ൅ ԡ݃ԡ. 

If 1 ൏ ݌ ൏ ∞, the inequality is strict unless ଴݂ ൌ ݃଴  ܽ. ݁. And ݊݃ݏሺ݂ሻ ൌ .ܽ ሺ݃ሻ݊݃ݏ ݁. But 
this means that the inequality is strict unless ܾ݂ ൌ  .ז݃ܽ 
 

Lemma 3.3.5: [5] Let1 ൑ ݌ ൏ ∞. Then for ܽ, ܾ,  nonnegative we have ݐ

ሺܽ ൅ ሻ௣ܾݐ ൒ ܽ௣ ൅  ௣ିଵܾܽݐ݌
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For the proof, see [5]. 
 
Theorem 3.3.6: [5] (Holder inequality)If݌ and ݍ are nonnegative extended real numbers 
such that  

1
݌ ൅

1
ݍ ൌ 1, 

and if ݂ א ݃ ௣ andܮ א ݂ ௤, thenܮ · ݃ א  ଵandܮ

න|݂݃| ൑ ԡ݂ԡ௣ · ԡ݃ԡ௤. 

Equality holds if and only if for some constantܽ and ܾ, not both zero, we have ܽ|݂|௣ ൌ

ܾ|݃|௤a.e. 

For the proof, see [5]. 

 

3.4 The weighted ࢖ࡸ space 

 
We assume throughout that our functions ݂ሺݔሻ are measurable periodic with the period 2ߨ, 
that is ݂ሺݔሻ ൌ ݂ሺݔ ൅  .ሻ, unless otherwise statedߨ2
 

Definition 3.4.1: Letܫ ك ࣬ be an open interval, and ݂: ܫ ՜ ࣬ be a measurable function, if 
the function ݂ on  ܫ satisfies  

න |݂|
ூᇲ

൏ ∞ 

i.e. its Lebesgue integral is finite, for all compact subsets ܫᇱ ك  then ݂ is locally integrable ,ܫ
 
Definition 3.4.2: A weight function ݓ is an almost everywhere positive function that is 
locally integrable. In other words, it is a measurable functionݓ: ࣬ ՜ ሾ0, ∞ሿ such that the 
set ିݓଵሺሼ0, ∞ሽሻ has Lebesgue measure zero. 
 
Example 3.4.3:Consider the function ݁௫, for any ݔ א  ࣬, it is positive everywhere (so we 
can assume that it is a.e positive since the Lebesgue measure of the empty set is zero) and 
it is locally integrable on any compact interval in ࣬. 
 
Definition 3.4.4: The weighted ܮ௣ space is the space of all measurable 2ߨ-periodic 
function ݂, for which it is denoted by ܮ௪

௣ ሾ0,2ߨሿ, where 1 ൑ ݌ ൏ ∞, and ݓ is a weight 
function. 
 
The norm defined on ܮ௪

௣ ൌ ௪ܮ
௣ ሾ0,2ߨሿis given by 

ԡ݂ԡ௣,௪ ൌ ቆන |݂ሺݔሻ|௣ݓሺݔሻ݀ݔ
ଶగ

଴
ቇ

ଵ ௣⁄

൏ ∞ 
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Note that Minkowski and Holder inequalities hold here, since for any functions ݂, ݃ א ௪ܮ
௣ , 

and knowing that ݓ is positive then  

ԡ݂ ൅ ݃ԡ௣,௪ ൌ ቆන |݂ሺݔሻ ൅ ݃ሺݔሻ|௣ݓሺݔሻ݀ݔ
ଶగ

଴
ቇ

ଵ ௣⁄

ൌ ቆන |݂ሺݔሻ ൅ ݃ሺݔሻ|௣൫ݓଵ ௣⁄ ሺݔሻ൯௣݀ݔ
ଶగ

଴
ቇ

ଵ ௣⁄

ൌ ቆන ൫ห݂ሺݔሻݓଵ ௣⁄ ሺݔሻ ൅ ݃ሺݔሻݓଵ ௣⁄ ሺݔሻห൯௣݀ݔ
ଶగ

଴
ቇ

ଵ ௣⁄

ൌ ฮ݂ݓଵ ௣⁄ ൅ ଵݓ݃ ௣⁄ ฮ௣

൑ ฮ݂ݓଵ ௣⁄ ฮ௣ ൅ ฮ݃ݓଵ ௣⁄ ฮ௣

ൌ ԡ݂ԡ௣,௪ ൅ ԡ݃ԡ௣,௪. 

Also noting that  ଵ
௣

൅ ଵ
௤

ൌ 1, we have  

න|݂݃|ݔ݀ݓ ൌ නห݂ݓଵ ௣⁄ ଵݓ݃ ௤⁄ ห݀ݔ ൑ ฮ݂ݓଵ ௣⁄ ฮ
௣

· ฮ݃ݓଵ ௤⁄ ฮ
௣

ൌ ԡ݂ԡ௣ · ԡ݃ԡ௤ 

 

3.5 The Muckenhoupt weight ऋ࢖ 

 
Definition 3.5.1: Let ݂ be a locally integrable function, which is defined on the interval 
ሾ0,2ߨሿ, then for any ݔ א ܫ ك ሾ0,2ߨሿ, the Hardy-Littlewood maximal operator ܯ for any 
function݂ is given by  

ሻݔሺ݂ሻሺܯ ൌ sup
1

|ܫ| න |݂ሺݐሻ|݀ݐ
ூ

 

 
and the supremum is taken over all subintervals ܫof ሾ0,2ߨሿ. 
 
The class of Muckenhoupt weights ࣛ௣ consists of those weights ݓ for which the Hardy-
Littlewood maximal operator is bounded onܮ௪

௣ . That is; ࣛ࢖ is the class of all positive, 
locally integrable weighted functions such that there is a constant ܭ with 

ԡܯሺ݂ሻԡ௣,௪ ൑  ԡ݂ԡ௣,௪ܭ
Equivalently, 

න|ܯሺ݂ሻ|௣ ݔሻ݀ݔሺݓ ൑ ܭ න|݂|௣ݓሺݔሻ݀ݔ. 

 
Proposition 3.5.2: [9]If ݓ א  ݓ then it is necessary and sufficient condition that ,࢖ࣛ
satisfied the inequality 
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sup ቆ
1

|ܫ| න ݔሻ݀ݔሺݓ
ூ

ቇ ቆ
1

|ܫ| න ሾݓሺݔሻሿ
ିଵ

௣ିଵൗ ݔ݀
ூ

ቇ
௣ିଵ

൏ ∞, 

where the supremum is taken over all intervals ܫ with length |ܫ| ൑  .ߨ2
 

When we assume the domain of ݓ to be any subset of ࣬௡ then the condition on ݓ will be 
such that for any point ݔ 

sup ቆ
1

|ܤ| න ݔሻ݀ݔሺݓ
஻

ቇ ቆ
1

|ܤ| න ሾݓሺݔሻሿ
ିଵ

௣ିଵൗ ݔ݀
஻

ቇ
௣ିଵ

൏ ∞, 

for all balls ܤሺݔ, ሻݎ ك ࣬௡ where ݎ ൐ 0, while |ܤ| means the measure of the ball ܤ. 
 

Example 3.5.3: One of the most examples of anࣛ࢖weight is given by 

ሻݔఈሺݓ ൌ ݔ   ,ఈ|ݔ| א ࣬௡ ,   െ ݊ ൏ ߙ ൏ ݊ሺ݌ െ 1ሻ. 

 
3.6 The class ࡸ઴

כ  
 

Definition 3.6.1: Let߮ሺݔሻ, ߰ሺݔሻ, ݔ ൒ 0be two functions, continuous, vanishes at the 
origin, strictly increasing, tending to infinity, and inverse to each other, then we say that 
߮ሺݔሻ, ߰ሺݔሻ are Young's functions. 
 
For all ܽ, ܾ ൒ 0, we have the inequality due to Young 

ሺ1ሻ             ܾܽ ൑ Φሺܽሻ ൅ ΨሺܾሻwhereΦሺܽሻ ൌ න ߮ሺݐሻ݀ݐ
௔

଴
 , Ψሺܾሻ ൌ න ߰ሺݐሻ݀ݐ

௕

଴
. 

Note that the equality in (1) holds if and only ifܾ ൌ  ߮ሺܽሻ.The functions Φሺݔሻ, Ψሺݔሻ will 
be called complementary functions. If we set, 
 

߮ሺݑሻ ൌ ,ఈݑ ߰ሺݒሻ ൌ ଵݒ ఈ⁄ ሺߙ ൐ 0ሻ, ݌ ൌ 1 ൅ ,ߙ ᇱ݌ ൌ 1 ൅ 1 ⁄ߙ , 

we get the inequality 

ሺ2ሻ                                                 ܾܽ ൑
ܽ௣

݌ ൅
ܾ௣ᇲ

ᇱ݌ ሺܽ, ܾ ൒ 0ሻ,    

where the complementary exponents݌,  ᇱ both exceed 1 and they connected by the relation݌

1
݌ ൅

1
ᇱ݌ ൌ 1. 

If  ݌ ൌ ᇱ݌ ൌ 2,  (2) reduces to the familiar inequality  2 · ܽ · ܾ ൑  ܽଶ ൅ ܾଶ.If݌ ՜ 1, 
then݌ᇱ ՜ ∞,and conversely. 
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Definition 3.6.2: A function ݂ሺݔሻ defined on an open interval ሺܽ, ܾሻis said to be convex if 
for each ݔ, ݕ א ሺܽ, ܾሻ and each ߣ, 0 ൑ ߣ ൑ 1 we have  

݂ሺݔߣ ൅ ሺ1 െ ሻݕሻߣ ൑ ሻݔሺ݂ߣ ൅ ሺ1 െ  .ሻݕሻ݂ሺߣ

In other words, if for each point on the chord between the  ൫ݔ, ݂ሺݔሻ൯, and ሺݕ, ݂ሺݕሻሻ is 
above the graph of݂. 
 
For example ݂ሺݔሻ ൌ ,௣ݔ ݌ ൒ 1 is convex function on ሺ0, ∞ሻ. 
 
As a consequence of the last definition, for any set of points ݌ଵ, ,ଶ݌ … ,  ௡, and for any set݌
of points ݔଵ, ,ଶݔ … , ,௡ in ሺܽݔ ܾሻ. We have 

݂ ൬
ଵݔଵ݌ ൅ ଶݔଶ݌ ൅ ڮ ൅ ௡ݔ௡݌

ଵ݌ ൅ ଶ݌ ൅ ڮ ൅ ௡݌
൰ ൑

ଵሻݔଵ݂ሺ݌ ൅ ଶሻݔଶ݂ሺ݌ ൅ ڮ ൅ ௡ሻݔ௡݂ሺ݌
ଵ݌ ൅ ଶ݌ ൅ ڮ ൅ ௡݌

. 

This inequality is called Jensen's inequality. For ݊ ൌ 2, the inequality implies the 
definition, and for ݊ ൐ 2, it follows by induction. 
 

Note: By the last inequality, let ݌ଵ, ,ଶ݌  ,ሻݔଷbe three ordered points on the convex curve ݂ሺ݌
in the order indicated. Since ݌ଶ is below or on the chord ݌ଵ݌ଷ, the slope of ݌ଵ݌ଶdoes not 
exceed that of݌ଵ݌ଷ. Hence if a point p approaches ݌ଵ from the right then the slope of݌ଵ݌ is 
non-increasing. Thus, the right-hand side derivative exists for any point ܽ ൑ ݔ ൑ ܾ and is 
less than ∞.Also, there are many properties of convex functions, which are very useful in 
many fields in mathematics, and we here introduce few of them. 
 
Theorem 3.6.3: [5] If ݂ሺݔሻ is convex on ሺܽ, ܾሻ, then ݂ሺݔሻ is absolutely continuous on each 
closed subinterval of ሺܽ, ܾሻ. The right (left) hand side derivatives of ݂ exists at each point 
of ሺܽ, ܾሻ and are equal to each other except on a countable set. The left (right) hand 
derivatives are monotone increasing functions, and at each point the left-hand derivative is 
less than or equal to the right –hand. 
 
Theorem 3.6.4:[5]If݂ is a continuous function on ሺܽ, ܾሻ and if one derivative of ݂ (the left 
or right) is non-decreasing, then ݂ is convex. 
 
Corollary 3.6.5:[5] Let ݂ have a second derivative at each point of  ሺܽ, ܾሻ. Then ݂ is 
convex on ሺܽ, ܾሻ if and only if ݂ᇱᇱሺݔሻ ൒ 0 for each ݔ א ሺܽ, ܾሻ. 
 
Theorem 3.6.6: [5] (Jensen's Inequality for integrals) Let ߮ be a convex function on 
ሺെ∞, ∞ሻ  and݂an integrable function on ሾ0,1ሿ. then  

න ߮ሺ݂ሺݐሻሻ݀ݐ ൒ ߮ ൤න ݂ሺݐሻ݀ݐ൨. 

Antoni Zygmund [3] states in his book the same theorem with slightly different conditions. 
That is, if ߮ሺݔሻ is convex in an interval ܽ ൑ ݔ ൑ ܾ, and ܽ ൑ ݂ሺݔሻ ൑ ܾ at each point 
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ߙ ൑ ݔ ൑ ,ߚ  ሻ is non-negative and not identically zero, and that all integrals in the nextݔሺ݌
inequality exist. Then  

߮ ൥
׬ ݂ሺݔሻ݌ሺݔሻ݀ݔఉ

ఈ

׬ ሻఉݔሺ݌
ఈ ݔ݀

൩ ൑
׬ ߮ሾ݂ሺݔሻሿ݌ሺݔሻ݀ݔఉ

ఈ

׬ ሻఉݔሺ݌
ఈ ݔ݀

, 

 
Theorem 3.6.7: [3] A necessary and sufficient condition that ߮ሺݔሻ, ܽ ൑ ݔ ൑ ܾ, should be 
convex is that it should be the integral of a non-decreasing function.  
 
Let now ߮ሺݔሻ, ݔ ൒ 0, be an arbitrary function, non-negative, non-decreasing, vanishes at 
ݔ ൌ 0 and tending to ൅∞ with ݔ, the curve ݕ ൌ ߮ሺݔሻ may possess discontinuities and 
stretches of constancy, if at each point ݔ଴ of discontinuity of ߮ we adjoin to the curve 
ݕ ൌ ߮ሺݔሻ the vertical segment ݔ ൌ ,଴ݔ ߮ሺݔ଴ െ 0ሻ ൑ ݕ ൑ ߮ሺݔ଴ ൅ 0ሻ, obtain a continuous 
curve, and we may define a function ߰ሺݕሻ  inverse to ߮ሺݔሻ by defining߰ሺݕ଴ሻሺ0 ൏ ଴ݕ ൏
∞ሻ to be any ݔ଴ such that the point ሺݔ଴,  ଴ሻ is continuous curve, The stretches of constancyݕ
of ߮ then correspond to discontinuities of ߰, and conversely. The function ߰ሺݕሻ is defined 
uniquely except for the ݕ Ԣݏwhich correspond to the stretches of constancy of ߮.But since 
the set of such stretches is denumerable, our choice of ߰ሺݕሻ has no influence upon the 
integral Ψሺݕሻof ߰ሺݕሻ,and it is easy to see that Young's inequality is valid in this slightly 
more general case. 

From 3.6.7 it follows that every function Φሺݔሻ, ݔ ൒ 0,which is non-negative, convex, and 
satisfies the relation Φሺ0ሻ ൌ 0andΦሺݔሻ/ݔ ՜ ∞,may be considered as a Young's function.  
 
More precisely to every such function corresponds another function Ψሺݔሻ with similar 
properties such that  

ܾܽ ൑ Φሺܽሻ ൅ Ψሺܾሻ 
 
For every ܽ ൒ 0, ܾ ൒ 0. it is sufficient to take for Ψሺݕሻ the integral over ሺ0,  ሻ of theݕ
function ߰ሺݔሻ inverse to ߮ሺݔሻ ൌ ⁄ݔ ሻݔሻ. since ΦሺݔାΦሺܦ ՜ ∞with ݔ. It is easy to see that 
߮ሺݔሻ and ߰ሺݔሻ also tend to ൅∞ with ݔ. We have ܾܽ ൌ Φሺܽሻ ൅ Ψሺܾሻif and only if the 
point ሺܽ, ܾሻ is on the continuous curve obtained from the function ݕ ൌ ߮ሺݔሻ. 
 
Definition 3.6.8: Let Φሺݑሻ ൒ ݑ ݎ݋݂ 0 ൒ 0.We say that a measurable function ݂ሺݔሻ, 0 ൑
ݔ ൑  .ሻߨሻ if the function Φሺ|݂|ሻ is integrable over ሺ0,2ߨ஍ሺ0,2ܮbelongs to the class ,ߨ2
That is, the class ܮ஍ሺ0,2ߨሻ ൌ  ஍ is the set of all measurable functions such thatܮ

න Φሺ|݂ሺݔሻ|ሻ݀ݔ
ଶగ

଴
൏ ∞ 

This class may fail to be vector space; it may fail to be closed under scalar multiplication, 
due to the function Φሺݑሻ. 
 
Example 3.6.9: If we set Φሺݑሻ ൌ ,௣ݑ thenΨሺݒሻ ൌ ଵݒ ௣⁄ ሺ݌ ൐ 0ሻ.So, the class ܮ஍ሺ0,2ߨሻ is 
identical with the ܮ௣ space. 
 
Integrating the inequality  
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|݂݃| ൑ Φሺ|݂|ሻ ൅ Ψሺ|݃|ሻ 

overܽ ൑ ݔ ൑ ܾ, we get that ݂݃ is integrable over ሺܽ, ܾሻ if  ݂ א ,஍ሺܽܮ ܾሻ, ݃ א ,ஏሺܽܮ ܾሻ. 
 
Throughout the text, we will writeΦ|ݑ| ൅ Ψ|ݑ|, forΦሺ|ݑ|ሻ ൅ Ψሺ|ݑ|ሻ for simplicity. 
 
Definition 3.6.10: If ݂ሺݔሻ is measurable and such that ׬ Φ|݂|݀ݔଶగ

଴  exists, ݂ሺݔሻ is said to 
belong to the space ܮ஍ሺ0,  ሻ is integrable forݔሻ݃ሺݔሻ is such that the product ݂ሺݔሻ. If ݂ሺߨ2
every ݃ሺݔሻ א ሻݔஏ , then݂ሺܮ א ஍ܮ

כ . 
 
For this space, the norm is given by  

ԡ݂ԡ஍ ൌ ቤන ݌ݑݏ ݂ሺݔሻ݃ሺݔሻ ݀ݔ
ଶగ

଴
ቤ 

for all measurable ݃ሺݔሻ with ߩ௚ ؠ ׬ Ψ|݃|݀ݔଶగ
଴ ൑ 1. This space is a vector space, and also 

complete [5]. If ݂ሺݔሻ א ஍ܮ
כ , we put for ߜ ൐  0, 

߱஍ሺߜ; ݂ሻ ൌ supԡ݂ሺݔ ൅ ݄ሻ െ ݂ሺݔሻԡ஍ for  0 ൏ |݄| ൑  .ߜ

When  ݌ ൐  1, then ܮ௣ is a classܮ஍
כ . 

 
Inܮ௣, ൒ ݌ 1, 
 

߱௣ሺߜ; ݂ሻ   ൌ supԡ݂ሺݔ ൅  ݄ሻ െ  ݂ሺݔሻԡ௣

ൌ sup ቈන |݂ሺݔ ൅  ݄ሻ െ ݂ሺݔሻ|௣݀ݔ
ଶగ

଴
቉

ଵ ௣⁄

 

 
If߱௣ሺߜ; ݂ሻ ൌ ܱሺߜ௔ሻ, ߜ ՜ 0, ݂ሺݔሻ is said to belong to the class ݌݅ܮሺߙ,  .ሻ݌
 
The limiting case of݌݅ܮሺߙ, ,ߙሺ݌݅ܮሻ, denoted݌ ∞ሻ is identical with ݌݅ܮሺߙሻ.For brevity, we 
shall writeԡ݂ԡ forԡ݂ԡ஍whenever it will not lead to confusion. 
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Chapter Four 

Trigonometric Approximation in the ࢖ࡸ Spaces 

 
4.1 Introduction  

 
So far, we introduced many concepts, classes of functions, Trigonometric series, and 
Lebesgue integral, in which they are the basic building blocks in the field of approximation 
by trigonometrical functions; on the other hand, we will not cover the whole branch of 
approximation in the ܮ௣space and our argument in this subject will be a basic theorems and 
lemmas that will qualify us to study the approximation in the weighted ܮ௣ space. 

Throughout this chapter, we will assume any function to be periodic of period 2ߨ. Also we 
define ݏ௡ሺ݂;  .ሻݔሻ to be the n-th partial sum of the Fourier series of the function ݂ሺݔ
 
We already defined the Lipschitz class for 0 ൏ ߙ ൑ 1 to be the class of all functions such 
that ߱ሺߜሻ ൏ ,ఈߜܥ for some constant ܥ. ݅. ݁ 

  ߱ሺߜ; ݂ሻ ൌ ܱሺߜఈሻ 

Let 1 ൏ ݌ ൏ ∞, ݓ א ࣛ௣, ݂ א ௣and 0ܮ ൏ ߙ ൑ 1, we define the Lipschitz class݌݅ܮሺߙ,   ሻ as݌

,ߙሺ݌݅ܮ ሻ݌ ൌ ൛݂ א :௣ܮ ߱௣ሺ݂; ሻߜ ൌ ܱሺߜఈሻ, ߜ ൐ 0ൟ. 

 
Definition 4.1.1: (Nörlund method) [10].Each sequence ݌଴, ,ଵ݌ … of real or complex 
constants for which ௡ܲ ൌ ଴݌ ൅ ଵ݌ ൅ ڮ ൅ ௡݌ ് 0 for each ݊ defines a Nörlund method 
(transformation) of summability by means by the formula 

௡ܰሺ݂; ሻݔ ൌ
1
௡ܲ

෍ ;௞ሺ݂ݏ௡ି௞݌ ሻݔ
௡

௞ୀ଴

. 

The class of Nörlund transformation is identical with the class of triangular matrix 
transformations 

௡ߩ ൌ ෍ ܽ௡,௞ݏ௞

௡

௞ୀ଴

 

for which  

ܽ௡,௞ ൒ 0, ݇ ݎ݋݂ ൑ ݊, ܽ௡,௞ ൌ 0, ݇ ݎ݋݂ ൐ ݊ ሺ݇, ݊ ൌ 0,1, … ሻ   

and 

෍ ܽ௡,௞

௡

௞ୀ଴

ൌ 1                                ݊ ൌ 0,1,2, …  

where 

ܣ ൌ ൣܽ௜,௝൧
௜,௝ୀଵ
ஶ

 



25 
 

is a lower triangular infinite matrix of real numbers. 

 
Definition 4.1.2: (Riesz method) [10] Each sequence݌଴, ,ଵ݌ … for which ௡ܲ ൌ ଴݌ ൅ ଵ݌ ൅
ڮ ൅ ௡݌ ് 0, determines a Riesz transformation as 

ܴ௡ሺ݂; ሻݔ ൌ
1
௡ܲ

෍ ;௞ሺ݂ݏ௞݌ ሻݔ
௡

௞ୀ଴

. 

Definition 4.1.3 :(Ces`aro method) [10] If we set݌௡ ൌ 1for each݊ then both of the 
Nörlund and of Riesz transformations coincide with the Ces'aro transformation 

;௡ሺ݂ߪ ሻݔ ൌ
1

݊ ൅ 1 ෍ ;௞ሺ݂ݏ ሻݔ
௡

௞ୀ଴

. 

 

4.2 Trigonometrical approximation in the mean 

 
In this section, the investigation will be in approximating functions in the ܮ௣ spaces, 
especially for the class  ݌݅ܮ ሺܽ,  ሻ where the functions has the property that the modulus of݌
continuity is less than ߜܥఈ, and the approximation will be done here in two methods, the 
first will involve the Nörlund means and the second is more general method of matrix 
transformation in which it implies the previous one, we note that we are concerning with a 
degree of error to be ܱሺߜఈሻ. 
 
The following theorem is stated without proof by G. H. Hardy and J. E. Littlewood.   
 
Theorem 4.2.1: [4] The class ݌݅ܮ ሺߙ,  ሻݔሻ is identical with the class of functions݂ሺ݌
approximable in the mean ݄ݐ~݌ power, with error ܱሺ݊ିఈሻ,by trigonometrical polynomials 
of degree ݊. 
 
In the following ݏ௡ ൌ ௡ሺ݂ሻݏ  ൌ ;ݔ௡ሺݏ  ݂ሻ denotes the n-th partial sum of the Fourier series 
of ݂ሺݔሻ and ߪ௡ ൌ ;ݔ௡ሺߪ ݂ሻ denotes the Ces'aro mean for the function ݂,i.e.  

;ݔ௡ሺߪ ݂ሻ ൌ
1

݊ ൅ 1 ෍ ሻሻݔ௡ሺ݂ሺݏ
௡

௞ୀ଴

. 

Theorem 4.2.2: [4] If ݂ א ஍ܮ
כ  possesses a derivative of order ݎ, say ݂ሺ௥ሻሺݔሻ, in ܮ஍

כ , where ݎ 
is appositive integer or zero, then, for any positive integer ݊, ݂ሺݔሻ may be approximated in 
஍ܮ

כ  by a trigonometrical polynomial ݐ௡ሺݔሻ, of order ݊ at most, such that 

ԡ݂ െ ሻԡ஍ݔ௡ሺݐ ൌ ܱ ቆ݊ି௥߱஍ ൬
1
݊ ; ݂ሺ௥ሻ൰ቇ. 

Proof: Let ߣ ൌ ቂ௡
ଶ

ቃ and ߤሺݐሻ ൌ ∑ ܽ௞݂ ቀݔ ൅ ଶ௧
ଶೖቁఒ

௞ୀ଴ , 
The ߣ ൅ 1 constants ܽ௞, ݇ ൌ 0,1, … ሺ0ሻߤ being so determined that ߣ ൌ ݂ሺݔሻ, ሺଶ௦ሻሺ0ሻߤ ൌ 0,
ݏ ൌ 1,2, … ,   ሻ is defined by the equationݔ௡ሺݐ The trigonometrical polynomial.ߣ
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ሻݔ௡ሺݐ ൌ
1

߬ሺߣ ൅ 2ሻ න ߤ ൬
ݐ
݉൰ ൬

sin ݐ
ݐ ൰

ଶఒାସ
ݐ݀

ஶ

ିஶ

 

where 

߬ሺߣ ൅ 2ሻ ൌ න ൬
sin ݐ

ݐ ൰
ଶఒାସ

ݐ݀
ஶ

ିஶ

 

The order ݊ of ݐ௡ሺݔሻ is  ሺߣ ൅ 2ሻ2ఒ݉ െ 1.Sinceߤሺ0ሻ ൌ ݂ሺݔሻ, we may write 

ሻݔ௡ሺݐ െ ݂ሺݔሻ ൌ
1

߬ሺߣ ൅ 2ሻ න ߤ ൬
ݐ
݉൰ ൬

sin ݐ
ݐ ൰

ଶఒାସ
ݐ݀

ஶ

ିஶ

െ ݂ሺݔሻ

ൌ
1

߬ሺߣ ൅ 2ሻ ቎ න ߤ ൬
ݐ
݉

൰ ൬
sin ݐ

ݐ
൰

ଶఒାସ
ݐ݀

଴

ିஶ

൅ න ߤ ൬
ݐ
݉

൰ ൬
sin ݐ

ݐ
൰

ଶఒାସ
ݐ݀

ஶ

଴

቏ െ ሺ0ሻߤ

ൌ
1

߬ሺߣ ൅ 2ሻ ൥න ߤ ൬
െݐ
݉ ൰ ൬

sin െ ݐ
െݐ ൰

ଶఒାସ
ݐ݀

ஶ

଴

൅ න ߤ ൬
ݐ
݉൰ ൬

sin ݐ
ݐ ൰

ଶఒାସ
ݐ݀

ஶ

଴

൩

െ ሺ0ሻߤ
1

߬ሺߣ ൅ 2ሻ න ൬
sin ݐ

ݐ ൰
ଶఒାସ

ݐ݀
ஶ

ିஶ

ൌ
1

߬ሺߣ ൅ 2ሻ ൥න ߤ ൬
െݐ
݉ ൰ ൬

sin ݐ
ݐ ൰

ଶఒାସ
ݐ݀

ஶ

଴

൅ න ߤ ൬
ݐ
݉൰ ൬

sin ݐ
ݐ ൰

ଶఒାସ
ݐ݀

ஶ

଴

൩

െ ሺ0ሻߤ
2

߬ሺߣ ൅ 2ሻ න ൬
sin ݐ

ݐ ൰
ଶఒାସ

ݐ݀
ஶ

଴

ൌ
1

߬ሺߣ ൅ 2ሻ ൥න ቆߤ ൬
െݐ
݉ ൰ ൅ ߤ ൬

ݐ
݉൰ቇ ൬

sin ݐ
ݐ ൰

ଶఒାସ
െ ሺ0ሻߤ2 ൬

sin ݐ
ݐ ൰

ଶఒାସ
ݐ݀

ஶ

଴

൩

ൌ
1

߬ሺߣ ൅ 2ሻ ൥න ቆߤ ൬
െݐ
݉ ൰ ൅ ߤ ൬

ݐ
݉൰ െ ሺ0ሻቇߤ2 ൬

sin ݐ
ݐ ൰

ଶఒାସ
ݐ݀

ஶ

଴

൩

ൌ
1

߬ሺߣ ൅ 2ሻ ൥න ܨ ൬
ݐ
݉൰ ൬

sin ݐ
ݐ ൰

ଶఒାସ
ݐ݀

ஶ

଴

൩ 

where 

ܨ ൬
ݐ
݉൰ ൌ ߤ ൬

െݐ
݉ ൰ ൅ ߤ ൬

ݐ
݉൰ െ  .ሺ0ሻߤ2

with these definitions  

ሻݐሺ௥ሻሺߤ ൌ ෍ ܽ௞ ൬
1

2ሺ௞ିଵሻ௥൰ ݂ሺ௥ሻ ൬ݔ ൅
ݐ2
2௞൰

ఒ

௞ୀ଴

 

and 
ሻݐሺ௥ሻሺܨ ൌ ሻݐሺ௥ሻሺߤ ൅  is even  ݎ        ,ሻݐሺ௥ሻሺെߤ

ሻݐሺ௥ሻሺܨ ൌ ሻݐሺ௥ሻሺߤ െ ሻݐሺ௥ሻሺെߤ െ  is odd  ݎ         ,ሺ௥ሻሺ0ሻߤ2

Consequently if ݎ is odd then  
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ฮܨሺ௥ሻሺݐሻฮ ൌ ฮߤሺ௥ሻሺݐሻ െ ሻݐሺ௥ሻሺെߤ െ ሺ௥ሻሺ0ሻฮߤ2

ൌ ቯ෍ ܽ௞ ൬
1

2ሺ௞ିଵሻ௥൰ ݂ሺ௥ሻ ൬ݔ ൅
ݐ2
2௞൰

ఒ

௞ୀ଴

െ ෍ ܽ௞ ൬
1

2ሺ௞ିଵሻ௥൰ ݂ሺ௥ሻ ൬ݔ െ
ݐ2
2௞൰

ఒ

௞ୀ଴

െ 2 ෍ ܽ௞ ൬
1

2ሺ௞ିଵሻ௥൰ ݂ሺ௥ሻሺݔሻ
ఒ

௞ୀ଴

ะ

൑ ෍
|ܽ௞|

2ሺ௞ିଵሻ௥

ఒ

௞ୀ଴

ฯ݂ሺ௥ሻ ൬ݔ ൅
ݐ2
2௞൰ െ ݂ሺ௥ሻ ൬ݔ െ

ݐ2
2௞൰ െ 2݂ሺ௥ሻሺݔሻฯ

൑ ෍
|ܽ௞|

2ሺ௞ିଵሻ௥

ఒ

௞ୀ଴

൬ฯ݂ሺ௥ሻ ൬ݔ ൅
ݐ2
2௞൰ െ ݂ሺ௥ሻሺݔሻฯ ൅ ฯ݂ሺ௥ሻ ൬ݔ െ

ݐ2
2௞൰ െ ݂ሺ௥ሻሺݔሻฯ൰ 

by the same way when ݎ is even  

ฮܨሺ௥ሻሺݐሻฮ ൑ ෍
|ܽ௞|

2ሺ௞ିଵሻ௥

ఒ

௞ୀ଴

ฯ݂ሺ௥ሻ ൬ݔ ൅
ݐ2
2௞൰ െ ݂ሺ௥ሻ ൬ݔ െ

ݐ2
2௞൰ฯ

ൌ ෍
|ܽ௞|

2ሺ௞ିଵሻ௥

ఒ

௞ୀ଴

ฯ݂ሺ௥ሻ ൬ݔ ൅
ݐ2
2௞൰ െ ݂ሺ௥ሻሺݔሻ ൅ ݂ሺ௥ሻሺݔሻ െ ݂ሺ௥ሻ ൬ݔ െ

ݐ2
2௞൰ฯ

൑ ෍
|ܽ௞|

2ሺ௞ିଵሻ௥

ఒ

௞ୀ଴

൬ฯ݂ሺ௥ሻ ൬ݔ ൅
ݐ2
2௞൰ െ ݂ሺ௥ሻሺݔሻฯ ൅ ฯ݂ሺ௥ሻ ൬ݔ െ

ݐ2
2௞൰ െ ݂ሺ௥ሻሺݔሻฯ൰ 

but the expressions in the norms above are the modulus of continuity of ݂ so we may write  

ฮܨሺ௥ሻሺݐሻฮ ൑ ෍
|ܽ௞|

2ሺ௞ିଵሻ௥

ఒ

௞ୀ଴

ቆ2߱஍ ൬
ݐ2
2௞ ; ݂ሺ௥ሻ൰ቇ ൌ ܱ ቆ߱஍ ൬

ݐ2
2௞ ; ݂ሺ௥ሻ൰ቇ ൌ ܱ ቀ߱஍൫2ݐ; ݂ሺ௥ሻ൯ቁ 

also we have, for ݎ ൒ 1, 

ሻݐሺܨ ൌ න න … න ԡܨ௥ሺݑሻԡ݀ݐ݀ݑ௥ିଵ … ଵݐଶ݀ݐ݀

௧ೝషభ

଴

௧భ

଴

௧

଴

 

Therefor, 

ԡܨሺݐሻԡ ൑ න න … න ௥ିଵݐ݀ݑሻ݀ݑ௥ሺܨ … ଵݐଶ݀ݐ݀

௧ೝషభ

଴

௧భ

଴

௧

଴

ൌ ܱ ቌන න … න ߱஍൫2ݑ; ݂ሺ௥ሻ൯݀ݐ݀ݑ௥ିଵ … ଵݐଶ݀ݐ݀

௧ೝషభ

଴

௧భ

଴

௧

଴

ቍ 

Thus we have   

ฯܨ ൬
ݐ
݉൰ฯ ൌ ܱ ቌ

1
݉௥ න න … න ߱஍ ൬

ݑ2
݉ ; ݂ሺ௥ሻ൰ ௥ିଵݐ݀ݑ݀ … ଵݐଶ݀ݐ݀

௧ೝషభ

଴

௧భ

଴

௧

଴

ቍ 

Now since ݂ሺ௥ሻሺݔሻ is periodic, then  

߱஍ ൬
ݑ2
݉ ; ݂ሺ௥ሻ൰ ൑ ሺ2ݑ ൅ 1ሻ߱஍ ൬

1
݉ ; ݂ሺ௥ሻ൰ 

Thus we have 
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ฯܨ ൬
ݐ
݉൰ฯ ൌ ܱ ቌ

1
݉௥ ߱஍ ൬

1
݉ ; ݂ሺ௥ሻ൰ න න … න ሺ2ݑ ൅ 1ሻ݀ݐ݀ݑ௥ିଵ … ଵݐଶ݀ݐ݀

௧ೝషభ

଴

௧భ

଴

௧

଴

ቍ

ൌ ܱ ቌ
1

݉௥ ߱஍ ൬
1
݉ ; ݂ሺ௥ሻ൰ න න … න ௥ିଵݐ݀ݑ݀ ݑ … ଵݐଶ݀ݐ݀

௧ೝషభ

଴

௧భ

଴

௧

଴

ቍ

ൌ ܱ ൬
1

݉௥ ߱஍ ൬
1
݉ ; ݂ሺ௥ሻ൰  ௥൰ݐ

Now we see that  

ԡݐ௡ െ ݂ԡ ൌ ะ
1

߬ሺߣ ൅ 2ሻ ൥න ܨ ൬
ݐ
݉൰ ൬

sin ݐ
ݐ ൰

ଶఒାସ
ݐ݀

ஶ

଴

൩ะ ൑
1

߬ሺߣ ൅ 2ሻ න ฯܨ ൬
ݐ
݉൰ฯ ൬

sin ݐ
ݐ ൰

ଶఒାସ
ݐ݀

ஶ

଴

ൌ ܱ ቆ
1

݉௥ ߱஍ ൬
1
݉

; ݂ሺ௥ሻ൰ቇ
1

߬ሺߣ ൅ 2ሻ න ௥ݐ ൬
sin ݐ

ݐ
൰

ଶఒାସ
ݐ݀

ஶ

଴

ൌ ܱ ቆ
1

݉௥ ߱஍ ൬
1
݉ ; ݂ሺ௥ሻ൰ቇ න

௥ݐ

ଶఒାସݐ ሺsin ݐሻଶఒାସ݀ݐ
ஶ

଴

ൌ ܱ ቆ
1

݉௥ ߱஍ ൬
1
݉ ; ݂ሺ௥ሻ൰ቇ න

௥ݐ

௥ାସݐ ሺsin ݐሻଶఒାସ݀ݐ
ஶ

଴

ൌ ܱ ቆ
1

݉௥ ߱஍ ൬
1
݉

; ݂ሺ௥ሻ൰ቇ 

since݉ ൌ ሺ݊ ൅ 1ሻሺߣ ൅ 2ሻିଵ2ିఒ, we have 

ԡݐ௡ െ ݂ԡ ൌ ܱ ቆ
1

݊௥ ߱஍ ൬
1
݊ ; ݂ሺ௥ሻ൰ቇ  ז

 
Theorem 4.2.3: [4]If ݂ሺݔሻ א ,ߙሺ݌݅ܮ ,ሻ݌ ݌ ൒ 1, 0 ൏ ߙ ൑ 1, then, for any positive integer 
݊, ݂ሺݔሻ may be approximated in ܮ௣ by a trigonometrical polynomial, ݐ௡ሺݔሻ, of order n such 
that  

ԡ݂ െ ௡ԡ௣ݐ ൌ ܱሺ݊ିఈሻ. 

Proof:If we put ݎ ൌ 0 and  ߱௣ ቀଵ
௡

; ݂ሺ௥ሻቁ ൌ  ఈ in the last theorem (4.2.2) then allି݊ܯ
conditions of the previous theorem is satisfied and so the result holds.ז 
 
Lemma 4.2.4: [4] If ݂ሺݔሻ א  ሻ is an arbitrary trigonometric polynomial ofݔ௡ሺݐ ௣ andܮ 
degree ݊ ൒ 1 at most, then 
ሺ݅ሻif  ݌ ൐ 1, ԡ݂ െ ௡ԡ௣ݏ ൑ ԡ݂ܣ െ  ,௡ԡ௣ݐ
ሺ݅݅ሻif  ݌ ൌ 1, ԡ݂ െ ௡ԡଵݏ ൑ ሺ1ܣ ൅ log ݊ሻԡ݂ െ  ௡ԡଵݐ
whereܣ is independent of ݂ሺݔሻ and ݊. 
 
Proof:Case I:We may write 

ԡ݂ െ ௡ԡݏ ൌ ԡ݂ െ ௡ݐ ൅ ௡ݐ െ ௡ԡݏ ൑ ԡ݂ െ ௡ԡݐ ൅ ԡݐ௡ െ  .௡ԡݏ

Hencewhen ݌ ൐ 1, we have 



29 
 

ԡݏ௡ሺ݂ሻԡ ൌ ฯݏ௡
כ ൅ ൬

ܽ௡ cos ݔ݊ ൅ ܾ௡ sin ݔ݊
2 ൰ฯ ൑ ԡݏ௡

ሺ݂ሻכ ൅ ݂ሺݔሻԡ ൑ ԡݏ௡
ሺ݂ሻԡכ ൅ ԡ݂ሺݔሻԡ 

using (2.2.1) we have 

ԡݏ௡ሺ݂ሻԡ௣ ൑ ԡݏ௡
ሺ݂ሻԡ௣כ ൅ ԡ݂ሺݔሻԡ௣ ൑ ሻԡ௣ݔԡ݂ሺܭ2 ൅ ԡ݂ሺݔሻԡ௣ ൌ ሺ2ܭ ൅ 1ሻԡ݂ሺݔሻԡ௣ 

Butthe trigonometric polynomial ݏ௡ሺ ݂ሻ െ ሻݔ௡ሺݐ ൌ ݂ ௡ሺݏ  െ   ௡ሻ. Thus we haveݐ

ԡݏ௡ሺ݂ሻ െ ௡ԡ௣ݐ ൌ ԡݏ௡ሺ ݂ െ ௡ሻԡ௣ݐ ൑ ሺ2ܭ ൅ 1ሻԡ݂ሺݔሻ െ ௡ԡ௣ݐ ൑ ሻݔԡ݂ሺܣ െ  ௡ԡ௣ݐ

Case II: When ݌ ൌ 1, we have 

ԡݏ௡ െ ௡ԡଵݐ ൌ
1
ߨ න ቤන ሾ݂ሺݔ ൅ ሻݑ െ ݔ௡ሺݐ ൅ ݑሻ݀ݑ௡ሺܦሻሿݑ

ଶగ

଴
ቤ ,ݔ݀

ଶగ

଴
 

whereܦ௡ሺݑሻ is the Drichlet's kernel. Interchanging the order of integration, we have  

ԡݏ௡ െ ௡ԡଵݐ ൌ
1
ߨ ቤන ቆන ሾ݂ሺݔ ൅ ሻݑ െ ݔ௡ሺݐ ൅ ݔሻሿ݀ݑ

ଶగ

଴
ቇ ݑሻ݀ݑ௡ሺܦ

ଶగ

଴
ቤ

ൌ
1
ߨ

ԡ݂ െ ௡ԡଵݐ ቤන ݑሻ݀ݑ௡ሺܦ
ଶగ

଴
ቤ

൑
1
ߨ

ԡ݂ െ ௡ԡଵݐ න ݑ݀|ሻݑ௡ሺܦ|
ଶగ

଴
൑ ሺ1ܣ ൅ log ݊ሻԡ݂ െ  ௡ԡଵݐ

Since [3] 

1
ߨ න ݑ݀|ሻݑ௡ሺܦ|

ଶగ

଴
؆

4
ଶߨ log ݊ ൅ ܱሺ1ሻ.  ז

 

Theorem 4.2.5: [4] If ݂ሺݔሻ א ,ሺܽ݌݅ܮ  ,ሻ݌ 0 ൏ ൑ ߙ   1, then 

ሺ݅ሻ    when ݌ ൐ 1, ԡ݂ െ ௡ԡ௣ݏ ൌ ܱሺ݊ିఈሻ; 

ሺ݅݅ሻ  when ݌ ൌ 1, ԡ݂ െ ௡ԡଵݏ ൌ ܱሺ݊ିఈ log ݊ሻ. 

 

Proof: combining theorem 4.2.3 and 4.2.4 we have 
Case I: 

ԡ݂ െ ௡ԡ௣ݏ ൑ ԡ݂ܣ െ ௡ԡ௣ݐ ൌ ܱሺ݊ିఈሻ 

Case II: By the same way, we see that, 

ԡ݂ െ ௡ԡଵݏ ൑ ሺ1ܣ ൅ log ݊ሻԡ݂ െ ௡ԡଵݐ ൌ ܱሺ݊ିఈ log ݊ሻז 
 

Theorem 4.2.6: [4] If  ݂ሺݔሻ א ,ߙሺ݌݅ܮ ,ሻ݌ 0 ൏ ߙ ൑  1, then 

ሺ݅ሻ݂݅ ݌ ൐ ݌ ݂݅ ݎ݋ 1 ൌ 1, ߙ ൏ 1, ԡ݂ െ ௡ԡ௣ߪ ൌ ܱሺ݊ିఈሻ; 

ሺ݅݅ሻ  ݂݅ ݌ ൌ ߙ ൌ  1, ԡ݂ െ ௡ԡଵߪ ൌ ܱ ൬
log ݊

݊ ൰. 
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Lemma 4.2.7: [4] If ݂ א ,ሺ1݌݅ܮ ݌ሻሺ݌ ൐ 1ሻ,then 

ԡߪ௡ሺ݂ሻ െ ௡ሺ݂ሻԡ௣ݏ ൌ ܱሺ݊ିଵሻ. 

 
Lemma 4.2.8: [8] Let ሺ݌௡ሻ be positive and non-increasing. Then, for 0 ൏ ߙ ൏ 1, 

෍ ݇ିఈ݌௡ି௞ ൌ ܱሺ݊ିఈ
௡ܲሻ

௡

௞ୀଵ

. 

Proof: Let ݎ denote the integral part of  ଵ
ଶ

݊.Then 

෍ ݇ିఈ݌௡ି௞

௡

௞ୀଵ

ൌ ෍ ݇ିఈ݌௡ି௞

௥

௞ୀଵ

൅ ෍ ݇ିఈ݌௡ି௞

௡

௞ୀ௥ାଵ

൑ ௡ି௥݌ ෍ ݇ିఈ
௡

௞ୀଵ

൅ ሺݎ ൅ 1ሻିఈ ෍ ௡ି௞݌

௡

௞ୀ଴
ൌ ܱሺ݊ଵିఈሻ݌௡ି௥ ൅ ܱሺ݊ିఈሻ ௡ܲ ൌ ܱሺ݊ିఈሻ ௡ܲ. 

since݌௡ is non-increasing.ז 
 
We shall use the notation ∆௞݌௞ ൌ ௞݌ െ  .௞ାଵ݌
 
Lemma 4.2.9: Given any positive sequence ሺ݌௡ሻ, then for any function ݂, the Nörlund 
mean  

௡ܰሺ݂ሻ ൌ
1
௡ܲ

෍ ௡ܲି௞

௡

௞ୀ଴

 ௞ݑ

whereݑ௞ are the k-th element in the Fourier series of ݂, and ௡ܲ ൌ ∑ ௞݌
௡
௞ୀ଴ . 

 

Proof: The Nörlund mean is defined as 

௡ܰሺ݂ሻ ൌ
1
௡ܲ

෍ ௞ݏ௡ି௞݌

௡

௞ୀ଴

 

Using Abel's transformation, we have the following 

௡ܰሺ݂ሻ ൌ
1
௡ܲ

෍ ௞ݏ௡ି௞݌

௡

௞ୀ଴

ൌ
1
௡ܲ

൥ݏ௡ ௡ܲ ൅ ෍ሺ݌௡ ൅ ڮ ൅ ௞ݏ௡ି௠ሻሺ݌ െ ௞ାଵሻݏ
௡ିଵ

௞ୀ଴

൩

ൌ
1
௡ܲ

൥ሺݑ଴ ൅ ڮ ൅ ௡ሻݑ ௡ܲ ൅ ෍ െݑ௞ାଵሺ݌௡ ൅ ڮ ൅ ௡ି௠ሻ݌
௡ିଵ

௞ୀ଴

൩

ൌ
1
௡ܲ

ሾݑ଴ ௡ܲ ൅ ڮ ൅ ௡ݑ ௡ܲ െ ௡݌ଵݑ െ ௡݌ଶሺݑ ൅ ௡ିଵሻ݌ െ ڮ െ ௡݌௡ሺݑ ൅ ڮ ൅ ଵሻሿ݌

ൌ
1
௡ܲ

ሾݑ଴ ௡ܲି଴ ൅ ଵݑ ௡ܲିଵ ൅ ௡ݑ ௡ܲି௡ሿ ൌ
1
௡ܲ

෍ ௞ݑ ௡ܲି௞

௡

௞ୀ଴

 ז

 
Lemma 4.2.10: Let ݏ௡ሺ݂ሻ be the partial sum of the Fourier series of ݂, then  

෍ ௞ݑ݇

௡

௞ୀଵ

ሺ݂ሻ ൌ ሺ݊ ൅ 1ሻ൫ݏ௡ሺ݂ሻ െ  ௡ሺ݂ሻ൯ߪ



31 
 

Proof:By definition, the Caseros mean is given by  

;௡ሺ݂ߪ ሻݔ ൌ
1

݊ ൅ 1 ෍ ௞ݏ

௡

௞ୀ଴

ሺ݂ሻ 

Thus  

௡ሺ݂ሻߪ െ ௡ሺ݂ሻݏ ൌ
1

݊ ൅ 1 ෍ ௞ݏ

௡

௞ୀ଴

ሺ݂ሻ െ ௡ሺ݂ሻݏ ൌ
1

݊ ൅ 1
ሺݏ଴ ൅ ڮ ൅ ௡ሻݏ െ ௡ሺ݂ሻݏ

ൌ
1

݊ ൅ 1
ሺݑ଴ ൅ ڮ ൅ ሾݑ଴ ൅ ڮ ௡ሿሻݑ െ ሺݑ଴ ൅ ڮ ൅ ௡ሻݑ

ൌ
1

݊ ൅ 1
ሾሺ݊ ൅ 1ሻݑ଴ ൅ ڮ ൅ ௡ሿݑ െ ሺݑ଴ ൅ ڮ ൅ ௡ሻݑ

ൌ
1

݊ ൅ 1
ሾሺ݊ ൅ 1ሻݑ଴ ൅ ڮ ൅ ௡ݑ െ ሺ݊ ൅ 1ሻሺݑ଴ ൅ ڮ ൅ ௡ሻሿݑ

ൌ
1

݊ ൅ 1
ሾሺ݊ ൅ 1ሻݑ଴ ൅ ڮ ൅ ௡ݑ െ ሺ݊ ൅ 1ሻݑ଴ ൅ ڮ ൅ ሺ݊ ൅ 1ሻݑ௡ሿ

ൌ െ
ଵݑ1 ൅ ଶݑ2 ൅ ڮ ൅ ௡ݑ݊

݊ ൅ 1 ൌ െ
1

݊ ൅ 1 ෍ ௞ሺ݂ሻݑ݇
௡

௞ୀଵ

 

Therefore,  

෍ ௞ሺ݂ሻݑ݇
௡

௞ୀଵ

ൌ ሺ݊ ൅ 1ሻ൫ݏ௡ሺ݂ሻ െ  ז௡ሺ݂ሻ൯ߪ

 
Theorem 4.2.11: [8]Let ݂ א ,ߙሺ݌݅ܮ   ௡ሻ be positive such that݌ሻ and let ሺ݌

ሺ1ሻ                                                     ሺ݊ ൅  1ሻ݌௡ ൌ  ܱሺ ௡ܲሻ.  

If either 

ሺ݅ሻ   ݌ ൐ 1 ,    0 ൏ ߙ ൑ 1 andሺ݅݅ሻሺ݌௡ሻis monotonic 

or 

ሺ݅ሻ   ݌ ൌ 1,     0 ൏ ߙ ൏ 1 andሺ݅݅ሻሺ݌௡ሻis non decreasing 

Then 

ሺ2ሻ                                              ԡ݂ െ ௡ܰሺ݂ሻԡ௣ ൌ ܱሺ݊ିఈሻ 

Proof:Case I:݌ ൐  1 and 0 ൏ ൏ ߙ   1. 
since 

݂ሺݔሻ ൌ
1
௡ܲ

෍ ሻݔ௡ି௞݂ሺ݌
௡

௞ୀ଴

 

then 

௡ܰሺ݂; ሻݔ െ ݂ሺݔሻ ൌ
1
௡ܲ

෍ ௡ି௞݌

௡

௞ୀ଴

ሼݏ௞ሺ݂; ሻݔ െ ݂ሺݔሻሽ 

and hence we get 
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ԡ݂ െ ௡ܰሺ݂ሻԡ௣ ൑
1
௡ܲ

෍ ௡ି௞ԡ݂݌ െ ௞ሺ݂ሻԡ௣ݏ

௡

௞ୀ଴

ൌ
1
௡ܲ

෍ ௡ି௞ԡ݂݌ െ ௞ሺ݂ሻԡ௣ݏ

௡

௞ୀଵ

൅
1
௡ܲ

௡ԡ݂݌ െ ଴ሺ݂ሻԡ௣ݏ

ൌ
1
௡ܲ

෍ ௡ି௞݌

௡

௞ୀଵ

ܱሺ݇ିఈሻ ൅
௡݌

௡ܲ
· ݄

ൌ
1
௡ܲ

ܱሺ ௡ܲ݊ିఈሻ ൅ ܱ ൬
௡݌

௡ܲ
൰

ൌ ܱሺ݊ିఈሻ ൅ ܱሺ݊ሻ ൌ ܱሺ݊ିఈሻ ൅ ܱሺ݊ିఈሻ ൌ ܱሺ݊ିఈሻ, 

whereԡ݂ െ ଴ሺ݂ሻԡ௣ݏ ൑ ݄ ൌconstant, and using (1) and Lemma 4.2.8 and theorem 4.2.6. 
Case II:݌ ൐  1 andߙ ൌ  1. 
By lemma 4.2.9 we have ௡ܰሺ݂ሻ ൌ ଵ

௉೙
∑ ௡ܲି௞

௡
௞ୀ଴  ௞ݑ

where 

;௡ሺ݂ݏ ሻݔ ൌ ෍ ;௞ሺ݂ݑ ሻݔ ൌ
1
௡ܲ

௡

௞ୀ଴

෍ ௡ܲݑ௞

௡

௞ୀ଴

ሺ݂;  ሻݔ

hence 

;௡ሺ݂ݏ ሻݔ െ ௡ܰሺ݂; ሻݔ ൌ
1
௡ܲ

෍ሺ ௡ܲ െ ௡ܲି௞ሻݑ௞ሺ݂; ሻݔ
௡

௞ୀଵ

ൌ
1

௡݌
෍ ൬ ௡ܲ െ ௡ܲି௞

݇ ൰ ;௞ሺ݂ݑ݇ ሻݔ
௡

௞ୀଵ

 

by Abel’s transformation and convention ܲି ଵ  ൌ  0, we deduce that 

;௡ሺ݂ݏ ሻݔ െ ௡ܰሺ݂; ሻݔ ൌ
1
௡ܲ

൥ ௡ܲ െ ଴ܲ

݊ ෍ ௞ݑ݇

௡

௞ୀଵ

ሺ݂ሻ ൅ ෍ ∆௞

௡ିଵ

௞ୀଵ

൬ ௡ܲ െ ௡ܲି௞

݇ ൰ ෍ ௠ሺ݂ሻݑ݉
௞

௠ୀଵ

൩

ൌ
1
௡ܲ

൥ ௡ܲ െ ଴ܲ

݊ ෍ ௞ሺ݂ሻݑ݇
௡

௞ୀଵ

െ ௡ܲ െ ܲି ଵ

݊ ൅ 1 ෍ ௞ሺ݂ሻݑ݇
௡

௞ୀଵ

൅ ௡ܲ െ ܲି ଵ

݊ ൅ 1 ሺ݂ሻ

൅ ෍ ∆௞

௡ିଵ

௞ୀଵ

൬ ௡ܲ െ ௡ܲି௞

݇ ൰ ෍ ௠ݑ݉

௞

௠ୀଵ

ሺ݂ሻ൩

ൌ
1
௡ܲ

൥ ௡ܲ

݊ ൅ 1 ෍ ௞ݑ݇

௡

௞ୀଵ

൅ ෍ ∆௞

௡

௞ୀଵ

൬ ௡ܲ െ ௡ܲି௞

݇ ൰ ෍ ௠ݑ݉

௞

௠ୀଵ

ሺ݂ሻ൩

ൌ
1

݊ ൅ 1 ෍ ௞ݑ݇

௡

௞ୀଵ

൅
1
௡ܲ

෍ ∆௞

௡

௞ୀଵ

൬ ௡ܲ െ ௡ܲି௞

݇ ൰ ෍ ௠ሺ݂ሻݑ݉
௞

௠ୀଵ

 

 Therefore, 

ሺ3ሻԡݏ௡ሺ݂ሻ െ ௡ܰሺ݂ሻԡ௣ ൑
1

௡݌
෍ ฬ∆௞ ൬ ௡ܲ െ ௡ܲି௞

݇ ൰ฬ
௡

௞ୀଵ

ะ ෍ ௠ሺ݂ሻݑ݉
௞

௠ୀଵ

ะ
௣

൅
1

݊ ൅ 1 ะ෍ ௞ݑ݇

௡

௞ୀଵ

ሺ݂ሻะ
௣

 

And by lemma 4.2.10 
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ሺ4ሻߪ௡ሺ݂; ሻݔ െ ;௡ሺ݂ݏ ሻݔ ൌ െ
1

݊ ൅ 1 ෍ ௞ݑ݇

௡

௞ୀଵ

ሺ݂;  ,ሻݔ

we have by Lemma 4.2.7, 

ሺ5ሻ ะ෍ ௞ݑ݇

௡

௞ୀଵ

ሺ݂ሻะ
௣

ൌ ሺ݊ ൅ 1ሻԡߪ௡ሺ݂ሻ െ ௡ሺ݂ሻԡ௣ݏ ൌ ܱሺ1ሻ 

Now, combining (3) and (5), we get 

ሺ6ሻԡݏ௡ሺ݂ሻ െ ௡ܰሺ݂ሻԡ௣ ൌ ܱ ൬
1

௡݌
൰ ෍ ฬ∆௞ ൬ ௡ܲ െ ௡ܲି௞

݇ ൰ฬ ൅ ܱሺ݊ିଵሻ
௡

௞ୀଵ

. 

However, 

ሺ7ሻ∆௞ ൬ ௡ܲ െ ௡ܲି௞

݇ ൰ ൌ ௡ܲ െ ௡ܲି௞

݇ െ ௡ܲ െ ௡ܲି௞ିଵ

݇ ൅ 1

ൌ ௡ܲ

݇ െ ௡ܲ

݇ ൅ 1 െ ௡ܲି௞

݇ ൅ ௡ܲି௞ିଵ

݇ ൅ 1

ൌ ௡ܲ

݇ሺ݇ ൅ 1ሻ െ ௡ܲି௞

݇ ൅ ௡ܲି௞ିଵ

݇ െ ௡ܲି௞ିଵ

݇ ൅ ௡ܲି௞ିଵ

݇ ൅ 1

ൌ ௡ܲ

݇ሺ݇ ൅ 1ሻ െ ௡ܲି௞

݇ ൅ ௡ܲି௞ିଵ

݇ െ ௡ܲି௞ିଵ

݇ሺ݇ ൅ 1ሻ

ൌ ௡ܲ െ ௡ܲି௞ିଵ

݇ሺ݇ ൅ 1ሻ ൅ ௡ܲି௞ିଵ െ ௡ܲି௞

݇

ൌ ௡ܲ െ ௡ܲି௞ିଵ

݇ሺ݇ ൅ 1ሻ ൅
െ݌௡ି௞

݇

ൌ
1

݇ሺ݇ ൅ 1ሻ
ሼሺ ௡ܲ െ ௡ܲି௞ିଵሻ െ ሺ݇ ൅ 1ሻ݌௡ି௞ሽ

ൌ
1

݇ሺ݇ ൅ 1ሻ ൝൭ ෍ ௞݌

௡

௞ୀ௡ି௠

൱ െ ሺ݇ ൅ 1ሻ݌௡ି௞ൡ, 

which is non-negative or non-positive whenever ሺ݌௡ሻ is non-decreasing or non-increasing 
respectively. Hence 

൜ ௡ܲ െ ௡ܲି௠

݉ ൠ
௠ୀଵ

௡ାଵ

 

is monotonic whenever ሺ݌௡ሻ is monotonic and this implies that 

ሺ8ሻ ෍ ฬ∆௞ሺ ௡ܲି ௡ܲି௞

݇ ሻฬ
௡

௞ୀଵ

ൌ ฬ݌௡ െ ௡ܲ

݊ ൅ 1ฬ 

by using convention ܲି ଵ ൌ 0. Thus using (8) and (1) in (6), we get 

ሺ9ሻԡݏ௡ሺ݂ሻ െ ௡ܰሺ݂ሻԡ௣ ൌ ܱሺ݊ିଵሻ 

Finally, by using (9) and Theorem 4.2.5, we get ሺ2ሻ with ߙ ൌ  1. 
 
Case III:݌ ൌ  1 and 0 ൏ ൏ ߙ   1. 
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By Abel’s transformation and using convention   ି݌ଵ ൌ  0,we get 

௡ܰሺ݂; ሻݔ െ ݂ሺݔሻ ൌ
1
௡ܲ

෍ ௞ሺ݂ሻݏ௡ି௞ሼ݌ െ ݂ሺݔሻሽ
௡

௞ୀ଴

ൌ
1
௡ܲ

൥݌଴ ෍൫ݏ௞ሺ݂ሻ െ ݂ሺݔሻ൯
௡

௞ୀ଴

൅ ෍ ∆௞݌௡ି௞ ෍ ሼݏ௞ሺ݂ሻ െ ݂ሺݔሻሽ
௞

௠ୀ଴

௡ିଵ

௞ୀ଴

൩

ൌ
1
௡ܲ

൥ሺ݌଴ ൅ ଵሻି݌ ෍൫ݏ௞ሺ݂ሻ െ ݂ሺݔሻ൯
௡

௞ୀ଴

൅ ෍ ∆௞݌௡ି௞ ෍ ሼݏ௞ሺ݂ሻ െ ݂ሺݔሻሽ
௞

௠ୀ଴

௡ିଵ

௞ୀ଴

൩

ൌ
1
௡ܲ

෍ ∆௞

௡

௞ୀ଴

௡ି௞݌ ෍ ሼݏ௞ሺ݂ሻ െ ݂ሺݔሻሽ
௞

௠ୀ଴

ൌ
1
௡ܲ

෍ ∆௞

௡

௞ୀ଴

௡ି௞݌ ൥ ෍ ௞ሺ݂ሻݏ
௞

௠ୀ଴

െ ሺ݊ ൅ 1ሻ݂ሺݔሻ൩

ൌ
1
௡ܲ

෍ሺ݇ ൅ 1ሻ∆௞

௡

௞ୀ଴

;௞ሺ݂ߪ௡ି௞ሼ݌ ሻݔ െ ݂ሺݔሻሽ 

Hence, by theorem 4.2.6, we get 

ԡ݂ሺݔሻ െ ௡ܰሺ݂; ሻԡଵݔ ൑
1
௡ܲ

෍ሺ݇ ൅ 1ሻ|∆௞݌௡ି௞|ԡߪ௞ሺ݂; ሻݔ െ ݂ሺݔሻԡଵ

௡

௞ୀ଴

ൌ ܱ ൬
1
௡ܲ

൰ ෍ሺ݇ ൅ 1ሻଵିఈ|∆௞݌௡ି௞|
௡

௞ୀ଴

ൌ ܱ ቆ
݊ଵିఈ

௡ܲ
ቇ ෍|∆௞݌௡ି௞|

௡

௞ୀ଴

ൌ ܱ ቆ
݊ଵିఈ

௡ܲ
ቇ . ሺ݌௡ሻ

ൌ ܱ ቆ
݊ଵିఈ

௡ܲ
ቇ . ܱ ൬ ௡ܲ

݊ ൰

ൌ ܱሺ݊ିఈሻ, 
Since ݌௡ non-decreasing and using (1) 
This completes the proof.ז 

Theorem 4.2.12: [8] Let ݂ א ,ߙሺ݌݅ܮ 1ሻ, 0 ൏ ߙ ൏ 1.And let ሺ݌௡ሻ be positive non-
decreasing sequence withሺ݊ ൅  1ሻ݌௡ ൌ  ܱሺ ௡ܲሻ.Then 

ԡ݂ െ ܴ௡ሺ݂ሻԡଵ ൌ ܱሺ݊ିఈሻ. 

Proof: For ݌ ൌ  1 and 0 ൏ ൏ ߙ   1.We get by Abel's transformation 

݂ െ ܴ௡ሺ݂ሻ ൌ
1
௡ܲ

෍ ௞൫݂݌ െ ௞ሺ݂ሻ൯ݏ
௡

௞ୀ଴

ൌ
1
௡ܲ

෍ ௞݌∆ ൭ ෍ ݂ െ ௞ሺ݂ሻݏ
௞

௠ୀ଴

൱
௡ିଵ

௞ୀ଴

൅
௡݌

௡ܲ
෍ሾ݂ െ ௞ሺ݂ሻሿݏ

௡

௞ୀ଴

ൌ
1
௡ܲ

෍ ௞൫ሺ݊݌∆ ൅ 1ሻ݂ െ ሺ݊ ൅ 1ሻߪ௞ሺ݂ሻ൯
௡ିଵ

௞ୀ଴

൅
௡݌

௡ܲ
൫ሺ݊ ൅ 1ሻ݂ െ ሺ݊ ൅ 1ሻߪ௡ሺ݂ሻ൯

ൌ
1
௡ܲ

෍ ௞ሺ݊݌∆ ൅ 1ሻ൫݂ െ ௞ሺ݂ሻ൯ߪ
௡ିଵ

௞ୀ଴

൅
௡݌

௡ܲ
ሺ݊ ൅ 1ሻ൫݂ െ  ௡ሺ݂ሻ൯ߪ



35 
 

Thus we have 

ԡ݂ െ ܴ௡ሺ݂ሻԡଵ ൌ ะ
1
௡ܲ

෍ ௞ሺ݊݌∆ ൅ 1ሻ൫݂ െ ௞ሺ݂ሻ൯ߪ
௡ିଵ

௞ୀ଴

൅
௡݌

௡ܲ
ሺ݊ ൅ 1ሻ൫݂ െ ௡ሺ݂ሻ൯ะߪ

ଵ

൑
1
௡ܲ

෍|∆݌௞|ሺ݊ ൅ 1ሻԡ݂ െ ௞ሺ݂ሻԡଵߪ

௡ିଵ

௞ୀ଴

൅
௡݌

௡ܲ
ሺ݊ ൅ 1ሻԡ݂ െ ௡ሺ݂ሻԡଵߪ

ൌ
1
௡ܲ

෍|∆݌௞|ሺ݊ ൅ 1ሻܱሺ݊ିఈሻ
௡ିଵ

௞ୀ଴

൅ ܱሺ1ሻ · ܱሺ݊ିఈሻ

ൌ ܱሺ݊ିఈሻ ൅ ܱሺ݊ିఈሻ ൌ ܱሺ݊ିఈሻ.  ז
 

4.3 Approximation by general class of triangular matrices using 
trigonometrical polynomials 

 

In this section, we shall weaken the conditions of monotonicity given by theorems (4.2.11) 
and (4.2.12); we see that these theorems assumed the sequence ݌௡to be monotonic. Here 
we will give a less strength conditions on ݌௡ but keeping the degree of estimate. Before we 
do that, we introduce some concepts about sequences. 
 
Definition 4.3.1: [6] A positive sequence ݌: ൌ ሺ݌௡ሻ is called almost monotone decreasing 
(increasing) if there exists a constant ܭ: ൌ  ሻ, depends only on p, such that for all݌ሺܭ
݊ ൒ ݉ 

௡݌ ൑ ௡݌ܭ௠ሺ݌ܭ ൒  .௠ሻ݌
Such sequences will be denoted as ݌ א ݌ and ܵܦܯܣ א  .respectively ,ܵܫܯܣ
 
We shall also use the notation  

∆݃௡ ൌ ݃௡ െ ݃௡ାଵ 

An auxiliary lemma is needed to proof the next theorem. 

Lemma 4.3.2: [6]Letሼ݌௡ሽ ௡ሽ݌AMDS, or letሼ א AMIS and satisfy(12). Then, for0 א ൏ ߙ ൏
 1, 

෍ ݇ିఈ݌௡ି௞

௡

௞ୀଵ

ൌ ܱሺ݊ିఈ
௡ܲሻ 

Proof: Let ݎ denote the integral part of ݊/2.Then, if ሼ݌௡ሽ א  ,ܵܦܯܣ

෍ ݉ିఈ݌௡ି௠

௡

௠ୀଵ

൑ ௡ି௥݌ܭ ෍ ݉ିఈ
௥

௠ୀଵ

൅ ሺݎ ൅ 1ሻିఈ ෍ ௡ି௠݌

௡

௠ୀ௥ାଵ

൑ ௡ି௥݌ܭ ෍ ݉ିఈ
௡

௠ୀଵ

൅ ሺݎ ൅ 1ሻିఈ ෍ ௡ି௠݌

௡

௠ୀ଴
ൌ ܱሺ݊ଵିఈሻ݌௡ି௥ ൅ ܱሺ݊ିఈሻ ௡ܲ
ൌ ܱሺ݊ିఈሻ ௡ܲ ൅ ܱሺ݊ିఈሻ ௡ܲ
ൌ ܱሺ݊ିఈ

௡ܲሻ. 
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Ifሼ݌௡ሽ א  and (1) is valid, then ,ܵܦܯܣ

෍ ݉ିఈ݌௡ି௠

௡

௠ୀଵ

൑ ௡݌ܭ ෍ ݉ିఈ
௥

௠ୀଵ

൅ ሺݎ ൅ 1ሻିఈ ෍ ௡ି௠݌

௡

௠ୀ௥ାଵ

൑ ௡݌ܭ ෍ ݉ିఈ
௡

௠ୀଵ

൅ ሺݎ ൅ 1ሻିఈ ෍ ௡ି௠݌

௡

௠ୀ଴

ൌ ܱሺ ௡ܲ ݊⁄ ሻ ෍ ݉ିఈ
௡

௠ୀଵ

൅ ܱሺ݊ିఈሻ ௡ܲ

ൌ ܱሺ ௡ܲ ݊⁄ ሻܱሺ݊ଵିఈሻ ൅ ܱሺ݊ିఈሻ ௡ܲ
ൌ ܱሺ݊ିఈ

௡ܲሻ. 

The proof is complete.ז 
 
In the previous section, an approximation in the ܮ௣ space is established by conditions 
involving the monotonicity of the positive sequence ሺ݌௡ሻ, the next theorem will give a 
generalization of theorem 4.2.13 by weakened the conditions on the sequence ሺ݌௡ሻ, note 
that the non-increasing sequence is AMDS and the non-decreasing sequence is AMIS. 
 
Theorem 4.3.3: [6] Let ݂ א ,ߙሺ ݌݅ܮ   ௡ሽbe positive. If one of the conditions݌ሻ and let ሼ݌

ሺ݅ሻ   ܲ ൐ 1,0 ൏ ൏ ߙ   1 ܽ݊݀ ሼ݌௡ሽ א  ,ܵܦܯܣ  

ሺ݅݅ሻ  ݌ ൐ 1,0 ൏ ൏ ߙ   1 ܽ݊݀ ሼ݌௡ሽ א  ,ݏ݈݀݋ሺ1ሻ݄ ݀݊ܽ ܵܫܯܣ 

ሺ݅݅݅ሻ ݌ ൐ 1, ߙ ൌ 1 ܽ݊݀ ෍ |௞݌∆|݇ ൌ
௡ିଵ

௞ୀ଴
ܱሺ ௡ܲሻ, 

ሺ݅ݒሻ݌ ൐ 1, ߙ ൌ 1, ෍ |௞݌∆| ൌ
௡ିଵ

௞ୀ଴
ܱሺ ௡ܲ ݊⁄ ሻ andሺ1ሻ holds 

ሺݒሻ  ݌ ൌ 1,0 ൏ ߙ ൏ 1 and ෍ |௞݌∆|
௡ିଵ

௞ୀିଵ
ൌ ܱሺ ௡ܲ ݊⁄ ሻ 

maintains, then 

ሺ10ሻԡ݂ െ ௡ܰሺ݂ሻԡ௣ ൌ ܱሺ݊ିఈሻ. 

Proof:We prove the cases ሺ݅ሻ and ሺ݅݅ሻ together utilizing theorem 4.2.5 and lemma 4.3.2. 
Since 

ሺ11ሻ ௡ܰሺ݂; ሻݔ െ ݂ሺݔሻ ൌ
1
௡ܲ

෍ ;௞ሺ݂ݏ௡ି௞ሺ݌ ሻݔ െ ݂ሺݔሻሻ
௡

௞ୀ଴

 

Thus 

ԡ ௡ܰሺ݂; ሻݔ െ ݂ሺݔሻԡ௣ ൑
1
௡ܲ

෍ ;௞ሺ݂ݏ௡ି௞ԡ݌ ሻݔ െ ݂ሺݔሻԡ௣

௡

௞ୀ଴

ൌ
1
௡ܲ

෍ ;௞ሺ݂ݏ௡ି௞ԡ݌ ሻݔ െ ݂ሺݔሻԡ௣

௡

௞ୀଵ

൅
1
௡ܲ

;଴ሺ݂ݏ௡ԡ݌ ሻݔ െ ݂ሺݔሻԡ௣

ൌ
1
௡ܲ

෍ ௡ି௞ܱሺ݇ିఈሻ݌
௡

௞ୀଵ

൅ ܱሺ݌௡ ௡ܲ⁄ ሻ ൌ ܱሺ݊ିఈሻ. 
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Next, we consider the case ሺ݅ݒሻ.By Lemma 4.2.9, 

௡ܰሺ݂; ሻݔ ൌ
1
௡ܲ

෍ ௡ܲି௞ݑ௞ሺ݂ሻ
௡

௞ୀ଴

, 

and thus 

;௡ሺ݂ݏ ሻݔ െ ௡ܰሺ݂; ሻݔ ൌ
1
௡ܲ

෍ሺ ௡ܲ െ ௡ܲି௞ሻݑ௞ሺ݂ሻ
௡

௞ୀଵ

 

hence, again by Abel’s transformation and ܲି ଵ  ൌ  0, 

;௡ሺ݂ݏ ሻݔ െ ௡ܰሺ݂; ሻݔ ൌ
1
௡ܲ

෍ ∆௞ ൬ ௡ܲ െ ௡ܲି௞

݇ ൰ ෍ ௠ሺ݂ሻݑ݉
௞

௠ୀଵ

௡

௞ୀଵ

൅
1

݊ ൅ 1 ෍ ௞ሺ݂ሻݑ݇
௡

௞ୀଵ

. 

therefor, 
ሺ12ሻԡݏ௡ሺ݂ሻ െ ௡ܰሺ݂ሻԡ௣

ൌ
1
௡ܲ

෍ ฬ∆௞ ൬ ௡ܲ െ ௡ܲି௞

݇ ൰ฬ ะ ෍ ௠ሺ݂ሻݑ݉
௞

௠ୀଵ

ะ
௣

௡

௞ୀଵ

൅
1

݊ ൅ 1 ะ෍ ௞ሺ݂ሻݑ݇
௡

௞ୀଵ

ะ
௣

. 

by Lemma 4.2.10 and Lemma 4.2.7 we have 

ሺ13ሻ ะ෍ ;௞ሺ݂ݑ݇ ሻݔ
௡

௞ୀଵ

ะ
௣

ൌ ሺ݊ ൅ 1ሻԡߪ௡ሺ݂; ሻݔ െ ;௡ሺ݂ݏ ሻԡ௣ݔ ൌ ܱሺ1ሻ. 

Combining (12) and (13), we obtain that 

ሺ14ሻԡݏ௡ሺ݂; ሻݔ െ ௡ܰሺ݂; ሻԡ௣ݔ ൌ ܱ ൬
1
௡ܲ

൰ ෍ ฬ∆௞ ൬ ௡ܲ െ ௡ܲି௞

݇ ൰ฬ
௡

௞ୀଵ

൅ ܱሺ݊ିଵሻ.  

 An elementary calculation yields that (see(7) ) 

ሺ15ሻ∆௞ ൬ ௡ܲ െ ௡ܲି௞

݇ ൰ ൌ
1

݇ሺ݇ ൅ 1ሻ ൝൥ ෍ ௠݌

௡

௠ୀ௡ି௞

൩ െ ሺ݇ ൅ 1ሻ݌௡ି௞ൡ 

Next we shall verify by induction that 

ሺ16ሻ อ ෍ ௠݌

௡

௠ୀ௡ି௞

െ ሺ݇ ൅ 1ሻ݌௡ି௞อ ൑ ෍ ௡ି௠ାଵ݌|݉ െ |௡ି௠݌
௞

௠ୀଵ

 

If ݇ ൌ 1, then 

อ൭ ෍ ௠݌

௡

௠ୀ௡ିଵ

൱ െ ௡ିଵอ݌2 ൌ ௡݌| െ  .|௡ିଵ݌

Thus (16) holds. 

Now let us  assume that ( 16 ) is proved for  ݇ ൌ and we verify it for  ݇ ൌ ߥ  ൅ ߥ 1ሺ൑ ݊ሻ. 
Since 

อ൭ ෍ ௠݌

௡

௠ୀ௡ିሺ௩ାଵሻ

൱ െ ሺݒ ൅ 2ሻ݌௡ିሺ௩ାଵሻอ ൌ อ൭ ෍ ௠݌

௡

௠ୀ௡ି௩

൱ െ ሺݒ ൅ 1ሻ݌௡ିሺ௩ାଵሻอ

൑ อ൭ ෍ ௠݌

௡

௠ୀ௡ି௩

൱ െ ሺݒ ൅ 1ሻ݌௡ି௩อ ൅ หሺݒ ൅ 1ሻ݌௡ି௩ െ ሺݒ ൅ 1ሻ݌௡ିሺ௩ାଵሻห 
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൑ ෍ ௡ି௠ାଵ݌|݉ െ |௡ି௠݌
௩

௠ୀଵ

൅ ሺݒ ൅ 1ሻห݌௡ି௩ െ  ,௡ିሺ௩ାଵሻห݌

Thus (16) is proved for ݉ ൌ ߥ ൅ 1. 
Using this and (15), we get that 

෍ห∆௞൫݇ିଵሺ ௡ܲ െ ௡ܲି௞ሻ൯ห
௡

௞ୀଵ

൑ ෍
1

݇ሺ݇ ൅ 1ሻ ෍ ௡ି௠ାଵ݌|݉ െ |௡ି௠݌
௞

௠ୀଵ

௡

௞ୀଵ

൑ ෍ ௡ି௞ାଵ݌|݇ െ |௡ି௞݌ ෍
1

݉ሺ݉ ൅ 1ሻ

ஶ

௠ୀ௞

௡

௞ୀଵ

ൌ ෍|∆݌௞|
௡ିଵ

௞ୀ଴

. 

Now combining this, the assumption 

෍|∆݌௞|
௡ିଵ

௞ୀ଴

ൌ ܱሺ ௡ܲ ݊⁄ ሻ 

and (14), we get 
ԡݏ௡ሺ݂; ሻݔ െ ௡ܰሺ݂; ሻԡ௣ݔ ൌ ܱሺ݊ିଵሻ 

this and Theorem 4.2.5 withߙ ൌ  1 yield (10). Here with the caseሺ݅ݒሻis proved. 
 
In the proof of the caseሺ݅݅݅ሻ, we first verify that the condition  

෍ |௞݌∆|݇
௡ିଵ

௞ୀଵ

ൌ ܱሺ ௡ܲሻ 

implies that  

ሺ17ሻܤ௡ ൌ׷ ෍ ฬ∆௞ ൬ ௡ܲ െ ௡ܲି௞

݇ ൰ฬ
௡ିଵ

௞ୀ଴

ൌ ܱሺ ௡ܲ ݊⁄ ሻ. 

For simplicity we shall write ∆݌௡ି௞ instead of ݌௡ି௞ െ  ௡ି௞ାଵ,by (15) and (16)݌

௡ܤ ൑ ෍
1

݇ሺ݇ ൅ 1ሻ ෍ |௡ି௠݌∆|݉
௞

௠ୀଵ

௡

௞ୀଵ

. 

denote again by ݎ the integer part of ݊ 2⁄ . Then, we have 

෍
1

݇ሺ݇ ൅ 1ሻ ෍ |௡ି௠݌∆|݉
௞

௠ୀଵ

௥

௞ୀଵ

൑ ෍|∆݌௡ି௞|
௥

௞ୀଵ

൑ ෍ |௞݌∆|
௡ିଵ

௞ୀ௥ିଶ

ൌ ܱሺ ௡ܲ ݊⁄ ሻ. 

at the last step we have used the condition 

෍ |௞݌∆|݇
௡ିଵ

௞ୀଵ

ൌ ܱሺ ௡ܲሻ 

On the other hand, 

෍
1

݇ሺ݇ ൅ 1ሻ ෍ |௡ି௠݌∆|݉
௥

௠ୀଵ

௡

௞ୀ௥

൑ ෍
1

݇ሺ݇ ൅ 1ሻ ൝ ෍ |௡ି௠݌∆|݉
௥

௠ୀଵ

൅ ෍ |௡ି௠݌∆|݉
௥

௠ୀ௥

ൡ
௡

௞ୀ௥
ൌ: ௡ଵܤ ൅  ௡ଶܤ
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Furthermore, using again our assumption, we get 

௡ଵܤ ൑ ෍ሺ݇ ൅ 1ሻିଵ ෍ |௠݌∆|
௡ିଵ

௠ୀ௥ିଶ

௡

௞ୀ௥

ൌ ܱሺ ௡ܲ ݊⁄ ሻ 

and 

௡ଶܤ ൑ ෍ሺ݇ ൅ 1ሻିଵ ෍ |௡ି௠݌∆|
௞

௠ୀ௥

௡

௞ୀ௥

ൌ ܱሺ݊ିଵሻሼ|∆݌଴| ൅ |ଵ݌∆|2 ൅ ڮ ൅ ሺݎ ൅ 1ሻ|∆݌௥ାଵ|ሽ

ൌ ܱሺ ௡ܲ ݊⁄ ሻ. 

summing up our partial results, we verified (17). Thus, (14) and theorem 4.2.5 again yield 
(10). 
 
Finally, the prove of the case ሺݒሻ. Utilizing ሺ10ሻ, ଵି݌  ൌ  0 and the Abel’s transformation, 
we get 

௡ܰሺ݂; ሻݔ െ ݂ሺݔሻ ൌ
1
௡ܲ

෍ ሺ∆௠݌௡ି௠ሻ ෍൫ݏ௞ሺ݂; ሻݔ െ ݂ሺݔሻ൯
௠

௞ୀ଴

௡

௠ୀ଴

ൌ
1
௡ܲ

෍ ሺ݉ ൅ 1ሻሺ∆௠݌௡ି௠ሻሼߪ௠ሺ݂; ሻݔ െ ݂ሺݔሻሽ
௡

௠ୀ଴

. 

Hence, by theorem 4.2.6, we have that 

ԡ݂ െ ௡ܰሺ݂ሻԡଵ ൑
1
௡ܲ

෍ ሺ݉ ൅ 1ሻ|∆௠݌௡ି௠|ԡ݂ െ ௠ሺ݂ሻԡଵߪ

௡

௠ୀ଴

ൌ ܱ ൬
1
௡ܲ

൰ ෍ ሺ݉ ൅ 1ሻଵିఈ|∆௠݌௡ି௠|
௡

௠ୀ଴

ൌ ܱ ቆ
݊ଵିఈ

௡ܲ
ቇ ෍ |௠݌∆|

௡

௠ୀିଵ

ൌ ܱሺ݊ିఈሻ. 

Here with the case ሺݒሻ is also verified, and thus the proof is complete.ז 
 
Theorem 4.3.4: [6]Let ݂ א ,ߙሺ ݌݅ܮ  1ሻ, 0 ൏ ൏ ߙ   1.If the positiveሼ݌௡ሽ satisfies (1)and 
the condition 

෍|∆݌௞| ൌ ܱሺ ௡ܲ ݊⁄ ሻ
௡ିଵ

௞ୀ଴

 

holds, then 

ሺ18ሻԡ݂ െ ܴ௡ሺ݂ሻԡଵ ൌ ܱሺ݊ିఈሻ. 

Proof: Since 

ܴ௡ሺ݂ሻ െ ݂ሺݔሻ ൌ
1
௡ܲ

෍ ௞ሺ݂ሻݏ௞ሼ݌ െ ݂ሺݔሻሽ
௡

௞ୀ଴

 

Thus following the consideration of the case (v) of Theorem 4.3.3, we get 
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ԡ݂ሺݔሻ െ ܴ௡ሺ݂ሻԡଵ ൌ
1
௡ܲ

ะ෍ ௞ሼ݂݌ െ ௞ሺ݂ሻሽݏ
௡

௞ୀ଴

ะ
ଵ

൑
1
௡ܲ

෍ሺ݇ ൅ 1ሻ|∆݌௞|ԡ݂ െ ;௞ሺ݂ߪ ሻԡଵݔ

௡ିଵ

௞ୀ଴

൅ ሺ݊ ൅ 1ሻ݌௡
1
௡ܲ

ԡ݂ െ ;௡ሺ݂ߪ ሻԡଵݔ

ൌ ܱ ൬݊ଵିఈ 1
௡ܲ

൰ ෍|∆݌௞|
௡ିଵ

௞ୀ଴

൅ ܱሺ݊ିఈሻ  ൌ ܱሺ݊ିఈሻ. 

This proves the theorem.  ז
 

It is very easy to examine that all of the conditions in theorem 4.3.3 and 4.3.4 claim less 
than the requirements of Theorems 4.2.11 and 4.2.12. Since if we consider the first part of 
theorem 4.2.11, that is, for ݌ ൐ 1, 0 ൏ ߙ ൏ 1, ሺ݌௡ሻis non-decreasing then it is obvious that 
the sequence is AMIS, for which the condition ii of 4.3.3 is satisfied. 
 
Also for ݌ ൐ 1, 0 ൏ ߙ ൏ 1, ሺ݌௡ሻ is non-increasing sequence, thenሺ݌௡ሻ is AMDS and 
condition I of 4.2.3 holds. Moreover, if ݌ ൐ 1, ߙ ൌ 1, ሺ݌௡ሻ is non-increasing then we may 
write  

෍ |௞݌∆|݇
௡ିଵ

௞ୀଵ

ൌ ෍ ݇ሺ݌௞ െ ௞ାଵሻ݌
௡ିଵ

௞ୀଵ

ൌ 1ሺ݌ଵ െ ଶሻ݌ ൅ 2ሺ݌ଶ െ ଷሻ݌ ൅ ڮ ൅ ሺ݊ െ 1ሻሺ݌௡ିଵ െ ௡ሻ݌

ൌ ଵ݌ ൅ ଶ݌ ൅ ڮ ൅ ௡ିଵ݌ െ ሺ݊ െ 1ሻ݌௡
ൌ ଵ݌ ൅ ଶ݌ ൅ ڮ ൅ ௡ିଵ݌ ൅ ௡݌ െ ሺ݊ሻ݌௡ ൌ ௡ܲ െ ௡݌݊ ൑ ௡ܲ ൌ ܱሺ ௡ܲሻ. 

and that is condition III of 4.3.3. 
 
Now if ݌ ൐ 1, ߙ ൌ 1, ሺ݌௡ሻ is non-decreasing and satisfying condition 12 then we have   

෍|∆݌௞|
௡ିଵ

௞ୀ଴

ൌ ෍ሺ݌௞ାଵ െ ௞ሻ݌
௡ିଵ

௞ୀ଴

ൌ ሺ݌ଵ െ ଴ሻ݌ ൅ ሺ݌ଶ െ ଵሻ݌ ൅ ڮ ൅ ሺ݌௡ െ ௡ିଵሻ݌

ൌ െ݌଴ ൅ ௡݌ ൌ ௡݌ െ ଴݌ ൑ ௡݌ ൌ ܱ ൭ ௡ܲൗ݊ ൱. 

so condition IV of 4.3.3 is satisfied. 
 
Finally, if the second condition in 4.2.11 holds, that is, if ݌ ൌ 1, 0 ൏ ߙ ൏ 1  and ሺ݌௡ሻ is 
non-decreasing and 12 holds, then 

෍ |௞݌∆|
௡ିଵ

௞ୀିଵ

ൌ ෍ ሺ݌௞ାଵ െ ௞ሻ݌
௡ିଵ

௞ୀିଵ

ൌ ሺ݌଴ െ ଵሻି݌ ൅ ሺ݌ଵ െ ଴ሻ݌ ൅ ڮ ൅ ሺ݌௡ െ ௡ିଵሻ݌

ൌ ௡݌ ൌ ൭ ௡ܲൗ݊ ൱ 

Since by definition ି݌ଵ ൌ 0, therefore, the last condition of 4.3.3 is satisfied. 
By the same we can see that theorem 4.3.4 is more general that the corresponding theorem 
4.2.12, for which if ݌ ൌ 1, 0 ൏ ߙ ൏ 1, and ሺ݌௡ሻ is non-decreasing with ሺ݊ ൅ 1ሻ݌௡ ൌ
ܱሺ ௡ܲሻ. 
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Then  

෍|∆݌௞|
௡ିଵ

௞ୀ଴

ൌ ෍ሺ݌௞ାଵ െ ௞ሻ݌
௡ିଵ

௞ୀ଴

ൌ ሺ݌ଵ െ ଴ሻ݌ ൅ ሺ݌ଶ െ ଵሻ݌ ൅ ڮ ൅ ሺ݌௡ െ ௡ିଵሻ݌

ൌ ௡݌ െ ଴݌ ൌ ൭ ௡ܲ ݊ൗ ൱ 

 
In the last two theorems we obtain the same degree of approximation for any function 
݂ א ,ߙሺ݌݅ܮ  ,ሻ, by weakened conditions, we now will treat the same theorems (4.2.11݌
4.2.12) with a general class of triangular matrices, thus we can deduce these two theorems 
as a corollaries of our next theorems. 
 
Let ܣ ൌ ൫ܽ௡,௞൯ be a lower triangular regular matrix with non-negative entries and row 
sumݏ௡

஺. such a matrix ܣ is said to have monotone rows if, for each ݊, ሼܽ௡௞ሽ is either non- 
increasing or non-decreasing in ݇, 0 ൑ ݇ ൑ ݊.Also we call the matrix ܣ ൌ  ሺܽ௡,௞ሻ has 
almost monotone increasing (decreasing) rows if there exists a constant ܭ, depending only 
on ܣ, such that ܽ௡,௞  ൑ ௡,௠ሺܽ௡,௠ܽܭ   ൑ ௡,௞ሻ for each ݊ and 0 ൑ܽܭ   ݇ ൑  ݉ ൑  ݊. 
 
Lemma 4.3.5: [7] Let ܣ have monotone rows and satisfies the relation 

ሺ19ሻሺ݊ ൅ 1ሻ max൛ܽ௡,଴, ܽ௡,௥ൟ ൌ ܱሺ1ሻ, ݎ ൌ ሾ݊ 2⁄ ሿ 

then for 0 ൏ ߙ ൏ 1, 

ሺ20ሻ ෍ ܽ௡,௞ሺ݇ ൅ 1ሻିఈ
௡

௞ୀ଴

ൌ ܱሺ݊ିఈሻ. 

Proof:Let ݎ: ൌ ሾ݊ 2⁄ ሿ,then 

෍ ܽ௡,௞ሺ݇ ൅ 1ሻିఈ
௡

௞ୀ଴

ൌ ෍ ܽ௡,௞ሺ݇ ൅ 1ሻିఈ
௥

௞ୀ଴

൅ ෍ ܽ௡,௞ሺ݇ ൅ 1ሻିఈ
௡

௞ୀ௥ାଵ

 

Case I:If ሼܽ௡,௞ሽ is non-decreasing in ݇. Then, using (19), we have 

෍ ܽ௡,௞ሺ݇ ൅ 1ሻିఈ
௡

௞ୀ଴

൑ ܽ௡,௥ ෍ሺ݇ ൅ 1ሻିఈ
௥

௞ୀ଴

൅ ሺݎ ൅ 1ሻିఈ ෍ ܽ௡,௞

௡

௞ୀ௥ାଵ

൑ ܽ௡,௥ ෍ሺ݇ ൅ 1ሻିఈ
௡

௞ୀ଴

൅ ሺݎ ൅ 1ሻିఈݏ௡
஺

ൌ ܱሺሺ݊ ൅ 1ሻିଵሻܱሺሺ݊ ൅ 1ሻଵିఈሻ ൅ ܱሺ݊ሻିఈ ൌ ܱሺ݊ሻିఈ 

Case II:If ሼܽ௡,௞ሽ  is non-increasing in ݇. Then, using (28), 

෍ ܽ௡,௞ሺ݇ ൅ 1ሻିఈ
௡

௞ୀ଴

൑ ܽ௡,଴ ෍ሺ݇ ൅ 1ሻିఈ
௥

௞ୀ଴

൅ ܱሺ݊ିఈሻ ൌ ܱሺ݊ିఈሻ.  ז

 
With same notation previously stated, we define the matrix transformation ௡ܶ

஺ሺ݂ሻ 
as follows 
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௡ܶ
஺ሺ݂ሻ ൌ ෍ ܽ௡,௞ݏ௞ሺ݂; ሻݔ

௡

௞ୀ଴

. 

For a given positive sequence ሺ݌௡ሻ, if we consider the lower triangular matrix 
with entries ܽ௡,௞  ൌ ௡ି௞݌  ௡ܲ⁄ , ௡ܲ ൌ ∑ ௞݌

௡
௞ୀ଴ .Then the Nörlund transform can be 

regarded as a matrix transform, so this transformation is more general than the 
Nörlund transformations, also we note that the row sum of this matrix is clearly 1 
since  

௡ݏ
஺ ൌ ෍ ܽ௡,௞

௡

௞ୀ଴

ൌ ෍ ௡ି௞݌ ௡ܲ⁄
௡

௞ୀ଴

ൌ ௡ܲ ௡ܲ⁄ ൌ 1. 

 
Theorem 4.3.6: [7]Let݂ א ,ߙሺ݌݅ܮ   have monotone rows and satisfy ܣ ሻ, and let݌

ሺ21ሻ|ݏ௡
஺ െ 1| ൌ ܱሺ݊ିఈሻ. 

If one of the conditions 
ሺ݅ሻ      ݂݅            ݌ ൐ 1,         0 ൏ ߙ ൏ 1, and ܣ also satisϐies 

ሺ݊ ൅ 1ሻ max൛ܽ௡,଴, ܽ௡,௥ൟ ൌ ܱሺ1ሻ, where ݎ: ൌ ሾ݊ 2⁄ ሿ , 
ሺ݅݅ሻ     ݂݅            ݌ ൐ ߙ         ,1 ൌ 1 ,  
ሺ݅݅݅ሻ    ݂݅           ݌ ൌ 1, 0 ൏ ߙ ൏ 1,          and ܣ also satisϐies 
ሺ22ሻሺ݊ ൅ 1ሻ max൛ܽ௡,଴, ܽ௡,௡ൟ ൌ ܱሺ1ሻ, 
holds. Then  

ሺ23ሻԡ݂ െ ௡ܶሺ݂ሻԡ௣ ൌ ܱሺ݊ିఈሻ.   

 
Proof:Case I:݌ ൐  1,   0 ൏ ൏ ߙ   1. 

௡ܶሺ݂ሻ െ ݂ ൌ ෍ ܽ௡,௞ݏ௞ሺ݂ሻ
௡

௞ୀ଴

െ ௡ݏ
஺ · ݂ሺݔሻ ൅ ሺݏ௡

஺ െ 1ሻ · ݂ሺݔሻ

ൌ ෍ ܽ௡,௞ݏ௞ሺ݂ሻ
௡

௞ୀ଴

െ ෍ ܽ௡,௞ · ݂ሺݔሻ
௡

௞ୀ଴

൅ ሺݏ௡
஺ െ 1ሻ · ݂ሺݔሻ

ൌ ෍ ܽ௡,௞ · ൫ݏ௞ሺ݂ሻ െ ݂ሺݔሻ൯
௡

௞ୀ଴

൅ ሺݏ௡
஺ െ 1ሻ · ݂ሺݔሻ 

Using (21) and Theorem 4.2.5 and Lemma 4.3.5, 

ԡ ௡ܶሺ݂ሻ െ ݂ԡ௣ ൑ ෍ ܽ௡,௞ԡݏ௞ሺ݂ሻ െ ݂ԡ௣

௡

௞ୀ଴

൅ ௡ݏ|
஺ െ 1|ԡ݂ԡ௣

ൌ ෍ ܽ௡,௞ܱሺሺ݇ ൅ 1ሻିఈሻ
௡

௞ୀ଴

൅ ܱሺ݊ିఈሻ ൌ ܱሺ݊ିఈሻ ൅ ܱሺ݊ିఈሻ ൌ ܱሺ݊ିఈሻ. 

Case II: ݌ ൐  1, ൌ ߙ  1. 
ԡ ௡ܶሺ݂ሻ െ ݂ԡ௣ ൑ ԡ ௡ܶሺ݂ሻ െ ௡ሺ݂ሻԡ௣ݏ ൅ ԡݏ௡ሺ݂ሻ െ ݂ԡ௣. 

form theorem 4.2.5, when ߙ ൌ 1, 
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ԡݏ௡ሺ݂ሻ െ ݂ԡ௣ ൌ ܱሺ݊ିଵሻ 

Therefore, it remains to prove that 
ԡ ௡ܶሺ݂ሻ െ ௡ሺ݂ሻԡ௣ݏ ൌ ܱሺ݊ିଵሻ 

Define  

௡,௞ܣ ൌ ෍ ܽ௡,௜

௡

௜ୀ௞
, 

and using the fact that 

௡,଴ܣ ൌ ෍ ܽ௡,௜

௡

௜ୀ଴
ൌ ௡ݏ

஺, 

then we may write 

௡ܶሺ݂ሻ ൌ ෍ ܽ௡,௞ݏ௞ሺ݂ሻ
௡

௞ୀ଴

ൌ ෍ ܽ௡,௞ ෍ ௜ሺ݂ሻݑ
௞

௜ୀ଴

௡

௞ୀ଴

ൌ ܽ௡,଴ݑ଴ ൅ ܽ௡,ଵሺݑ଴ ൅ ଵሻݑ ൅ ڮ ൅ ܽ௡,௡ሺݑ଴ ൅ ڮ ൅ ௡ሻݑ

ൌ ଴൫ܽ௡,଴ݑ ൅ ڮ ܽ௡,௡൯ ൅ ڮ ൅ ௡ሺܽ௡,௡ሻݑ

ൌ ෍ ;௞ሺ݂ݑ௡,௞ܣ ሻݔ
௡

௞ୀ଴

. 

also, 

௡ሺ݂ሻݏ ൌ ෍ ;௞ሺ݂ݑ ሻݔ
௡

௞ୀ଴

ൌ ෍ ;௞ሺ݂ݑ௡,଴ܣ ሻݔ
௡

௞ୀ଴

൅ ෍൫1 െ ;௞ሺ݂ݑ௡,଴൯ܣ ሻݔ
௡

௞ୀ଴

ൌ ෍ ;௞ሺ݂ݑ௡,଴ܣ ሻݔ
௡

௞ୀ଴

൅ ሺ1 െ ௡ݏ
஺ሻ ෍ ;௞ሺ݂ݑ ሻݔ

௡

௞ୀ଴

ൌ ෍ ;௞ሺ݂ݑ௡,଴ܣ ሻݔ
௡

௞ୀ଴

൅ ሺ1 െ ௡ݏ
஺ሻݏ௡ሺ݂;  .ሻݔ

Now since ԡݏ௡ԡ௣ ൑ ԡ݂ԡ௣, then  

ԡ ௡ܶሺ݂ሻ െ ௡ሺ݂ሻԡ௣ݏ

ൌ ะ෍ ;௞ሺ݂ݑ௡௞ܣ ሻݔ
௡

௞ୀ଴

െ ෍ ;௞ሺ݂ݑ௡଴ܣ ሻݔ
௡

௞ୀ଴

൅ ሺݏ௡
஺ െ 1ሻݏ௡ሺ݂; ሻะݔ

௣

൑ ะ෍ ;௞ሺ݂ݑ௡௞ܣ ሻݔ
௡

௞ୀ଴

െ ෍ ;௞ሺ݂ݑ௡଴ܣ ሻݔ
௡

௞ୀ଴

ะ
௣

൅ |1 െ ௡ݏ
஺|ԡݏ௡ሺ݂; ሻԡ௣ݔ

൑ ะ෍൫ܣ௡,௞ െ ;௞ሺ݂ݑ௡,଴൯ܣ ሻݔ
௡

௞ୀଵ

ะ
௣

൅ |1 െ ௡ݏ
஺|ԡ݂ԡ௣ 
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Define for each 1 ൑ ݇ ൑ ݊, 

ܾ௡,௞ ൌ׷
௡,௞ܣ െ ௡,଴ܣ

݇ . 

Using summation by parts (Abel's transformation), by setting ݇ݑ௞ ൌ  ௞ݒ

෍൫ܣ௡,௞ െ ;௞ሺ݂ݑ௡,଴൯ܣ ሻݔ
௡

௞ୀଵ

ൌ ෍
௡,௞ܣ െ ௡,଴ܣ

݇ ;௞ሺ݂ݑ݇ ሻݔ
௡

௞ୀଵ

ൌ ෍ ܾ௡,௞ݒ௞

௡

௞ୀଵ

ൌ ෍൫ܾ௡,௞ െ ܾ௡,௞ାଵ൯ ෍ ௝ݒ

௞

௝ୀ଴

௡ିଵ

௞ୀଵ

൅ ܾ௡,௡ ෍ ௞ݒ

௡

௞ୀ଴

ൌ ෍൫ܾ௡,௞ െ ܾ௡,௞ାଵ൯ ෍ ௝ݑ݆

௞

௝ୀଵ

௡ିଵ

௞ୀଵ

൅ ܾ௡,௡ ෍ ௞ݑ݇

௡

௞ୀଵ

ൌ ܾ௡,௡ ෍ ;௞ሺ݂ݑ݇ ሻݔ
௡

௞ୀଵ

൅ ෍ ∆௞ܾ௡,௞

௡ିଵ

௞ୀଵ

෍ ;௝ሺ݂ݑ݆ .ሻݔ
௞

௝ୀ଴

 

Therefore  

ԡ ௡ܶሺ݂ሻ െ ௡ሺ݂ሻԡ௣ݏ ൑ ะܾ௡,௡ ෍ ;௞ሺ݂ݑ݇ ሻݔ
௡

௞ୀଵ

ะ
௣

൅ ቯ෍ ∆௞ܾ௡,௞

௡ିଵ

௞ୀଵ

෍ ;௝ሺ݂ݑ݆ ሻݔ
௞

௝ୀଵ

ቯ

௣

൅ ܱሺ݊ିଵሻ 
Now from Lemma 4.2.7 and 4.2.10, 

ቯ෍ ;௝ሺ݂ݑ݆ ሻݔ
௡

௝ୀଵ

ቯ

௣

ൌ ฮሺ݊ ൅ 1ሻ൫ݏ௡ሺ݂ሻ െ ௡ሺ݂ሻ൯ฮ௣ߪ

ൌ ሺ݊ ൅ 1ሻܱሺ݊ିଵሻ
ൌ ܱሺ1ሻ. 

Note that 

หܾ௡,௡ห ൌ  
1
݊ หܣ௡,଴ െ ௡,௡หܣ  ൌ  

1
݊ ቚݏ௡

ሺ஺ሻ െ ܽ௡,௡ቚ

൑
1
݊ ቚݏ௡

ሺ஺ሻ െ 1ቚ ൅
1
݊ ห1 െ ܽ௡,௡ห

ൌ
1
݊ ܱሺ݊ିଵሻ ൅ ݇ ൌ  ሺ݊ ሻିଵܱሺ1ሻ. 

Thus 

ะܾ௡,௡ ෍ ;௝ሺ݂ݑ݆ ሻݔ
௡

௞ୀଵ

ะ
௣

ൌ ܱሺ݊ିଵሻ. 

We may write 

∆௞ܾ௡,௞ ൌ ܾ௡,௞ െ ܾ௡,௞ାଵ ൌ
௡,௞ܣ െ ௡,଴ܣ

݇ െ
௡,௞ାଵܣ െ ௡,଴ܣ

݇ ൅ 1

ൌ
௡,௞ܣ െ ௡,଴ܣ ൅ ௡,௞ାଵܣ െ ௡,௞ାଵܣ ൅ ௡,଴ܣ െ ௡,଴ܣ

݇ െ
௡,௞ାଵܣ െ ௡,଴ܣ

݇ ൅ 1  
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          ൌ
௡,௞ܣ െ ௡,଴ܣ െ ௡,௞ାଵܣ ൅ ௡,଴ܣ

݇
൅

௡,௞ାଵܣ െ ௡,଴ܣ

݇
െ

௡,௞ାଵܣ െ ௡,଴ܣ

݇ ൅ 1

ൌ
1
݇ ∆௞൫ܣ௡,௞൯ ൅

௡,௞ାଵܣ െ ௡,଴ܣ

݇ െ
௡,௞ାଵܣ െ ௡,଴ܣ

݇ ൅ 1

ൌ
1
݇ ∆௞൫ܣ௡,௞൯ ൅

௡,௞ାଵܣ െ ௡,଴ܣ

݇ሺ݇ ൅ 1ሻ

ൌ
1

݇ሺ݇ ൅ 1ሻ ൣሺ݇ ൅ 1ሻ∆௞൫ܣ௡,௞൯ ൅ ௡,௞ାଵܣ െ ௡,଴൧ܣ

ൌ
1

݇ሺ݇ ൅ 1ሻ ൣሺ݇ ൅ 1ሻ൫ܣ௡,௞ െ ௡,௞ାଵ൯ܣ ൅ ൫ܣ௡,௞ାଵ െ ௡,଴൯൧ܣ

ൌ
1

݇ሺ݇ ൅ 1ሻ ൥݇൫ܣ௡,௞ െ ௡,௞ାଵ൯ܣ ൅ ൫ܣ௡,௞ െ ௡,௞ାଵ൯ܣ െ ෍ ܽ௡,௥

௞

௥ୀ଴

൩

ൌ
1

݇ሺ݇ ൅ 1ሻ ൥݇ ൭෍ ܽ௡,௥

௡

௥ୀ௞

െ ෍ ܽ௡,௥

௡

௥ୀ௞ାଵ

൱ ൅ ൭෍ ܽ௡,௥

௡

௥ୀ௞

െ ෍ ܽ௡,௥

௡

௥ୀ௞ାଵ

൱ െ ෍ ܽ௡,௥

௞

௥ୀ଴

൩

ൌ
1

݇ሺ݇ ൅ 1ሻ ൥݇ܽ௡,௞ ൅ ܽ௡,௞ െ ෍ ܽ௡,௥

௞

௥ୀ଴

൩ ൌ
1

݇ሺ݇ ൅ 1ሻ ൥ሺ݇ ൅ 1ሻܽ௡,௞ െ ෍ ܽ௡,௥

௞

௥ୀ଴

൩ 

If ൛ܽ௡,௞ൟ is non increasing in ݇,then ∆௞ܾ௡,௞ ൑ 0, and if ൛ܽ௡,௞ൟ non-decreasing in ݇ implies 
that ∆௞ܾ௡,௞ ൒ 0, so that 

෍ห∆௞ܾ௡,௞ห ൌ หܾ௡,ଵ െ ܾ௡,௡ห ൌ ฬܣ௡,ଵ െ ௡,଴ܣ െ
௡,௡ܣ െ ௡,଴ܣ

݊ ฬ
௡ିଵ

௞ୀଵ

൑ หܣ௡,ଵ െ ௡,଴หܣ ൅ ฬ
௡,௡ܣ െ ௡,଴ܣ

݊ ฬ

ൌ ܱሺ݊ିଵሻ ൅
ܱሺ1ሻ

݊ ൌ ܱሺ݊ିଵሻ. 

and (23) is satisfied. 

Case III: ݌ ൌ  1, 0 ൏ ൏ ߙ   1, From (21), using Abel's transformation, Lemma 4.2.6 , and 
the fact that ܽ௡,௡ାଵ ൌ  0, 
 

ԡ ௡ܶሺ݂ሻ െ ݂ԡଵ ൌ ะ෍ ܽ௡,௞ሺݏ௞ሺ݂ሻ െ ݂ሻ ൅ ሺ1 െ ௡ݏ
஺ሻ݂

௡

௞ୀ଴

ะ
ଵ

ൌ ะ෍ ∆௞ܽ௡,௞

௡ିଵ

௞ୀ଴

൭෍ሺݏ௜ሺ݂ሻ െ ݂ሻ
௞

௜ୀ଴

൱ ൅ ܽ௡௡ ෍ሺݏ௞ሺ݂ሻ െ ݂ሻ
௡

௞ୀ଴

൅ |ሺ1 െ ௡ݏ
஺ሻ|݂ะ

ଵ

ൌ ะ෍ ∆௞ܽ௡,௞ ෍ሺݏ௜ሺ݂ሻ െ ݂ሻ ൅ ሺ1 െ ௡ݏ
஺ሻ݂

௞

௜ୀ଴

௡

௞ୀ଴

ะ
ଵ
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                         ൑ ะ෍ ∆௞ܽ௡,௞ ෍ሺݏ௜ሺ݂ሻ െ ݂ሻ
௞

௜ୀ଴

௡

௞ୀ଴

ะ
ଵ

൅ |1 െ ௡ݏ
஺|ԡ݂ԡଵ

൑ ෍ሺ݇ ൅ 1ሻห∆௞ܽ௡,௞หԡߪ௞ሺ݂ሻ െ ሺ݂ሻԡଵ ൅ ܱሺ݊ିఈሻ
௡

௞ୀ଴

ൌ ෍ห∆௞ܽ௡,௞หܱሺሺ݇ ൅ 1ሻଵିఈሻ
௡

௞ୀ଴

൅ ܱሺ݊ିఈሻ

ൌ ܱሺሺ݊ ൅ 1ሻଵିఈሻ ෍ห∆௞ܽ௡,௞ห ൅ ܱሺ݊ିఈሻ
௡

௞ୀ଴

 

If ሼܽ௡,௞ሽ is non-increasing in݇, then 

෍ห∆௞ܽ௡,௞ห
௡

௞ୀ଴

ൌ ܽ௡,௡ ൅ ෍൫ܽ௡,௞ െ ܽ௡,௞ାଵ൯ ൌ ܽ௡,௡

௡ିଵ

௞ୀ଴

൅ ܽ௡,௢ െ ܽ௡,௡ ൌ ܽ௡,௢ 

If ܽ௡,௞ is non-decreasing in݇, then 

෍ห∆௞ܽ௡,௞ห
௡

௞ୀ଴

ൌ ܽ௡,௡ ൅ ܽ௡,௡ െ ܽ௡,௢ ൑ 2ܽ௡,௡ 

Using (22), 

ԡ ௡ܶሺ݂ሻ െ ݂ԡଵ ൌ ܱሺሺ݊ ൅ 1ሻିఈሻ ൌ ܱሺ݊ିఈሻ.  ז

 

It easy to examine that all conditions of theorem 4.3.6 is more general than theorem 4.2.11, 
since if we consider the entries of the matrix A to be ܽ௡,௞ ൌ ௡ି௞݌

௡ܲ
ൗ , then A can be 

considered as a Nörlund matrix, that is, a matrix that defines a Nörlund means by it is 
rows, for this matrix ݏ௡

஺ ൌ 1, so (21) is satisfied.   
 
Let us consider the case one of 4.2.11,that is, when ݌ ൐ 1, 0 ൏ ߙ ൏ 1, (1) holds, and ሺ݌௡ሻ 
is non-decreasing then ܽ௡,௞ is non-increasing sequence in ݇  so  

ሺ݊ ൅ 1ሻ max൛ܽ௡,଴, ܽ௡,௥ൟ ൌ ሺ݊ ൅ 1ሻܽ௡,଴ ൌ ሺ݊ ൅ 1ሻ
௡݌

௡ܲ
ൌ ܱሺ1ሻ 

Thus apart of condition I of theorem 4.3.6 is satisfied. 
 
Now assume for the same conditions but for a non-increasing sequence ሺ݌௡ሻ then ܽ௡,௞ is 
non-decreasing in ݇, and we may write  

ሺ݊ ൅ 1ሻ max൛ܽ௡,଴, ܽ௡,௥ൟ ൑
ሺ݊ ൅ 1ሻሺ݊ െ ݎ ൅ 1ሻ݌௡ି௥

ሺ݊ െ ݎ ൅ 1ሻ ௡ܲି௥
ൌ ܱሺ1ሻ 

for which the case one is satisfied. 
Note that condition II of theorem 4.3.6 is always hold here whenever ݌ ൐ 1, ߙ ൌ 1. 
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If we assume the last condition of 4.2.11, that is, for ݌ ൌ 1,0 ൏ ߙ ൏ 1, condition (1) holds 
and ݌௡ is non-decreasing sequence, then ܽ௡,௞ is non-increasing and  

ሺ݊ ൅ 1ሻ max൛ܽ௡,଴, ܽ௡,௡ൟ ൌ ሺ݊ ൅ 1ሻܽ௡,଴ ൌ ሺ݊ ൅ 1ሻ
௡݌

௡ܲ
ൌ ܱሺ1ሻ. 

and that is condition III of 4.3.6, so by the previous argument we saw that theorem 4.3.6 is 
more general than theorem 4.2.11, also we can deduce it from this theorem when we 
restrict the matrix A to be Nörlund matrix. 
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Chapter Five 

Trigonometric Approximation in the Weighted ࢖ࡸ Spaces 

 
5.1 Trigonometrical approximation in the means 

 
So far the theorems stated are giving the approximation of function in the non-weighted 
Lebesgue space, we discussed two ways, approximation in the means (Nörlund means) and 
the by matrix transformation, in this section an extension of  these theorems is discussed, 
that is, the approximation will be for function in the weighted Lebesgue space, we note 
here that following theorems are just a generalization of the proceeding ones by giving 
conditions in weighted Lebesgue space. 

The same theorems stated before, namely 4.2.11 and 4.2.12, are investigated here with 
more general class of functions, the weighted ܮ௣space, again we develop these theorems by 
offering different manners of approximation, specially the matrix transformation method. 

Note: In the weighted ܮ௣ space, we use the Muckenhoupt weights ࣛ௣, this kind of weights 
plays a critical rule in many different aspects of mathematics. 

 
Definition 5.1.1: Let 1 ൏ ݌ ൏ ∞, ݓ א ࣛ௣, and let ݂ א ௪ܮ

௣ .Then the modulus of continuity 
is defined as 

߱௣,௪ሺ݂; ሻߜ ൌ supԡ∆௛ሺ݂ሻԡ௣,௪ , ߜ ݎ݋݂ ൐ 0. 

and the supremum is taken over all h such that |݄| ൑   where ,ߜ

∆௛ሺ݂ሻሺݔሻ ൌ
1
݄ න|݂ሺݔ ൅ ሻݐ െ ݂ሺݔሻ|݀ݐ

௛

଴

 

Note: The Lipschitz class ݌݅ܮሺߙ, ,݌ ሻ for 0ݓ ൏ ߙ ൑ 1 is given by 

,ߙሺ݌݅ܮ ,݌ ሻݓ ൌ ൛݂ א ௪ܮ
௣ : ߱௣,௪ሺ݂; ሻߜ ൌ ܱሺߜఈሻ, ߜ ൐ 0ൟ 

 
We shall use the same notation as before, also we will do the approximation on the same 
means specially Nörlund and Riesz means. 
 
Lemma 5.1.2: [2] Let1 ൏ ݌ ൏ ∞, ߱ א ࣛ௣, 0 ൏ ߙ ൑ 1.Then the estimate  

ԡ݂ െ ௡ሺ݂ሻԡ௣,ఠݏ ൌ ܱሺ݊ିఈሻ 
holds for every ݂ א ,ߙሺ݌݅ܮ ,݌ ߱ሻ and ݊ ൌ 1,2, … 
 
Lemma 5.1.3: [2] Let 1 ൏ ݌ ൏ ∞, ߱ א ࣛ௣.Then, for ݂ א ,ሺ1݌݅ܮ ,݌ ߱ሻ the estimate  

ԡݏ௡ሺ݂ሻ െ ௡ሺ݂ሻԡ௣,ఠߪ ൌ ܱሺ݊ିଵሻ     ݊ ൌ 1,2, …  
holds. 
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Theorem 5.1.4: [2] Let1 ൏ ݌ ൏ ∞, ߱ א ࣛ௣, 0 ൏ ߙ ൑ 1, and letሺ݌௡ሻ଴
ஶ  be a monotonic 

sequence of positive real numbers such that  

ሺ1ሻሺ݊ ൅ 1ሻ݌௡ ൌ ܱሺ ௡ܲሻ 

then, for ݂ א ,ߙሺ݌݅ܮ ,݌ ߱ሻ the estimate  

ԡ݂ െ ௡ܰሺ݂ሻԡ௣,ఠ ൌ ܱሺ݊ିఈሻ     ݊ ൌ 1,2, …     

holds. 

Proof:Let0 ൏ ൏ ߙ   1.Since 

݂ ሺݔሻ  ൌ
1
௡ܲ

෍ ሻݔ௡ି௠݂ሺ݌
௡

௠ୀ଴

 

we have 

݂ሺݔሻ െ ௡ܰሺ݂ሻሺݔሻ ൌ
1
௡ܲ

෍ ሻݔ௡ି௠ሼ݂ሺ݌ െ ሻሽݔ௠ሺ݂ሻሺݏ
௡

௠ୀ଴

 

by Lemma 5.1.2, Lemma 4.2.8 (sec 4.2) and condition (1) we obtain 

ԡ݂ െ ௡ܰሺ݂ሻԡ௣,ఠ ൑
1
௡ܲ

෍ ௡ି௠ԡ݂݌ െ ௠ሺ݂ሻԡ௣,ఠݏ

௡

௠ୀ଴

ൌ
1
௡ܲ

෍ ௡ି௠ԡ݂݌ െ ௠ሺ݂ሻԡ௣,ఠݏ

௡

௠ୀଵ

൅ 
௡݌

௡ܲ
ԡ݂ െ ଴ሺ݂ሻԡ௣,ఠݏ

ൌ
1
௡ܲ

෍ ௡ି௠݌

௡

௠ୀଵ

 ܱሺ݉ିఈሻ ൅
௡݌

௡ܲ
ԡ݂ െ ଴ሺ݂ሻԡ௣,ఠݏ

ൌ
1
௡ܲ

ܱሺ݊ିఈ
௡ܲሻ ൅ ܱ ൬

1
݊ ൅ 1൰

ൌ ܱሺ݊ିఈሻ 
 
Now let ߙ ൌ  1, it is clear that (by Lemma 4.2.9) 

௡ܰሺ݂ሻ  ൌ
1
௡ܲ

෍ ௡ܲି௠ݑ௠ሺ݂ሻ
௡

௠ୀ଴

ሺݔሻ 

by Abel transform, 

–௡ሺ݂ሻݏ ௡ܰሺ݂ሻ ൌ
1
௡ܲ

෍ ሺ ௡ܲ െ ௡ܲି௠ሻݑ௠ሺ݂ሻ
௡

௠ୀଵ

ൌ
1
௡ܲ

෍ ൬ ௡ܲ െ ௡ܲି௠

݉ െ ௡ܲ െ ௡ܲିሺ௠ାଵሻ

݉ ൅ 1 ൰ ቌ෍ ௞ݑ݇

௠

௞ୀଵ

ሺ݂ሻቍ
௡

௠ୀଵ

൅
1

݊ ൅ 1 ෍ ௞ݑ݇

௡

௞ୀଵ

ሺ݂ሻ 

and hence 
 
ԡݏ௡ሺ݂ሻ െ ௡ܰሺ݂ሻԡ௣,ఠ

൑
1
௡ܲ

෍ ∆௠ ฬ ௡ܲ െ ௡ܲି௠

݉ ฬ · ะ෍ ௞ݑ݇

௠

௞ୀଵ

ሺ݂ሻะ
௣,ఠ

௡

௠ୀଵ

൅
1

݊ ൅ 1 ะ෍ ௞ݑ݇

௠

௞ୀଵ

ሺ݂ሻะ
௣,ఠ
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Since by lemma 4.2.10 

ሻݔ௡ሺ݂ሻሺݏ െ ሻݔ௡ሺ݂ሻሺߪ ൌ
1

݊ ൅ 1 ෍ ݇
௡

௞ୀଵ

 ,ሻݔ௞ሺ݂ሻሺݑ

Thus by Lemma 5.1.3 we get  

ะ෍ ௞ݑ݇

௡

௞ୀଵ

ሺ݂ሻะ
௣,ఠ

ൌ ሺ݊ ൅ 1ሻԡݏ௡ሺ݂ሻ െ ௡ሺ݂ሻԡ௣,ఠߪ ൌ ܱሺ1ሻ 

Hence, 

ሺ2ሻԡݏሺ݂ሻ െ ௡ܰሺ݂ሻԡ௣,ఠ ൑
1
௡ܲ

෍ ฬ ௡ܲ െ ௡ܲି௠

݉ െ ௡ܲ െ ܲ௡ିሺ௠ାଵሻ

݉ ൅ 1 ฬ ܱሺ1ሻ
௡

௠ୀଵ

൅ ܱሺ݊ିଵሻ

ൌ ܱ ൬
1
௡ܲ

൰ ෍ ฬ ௡ܲ െ ௡ܲି௠

݉ െ ௡ܲ െ ܲ௡ିሺ௠ାଵሻ

݉ ൅ 1 ฬ
௡

௠ୀଵ
൅ ܱሺ݊ିଵሻ 

By a simple computation, one can see that 

௡ܲ െ ௡ܲି௠

݉ െ ௡ܲ െ ܲ௡ିሺ௠ାଵሻ

݉ ൅ 1 ൌ
1

݉ሺ݉ ൅ 1ሻ ൭ ෍ ௞݌

௡

௞ୀ௡ି௠ାଵ

െ  ௡ି௠൱݌݉

which shows that 

൬ ௡ܲ െ ௡ܲି௠

݉ ൰
௠ୀଵ

௡ାଵ

 

is non-increasing whenever ሺ݌௡ሻis non-decreasing and non-decreasing whenever ሺ݌௡ሻis 
non-increasing. This implies that 

෍ ฬ ௡ܲ െ ௡ܲି௠

݉ െ ௡ܲ െ ܲ௡ିሺ௠ାଵሻ

݉ ൅ 1 ฬ ൌ ฬ݌௡ െ ௡ܲ

݊ ൅ 1ฬ
௡

௠ୀଵ

ൌ
1

݊ ൅ 1 ܱሺ ௡ܲሻ 

This and the inequality (2) yield 

ԡݏ௡ሺ݂ሻ െ ௡ܰሺ݂ሻԡ௣,ఠ ൌ ܱ ൬
1
௡ܲ

൰ ෍ ฬ ௡ܲ െ ௡ܲି௠

݉ െ ௡ܲ െ ܲ௡ିሺ௠ାଵሻ

݉ ൅ 1 ฬ
௡

௠ୀଵ

൅ ܱሺ݊ିଵሻ

ൌ ܱ ൬
1
௡ܲ

൰
1

݊ ൅ 1 ܱሺ ௡ܲሻ ൅ ܱሺ݊ିଵሻ

ൌ ܱ ൬
1
݊൰ ൅ ܱሺ݊ିଵሻ

ൌ  ܱሺ݊ିଵሻ 
 
Combining the last estimate with that of Lemma 5.1.2 we obtain 

ԡ݂ െ ௡ܰሺ݂ሻԡ௣,ఠ ൑ ԡ݂ െ ௡ሺ݂ሻԡ௣,ఠݏ ൅ ԡݏ௡ሺ݂ሻ െ ௡ܰሺ݂ሻԡ௣,ఠ ൌ ܱሺ݊ିଵሻז 
 

Theorem 5.1.5: [2] Let1 ൏ ݌ ൏ ∞, ߱ א ࣛ௣, 0 ൏ ߙ ൑ 1, and letሺ݌௡ሻ be a sequence of 
positive real numbers satisfying the relation  
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ሺ3ሻ ෍ ฬ ௠ܲ

݉ ൅ 1 െ ௠ܲାଵ

݉ ൅ 2ฬ
௡ିଵ

௠ୀ଴

ൌ ܱ ൬ ௡ܲ

݊ ൅ 1൰ 

Then, for ݂ א ,ߙሺ݌݅ܮ ,݌ ߱ሻ the estimate  

ԡ݂ െ ܴ௡ሺ݂ሻԡ௣,ఠ ൌ ܱሺ݊ିఈሻ            ݊ ൌ 1,2, … 

is satisfied. 

Proof: Let 0 ൏ ൏ ߙ   1,by definition of ܴ௡ሺ݂ሻሺݔሻ. 

݂ሺݔሻ െ ܴ௡ሺ݂ሻሺݔሻ ൌ
1
௡ܲ

෍ ሻݔ௠ሼ݂ሺ݌ െ ሻሽݔ௠ሺ݂ሻሺݏ
௡

௠ୀ଴

 . 

from Lemma 5.1.2, we get 

ሺ4ሻԡ݂ െ ܴ௡ሺ݂ሻԡ௣,ఠ ൑
1
௡ܲ

෍ ௠ԡ݂݌ െ ௠ሺ݂ሻԡ௣,ఠݏ

௡

௠ୀ଴

ൌ ܱ ൬
1
௡ܲ

൰ ෍ ௠݌

௡

௠ୀଵ

݉ିఈ ൅
଴݌

௡ܲ
ԡ݂ െ ଴ሺ݂ሻԡ௣,ఠݏ

ൌ ܱ ൬
1
௡ܲ

൰ ෍ ௠݌

௡

௠ୀଵ

݉ିఈ 

by Abel transform, 

෍ ௠݌

௡

௠ୀଵ

݉ିఈ ൌ ෍ ௠݌

௡ିଵ

௠ୀଵ

ሼ݉ିఈ – ሺ݉ ൅ 1ሻିఈሽ ൅ ݊ିఈ
௡ܲ

൑ ෍ ݉ିఈ ௠݌

݉ ൅ 1

௡ିଵ

௠ୀଵ

൅ ݊ିఈ
௡ܲ

ൌ ෍ ൬ ௠ܲ

݉ ൅ 1
െ ௠ܲାଵ

݉ ൅ 2
൰ ൭෍ ݇ିఈ

௠

௞ୀଵ

൱
௡ିଵ

௠ୀଵ

൅ ௡ܲ

݊ ൅ 1
෍ ݉ିఈ
௡ିଵ

௠ୀଵ

൅ ݊ିఈ
௡ܲ

ൌ ܱሺ݊ିఈ
௡ܲሻ 

by condition (3).This yield 

෍ ௠݉ିఈ݌
௡ିଵ

௠ୀଵ

ൌ ܱሺ݊ିఈ
௡ܲሻ 

and from this and (4) we get  
ԡ݂ െ ܴ௡ሺ݂ሻԡ௣,ఠ ൌ ܱሺ݊ିఈሻ 

Let us consider the case ߙ ൌ  1.By Abel transform, 

ܴ௡ሺ݂ሻሺݔሻ ൌ
1
௡ܲ

෍ ሼ ௠ܲሺݏ௠ሺ݂ሻሺݔሻ െ ሻሻݔ௠ାଵሺ݂ሻሺݏ ൅ ௡ܲݏ௡ሺ݂ሻሺݔሻሽ
௡ିଵ

௠ୀ଴

ൌ
1
௡ܲ

෍ ௠ܲ൫െݑ௠ାଵሺ݂ሻሺݔሻ൯൅ݏ௡ሺ݂ሻሺݔሻ,
௡ିଵ

௠ୀ଴

 

 
Hence  
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ܴ௡ሺ݂ሻሺݔሻ െ ሻݔ௡ሺ݂ሻሺݏ ൌ െ
1
௡ܲ

෍ ௠ܲ

௡ିଵ

௠ୀ଴ 

 ሻݔ௠ାଵሺ݂ሻሺݑ

Using Abel transform again yield 

෍ ௠ܲ

௡ିଵ

௠ୀ଴ 

ሻݔ௠ାଵሺ݂ሻሺݑ ൌ ෍ ௠ܲ

݉ ൅ 1

௡ିଵ

௠ୀ଴ 

ሺ݉ ൅ 1ሻݑ௠ାଵሺ݂ሻሺݔሻ

ൌ ෍ ൬ ௠ܲ

݉ ൅ 1 െ ௠ܲାଵ

݉ ൅ 2൰ ൭෍ሺ݇ ൅ 1ሻݑ௞ାଵሺ݂ሻሺݔሻ
௠

௞ୀ଴

൱
௡ିଵ

௠ୀ଴

൅ ௡ܲ

݊ ൅ 1 ෍ሺ݇ ൅ 1ሻݑ௞ାଵሺ݂ሻሺݔሻ
௡ିଵ

௞ୀ଴

 

Thus, by considering lemma 5.1.3 and (3) we obtain 

ะ ෍ ௠ܲ

௡ିଵ

௠ୀ଴ 

௠ାଵሺ݂ሻะݑ
௣,ఠ

൑ ෍ ฬ ௠ܲ

݉ ൅ 1 െ ௠ܲାଵ

݉ ൅ 2ฬ
௡ିଵ

௠ୀ଴ 

ะ෍ሺ݇ ൅ 1ሻ
௠

௞ୀ଴ 

௞ାଵሺ݂ሻะݑ
௣,ఠ

൅ ௡ܲ

݊ ൅ 1 ะ෍ሺ݇ ൅ 1ሻ
௡ିଵ

௞ୀ଴ 

௞ାଵሺ݂ሻะݑ
௣,ఠ

ൌ ෍ ฬ ௠ܲ

݉ ൅ 1 െ ௠ܲାଵ

݉ ൅ 2ฬ
௡ିଵ

௠ୀ଴ 

ሺ݉ ൅ 2ሻԡݏ௠ାଵሺ݂ሻ െ ௠ାଵሺ݂ሻԡ௣,ఠߪ

൅ ௡ܲԡݏ௡ሺ݂ሻ െ ௡ሺ݂ሻԡ௣,ఠߪ

ൌ ܱሺ1ሻ ෍ ฬ ௠ܲ

݉ ൅ 1 െ ௠ܲାଵ

݉ ൅ 2ฬ ൅ ܱ ൬ ௡ܲ

݊ ൰
௡ିଵ

௠ୀ଴ 

 

This gives  

ԡܴ௡ሺ݂ሻ െ ௡ሺ݂ሻԡ௣,ఠݏ ൌ
1
௡ܲ

ะ ෍ ௠ܲ

௡ିଵ

௠ୀ଴ 

௠ାଵሺ݂ሻะݑ
௣,ఠ

ൌ
1
௡ܲ

ܱ ൬ ௡ܲ

݊ ൰

ൌ ܱ ൬
1
݊൰ 

combining this estimate with Lemma 5.1.2 yields 
 

ԡ݂ െ ܴ௡ሺ݂ሻԡ௣,ఠ ൑ ԡ݂ െ ௡ሺ݂ሻԡ௣,ఠݏ ൅ ԡܴ௡ሺ݂ሻ െ ௡ሺ݂ሻԡ௣,ఠݏ ൌ ܱሺ݊ିଵሻז 
 

5.2 Approximation by matrix transformation 

 

In the proceeding section we introduce the approximation by means, here we extend the 
method to the general case in which the matrix transformation is involved, with the same 
notations stated before we assume that A is a lower infinite triangular matrix and ௡ܶ

஺ is 
given by  

௡ܶ
஺ሺ݂ሻ ൌ ෍ ܽ௡,௞ݏ௡ሺ݂ሻ

௡

௞ୀ଴
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Lemma 5.2.1: [1]Let ܣ ൌ  ሺܽ௡,௞ሻ be an infinite lower triangular matrix and 0 ൏ ൏ ߙ   1. 
If one of the conditions 

 has almost monotone decreasing rows and ܣ .1
ሺ݊ ൅  1ሻܽ௡,଴ ൌ  ܱሺ1ሻ, 

 ,has almost monotone increasing rows ܣ .2

ሺ݊ ൅  1ሻܽ௡,௥ ൌ  ܱሺ1ሻ ݎ ݁ݎ݄݁ݓ ൌ׷ ቂ
݊
2ቃ, 

and 
ቚݏ௡

ሺ஺ሻ െ 1ቚ ൌ ܱሺ݊ିఈሻ. 

holds, then 

ሺ6ሻ ෍ ݇ିఈܽ௡,௞

௡

௞ୀଵ

ൌ ܱሺ݊ିఈሻ. 

Proof: Condition 1: since 

෍ ݇ିఈ
௡

௞ୀଵ

ൌ ܱሺ݊ଵିఈሻandܽ௡,௞ ൑ ݇ ௡,଴forܽܭ ൌ 1, . . , ݊ 

we get  

෍ ݇ିఈܽ௡,௞

௡

௞ୀଵ

൑ ௡,଴ܽܭ ෍ ݇ିఈ
௡

௞ୀଵ

ൌ ܱ ൬
1

݊ ൅ 1൰ ܱሺ݊ଵିఈሻ

ൌ ܱሺ݊ିఈሻ. 

Condition 2: Since 

ܽ௡,௞ ൑ ݇ ௡,௥forܽܭ ൌ 1, … , ௡ݏandቚ ݎ
ሺ஺ሻ െ 1ቚ ൌ ܱሺ݊ିఈሻ. 

We have  

෍ ݇ିఈ
௡

௞ୀଵ

ܽ௡,௞ ൌ ෍ ݇ିఈ
௥

௞ୀଵ

ܽ௡,௞ ൅ ෍ ݇ିఈ
௡

௞ୀ௥ାଵ

ܽ௡,௞

൑ ௡,௥ܽܭ ෍ ݇ିఈ
௥

௞ୀଵ

൅ ሺݎ ൅ 1ሻିఈ ෍ ܽ௡,௞

௡

௞ୀ௥ାଵ

൑ ௡,௥ܽܭ ෍ ݇ିఈ
௡

௞ୀଵ

൅ ሺݎ ൅ 1ሻିఈ ෍ ܽ௡,௞

௡

௞ୀ଴

ൌ ܱ ൬
1

݊ ൅ 1൰ ܱሺ݊ଵିఈሻ ൅ ܱሺ݊ିఈሻݏ௡
ሺ஺ሻ

ൌ ܱሺ݊ିఈሻ.  ז
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Theorem 5.2.2: [1]Let 1 ൏ ݌ ൏ ∞, ݓ א ࣛ௣, 0 ൏ ߙ ൏ 1, ݂ א ,ߙሺ݌݅ܮ ,݌ ൌ ܣ ሻandݓ
 ሺܽ௡,௞ሻ be a lower triangular regular matrix with 

ቚݏ௡
ሺ஺ሻ െ 1ቚ ൌ ܱሺ݊ିఈሻ. 

If one of the conditions 

݅.   has almost monotone decreasing rows andܣ
ሺ݊ ൅  1ሻܽ௡,଴ ൌ  ܱሺ1ሻ, 

݅݅.  has almost monotone increasing rows andܣ
ሺ݊ ൅  1ሻܽ௡,௥ ൌ  ܱሺ1ሻ where ݎ ൌ׷  ሾ݊/2ሿ, 

holds, then 
ቛ݂ െ ௡ܶ

ሺ஺ሻሺ݂ሻቛ
௣,௪

ൌ ܱሺ݊ିఈሻ. 

Proof: By definition of ௡ܶ
ሺ஺ሻሺ݂ሻ, we have 

௡ܶ
ሺ஺ሻሺ݂ሻሺݔሻ െ ݂ሺݔሻ ൌ ෍ ܽ௡,௞ݏ௞ሺ݂ሻሺݔሻ

௡

௞ୀ଴

െ ݂ሺݔሻ

ൌ ෍ ܽ௡,௞ݏ௞ሺ݂ሻ
௡

௞ୀ଴

െ ݂ሺݔሻ ൅ ௡ݏ
ሺ஺ሻ݂ሺݔሻ െ ௡ݏ

ሺ஺ሻ݂ሺݔሻ

ൌ ෍ ܽ௡,௞ݏ௞ሺ݂ሻ
௡

௞ୀ଴

െ ௡ݏ
ሺ஺ሻ݂ሺݔሻ ൅ ௡ݏ

ሺ஺ሻ݂ሺݔሻ െ ݂ሺݔሻ

ൌ ෍ ܽ௡,௞ݏ௞ሺ݂ሻ
௡

௞ୀ଴

െ ෍ ܽ௡,௞

௡

௞ୀ଴

݂ሺݔሻ ൅ ቀݏ௡
ሺ஺ሻ െ 1ቁ݂ሺݔሻ

ൌ ෍ ܽ௡,௞൫ݏ௞ሺ݂ሻ െ ݂ሺݔሻ൯
௡

௞ୀ଴

൅ ቀݏ௡
ሺ஺ሻሺ݂ሻ െ 1ቁ݂ሺݔሻ. 

Hence, by Lemma 5.1.2 and Lemma 5.2.1 we obtain 

ቛ݂ െ ௡ܶ
ሺ஺ሻሺ݂ሻቛ

௣,௪
൑ ෍ ܽ௡,௞ԡݏ௞ሺ݂ሻ െ ݂ԡ௣,௪

௡

௞ୀ଴

൅ ቚݏ௡
ሺ஺ሻሺ݂ሻ െ 1ቚԡ݂ԡ௣,௪

ൌ ෍ ܽ௡,௞ԡݏ௞ሺ݂ሻ െ ݂ԡ௣,௪

௡

௞ୀଵ

൅ ܽ௡,଴ԡݏ଴ሺ݂ሻ െ ݂ԡ௣,௪ ൅ ቚݏ௡
ሺ஺ሻሺ݂ሻ െ 1ቚԡ݂ԡ௣,௪

ൌ ෍ ܽ௡,௞ܱሺ݇ିఈሻ
௡

௞ୀଵ

൅ ܱ ൬
௡݌

௡ܲ
൰ ൅ ܱሺ݊ିఈሻ

ൌ ܱሺ݊ିఈሻ ൅ ܱ ൬
1

݊ ൅ 1൰ ൅ ܱሺ݊ିఈሻ ൌ ܱሺ݊ିఈሻ ൅ ܱ ൬
1
݊൰ ൌ ܱሺ݊ିఈሻ 

Since ቚݏ௡
ሺ஺ሻ െ 1ቚ ൌ ܱሺ݊ିఈሻ.  ז

 
Theorem 5.2.3: [1]Let 1 ൏ ݌ ൏ ∞, ݓ א ࣛ௣, ݂ א ,ሺ1݌݅ܮ ,݌ ܣ ሻ andݓ ൌ ሺܽ௡,௞ሻbe a lower 

triangular regular matrix withቚݏ௡
ሺ஺ሻ െ 1ቚ ൌ ܱሺ݊ିଵሻ. If one of the conditions 
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ሺ݅ሻ ෍หܽ௡,௞ିଵ െ ܽ௡,௞ห
௡ିଵ

௞ୀଵ

ൌ ܱሺ݊ିଵሻ, 

ሺ݅݅ሻ ෍ሺ݊ െ ݇ሻหܽ௡,௞ିଵ െ ܽ௡,௞ห
௡ିଵ

௞ୀଵ

ൌ ܱሺ1ሻ, 

holds, then 
ቛ݂ െ ௡ܶ

ሺ஺ሻሺ݂ሻቛ
௣,௪

ൌ ܱሺ݊ିଵሻ 

Proof: By Lemma 5.1.2 

ቛ݂ െ ௡ܶ
ሺ஺ሻሺ݂ሻቛ

௣,௪
ൌ ቛ݂ െ ௡ሺ݂ሻݏ ൅ ௡ሺ݂ሻݏ െ ௡ܶ

ሺ஺ሻሺ݂ሻቛ
௣,௪

൑ ቛݏ௡ሺ݂ሻ െ ௡ܶ
ሺ஺ሻሺ݂ሻቛ

௣,௪
൅ ԡ݂ െ ௡ሺ݂ሻԡ௣,௪ݏ

ൌ ቛݏ௡ሺ݂ሻ െ ௡ܶ
ሺ஺ሻሺ݂ሻቛ

௣,௪
൅ ܱሺ݊ିଵሻ. 

Thus, we have to show that 
ሺ7ሻቛݏ௡ሺ݂ሻ െ ௡ܶ

ሺ஺ሻሺ݂ሻቛ
௣,௪

ൌ ܱሺ݊ିଵሻ 

Set 

௡,௞ܣ ؔ ෍ ܽ௡,௠

௡

௠ୀ௞
 

Hence, 

௡ܶ
ሺ஺ሻሺ݂ሻ ൌ ෍ ܽ௡,௞ݏ௞ሺ݂ሻሺݔሻ

௡

௞ୀ଴

ൌ ෍ ܽ௡,௞ ൥ ෍ ሻݔ௠ሺ݂ሻሺݑ
௞

௠ୀ଴

൩
௡

௞ୀ଴

ൌ ܽ௡,଴ݑ଴ ൅ ܽ௡,ଵሺݑ଴ ൅ ଵሻݑ ൅ ڮ ൅ ܽ௡,௡ሺݑ଴ ൅ ଵݑ ൅ ڮ ௡ሻݑ

ൌ ଴൫ܽ௡,଴ݑ ൅ ڮ ൅ܽ௡,௡൯ ൅ ଵ൫ܽ௡,ଵݑ ൅ ڮ ൅ܽ௡,௡൯ … ൅ ௡ܽ௡ݑ

ൌ ෍ ൥ ෍ ܽ௡,௠

௡

௠ୀ௞

൩
௡

௞ୀ଴

ሻݔ௞ሺ݂ሻሺݑ ൌ ෍ ሻݔ௞ሺ݂ሻሺݑ௡,௞ܣ
௡

௞ୀ଴

. 

On the other hand, 

ሻݔ௡ሺ݂ሻሺݏ ൌ ෍ ሻݔ௞ሺ݂ሻሺݑ
௡

௞ୀ଴

ൌ ෍ ሻݔ௞ሺ݂ሻሺݑ
௡

௞ୀ଴

൅ ௡,଴ܣ ෍ ௞ሺ݂ሻݑ
௡

௞ୀ଴

െ ௡,଴ܣ ෍ ௞ሺ݂ሻݑ
௡

௞ୀ଴

ൌ ௡,଴ܣ ෍ ௞ሺ݂ሻݑ
௡

௞ୀ଴

൅ ൫1 െ ௡,଴൯ܣ ෍ ሻݔ௞ሺ݂ሻሺݑ
௡

௞ୀ଴

ൌ ෍ ሻݔ௞ሺ݂ሻሺݑ௡,଴ܣ
௡

௞ୀ଴

൅ ቀ1 െ ௡ݏ
ሺ஺ሻቁݏ௡ሺ݂ሻሺݔሻ. 

Thus, 
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௡ܶ
ሺ஺ሻሺ݂ሻ െ ሻݔ௡ሺ݂ሻሺݏ ൌ ෍ ሻݔ௞ሺ݂ሻሺݑ௡,௞ܣ

௡

௞ୀ଴

െ ෍ ሻݔ௞ሺ݂ሻሺݑ௡,଴ܣ
௡

௞ୀ଴

െ ቀ1 െ ௡ݏ
ሺ஺ሻቁݏ௡ሺ݂ሻሺݔሻ

ൌ ෍൫ܣ௡,௞ െ ሻݔ௞ሺ݂ሻሺݑ௡,଴൯ܣ
௡

௞ୀ଴

൅ ቀݏ௡
ሺ஺ሻ െ 1ቁݏ௡ሺ݂ሻሺݔሻ

ൌ ෍൫ܣ௡,௞ െ ሻݔ௞ሺ݂ሻሺݑ௡,଴൯ܣ
௡

௞ୀଵ

൅ ቀݏ௡
ሺ஺ሻ െ 1ቁݏ௡ሺ݂ሻሺݔሻ. 

By boundedness of the partial sums in the space ܮ௪
௣ (see [9]) we get 

ሺ8ሻቛݏ௡ሺ݂ሻሺݔሻ െ ௡ܶ
ሺ஺ሻሺ݂ሻቛ

௣,௪
ൌ ะ෍൫ܣ௡,௞ െ ሻݔ௞ሺ݂ሻሺݑ௡,଴൯ܣ

௡

௞ୀଵ

൅ ቀݏ௡
ሺ஺ሻ െ 1ቁݏ௡ሺ݂ሻሺݔሻะ

௣,௪

൑ ะ෍൫ܣ௡,௞ െ ሻݔ௞ሺ݂ሻሺݑ௡,଴൯ܣ
௡

௞ୀଵ

ะ
௣,௪

൅ ቚݏ௡
ሺ஺ሻ െ 1ቚԡ݂ԡ௣,௪

ൌ ะ෍൫ܣ௡,௞ െ ሻݔ௞ሺ݂ሻሺݑ௡,଴൯ܣ
௡

௞ୀଵ

ะ
௣,௪

൅ ܱሺ݊ିଵሻ.  

Thus, the problem reduced to proving that 

ะ෍൫ܣ௡,௞ െ ሻݔ௞ሺ݂ሻሺݑ௡,଴൯ܣ
௡

௞ୀଵ

ะ
௣,௪

ൌ ܱሺ݊ିଵሻ 

If we set 

ܾ௡,௞ ؔ
௡,௞ܣ െ ௡,଴ܣ

݇ ,    ݇ ൌ 1, … , ݊, 

Abel transform yields 

෍൫ܣ௡,௞ െ ௞ሺ݂ሻݑ௡,଴൯ܣ
௡

௞ୀଵ

ൌ ෍ ܾ௡,௞݇ݑ௞ሺ݂ሻ
௡

௞ୀଵ

ൌ ෍൫ܾ௡,௞ െ ܾ௡,௞ାଵ൯ ൭ ෍ ௠ሺ݂ሻݑ݉
௞

௠ୀଵ

൱
௡ିଵ

௞ୀଵ

൅ ܾ௡,௡ ෍ ௠ሺ݂ሻݑ݉
௡

௠ୀଵ

 

Hence, 

ะ෍൫ܣ௡,௞ െ ௞ሺ݂ሻݑ௡,଴൯ܣ
௡

௞ୀଵ

ะ
௣,௪

൑ หܾ௡,௡ห ะ෍ ௞ሺ݂ሻݑ݇
௡

௞ୀଵ

ะ
௣,௪

൅ ෍หܾ௡,௞ െ ܾ௡,௞ାଵห ቌะ ෍ ௠ሺ݂ሻݑ݉
௞

௠ୀଵ

ะ
௣,௪

ቍ
௡ିଵ

௞ୀଵ

. 

 
we have by Lemma 4.2.10 

෍ ௞ሺ݂ሻݑ݇
௡

௞ୀଵ

ൌ ሺ݊ ൅ 1ሻሾݏ௡ െ  ௡ሿߪ
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Therefore,considering Lemma 5.1.3,  

ะ෍ ௠ሺ݂ሻݑ݇
௡

௞ୀଵ

ะ
௣,௪

ൌ ሺ݊ ൅ 1ሻԡݏ௡ሺ݂ሻ െ ௡ሺ݂ሻԡ௣,௪ߪ

ൌ ሺ݊ ൅ 1ሻܱሺ݊ିଵሻ
ൌ ܱሺ1ሻ. 

This and the previous inequality yield 

ะ෍൫ܣ௡,௞ െ ሻݔ௞ሺ݂ሻሺݑ௡,଴൯ܣ
௡

௞ୀଵ

ะ
௣,௪

ൌ ܱሺ1ሻหܾ௡,௡ห ൅ ܱሺ1ሻ ෍หܾ௡,௞ െ ܾ௡,௞ାଵห
௡ିଵ

௞ୀଵ

 

Since ቚݏ௡
ሺ஺ሻ െ 1ቚ ൌ ܱሺ݊ିଵሻ, 

หܾ௡,௡ห ൌ
หܣ௡,௡ െ ௡,଴หܣ

݊ ൌ
ቚܽ௡,௡ െ ௡ݏ

ሺ஺ሻቚ
݊ ൌ

1
݊ ቀݏ௡

ሺ஺ሻ െ ܽ௡,௡ቁ ൑
1
݊ ௡ݏ

ሺ஺ሻ

ൌ
1
݊ ܱሺ1ሻ ൌ ܱሺ݊ିଵሻ. 

Therefore, it is remained to prove that 

ሺ9ሻ ෍หܾ௡,௞ െ ܾ௡,௞ାଵห
௡ିଵ

௞ୀଵ

ൌ ܱሺ݊ିଵሻ. 

A simple calculation yields 

ܾ௡,௞ െ ܾ௡,௞ାଵ ൌ
௡,௞ܣ െ ௡,଴ܣ

݇ െ
௡,௞ାଵܣ െ ௡,଴ܣ

݇ ൅ 1

ൌ
௡,௞ܣ݇ ൅ ௡,௞ܣ െ ௡,଴ܣ݇ െ ௡,଴ܣ െ ௡,௞ାଵܣ݇ ൅ ௡,଴ܣ݇

݇ሺ݇ ൅ 1ሻ

ൌ
௡,௞ܣ݇ ൅ ∑ ܽ௡,௠

௡
௠ୀ௞ െ ∑ ܽ௡,௞

௡
௞ୀ଴ െ ௡,௞ାଵܣ݇

݇ሺ݇ ൅ 1ሻ

ൌ
∑ ܽ௡,௠

௡
௠ୀ௞ െ ൫∑ ܽ௡,௞

௡
௠ୀ௞ ൅ ∑ ܽ௡,௞

௞
௠ୀ଴ െ ܽ௡,௞൯ ൅ ݇ܽ௡,௞

݇ሺ݇ ൅ 1ሻ

ൌ
െ ∑ ܽ௡,௞

௞
௠ୀ଴ ൅ ܽ௡,௞ ൅ ݇ܽ௡,௞

݇ሺ݇ ൅ 1ሻ

ൌ
1

݇ሺ݇ ൅ 1ሻ ൝ሺ݇ ൅ 1ሻܽ௡,௞ െ ෍ ܽ௡,௠

௞

௠ୀ଴

ൡ. 

ሺ݅ሻLet ෍หܽ௡,௞ିଵ െ ܽ௡,௞ห
௡ିଵ

௞ୀ଴

ൌ ܱሺ݊ିଵሻ 

Let’s verify by induction that 

ሺ10ሻ อ൭ ෍ ܽ௡,௠

௞

௠ୀ଴

൱ െ ሺ݇ ൅ 1ሻܽ௡,௞อ ൑ ෍ ݉หܽ௡,௠ିଵ െ ܽ௡,௠ห
௞

௠ୀଵ

for ݇ ൌ 1, … , ݊.  

If ݇ ൌ  1, then 
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อ൭ ෍ ܽ௡,௠

ଵ

௠ୀ଴

൱ െ ሺ2ሻܽ௡,ଵอ ൌ หܽ௡,଴ െ ܽ௡,ଵห 

thus (10) holds. 
Now let us assume that (10) is true for ݇ ൌ .ߥ  For ݇ ൌ ൅ ߥ   1, 

อ൭ ෍ ܽ௡,௠

௩ାଵ

௠ୀ଴

൱ െ ሺݒ ൅ 2ሻܽ௡,௩ାଵอ ൌ อ൭ ෍ ܽ௡,௠

௩

௠ୀ଴

൱ െ ሺݒ ൅ 1ሻܽ௡,௩ାଵอ

൑ อ൭ ෍ ܽ௡,௠

௩

௠ୀ଴

൱ െ ሺݒ ൅ 1ሻܽ௡,௩อ ൅ หሺݒ ൅ 1ሻܽ௡,௩ െ ሺݒ ൅ 1ሻܽ௡,௩ାଵห

൑ ൭ ෍ ݉หܽ௡,௠ିଵ െ ܽ௡,௠ห
௩

௠ୀଵ

൱ ൅ ሺݒ ൅ 1ሻหܽ௡,௩ െ ܽ௡,௩ାଵห

ൌ ෍ ݉หܽ௡,௠ିଵ െ ܽ௡,௠ห
௩ାଵ

௠ୀଵ

, 

and hence (10) holds for ݇ ൌ  1, . . . , ݊. Therefore, 

෍หܾ௡,௞ െ ܾ௡,௞ାଵห
௡ିଵ

௞ୀଵ

ൌ ෍ อ
1

݇ሺ݇ ൅ 1ሻ ൝ሺ݇ ൅ 1ሻܽ௡,௞ െ ෍ ܽ௡,௠

௞

௠ୀ଴

ൡอ
௡ିଵ

௞ୀଵ

ൌ ෍
1

݇ሺ݇ ൅ 1ሻ อ൭ ෍ ܽ௡,௠

௞

௠ୀ଴

൱ െ ሺ݇ ൅ 1ሻܽ௡,௞อ
௡ିଵ

௞ୀଵ

൑ ෍
1

݇ሺ݇ ൅ 1ሻ ෍ ݉หܽ௡,௠ିଵ െ ܽ௡,௠ห
௞

௠ୀଵ

௡ିଵ

௞ୀଵ

 

Set ݉หܽ௡,௠ିଵ െ ܽ௡,௠ห ൌ ܿ௠ for simplicity, by expanding we got 

෍
1

݇ሺ݇ ൅ 1ሻ ෍ ܿ௠

௞

௠ୀଵ

௡ିଵ

௞ୀଵ

ൌ
1

1 · 2 ܿଵ ൅
1

2 · 3
ሺܿଵ ൅ ܿଶሻ ൅ ڮ ൅

1
݊ · ሺ݊ െ 1ሻ

ሺܿଵ ൅ ڮ ൅ ܿ௡ିଵሻ

ൌ ൬
1
2 ൅. . ൅

1
݊ · ሺ݊ െ 1ሻ൰ ܿଵ ൅ ڮ ൅

1
݊ · ሺ݊ െ 1ሻ ܿ௡ିଵ

ൌ ෍ ܿ௠ ෍
1

݇ሺ݇ ൅ 1ሻ

௡ିଵ

௞ୀ௠

௡ିଵ

௠ୀଵ

ൌ ෍ ݉
௡ିଵ

௠ୀଵ

หܽ௡,௠ିଵ െ ܽ௡,௠ห ෍
1

݇ሺ݇ ൅ 1ሻ

௡ିଵ

௞ୀ௠

൑ ෍ ݉
௡ିଵ

௠ୀଵ

หܽ௡,௠ିଵ െ ܽ௡,௠ห ෍
1

݇ሺ݇ ൅ 1ሻ

ஶ

௞ୀ௠

ൌ ෍ หܽ௡,௠ିଵ െ ܽ௡,௠ห
௡ିଵ

௠ୀଵ

ൌ ܱሺ݊ିଵሻ. 

so relation (9) holds, thus  

ቛݏ௡ሺ݂ሻሺݔሻ െ ௡ܶ
ሺ஺ሻሺ݂ሻቛ

௣,௪
ൌ ะ෍൫ܣ௡,௞ െ ሻݔ௞ሺ݂ሻሺݑ௡,଴൯ܣ

௡

௞ୀଵ

ะ
௣,௪

൅ ܱሺ݊ିଵሻ

ൌ ܱሺ݊ିଵሻ ൅ ܱሺ݊ିଵሻ ൌ ܱሺ݊ିଵሻ 
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Finally, we have 

ቛሺ݂ሻ െ ௡ܶ
ሺ஺ሻሺ݂ሻቛ

௣,௪
൑ ቛݏ௡ሺ݂ሻሺݔሻ െ ௡ܶ

ሺ஺ሻሺ݂ሻቛ
௣,௪

൅ ܱሺ݊ିଵሻ

ൌ ܱሺ݊ିଵሻ ൅ ܱሺ݊ିଵሻ
ൌ ܱሺ݊ିଵሻ.  

ሺ݅݅ሻLet ෍ሺ݊ െ ݇ሻหܽ௡,௞ିଵ െ ܽ௡,௞ห
௡ିଵ

௞ୀଵ

ൌ ܱሺ1ሻ 

By (9), 

෍หܾ௡,௞ െ ܾ௡,௞ାଵห
௡ିଵ

௞ୀଵ

൑ ෍
1

݇ሺ݇ ൅ 1ሻ ෍ ݉หܽ௡,௠ିଵ െ ܽ௡,௠ห
௞

௠ୀଵ

௡ିଵ

௞ୀଵ

൑ ෍
1

݇ሺ݇ ൅ 1ሻ ෍ ݉หܽ௡,௠ିଵ െ ܽ௡,௠ห
௞

௠ୀଵ

௥

௞ୀଵ

൅ ෍
1

݇ሺ݇ ൅ 1ሻ ෍ ݉หܽ௡,௠ିଵ െ ܽ௡,௠ห
௞

௠ୀଵ

௡ିଵ

௞ୀ௥

, 

whereݎ ൌ׷  ሾ݊/2ሿ. By Abel transform, 

෍
1

݇ሺ݇ ൅ 1ሻ ෍ ݉หܽ௡,௠ିଵ െ ܽ௡,௠ห
௞

௠ୀଵ

௥

௞ୀଵ

൑ ෍หܽ௡,௞ିଵ െ ܽ௡,௞ห
௥

௞ୀଵ

ൌ ෍
1

݊ െ ݇
ሺ݊ െ ݇ሻหܽ௡,௞ିଵ െ ܽ௡,௞ห

௥

௞ୀଵ

൑
1

݊ െ ݎ
෍ሺ݊ െ ݇ሻหܽ௡,௞ିଵ െ ܽ௡,௞ห

௥

௞ୀଵ

ൌ
1

݊ െ ݎ ܱሺ1ሻ ൌ ܱሺ݊ିଵሻ. 
On the other hand 

෍
1

݇ሺ݇ ൅ 1ሻ ෍ ݉หܽ௡,௠ିଵ െ ܽ௡,௠ห
௞

௠ୀଵ

௡ିଵ

௞ୀ௥

൑ ෍
1

݇ሺ݇ ൅ 1ሻ ൝ ෍ ݉หܽ௡,௠ିଵ െ ܽ௡,௠ห
௥

௠ୀଵ

൅ ෍ ݉หܽ௡,௠ିଵ െ ܽ௡,௠ห
௞

௠ୀ௥

ൡ
௡ିଵ

௞ୀ௥

ൌ ෍
1

݇ሺ݇ ൅ 1ሻ ෍ ݉หܽ௡,௠ିଵ െ ܽ௡,௠ห
௥

௠ୀଵ

௡ିଵ

௞ୀ௥

൅ ෍
1

݇ሺ݇ ൅ 1ሻ ෍ ݉หܽ௡,௠ିଵ െ ܽ௡,௠ห
௞

௠ୀ௥

௡ିଵ

௞ୀ௥

ൌ: ௡ଵܫ ൅  .௡ଶܫ
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Now since 

෍หܽ௡,௞ିଵ െ ܽ௡,௞ห
௥

௞ୀଵ

ൌ ܱሺ݊ିଵሻ, 

௡ଵܫ ൌ ෍
1

݇ሺ݇ ൅ 1ሻ ෍ ݉หܽ௡,௠ିଵ െ ܽ௡,௠ห
௥

௠ୀଵ

௡ିଵ

௞ୀ௥

ൌ ෍
1

ሺ݇ ൅ 1ሻ ෍
݉
݇ หܽ௡,௠ିଵ െ ܽ௡,௠ห

௥

௠ୀଵ

௡ିଵ

௞ୀ௥

൑ ෍
1

ሺ݇ ൅ 1ሻ ෍ หܽ௡,௠ିଵ െ ܽ௡,௠ห
௥

௠ୀଵ

௡ିଵ

௞ୀ௥

ൌ ܱሺ݊ିଵሻ ෍
1

ሺ݇ ൅ 1ሻ

௡ିଵ

௞ୀ௥

ൌ ܱሺ݊ିଵሻሺ݊ െ ሻݎ
1

ݎ ൅ 1 ൌ ܱሺ݊ିଵሻ. 

 

Let us also estimateܫ௡ଶ. 

௡ଶܫ ൌ ෍
1

݇ሺ݇ ൅ 1ሻ ෍ ݉หܽ௡,௠ିଵ െ ܽ௡,௠ห
௞

௠ୀ௥

௡ିଵ

௞ୀ௥

ൌ ෍
1

ሺ݇ ൅ 1ሻ ෍
݉
݇ หܽ௡,௠ିଵ െ ܽ௡,௠ห

௞

௠ୀ௥

௡ିଵ

௞ୀ௥

൑ ෍
1

݇ ൅ 1 ෍ หܽ௡,௠ିଵ െ ܽ௡,௠ห
௞

௠ୀ௥

௡ିଵ

௞ୀ௥

൑
1

ݎ ൅ 1 ෍ ൭ ෍ หܽ௡,௠ିଵ െ ܽ௡,௠ห
௞

௠ୀ௥

൱
௡ିଵ

௞ୀ௥

൑
2
݊ ෍ ൭ ෍ หܽ௡,௠ିଵ െ ܽ௡,௠ห

௞

௠ୀ௥

൱
௡ିଵ

௞ୀ௥

ൌ
2
݊ ෍ሺ݊ െ ݇ሻหܽ௡,௞ିଵ െ ܽ௡,௞ห

௡ିଵ

௞ୀ௥

൑
2
݊ ෍ሺ݊ െ ݇ሻหܽ௡,௞ିଵ െ ܽ௡,௞ห

௡ିଵ

௞ୀଵ

ൌ
2
݊ ܱሺ1ሻ ൌ ܱሺ݊ିଵሻ 

Thus 

෍
1

݇ሺ݇ ൅ 1ሻ ෍ ݉หܽ௡,௠ିଵ െ ܽ௡,௠ห
௞

௠ୀଵ

௡ିଵ

௞ୀ௥

ൌ ܱሺ݊ିଵሻ, 

and hence 
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෍หܾ௡,௞ െ ܾ௡,௞ାଵห
௡ିଵ

௞ୀଵ

ൌ ܱሺ݊ିଵሻ. 

 
Therefore,  

ቛݏ௡ሺ݂ሻሺݔሻ െ ௡ܶ
ሺ஺ሻሺ݂ሻቛ

௣,௪
ൌ ะ෍൫ܣ௡,௞ െ ሻݔ௞ሺ݂ሻሺݑ௡,଴൯ܣ

௡

௞ୀଵ

ะ
௣,௪

൅ ܱሺ݊ିଵሻ

ൌ ܱሺ݊ିଵሻ ൅ ܱሺ݊ିଵሻ ൌ ܱሺ݊ିଵሻ 

Finally,  

ቛሺ݂ሻ െ ௡ܶ
ሺ஺ሻሺ݂ሻቛ

௣,௪
൑ ቛݏ௡ሺ݂ሻሺݔሻ െ ௡ܶ

ሺ஺ሻሺ݂ሻቛ
௣,௪

൅ ܱሺ݊ିଵሻ

ൌ ܱሺ݊ିଵሻ ൅ ܱሺ݊ିଵሻ

ൌ ܱሺ݊ିଵሻ.  

and the proof is completeז 
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