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Abstract 

In general, the word approximation means a representation of something that is not exact, 
but still close enough to be useful.  
 
Approximations may be used because incomplete information prevents use of exact 
representations, since many problems in mathematics are either too complex to solve 
analytically, or impossible to solve using the available analytical tools. Thus, even when 
the exact representation is known, an approximation may yield a sufficiently accurate 
solution while reducing the complexity of the problem significantly; therefore, an 
approximate answer may be good enough? What exactly we mean here by a good enough 
solution? That depends on what are we working on. 
 
As we know, in mathematics it is better for us to deal with simple functions, but taking into 
account the accuracy of the given solution in which it is the most significant thing in the 
whole work, for example the polynomials are very easy to handle since they have any 
property you may be looking for. 
 
On the other hand, the trigonometrical functions are of the most smooth functions that are 
easy to handle too, but in the first place it depends on the way of approximation, kind of 
approximation and other things, for example to approximate a function of period 2  its 
more convenient to us to treat with the sine and cosine functions than the polynomials, its 
not significant reduction of the polynomials but it is the most appropriate. 
 
In this thesis, we are dealing of that kind of functions, the periodic functions, so it is better 
for us to concentrate on the trigonometrical approximation methods. 
 
Our investigation centered on approximating a periodic function in the weighted  spaces, 
and we will use among our work many methods of approximation, however, they all 
depend on the Fourier series of these functions, but the main topic we must focus on is the 
degree of approximation, and we denote here that the degree is at most , 0 1, 
and  is the degree of the mean of the Fourier series. 
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  الموزون التقريب في فضاء 
  

  يحيى احمد حسين أبو لطيفة: اعداد

  

  جميل جمال. د: شرافا

  
  :ملخص

  

ونظرا . التقريب وبشكل عام لا يعطي القيمة الحقيقية للإقترانات، ولكنها تكون قريبة من القيمة الحقيقية
وقتها  لوجود مسائل في الرياضيات تكون فيها الحسابات معقدة ويصعب حلها أو التعامل معها فإننا نلجأ

  .لعملية التقريب وعادة ما يعطينا ذلك إجابة قريبة بشكل آاف

  

من الأفضل في الرياضيات التعامل مع الإقترانات البسيطة، ولكن مع الأخذ بعين الاعتبار دقة 
على سبيل المثال آثيرات الحدود تعتبر إقترانات . التقريب، والتي تعتبر الأآثر أهمية في هذا المجال

  .انها تملك خصائص جيدة آثيرة وبالتالي فانه يسهل التعامل معها ثميزة بحيسهلة جدا وم

  

في المقابل، الإقترانات المثلثية تعد من الإقترانات التي تملك خصائص مميزة أيضا، ولكن في المقام 
فعلى سبيل المثال لتقريب اقتران . الأول هذا يعتمد على طريقة التقريب ونوع التقريب وعوامل أخرى

  .فإنه من الأفضل استخدام الإقترانات المثلثية 2πدوري ودورته 
  

لذلك  ،الموزون وفضاء  في هذه الرسالة ما نقوم به هو تقريب الإقترانات الدورية في فضاء 
وسيتم استخدام اآثر من طريقة لتقريب تلك  ،من الأفضل استخدام الإقترانات المثلثية لهذا الغرض

المتسلسلة ولكن آل الطرق تعتمد في المقام الأول على  ،الإقترانات والتي تخضع لشروط معينة
 وما يجب الترآيز عليه هنا هو درجة التقريب والتي لا تتجاوز  ،للاقتران المراد تقريبه فورييهال

0بحيث ان    .هو عدد طبيعي يمثل درجة المتسلسلة الفورييه و  1
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Introduction 

Our aim in this research is discussing many methods of approximating any function in the 
weighted  spaces, so we first introduce some auxiliary information as a base for this 
thing. 
 
In chapter one we submit a little helpful ideas about the Lebesgue integral as well as some 
of its valuable properties, where all of the integrals in this thesis is considered Lebesgue 
integrals, so it is remarkable that we discuss these ideas. 
 
Chapter two deals with the most important subject that one needed to understand the idea 
of this thesis as our work is focusing on the trigonometrical series, in sections 1 and 2 we 
introduce the concept of the trigonometric series, section 3 talks about the modulus of 
continuity in which it is the most important here since as we will see later all the functions 
we approximate should gain the property that the modulus of continuity must be less than 
or equal to the bound , 0 1. 
 
In chapter three we begin by the known definition of the vector spaces and normed vector 
spaces, then we study many critical ideas and some formulas that will be helpful in the 
sequel, also we give a brief but critical ideas about some classes of functions and we 
mention her the weighted  and the Muckenhoupt class which has in turn a huge 
importance in many fields in analysis. 
 
To investigate the general case, I think we have be know a lot of  information about the 
special case, that is what we see in chapter four where we concentrate on the 
approximation in the non-weighted  spaces, also we consider many methods of 
approximation that we will use in the proceeding chapter, in fact our work will be just a 
generalization of some theorems from the  spaces to the weighted  spaces. 
 
At the end we do the task, that is, we develop the work in chapter four to more general 
class of function, i.e. the approximation in the weighted  spaces. 
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Chapter One 

Lebesgue Integration 
 

With a basic knowledge of the Lebesgue measure theory, for more details one can refer to 
[5], we now proceed to establish the Lebesgue integration theory. 

In this chapter, unless otherwise stated, all sets considered will be assumed measurable. 

 

1.1 Simple functions 
 
Recall that the characteristic function of any set is defined by 

1,                  
0, otherwise 

A function :   is said to be simpleif there exists , , … ,  and 
, , . . . ,  such that ∑ . Note that here the ’  are implicitly assumed 

to be measurable, so a simple function shall always be measurable.  
 
Theorem1.1.1: A function :  is simple if and only if it takes only finitely many 
distinct values , , . . . ,  and  is a measurable set for all   1,2, . . . , . 
 
With the above proposition, we see that every simple function can be written uniquely in 
the form 

 

Where the ’  are all non-zero and distinct, and the ’  are disjoint. (Simply take 
       1,2, . . . ,  where , , . . . ,  are all the distinct values of . We 

say this is the canonical representation of . 
 

Definition 1.1.2:  A function   is said to vanish outside a set of finite measureif 
there exists a set with   ∞ such that vanishes outside , i.e. 

  0    \  

 

Or equivalently   0 for all    \ . We denote the set of all simple functions 
defined on  which vanish outside a set of finite measure by . 
 
We are now ready for the definition of the Lebesgue integral of such functions. 

Definition 1.1.3: For any    and any   , we define the Lebesgue integral of 
over by 
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where ∑   is the canonical representation of  (From now on we shall adopt 
the convention that 0·∞ = 0. We need this convention here because it may happen that one 

is zero while the corresponding  has infinite measure. Also note that here is 
implicitly assumed to be measurable so   makes sense. We shall never integrate 
over non-measurable sets.) 
 
It follows readily from the above definition that 

 

for any   and for any   . 
We now establish some major properties of this integral (with monotonicity and linearity 
being probably the most important ones). We begin with the following lemma. 

 
Lemma 1.1.4:Suppose  ∑  where the ’  are disjoint, then for any 

  , 

 

holds even if the ’  are not necessarily distinct. 

Theorem1.1.5.(Properties of the Lebesgue integral)Suppose  ,   . Then for 

any   , 

(a)       . (Note that      too by the vector space 

structure of S E  . 

(b)  (for all  . (Note   again) 

(c) If   a.e. on  then  . 

(d) If   a.e. on then   . 

(e) If   0 a. e. on  and    0, then   0 a. e. on . 

(f)  | | .  | |  . 

 

Remark. and  are known as the linearity property of the integral, while (c) is known 
as the monotonicity property. Furthermore, Lemma 1.1.4 is now seen to hold by the 
linearity of the integral even without the disjointness assumption on the ’ . 
 
1.2 Bounded measurable functions 
 
Resembling the construction of the Riemann integral (using simple functions in place of 
step functions), we define the upper and lower Lebesgue integrals. 
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Definition 1.2.1:Let   be a bounded function, which vanish outside a set of finite 
measure. For any   , we define the upper integral and the lower integralof  on by 

 
inf :   ,  

sup :   ,  

If the two values agree, we denote the common value by . (Again the set is implicitly 

assumed to be measurable so that and  make sense.) 
 
Note that both the infimum and the supremum in the definitions of the upper and lower 
integrals exist because is bounded and vanishes outside a set of finite measure. (This is 
why  has to be a bounded function here) It is evident that for the functions we 
investigated in Section 1 (namely simple functions vanishing outside a set of finite 
measure) have their upper and lower integrals both equal to their integral as defined in the 

last section. In other words, if    then       .It is also clear 

that ∞    ∞ whenever they are defined.  
 

We investigate when  . 

 
Theorem1.2.2: Let  be as in the above definition. Then 

 
 for all    

if and only if  is measurable. 
 
Notation: We shall denote the set of all (real-valued) bounded measurable functions 
defined on  which vanishes outside a set of finite measure by . 
 
So from now on for   , implies that   

 inf : sup :  

for any   . 
 
Theorem1.2.3:(Properties of the Lebesgue integral)  Suppose ,  , then 

, , | | , and for any   , we have 

a     . 

b   for all  . 

c      and   0 a. e. on  then  . 
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d  If    a. e. on  then   . 

e      a. e. on  then   . 

f     0 a. e. on  and   0, then   0 a. e. on . 

g    | |. 

 

Theorem 1.2.4:(Bounded Convergence Theorem)Let  be a sequence of measurable 
functions defined on a set E of finite measure, and suppose that there is a real number M 
such that | |  for all  and for all . If lim  for each  in , then  

5 lim  

 
1.3 Integration of non-negative measurable functions 
 
We integrate non-negative measurable functions through approximation by bounded 
measurable functions vanishing outside a set of finite measure, which we studied in the last 
section. 

Definition 1.3.1: For a non-negative measurable function    0, ∞  (where  is a 
set which may be of finite or infinite measure), we define 

sup :   ,  

for any   . 
 
Note that for non-negative bounded measurable functions vanishing outside a set of finite 
measure, this definition agrees with the old one. Also, note that we allow the functions to 
take infinite value here. 

Theorem 1.3.2: Suppose , :   0, ∞  are non-negative measurable and   . 

a  If    a.e. on  then   . 
b  For   0,    and  are non-negative measurable functions and 

 

  

Theorem 1.3.3:(Monotone Convergence Theorem) If  is an increasing sequence of 
non-negative measurable functions defined on E and   a.e. on E, then 

lim . 

Corollary 1.3.4: Let  be a sequence of nonnegativemeasurable functions, and let 
∑ , then 
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1.4 Extended real-valued integrable functions 
 
In the last section, we integrated non-negative measurable functions, and in this section, we 
wish to drop the non-negative requirement. Recall that it is a natural requirement that our 
integral be linear, and now we can integrate a general non-negative measurable function, so 
it is tempting to define the integral of a general (not necessarily non-negative) measurable 
function  to be  where  0, and  0, since , are non-
negative measurable and they sum up to . But it turns out that we cannot always do that, 
because it may well happen that and are both infinite, in which case their difference 
would be meaningless (Remember that ∞−∞ is undefined.) 

Definition 1.4.1:For any function : ∞, ∞ , denote 0 and 

0. Then  is said to be integrable if and only if both  and  are finite, in which 
case we define the integral of  by 

 

for any A  E. 
 
Notation: We shall denote the class of all (extended real-valued) integrable functions 
defined on E by . 
 
Note that in the above definition,  and are both non-negative measurable, so for any 
set  ,  and  are both defined. Furthermore, ∞, 

similarly ∞,so their difference makes sense now. 
 
We provide an alternative characterization of integrable functions. 

Theorem1.4.2:A measurable function  defined on  is integrable if and only if  

| | ∞ 

Theorem 1.4.3:Let ,  be integrable functions over , then 

1.       

2.    . 

3. Furthermore, if   a.e on  then   . 
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Chapter Two 

Trigonometric Series 

 

2.1 Introduction to Trigonometric Series 

 

Definition 2.1.1. Trigonometrical series are series of the form  

1
1
2 cos sin , 

Where the coefficients , , … , , , … are independent of the real variable . It is 
convenient to provide the constant term of the trigonometrical series with the factor 1 2⁄  . 
Since the terms of (1) are of period 2 , it is sufficient to study trigonometrical series in any 
interval of length 2 . 

A finite trigonometric sum 

 
1
2

cos sin , 

is called a trigonometrical series of order n. Every  is a real part of an ordinary power 
polynomial 

1
2 . 

of degree , where . The fact that trigonometrical series are the real parts of power 
series facilitates in many cases finding the sum of the former. 
For example, the series [3] 

2
1
2 cos , sin , 

where0 1, are the real and imaginary parts of the series 
1
2

1
2

1
1

, 

where , and we obtained by simple calculations the two relations  

3
1
2

1
1 2 cos ,       

sin
1 2 cos . 

If we denote the nth-partial sums of (3) as , , 0,1,2 … of the series (2) we 
obtain with 1 by the same argument that  

4
sin

2 sin
,          

cos cos

2 sin
 

 
From (4) we see that , are uniformly boundedon any interval 0
2 . 
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Lemma 2.1.2: [3] let ,  be any two sequences in  then for 0 , the formula 

· , 

is valid for any 0, where , and 0. This relation is called 
Abel's transformation or summation by parts which can be easily verified and it is very 
useful tool in the general theory of series. 
 
Definition 2.1.3: We say that a sequence , , … , , …  is of bounded variation if 
the series. 

| | . 

 
Since the previous series is absolutely convergent, then it is convergent series, so 
∑  is converges to some constant c, thus we have. 

lim lim  

lim  
Therefore, any sequence of bounded variation is convergent. 

 

Lemma 2.1.4. [3] 

a) If a series  converges uniformly, and  is of bounded variation,the 
series  converges uniformly. 
b) If  has its partial sums uniformly bounded,  is of bounded 
variation, and 0, the series  converges uniformly. 

 

2.2 The trigonometrical system 

 
Note: The integral we used here is the Lebesgue integral and we introduced the concept of 
integral in the first chapter. In addition, we assume that  is a periodic function of period 
2 . 

A system of real functions , , … … , , … defined in an interval , is said to be 
orthogonal in this interval if for some . 

5 0,                  
 ,                      , 0,1, … 

The importance of the orthogonal systems is based on the following fact. Suppose that a 
series , where , , … are constants, and converges to a function 

 in , . Then by multiplying each side of the formula 



8 
 

6                           

by  and integrating over the interval , , we find, by means of (5), that  

7
1

                 0,1, … 

 
We call the numbers  the Fourier coefficients of , and the relation 6  the Fourier series 
of  with respect to the system . 
 

Not that the system of functions 1, cos , sin , cos 2  , sin 2 , … ,that is, the 
trigonometrical system is orthogonal in , . 
 
In fact, let , sin sin , and let , cos sin , ,

cos cos .Integrating the formula 

2 sin sin cos cos  

and taking into account the periodicity of trigonometrical functions, we find that 

 , 0 when ,  

Moreover, , 0 , for any , 0,1, … , so we may write (6) in means of the 
trigonometrical system as 

8                                       
1
2 cos sin  

In addition, we define 

9
1

cos , 

1
sin , 

 

In virtue of relation (9), we see that the problems of the theory of Fourier series are closely 
connected with the notation of integrals; in the last relation, we assumed that 

cos , sin  were integrable. 
 
Every integrable function  0 2  has its Fourier series as it is defined in 8 . 
Two functions  and  which are equal a.e have the same Fourier series and we call them 
equivalent    and do not distinguish between them. 
 
Notation: The partial sum of the Fourier series of any function, say , denoted by  
and given by the formula 
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1
2 cos sin  

while we shall denote by  to the Fourier series of . 

This series of partial sum can be written as the following form 

1
2

1
cos cos sin sin

1
2

1
cos cos sin sin

1
2

1
cos cos sin sin

1
2

1
cos

1 1
2 cos

1

1
, 

where 

sin

2 sin
. 

 
The function is called the Drichlet's function. 
Let  be the modified partial sum of the Fourier series of , 
now the difference  tends uniformly to 0 so it is slightly more convenient to 
consider the modification expression. 
 
Note 2.2.1: [3] Let  be measurable function that belongs to the  space, 1 , and 

 is the partial sum of it is Fourier series then  

2  

where  is the modified partial sum of . 
 
Consider any trigonometric polynomial, say , then we may write 
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2 cos sin 2 cos sin

2 cos sin

 
also we may write  

1
 

if we set 2  on the interval , 0 , and  on the interval 0,  and noting 
that  is 2  periodic, . Then  

1

1

1
. 

 
 
Theorem 2.2.2: [3] If  and  have the same Fourier series then . 
 

Since if they have the same Fourier series then the difference between these functions will 
cancel all coefficients in the Fourier series for which the difference will be equivalent to 
zero and so they are equivalent. 

 

Theorem 2.2.3: [3]Let  be continuous function, if  converges uniformly then it 
converges to . 
 
Noting that the convergent will be to the images of  at the points of continuity and to the 
average value of the left-right limit of the point in which the function  is discontinuous. 
 
Suppose that  is an integral function i.e. is absolutely continuous. Therefore, it is 
Fourier series given by 8 .Integrating the first formula in (9) by parts, we get  
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1
cos

1
sin

1
 

 
Therefore, , the same manner we deduce that . 
 
Since is periodic then 0, so we have 

cos sin

sin cos ,      1,2, … 

 

In other words, if   is the Fourier series of , and  is the resulting of 
differentiating term by term then we have  . With the same argument, 
we see that if  is a ~  integral, then  . 
 
Theorem 2.2.4: [3] Let  be periodic and  is the integral of . since  

2 , 

then a necessary and sufficient condition for the periodicity of F is that the constant term of 
 should vanishes. 

 
2.3 Modulus of continuity 

 
Definition 2.3.1: [3] Let  be a function defined for , then , ,  
such that | | , we define the function 

; max| |to be the modulus of continuity of . 
 
Example 2.3.2: Consider the function , 0,3 , then the modulus of 
continuity of  is  

max| | max| | 6 · . 
 
Theorem 2.3.3: [3] A function  is continuous iff  0  0. 
 
Definition 2.3.4: With the same notation above, if , 0 1, and  denotes 
a number independent of , then we say that  satisfies Lipschitz condition of order , or 

in , . 
 
For simplicity, we suppose that ,  is the interval 0,2 , since we are dealing with a 
trigonometrical system that is of period 2 . Moreover, any interval of period 2  will be 
sufficient. 
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Definition 2.3.5: Let ; max | | , for all 0
.The function   will be called the integral modulus of continuity of . 

 

Theorem 2.3.6: [3] For any integrable function , 

lim 0. 

In addition, if for any 0 we have , where ; 0  0, and 
| | , then ; 0.  

 

In fact: 

; ; ; ; 2 3 , 
 
if0 . 
 

 
2.4 "Big O" notation and Test of convergence 

 
The object of this section is to establish some conditions for the convergence of the Fourier 
series. It will be convenient to collect here a few elementary theorems on series concerning 
the Big  notation, which will be used in the sequel.  

"Big  " notation describes the limiting behavior of a function, when the argument tends 
toward a particular value or infinity, usually in terms of simpler functions. 

Big  notation characterizes functions according to their growth rates, different functions 
with the same growth rate may be represented using the same  notation. The letter is 
used because the growth rate of a function is also referred to as order of the function. A 
description of a function in terms of big  notation usually only provides an upper bound 
on the growth rate of the function. 

 
Definition 2.4.1: Let  and  be two functions defined for some  in addition, 
let 0 there. The symbol 

 
means that ⁄  is bounded for  large enough, the same notation is used when  
tends to a finite limit, or to ∞. i.e.    if and only if there exists a positive 
real number  and a real number  such that 

| |       
 
In particular 1  means that a function is bounded. 
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Chapter Three 

Classes of Functions 
 

3.1 Vector space 
 
Definition 3.1.1. Let  be a set with two operations, the operation "addition", denoted by 
"+", which maps each pair  , in  into , and the operation "scalar multiplication", 
denoted by a dot " · ", which maps each pair ,    into . Thus, a scalar is a real 
or complex number. The set  is called a real vector space if the addition and 
multiplication operations involved satisfy the following rules, for all ,     , and 
for all scalars  , , and  in  

(a)  
(b)  
(c) There is a unique zero vector 0 in V such that 0  
(d) For each x there exists a unique vector –  in V such that  0 
(e) 1 ·  
(f) · · ·  
(g) · · ·  
(h) · · ·  

 
It is trivial to verify that the Euclidean space  is a real vector space. However, the notion 
of a vector space is much more general. For example, let  be the space of all continuous 
functions on , with pointwise addition and scalar multiplication defined the same way as 
for real numbers. Then it is easy to see that this space is a real vector space. 

 
Another example of a vector space is the space  of positive real numbers with the 
"addition" operation ·  and the "scalar multiplication" · . In this case 
the zero vector 0 is the number 1, and –    . 
 
Now if we consider the set  | :   of all real valued functions of one variable 
then  is a vector space under the operations: 

 

· ·  
 
One more example we need to show here is that of the  space of sequences, let 1 be 
fixes real number, by definition each element in this space is a sequence 

, , …  of numbers such that ∑ | |  converges, and the addition and scalar 
multiplication are defined as  

, , …  
· , , …  

for any , . 
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Note that a vector space must have at least the zero vector, thus, the one element vector 
space is the smallest one possible. 
 
It is not difficult to see that these properties yield other fundamental properties of vector 
addition and scalar multiplication of position vectors. For example, · 0 0 for any real 
number , also we state another which can be deduced from the last definition easily. 

i. 0 · 0 
ii.  · 0, then either 0  0, or both 

iii. · ·  
iv. – · ·  
v. · · ·  

vi. · · ·  
 

Definition 3.1.2: A subspace  of a vector space  is a non-empty subset of , which 
satisfies the following two requirements: 

(a)      For any pair ,  in  ,  is in . 
(b)      For any  in  and any scalar a in the field , ·  is in . 

Thus, a subspace  of a vector space is closed under linear combinations in . 

 
3.2 Normed vector space 

 
Definition 3.2.1: (Normed space, Banach space). A normed space  is a vector space with 
a norm defined on its elements. A Banach space is a complete normed space. Here a norm 
on a vector space  is a real valued function whose values at any element is defined 
as  and which satisfies the properties. 
(A1) 0 
(A2) 0 iff 0 
(A3) · | |  
(A4)   (Triangle inequality) 
 
Here  and  are arbitrary vectors in  and a is any scalar in the field . 
 

Example 3.2.2: Depending on the definition above, deduce the following inequality. 

| |  
Solution:  Using (A4) above, we may write  

 

Thus, 

 

by the same way one can deduce that  
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so by the last two inequalities we have  

 

and the inequality follows.  
 
Another critical property of the norm is its continuity, which can be seen from the previous 
example, that is,  is a continuous function on the normed space , · into . 
 
Examples 3.2.3: 

1. The space  and the unitary space  are normed spaces with the norm defined 
for both by 

| |  

 
2. The space  is a normed space with the norm 

| |  

 
3. Norms on the space ,  of continuous real valued function, for 1 ∞ 

| | , sup ,  | |  

4. Other norms on  can be constructed; for example 
 

2| | 3| | max | |, 2| |  
 

is a norm on . 
 

5. The norm on the space, of all bounded sequences of complex numbers, that is 
every element in the space is of the form , , . . . , , such that for 
each 1,2,3 …. we have | |  where  is a bound that depends only on 
the sequence , the norm is given as  

sup| | 
 
3.3 The  space 
 

The  spaces are function spaces defined using a natural generalization of the p-norm for 
finite-dimensional vector spaces, we will assume all functions in this space to be of period 
2 , but it is not always the case, since we approximate these functions by cosine and sine 
functions so it is preferable to periodic of period 2 . 
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Definition 3.3.1: Let  be a positive real number, then the set of all measurable functions 
defined on a fixed interval ,  such that the integral 

| | ∞ 

are said to belong the  space. Thus, the  space consists precisely of the Lebesgue 
integrable function on the interval , . 
 
Since| | 2 | | | | , will show that later, we say that the sum of two 
functions in  is a gain in  whenever  and  are. In addition, we point here that 

  whenever  is. Thus we have that  whenever  and  are. The last 
statement ensures that the  space is a vector space. 
 
Note that since  space is a vector space, so we can define a norm on it. Here we give the 
norm of any function  by 

| |  

It is clear that 0 iff 0 a.e, if  is a constant then | | , we derive two 
inequalities, the first of which state that. 

 

Unfortunately, norms for the  spaces do not satisfy the second requirement (A2) of being 
a norm, for from 0 we only conclude that 0 a.e. We shall however, consider 
two measurable functions to be equivalent if they are equal almost everywhere; and, if we 
do not distinguish between equivalent functions, then the  spaces are normed vector 
spaces. 
 
It is convenient to denote by  the space of all bounded measurable functions on ,  
(or rather all measurable functions, which are bounded except possibly on a subset of 
measure zero).  Then  is a vector space, and it becomes a normed vector space if we 
define  

sup| | 

Where sup| | is the infimum of   as  ranges over all functions which are 
equal to  almost everywhere. Thus 

sup| | inf : : 0  

 
Example 3.3.2:  Show that in , the relation  

 

is valid.  

Proof: If | |   a.e and | |   a.e, then 
|   |     a.e. 



17 
 

So ||   ||     . Note that | | || ||  a.e. and | | || ||  a.e. Thus 
||   ||  | |   | | .  
 

Example 3.3.3:  If and , then  

| | .  

Solution: Suppose   and   . Then since | |  we see that 

| |  | |   | | | |   | | . | |  

 

Theorem 3.3.4: [3] (Minkowski Inequality) If  and  in  with 1 ∞, then so is 
 and  

 

If 1 ∞, then equality can hold only if there are nonnegative constants  and  such 
that . 
 
Proof : The case when ∞  is elementary (see example 3.3.2), as are the cases when 

0 or 0. Thus, we assume that 1 ∞,and 0 , 0. 
Then there are functions and  such that | | , | | , and 1. 
Set ⁄ . Then 1 ,⁄ and we have  

| | | | | |   

  1

   1   

by the convexity of the function  on 0, ∞  for 1 ∞, if 1 ∞, this 
inequality is strict unless  and     . Integrating both sides 
of this inequality gives 

1    

Taking -th roots gives 
. 

If 1 ∞, the inequality is strict unless   . . And  . . But 
this means that the inequality is strict unless   . 
 

Lemma 3.3.5: [5] Let1 ∞. Then for , ,  nonnegative we have 
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For the proof, see [5]. 
 
Theorem 3.3.6: [5] (Holder inequality)If  and  are nonnegative extended real numbers 
such that  

1 1
1, 

and if  and , then · and 

| | · . 

Equality holds if and only if for some constant  and , not both zero, we have | |

| | a.e. 

For the proof, see [5]. 

 

3.4 The weighted  space 

 
We assume throughout that our functions  are measurable periodic with the period 2 , 
that is 2 , unless otherwise stated. 
 

Definition 3.4.1: Let  be an open interval, and :  be a measurable function, if 
the function  on   satisfies  

| | ∞ 

i.e. its Lebesgue integral is finite, for all compact subsets , then  is locally integrable 
 
Definition 3.4.2: A weight function  is an almost everywhere positive function that is 
locally integrable. In other words, it is a measurable function : 0, ∞  such that the 
set 0, ∞  has Lebesgue measure zero. 
 
Example 3.4.3:Consider the function , for any  , it is positive everywhere (so we 
can assume that it is a.e positive since the Lebesgue measure of the empty set is zero) and 
it is locally integrable on any compact interval in . 
 
Definition 3.4.4: The weighted  space is the space of all measurable 2 -periodic 
function , for which it is denoted by 0,2 , where 1 ∞, and  is a weight 
function. 
 
The norm defined on 0,2 is given by 

, | |
⁄

∞ 
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Note that Minkowski and Holder inequalities hold here, since for any functions , , 
and knowing that  is positive then  

, | |
⁄

| | ⁄
⁄

⁄ ⁄
⁄

⁄ ⁄

⁄ ⁄

, , . 

Also noting that  1, we have  

| | ⁄ ⁄ ⁄ · ⁄ ·  

 

3.5 The Muckenhoupt weight  

 
Definition 3.5.1: Let  be a locally integrable function, which is defined on the interval 
0,2 , then for any 0,2 , the Hardy-Littlewood maximal operator  for any 

function  is given by  

sup
1

| | | |  

 
and the supremum is taken over all subintervals of 0,2 . 
 
The class of Muckenhoupt weights  consists of those weights  for which the Hardy-
Littlewood maximal operator is bounded on . That is;  is the class of all positive, 
locally integrable weighted functions such that there is a constant  with 

, ,  
Equivalently, 

| | | | . 

 
Proposition 3.5.2: [9]If , then it is necessary and sufficient condition that  
satisfied the inequality 
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sup
1

| |
1

| | ∞, 

where the supremum is taken over all intervals  with length | | 2 . 
 

When we assume the domain of  to be any subset of  then the condition on  will be 
such that for any point  

sup
1

| |
1

| | ∞, 

for all balls ,  where 0, while | | means the measure of the ball . 
 

Example 3.5.3: One of the most examples of an weight is given by 

| | ,   ,   1 . 

 
3.6 The class  
 

Definition 3.6.1: Let , , 0be two functions, continuous, vanishes at the 
origin, strictly increasing, tending to infinity, and inverse to each other, then we say that 

,  are Young's functions. 
 
For all , 0, we have the inequality due to Young 

1              Φ Ψ whereΦ  , Ψ . 

Note that the equality in (1) holds if and only if  .The functions Φ , Ψ  will 
be called complementary functions. If we set, 
 

, ⁄ 0 , 1 , 1 1⁄ , 

we get the inequality 

2                                                  , 0 ,    

where the complementary exponents ,  both exceed 1 and they connected by the relation 

1 1
1. 

If  2,  (2) reduces to the familiar inequality  2 · ·   .If 1, 
then ∞,and conversely. 
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Definition 3.6.2: A function  defined on an open interval , is said to be convex if 
for each , ,  and each , 0 1 we have  

1 1 . 

In other words, if for each point on the chord between the  , , and ,  is 
above the graph of . 
 
For example , 1 is convex function on 0, ∞ . 
 
As a consequence of the last definition, for any set of points , , … , , and for any set 
of points , , … ,  in , . We have 

. 

This inequality is called Jensen's inequality. For 2, the inequality implies the 
definition, and for 2, it follows by induction. 
 

Note: By the last inequality, let , , be three ordered points on the convex curve , 
in the order indicated. Since  is below or on the chord , the slope of does not 
exceed that of . Hence if a point p approaches  from the right then the slope of  is 
non-increasing. Thus, the right-hand side derivative exists for any point  and is 
less than ∞.Also, there are many properties of convex functions, which are very useful in 
many fields in mathematics, and we here introduce few of them. 
 
Theorem 3.6.3: [5] If  is convex on , , then  is absolutely continuous on each 
closed subinterval of , . The right (left) hand side derivatives of  exists at each point 
of ,  and are equal to each other except on a countable set. The left (right) hand 
derivatives are monotone increasing functions, and at each point the left-hand derivative is 
less than or equal to the right –hand. 
 
Theorem 3.6.4:[5]If  is a continuous function on ,  and if one derivative of  (the left 
or right) is non-decreasing, then  is convex. 
 
Corollary 3.6.5:[5] Let  have a second derivative at each point of  , . Then  is 
convex on ,  if and only if 0 for each , . 
 
Theorem 3.6.6: [5] (Jensen's Inequality for integrals) Let  be a convex function on 

∞, ∞   and an integrable function on 0,1 . then  

. 

Antoni Zygmund [3] states in his book the same theorem with slightly different conditions. 
That is, if  is convex in an interval , and  at each point 
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,  is non-negative and not identically zero, and that all integrals in the next 
inequality exist. Then  

, 

 
Theorem 3.6.7: [3] A necessary and sufficient condition that , , should be 
convex is that it should be the integral of a non-decreasing function.  
 
Let now , 0, be an arbitrary function, non-negative, non-decreasing, vanishes at 

0 and tending to ∞ with , the curve  may possess discontinuities and 
stretches of constancy, if at each point  of discontinuity of  we adjoin to the curve 

 the vertical segment , 0 0 , obtain a continuous 
curve, and we may define a function   inverse to  by defining 0
∞  to be any  such that the point ,  is continuous curve, The stretches of constancy 
of  then correspond to discontinuities of , and conversely. The function  is defined 
uniquely except for the  which correspond to the stretches of constancy of .But since 
the set of such stretches is denumerable, our choice of  has no influence upon the 
integral Ψ of ,and it is easy to see that Young's inequality is valid in this slightly 
more general case. 

From 3.6.7 it follows that every function Φ , 0,which is non-negative, convex, and 
satisfies the relation Φ 0 0andΦ / ∞,may be considered as a Young's function.  
 
More precisely to every such function corresponds another function Ψ  with similar 
properties such that  

Φ Ψ  
 
For every 0, 0. it is sufficient to take for Ψ  the integral over 0,  of the 
function  inverse to Φ . since Φ  ⁄ ∞with . It is easy to see that 

 and  also tend to ∞ with . We have Φ Ψ if and only if the 
point ,  is on the continuous curve obtained from the function . 
 
Definition 3.6.8: Let Φ 0  0.We say that a measurable function , 0

2 , belongs to the class 0,2  if the function Φ | |  is integrable over 0,2 . 
That is, the class 0,2  is the set of all measurable functions such that 

Φ | | ∞ 

This class may fail to be vector space; it may fail to be closed under scalar multiplication, 
due to the function Φ . 
 
Example 3.6.9: If we set Φ , thenΨ ⁄ 0 .So, the class 0,2  is 
identical with the  space. 
 
Integrating the inequality  
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| | Φ | | Ψ | |  

over , we get that  is integrable over ,  if  , , , . 
 
Throughout the text, we will writeΦ| | Ψ| |, forΦ | | Ψ | |  for simplicity. 
 
Definition 3.6.10: If  is measurable and such that Φ| |  exists,  is said to 
belong to the space 0, 2 . If  is such that the product  is integrable for 
every  , then . 
 
For this space, the norm is given by  

   

for all measurable  with Ψ| | 1. This space is a vector space, and also 
complete [5]. If , we put for   0, 

; sup for  0 | | . 

When   1, then  is a class . 
 
In ,  1, 
 

;   sup    

sup |   |
⁄

 

 
If ; , 0,  is said to belong to the class , . 
 
The limiting case of , , denoted , ∞  is identical with .For brevity, we 
shall write  for whenever it will not lead to confusion. 
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Chapter Four 

Trigonometric Approximation in the  Spaces 

 
4.1 Introduction  

 
So far, we introduced many concepts, classes of functions, Trigonometric series, and 
Lebesgue integral, in which they are the basic building blocks in the field of approximation 
by trigonometrical functions; on the other hand, we will not cover the whole branch of 
approximation in the space and our argument in this subject will be a basic theorems and 
lemmas that will qualify us to study the approximation in the weighted  space. 

Throughout this chapter, we will assume any function to be periodic of period 2 . Also we 
define ;  to be the n-th partial sum of the Fourier series of the function . 
 
We already defined the Lipschitz class for 0 1 to be the class of all functions such 
that , for some constant . .  

  ;  

Let 1 ∞, , and 0 1, we define the Lipschitz class ,  as  

, : ; , 0 . 

 
Definition 4.1.1: (Nörlund method) [10].Each sequence , , … of real or complex 
constants for which 0 for each  defines a Nörlund method 
(transformation) of summability by means by the formula 

;
1

; . 

The class of Nörlund transformation is identical with the class of triangular matrix 
transformations 

,  

for which  

, 0,  , , 0,   , 0,1, …    

and 

, 1                                0,1,2, …  

where 

, ,
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is a lower triangular infinite matrix of real numbers. 

 
Definition 4.1.2: (Riesz method) [10] Each sequence , , … for which 

0, determines a Riesz transformation as 

;
1

; . 

Definition 4.1.3 :(Ces`aro method) [10] If we set 1for each  then both of the 
Nörlund and of Riesz transformations coincide with the Ces'aro transformation 

;
1

1 ; . 

 

4.2 Trigonometrical approximation in the mean 

 
In this section, the investigation will be in approximating functions in the  spaces, 
especially for the class   ,  where the functions has the property that the modulus of 
continuity is less than , and the approximation will be done here in two methods, the 
first will involve the Nörlund means and the second is more general method of matrix 
transformation in which it implies the previous one, we note that we are concerning with a 
degree of error to be . 
 
The following theorem is stated without proof by G. H. Hardy and J. E. Littlewood.   
 
Theorem 4.2.1: [4] The class  ,  is identical with the class of functions  
approximable in the mean ~  power, with error ,by trigonometrical polynomials 
of degree . 
 
In the following  ;   denotes the n-th partial sum of the Fourier series 
of  and ;  denotes the Ces'aro mean for the function ,i.e.  

;
1

1 . 

Theorem 4.2.2: [4] If  possesses a derivative of order , say , in , where  
is appositive integer or zero, then, for any positive integer ,  may be approximated in 

 by a trigonometrical polynomial , of order  at most, such that 

1
; . 

Proof: Let  and ∑ , 
The 1 constants , 0,1, …  being so determined that 0 , 0 0,

1,2, … , .The trigonometrical polynomial  is defined by the equation  
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1
2

sin
 

where 

2
sin

 

The order  of  is  2 2 1.Since 0 , we may write 

1
2

sin

1
2

sin sin
0

1
2

sin sin

0
1

2
sin

1
2

sin sin

0
2

2
sin

1
2

sin
2 0

sin

1
2 2 0

sin

1
2

sin
 

where 

2 0 . 

with these definitions  

1
2

2
2  

and 
,          is even 

2 0 ,           is odd 

Consequently if  is odd then  
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2 0

1
2

2
2

1
2

2
2

2
1

2

| |
2

2
2

2
2 2

| |
2

2
2

2
2  

by the same way when  is even  

| |
2

2
2

2
2

| |
2

2
2

2
2

| |
2

2
2

2
2  

but the expressions in the norms above are the modulus of continuity of  so we may write  

| |
2

2
2
2 ;

2
2 ; 2 ;  

also we have, for 1, 

… …  

Therefor, 

… …

… 2 ; …  

Thus we have   

1
… 

2
; …  

Now since  is periodic, then  
2

; 2 1
1

;  

Thus we have 
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1 1
; … 2 1 …

1 1
; …  …

1 1
;  

Now we see that  

1
2

sin 1
2

sin

1 1
;

1
2

sin

1 1
; sin

1 1
; sin

1 1
;  

since 1 2 2 , we have 
1 1

;  

 
Theorem 4.2.3: [4]If , , 1, 0 1, then, for any positive integer 

,  may be approximated in  by a trigonometrical polynomial, , of order n such 
that  

. 

Proof:If we put 0 and  ;  in the last theorem (4.2.2) then all 
conditions of the previous theorem is satisfied and so the result holds.  
 
Lemma 4.2.4: [4] If   and  is an arbitrary trigonometric polynomial of 
degree 1 at most, then 

if  1, , 
if  1, 1 log  

where  is independent of  and . 
 
Proof:Case I:We may write 

. 

Hencewhen 1, we have 
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cos sin
2  

using (2.2.1) we have 

2 2 1  

Butthe trigonometric polynomial    . Thus we have  

 2 1  

Case II: When 1, we have 
1

, 

where  is the Drichlet's kernel. Interchanging the order of integration, we have  

1

1

1
| | 1 log  

Since [3] 

1
| |

4
log 1 .  

 

Theorem 4.2.5: [4] If  , , 0    1, then 

    when 1, ; 

  when 1, log . 

 

Proof: combining theorem 4.2.3 and 4.2.4 we have 
Case I: 

 

Case II: By the same way, we see that, 

1 log log  
 

Theorem 4.2.6: [4] If  , , 0  1, then 

 1   1, 1, ; 

    1,
log

. 
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Lemma 4.2.7: [4] If 1, 1 ,then 

. 

 
Lemma 4.2.8: [8] Let  be positive and non-increasing. Then, for 0 1, 

. 

Proof: Let  denote the integral part of  .Then 

1

. 

since  is non-increasing.  
 
We shall use the notation ∆ . 
 
Lemma 4.2.9: Given any positive sequence , then for any function , the Nörlund 
mean  

1
 

where  are the k-th element in the Fourier series of , and ∑ . 
 

Proof: The Nörlund mean is defined as 

1
 

Using Abel's transformation, we have the following 
1 1

1

1

1 1
 

 
Lemma 4.2.10: Let  be the partial sum of the Fourier series of , then  

1  
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Proof:By definition, the Caseros mean is given by  

;
1

1  

Thus  
1

1
1

1
1

1
1

1 1
1

1 1 1
1

1 1 1 1

1 2
1

1
1  

Therefore,  

1  

 
Theorem 4.2.11: [8]Let   ,  and let  be positive such that 

1                                                       1  .  

If either 

   1 ,    0 1 and is monotonic 

or 

   1,     0 1 and is non decreasing 

Then 

2                                                

Proof:Case I:   1 and 0    1. 
since 

1
 

then 

;
1

;  

and hence we get 
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1

1 1

1
·

1

, 

where constant, and using (1) and Lemma 4.2.8 and theorem 4.2.6. 
Case II:   1 and   1. 
By lemma 4.2.9 we have ∑  

where 

; ;
1

;  

hence 

; ;
1

;
1

;  

by Abel’s transformation and convention   0, we deduce that 

; ;
1

∆

1
1 1

∆

1
1 ∆

1
1

1
∆  

 Therefore, 

3
1

∆

1
1  

And by lemma 4.2.10 
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4 ; ;
1

1 ; , 

we have by Lemma 4.2.7, 

5 1 1  

Now, combining (3) and (5), we get 

6
1

∆ . 

However, 

7 ∆ 1

1 1

1 1

1 1

1

1
1

1 1

1
1 1 , 

which is non-negative or non-positive whenever  is non-decreasing or non-increasing 
respectively. Hence 

 

is monotonic whenever  is monotonic and this implies that 

8 ∆ 1  

by using convention 0. Thus using (8) and (1) in (6), we get 

9  

Finally, by using (9) and Theorem 4.2.5, we get 2  with   1. 
 
Case III:   1 and 0    1. 
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By Abel’s transformation and using convention    0,we get 

;
1

1
∆

1
∆

1
∆

1
∆ 1

1
1 ∆ ;  

Hence, by theorem 4.2.6, we get 

;
1

1 |∆ | ;

1
1 |∆ |

|∆ | .

.

, 
Since  non-decreasing and using (1) 
This completes the proof.  

Theorem 4.2.12: [8] Let , 1 , 0 1.And let  be positive non-
decreasing sequence with  1  .Then 

. 

Proof: For   1 and 0    1.We get by Abel's transformation 

1 1
∆

1
∆ 1 1 1 1

1
∆ 1 1  
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Thus we have 
1

∆ 1 1

1
|∆ | 1 1

1
|∆ | 1 1 ·

.  
 

4.3 Approximation by general class of triangular matrices using 
trigonometrical polynomials 

 

In this section, we shall weaken the conditions of monotonicity given by theorems (4.2.11) 
and (4.2.12); we see that these theorems assumed the sequence to be monotonic. Here 
we will give a less strength conditions on  but keeping the degree of estimate. Before we 
do that, we introduce some concepts about sequences. 
 
Definition 4.3.1: [6] A positive sequence :  is called almost monotone decreasing 
(increasing) if there exists a constant : , depends only on p, such that for all 

 

. 
Such sequences will be denoted as  and , respectively. 
 
We shall also use the notation  

∆  

An auxiliary lemma is needed to proof the next theorem. 

Lemma 4.3.2: [6]Let  AMDS, or let  AMIS and satisfy(12). Then, for0
 1, 

 

Proof: Let  denote the integral part of /2.Then, if , 

1

1

. 
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If , and (1) is valid, then 

1

1

⁄

⁄
. 

The proof is complete.  
 
In the previous section, an approximation in the  space is established by conditions 
involving the monotonicity of the positive sequence , the next theorem will give a 
generalization of theorem 4.2.13 by weakened the conditions on the sequence , note 
that the non-increasing sequence is AMDS and the non-decreasing sequence is AMIS. 
 
Theorem 4.3.3: [6] Let    ,  and let be positive. If one of the conditions 

   1,0    1    , 

  1,0    1     1 , 

 1, 1  |∆ | , 

1, 1, |∆ | ⁄  and 1  holds 

  1,0 1 and |∆ | ⁄  

maintains, then 

10 . 

Proof:We prove the cases  and  together utilizing theorem 4.2.5 and lemma 4.3.2. 
Since 

11 ;
1

;  

Thus 

;
1

;

1
;

1
;

1
⁄ . 
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Next, we consider the case .By Lemma 4.2.9, 

;
1

, 

and thus 

; ;
1

 

hence, again by Abel’s transformation and   0, 

; ;
1

∆
1

1 . 

therefor, 
12

1
∆

1
1 . 

by Lemma 4.2.10 and Lemma 4.2.7 we have 

13 ; 1 ; ; 1 . 

Combining (12) and (13), we obtain that 

14 ; ;
1

∆ .  

 An elementary calculation yields that (see(7) ) 

15 ∆
1

1 1  

Next we shall verify by induction that 

16 1 | | 

If 1, then 

2 | |. 

Thus (16) holds. 

Now let us  assume that ( 16 ) is proved for     and we verify it for    1 . 
Since 

2 1

1 1 1  
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| | 1 , 

Thus (16) is proved for 1. 
Using this and (15), we get that 

∆
1

1
| |

| |
1

1

|∆ |. 

Now combining this, the assumption 

|∆ | ⁄  

and (14), we get 
; ;  

this and Theorem 4.2.5 with   1 yield (10). Here with the case is proved. 
 
In the proof of the case , we first verify that the condition  

|∆ |  

implies that  

17 ∆ ⁄ . 

For simplicity we shall write ∆  instead of ,by (15) and (16) 

1
1

|∆ |. 

denote again by  the integer part of 2⁄ . Then, we have 

1
1

|∆ | |∆ | |∆ | ⁄ . 

at the last step we have used the condition 

|∆ |  

On the other hand, 

1
1

|∆ |
1

1
|∆ | |∆ |

:  
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Furthermore, using again our assumption, we get 

1 |∆ | ⁄  

and 

1 |∆ | |∆ | 2|∆ | 1 |∆ |

⁄ . 

summing up our partial results, we verified (17). Thus, (14) and theorem 4.2.5 again yield 
(10). 
 
Finally, the prove of the case . Utilizing 10 ,   0 and the Abel’s transformation, 
we get 

;
1

∆ ;

1
1 ∆ ; . 

Hence, by theorem 4.2.6, we have that 
1

1 |∆ |

1
1 |∆ |

|∆ | . 

Here with the case  is also verified, and thus the proof is complete.  
 
Theorem 4.3.4: [6]Let    , 1 , 0    1.If the positive  satisfies (1)and 
the condition 

|∆ | ⁄  

holds, then 

18 . 

Proof: Since 
1

 

Thus following the consideration of the case (v) of Theorem 4.3.3, we get 
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1

1
1 |∆ | ; 1

1
;

1
|∆ |  . 

This proves the theorem.  
 

It is very easy to examine that all of the conditions in theorem 4.3.3 and 4.3.4 claim less 
than the requirements of Theorems 4.2.11 and 4.2.12. Since if we consider the first part of 
theorem 4.2.11, that is, for 1, 0 1, is non-decreasing then it is obvious that 
the sequence is AMIS, for which the condition ii of 4.3.3 is satisfied. 
 
Also for 1, 0 1,  is non-increasing sequence, then  is AMDS and 
condition I of 4.2.3 holds. Moreover, if 1, 1,  is non-increasing then we may 
write  

|∆ | 1 2 1

1
. 

and that is condition III of 4.3.3. 
 
Now if 1, 1,  is non-decreasing and satisfying condition 12 then we have   

|∆ |

. 

so condition IV of 4.3.3 is satisfied. 
 
Finally, if the second condition in 4.2.11 holds, that is, if 1, 0 1  and  is 
non-decreasing and 12 holds, then 

|∆ |

 

Since by definition 0, therefore, the last condition of 4.3.3 is satisfied. 
By the same we can see that theorem 4.3.4 is more general that the corresponding theorem 
4.2.12, for which if 1, 0 1, and  is non-decreasing with 1

. 
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Then  

|∆ |

 

 
In the last two theorems we obtain the same degree of approximation for any function 

, , by weakened conditions, we now will treat the same theorems (4.2.11, 
4.2.12) with a general class of triangular matrices, thus we can deduce these two theorems 
as a corollaries of our next theorems. 
 
Let ,  be a lower triangular regular matrix with non-negative entries and row 
sum . such a matrix  is said to have monotone rows if, for each ,  is either non- 
increasing or non-decreasing in , 0 .Also we call the matrix   ,  has 
almost monotone increasing (decreasing) rows if there exists a constant , depending only 
on , such that ,   , ,   ,  for each  and 0      . 
 
Lemma 4.3.5: [7] Let  have monotone rows and satisfies the relation 

19 1 max , , , 1 , 2⁄  

then for 0 1, 

20 , 1 . 

Proof:Let : 2⁄ ,then 

, 1 , 1 , 1  

Case I:If ,  is non-decreasing in . Then, using (19), we have 

, 1 , 1 1 ,

, 1 1

1 1  

Case II:If ,   is non-increasing in . Then, using (28), 

, 1 , 1 .  

 
With same notation previously stated, we define the matrix transformation  
as follows 



42 
 

, ; . 

For a given positive sequence , if we consider the lower triangular matrix 
with entries ,   ⁄ , ∑ .Then the Nörlund transform can be 
regarded as a matrix transform, so this transformation is more general than the 
Nörlund transformations, also we note that the row sum of this matrix is clearly 1 
since  

, ⁄ ⁄ 1. 

 
Theorem 4.3.6: [7]Let   , , and let  have monotone rows and satisfy 

21 | 1| . 

If one of the conditions 
                  1,         0 1, and  also satis ies 

1 max , , , 1 , where : 2⁄  , 
                 1,         1 ,  
               1, 0 1,          and  also satis ies 

22 1 max , , , 1 , 
holds. Then  

23 .   

 
Proof:Case I:   1,   0    1. 

, · 1 ·

, , · 1 ·

, · 1 ·  

Using (21) and Theorem 4.2.5 and Lemma 4.3.5, 

, | 1|

, 1 . 

Case II:   1,   1. 
. 

form theorem 4.2.5, when 1, 
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Therefore, it remains to prove that 
 

Define  

, , , 

and using the fact that 

, , , 

then we may write 

, ,

, , ,

, , ,

, ; . 

also, 

; , ; 1 , ;

, ; 1 ;

, ; 1 ; . 

Now since , then  

; ; 1 ;

; ; |1 | ;

, , ; |1 |  
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Define for each 1 , 

,
, , . 

Using summation by parts (Abel's transformation), by setting  

, , ; , , ; ,

, , ,

, , ,

, ; ∆ , ; . 

Therefore  

, ; ∆ , ;

 
Now from Lemma 4.2.7 and 4.2.10, 

; 1

1
1 . 

Note that 

,  
1

,  ,  
1

,

1
1

1
1 ,

1
  1 . 

Thus 

, ; . 

We may write 

∆ , , ,
, , , ,

1
, , , , , , , ,

1  
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          , , , , , , , ,

1
1

∆ ,
, , , ,

1
1

∆ ,
, ,

1
1

1 1 ∆ , , ,

1
1 1 , , , ,

1
1 , , , , ,

1
1 , , , , ,

1
1 , , ,

1
1 1 , ,  

If ,  is non increasing in ,then ∆ , 0, and if ,  non-decreasing in  implies 
that ∆ , 0, so that 

∆ , , , , ,
, ,

, ,
, ,

1
. 

and (23) is satisfied. 

Case III:   1, 0    1, From (21), using Abel's transformation, Lemma 4.2.6 , and 
the fact that ,  0, 
 

, 1

∆ ,

| 1 |

∆ , 1  
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                         ∆ , |1 |

1 ∆ ,

∆ , 1

1 ∆ ,  

If ,  is non-increasing in , then 

∆ , , , , , , , ,  

If ,  is non-decreasing in , then 

∆ , , , , 2 ,  

Using (22), 

1 .  

 

It easy to examine that all conditions of theorem 4.3.6 is more general than theorem 4.2.11, 
since if we consider the entries of the matrix A to be , , then A can be 

considered as a Nörlund matrix, that is, a matrix that defines a Nörlund means by it is 
rows, for this matrix 1, so (21) is satisfied.   
 
Let us consider the case one of 4.2.11,that is, when 1, 0 1, (1) holds, and  
is non-decreasing then ,  is non-increasing sequence in   so  

1 max , , , 1 , 1 1  

Thus apart of condition I of theorem 4.3.6 is satisfied. 
 
Now assume for the same conditions but for a non-increasing sequence  then ,  is 
non-decreasing in , and we may write  

1 max , , ,
1 1

1 1  

for which the case one is satisfied. 
Note that condition II of theorem 4.3.6 is always hold here whenever 1, 1. 
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If we assume the last condition of 4.2.11, that is, for 1,0 1, condition (1) holds 
and  is non-decreasing sequence, then ,  is non-increasing and  

1 max , , , 1 , 1 1 . 

and that is condition III of 4.3.6, so by the previous argument we saw that theorem 4.3.6 is 
more general than theorem 4.2.11, also we can deduce it from this theorem when we 
restrict the matrix A to be Nörlund matrix. 
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Chapter Five 

Trigonometric Approximation in the Weighted  Spaces 

 
5.1 Trigonometrical approximation in the means 

 
So far the theorems stated are giving the approximation of function in the non-weighted 
Lebesgue space, we discussed two ways, approximation in the means (Nörlund means) and 
the by matrix transformation, in this section an extension of  these theorems is discussed, 
that is, the approximation will be for function in the weighted Lebesgue space, we note 
here that following theorems are just a generalization of the proceeding ones by giving 
conditions in weighted Lebesgue space. 

The same theorems stated before, namely 4.2.11 and 4.2.12, are investigated here with 
more general class of functions, the weighted space, again we develop these theorems by 
offering different manners of approximation, specially the matrix transformation method. 

Note: In the weighted  space, we use the Muckenhoupt weights , this kind of weights 
plays a critical rule in many different aspects of mathematics. 

 
Definition 5.1.1: Let 1 ∞, , and let .Then the modulus of continuity 
is defined as 

, ; sup ∆ , ,  0. 

and the supremum is taken over all h such that | | , where  

∆
1

| |  

Note: The Lipschitz class , ,  for 0 1 is given by 

, , : , ; , 0  

 
We shall use the same notation as before, also we will do the approximation on the same 
means specially Nörlund and Riesz means. 
 
Lemma 5.1.2: [2] Let1 ∞, , 0 1.Then the estimate  

,  
holds for every , ,  and 1,2, … 
 
Lemma 5.1.3: [2] Let 1 ∞, .Then, for 1, ,  the estimate  

,      1,2, …  
holds. 
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Theorem 5.1.4: [2] Let1 ∞, , 0 1, and let   be a monotonic 
sequence of positive real numbers such that  

1 1  

then, for , ,  the estimate  

,      1,2, …     

holds. 

Proof:Let0    1.Since 

  
1

 

we have 
1

 

by Lemma 5.1.2, Lemma 4.2.8 (sec 4.2) and condition (1) we obtain 

,
1

,

1
,  ,

1
 ,

1 1
1

 
 
Now let  1, it is clear that (by Lemma 4.2.9) 

 
1

 

by Abel transform, 

–
1

1
1

1
1  

and hence 
 

,

1
∆ ·

,

1
1

,
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Since by lemma 4.2.10 
1

1 , 

Thus by Lemma 5.1.3 we get  

,

1 , 1  

Hence, 

2 ,
1

1 1

1
1

 
By a simple computation, one can see that 

1
1

1  

which shows that 

 

is non-increasing whenever is non-decreasing and non-decreasing whenever is 
non-increasing. This implies that 

1 1
1

1  

This and the inequality (2) yield 

,
1

1
1 1

1
1

  
 
Combining the last estimate with that of Lemma 5.1.2 we obtain 

, , ,  
 

Theorem 5.1.5: [2] Let1 ∞, , 0 1, and let  be a sequence of 
positive real numbers satisfying the relation  
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3 1 2 1  

Then, for , ,  the estimate  

,             1,2, … 

is satisfied. 

Proof: Let 0    1,by definition of . 
1

 . 

from Lemma 5.1.2, we get 

4 ,
1

,

1
,

1
 

by Abel transform, 

 – 1

1

1 2 1

 
by condition (3).This yield 

 

and from this and (4) we get  
,  

Let us consider the case   1.By Abel transform, 
1

1
, 

 
Hence  
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1

 

 

Using Abel transform again yield 

 
1

 

1

1 2 1 1 1  

Thus, by considering lemma 5.1.3 and (3) we obtain 

 ,
1 2

 

1
 ,

1 1
 ,

1 2
 

2 ,

,

1 1 2
 

 

This gives  

,
1

 ,
1

1
 

combining this estimate with Lemma 5.1.2 yields 
 

, , ,  
 

5.2 Approximation by matrix transformation 

 

In the proceeding section we introduce the approximation by means, here we extend the 
method to the general case in which the matrix transformation is involved, with the same 
notations stated before we assume that A is a lower infinite triangular matrix and  is 
given by  

,  
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Lemma 5.2.1: [1]Let   ,  be an infinite lower triangular matrix and 0    1. 
If one of the conditions 

1.  has almost monotone decreasing rows and 
  1 ,  1 , 

2.  has almost monotone increasing rows, 

  1 ,  1   2 , 

and 
1 . 

holds, then 

6 , . 

Proof: Condition 1: since 

and , , for 1, . . ,  

we get  

, ,

1
1
. 

Condition 2: Since 

, , for 1, … ,  and 1 . 

We have  

, , ,

, 1 ,

, 1 ,

1
1
.  
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Theorem 5.2.2: [1]Let 1 ∞, , 0 1, , , and  
 ,  be a lower triangular regular matrix with 

1 . 
If one of the conditions 

. has almost monotone decreasing rows and  
  1 ,  1 , 

. has almost monotone increasing rows and 
  1 ,  1  where  /2 , 

holds, then 

,
. 

Proof: By definition of , we have 

,

,

,

, , 1

, 1 . 

Hence, by Lemma 5.1.2 and Lemma 5.2.1 we obtain 

,
, , 1 ,

, , , , 1 ,

,

1
1

1
 

Since 1 .  
 
Theorem 5.2.3: [1]Let 1 ∞, , 1, ,  and , be a lower 

triangular regular matrix with 1 . If one of the conditions 
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, , , 

, , 1 , 

holds, then 

,
 

Proof: By Lemma 5.1.2 

, ,

,
,

,
. 

Thus, we have to show that 
7

,
 

Set 

, ,  

Hence, 

, ,

, , ,

, , , , …

, , . 

On the other hand, 

, ,

, 1 ,

, 1 . 

Thus, 
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, , 1

, , 1

, , 1 . 

By boundedness of the partial sums in the space (see [9]) we get 

8
,

, , 1
,

, ,

,

1 ,

, ,

,

.  

Thus, the problem reduced to proving that 

, ,

,

 

If we set 

,
, , ,    1, … , , 

Abel transform yields 

, , ,

, , ,  

Hence, 

, ,

,

,

,

, ,

,

. 

 
we have by Lemma 4.2.10 

1  
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Therefore,considering Lemma 5.1.3,  

,

1 ,

1
1 . 

This and the previous inequality yield 

, ,

,

1 , 1 , ,  

Since 1 , 

,
, , , 1

,
1

1
1 . 

Therefore, it is remained to prove that 

9 , , . 

A simple calculation yields 

, ,
, , , ,

1
, , , , , ,

1

, ∑ , ∑ , ,

1

∑ , ∑ , ∑ , , ,

1

∑ , , ,

1

1
1 1 , , . 

Let , ,  

Let’s verify by induction that 

10 , 1 , , , for 1, … , .  

If   1, then 
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, 2 , , ,  

thus (10) holds. 
Now let us assume that (10) is true for   . For     1, 

, 2 , , 1 ,

, 1 , 1 , 1 ,

, , 1 , ,

, , , 

and hence (10) holds for   1, . . . , . Therefore, 

, ,
1

1 1 , ,

1
1 , 1 ,

1
1 , ,  

Set , ,  for simplicity, by expanding we got 

1
1

1
1 · 2

1
2 · 3

1
· 1

1
2 . .

1
· 1

1
· 1

1
1 , ,

1
1

, ,
1

1 , ,

. 

so relation (9) holds, thus  

,
, ,

,
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Finally, we have 

, ,

.  

Let , , 1  

By (9), 

, ,
1

1 , ,

1
1 , ,

1
1 , , , 

where  /2 . By Abel transform, 

1
1 , , , ,

1
, ,

1
, ,

1
1 . 

On the other hand 

1
1 , ,

1
1 , , , ,

1
1 , ,

1
1 , , : . 
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Now since 

, , , 

1
1 , ,

1
1 , ,

1
1 , ,

1
1

1
1 . 

 

Let us also estimate . 

1
1 , ,

1
1 , ,

1
1 , ,

1
1 , ,

2
, ,

2
, ,

2
, ,

2
1  

Thus 

1
1 , , , 

and hence 
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, , . 

 
Therefore,  

,
, ,

,
 

Finally,  

, ,

.  

and the proof is complete  
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