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Abstract 

Collisional momentum and energy transport in drifting Maxwellian and drifting bi-

Maxwellian plasmas are calculated by using two approaches, Boltzmann collision integral and 

the Fokker-Planck approximations with special emphasis to the effect of Coulomb collision. The 

transport coefficients obtained from both approaches are identical to the leading order 

(proportional to the Coulomb logarithm) and are presented here in a closed form involving 

generalized hypergeometric functions. 

In the derivation, we write the drift velocity u of the bi-Maxwellian plasma in terms of 

parallel and perpendicular components (i.e. u= u‖ + u⊥) with respect to the ambient magnetic 

field.  The final results are presented in the form of triple hypergeometric function, and they are 

valid for arbitrary temperature anisotropies, arbitrary temperature differences between interacting 

gases, and arbitrary relative drift velocities both parallel and perpendicular to the magnetic field. 

Also, we calculate the transport coefficients for two special cases, firstly, when the drift velocity 

is parallel to the ambient magnetic field (i.e. u = u‖, and u⊥=0), and secondly, when the drift 

velocity is perpendicular to the ambient magnetic field (i.e. u = u⊥, u‖=0). For the first case, the 

transport coefficients are derived and presented in the form of double hypergeometric functions, 

these results are consistent with the findings of Hellinger and Trávníček (2009).  For the second 

case, the transport coefficients are obtained and found to be in the form of double 

hypergeometric functions.   

Similarly, we derive the collisional transport coefficients for Maxwellian plasmas with a 

general drift velocity with respect to the ambient magnetic field, these coefficients are presented 

in a closed form in terms of hypergeometric functions. We also extended the work of Schunk 

(1977) and calculated the transport coefficients by using Boltzmann collision integral for two 

special cases where the relative drift is either parallel or perpendicular to the magnetic field, 

which are the two most common cases in astronomy and space physics. 

It is worthy to mention that, up to our knowledge, none of the derived transport 

coefficients for the above mentioned case are presented in closed form and in terms of 

hypergeometric function. 
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Chapter One 

Introduction 

Before discussing the transport Coefficients (momentum and energy) for 

drifting Maxwellian and drifting bi-Maxwellian plasmas, it is necessary to start with a 

description of the plasma as shown in section I. In section II, we present Boltzmann’s 

equation and the basis of the standard form of the collision terms are presented in 

section III. This is followed by a derivation of the transport coefficients with special 

emphasis on the Coulomb collision in section IV.  These transport coefficients are in 

the general formula and it is necessary to adopt an expression for species velocity 

distribution functions in order to evaluate these coefficients which are discussed in the 

next two chapters. 

I. Definition of Plasma 

Plasma is the fourth state of matter and it exists in many forms in nature. It has 

often been said that more than 99% of the visible matter in the universe is in the 

plasma state. However, plasma is a quasi-neutral gas consisting of positively and 

negatively charged particles (usually ions and electrons) with approximately equal 

charge densities, and its properties are dominated by electric, magnetic and other 

forces, and which exhibit collective behavior (Chen, 1984; Schwartz, Owen and 

Burgess, 2004). 

Ions and electrons may interact via short range atomic forces (during 

collisions) and via long range electro-magnetic forces due to currents and charges in 

the plasma (Gravitational forces may also be important in some applications). The 

long range nature of the electromagnetic forces means that plasma can show 

collective behavior, for example, oscillations, instabilities, etc.  

Plasmas can also contain some neutral particles (which interact with charged particles 

via collisions or ionization). Examples include the Earth’s ionosphere, 

magnetosphere, upper atmosphere, interstellar medium, molecular clouds, etc. The 

simplest plasma is formed by ionization of atomic hydrogen, forming plasma of equal 
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numbers of electrons and protons (Schwartz, Owen and Burgess, 2004; Fitzpatrick, 

2014). 

II. Boltzmann’s Equation 

In dealing with plasma or gas mixtures it is convenient to describe each 

species in the mixture by a separate velocity distribution function, fs (vs, rs ,t) . The 

velocity distribution function is defined such that fs (vs, rs ,t) dvsdrs represents the 

number of particles of species  s which at time t have velocities between vs and vs+ 

dvs, and positions between rs and rs+drs. Alternatively, fs can be viewed as a 

probability density in the r, vs, phase space (Barakat and Lemaire, 1990). The 

evolution in time of the species distribution function is determined by the net effect of 

collisions and the flow in phase space of particles under the influence of external 

forces. The mathematical description of this evolution is given by the well-known 

Boltzmann equation (Demars and Schunk, 1979): 

 

 

where qs, and ms, are the charge and mass of species s, G is the acceleration 

due to gravity, E is the electric field, B is the magnetic field, c is the speed of light, 

∂/∂t is the time derivative,   is the coordinate space gradient, and     is the velocity 

space gradient. The quantity 𝛿 fs /𝛿t in Boltzmann’s equation represents the rate of 

change fs in a given region of phase space as a result of collisions and called the 

collision term. 

III. Collision Term 

Collisions play a fundamental role in the dynamics and energetics of plasma. 

They are responsible for the production of ionization, the diffusion of plasma from 

high to low density regions, the conduction of heat from hot to cold regions, the 

exchange of energy between different species, and other processes. The collisional 

processes can be either elastic or inelastic. In an elastic collision, the mass, 

momentum and kinetic energy of the colliding particles are conserved, while this is 

not the case in an inelastic collision. The exact nature of the collision process depends 
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both on the relative kinetic energy of the colliding particles and on the type of 

particles. In general, for low energies, elastic collisions dominate, but as the relative 

kinetic energy increases, inelastic collisions become progressively more important. 

The order of importance is from elastic to rotational, vibrational, and electronic 

excitation, and then to ionization as the relative kinetic energy increases. However, in 

our study we interested with binary elastic Coulomb collisions (Schunk and Nagy, 

2009; Khazanov, 2011). 

This section presents a short description of two approaches for collision terms 

that have been extensively used to describe the relevant Coulomb collision processes 

(Schunk, 1977). 

III.1 Boltzmann Collision Integral 

For binary elastic collisions between s and t species, the appropriate collision 

term 𝛿 fs /𝛿t is the Boltzmann collision integral, which can be presented as 

  )2(),( tstsststst

t

s ffffggdd
t

f
 




tv  

where dvt is the velocity-space volume element of species t, gst is the relative velocity 

of the colliding particles s and t, dΩ is an element of solid angle in the s particle 

reference frame, θ is the scattering angle, the primes denote quantities evaluated after 

a collision, and ζ(gst, θ) is the differential scattering cross-section ( Goldstein,1980; 

Schunk and Nagy, 2009): 

 

 

where qs and qt are  the charge of species s and t species, respectively, 

 tstsst mmmm   is the reduced mass, mt is the mass of t particle, and εo is the 

permittivity of free space.  
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III.2 Fokker Planck Equation 

Although the Boltzmann collision integral can be applied to charged particles, 

the complexity of this expression resulted in a search for simpler collision models. 

The motivation for simplifying the Boltzmann collision integral in the case of 

Coulomb collisions is that these are long – range interactions and therefore the change 

in velocity of species due to collision is small for most collisions (Schunk, 1977). 

Therefore, the Fokker- Planck equation can be derived directly from the Boltzmann 

collision integral, which is valid for binary collisions, under the assumption that a 

series of consecutive weak (small-angle deflection) binary collisions is a valid 

representation for the multiple Coulomb interaction (Goldston and Rutherford, 1995; 

Bittencourt,2004). In this case the distribution functions evaluated after the collision 

can be expressed in terms of those evaluated before the collision by expanding the 

Boltzmann collision integral and taking first terms in the Taylor series one gets the 

Fokker-Planck equation, which may be given in the Landau conservative form 

 

 

where 1 is the unity tensor, and ln is the Coulomb logarithm, which is typically 

between 10 to 25 for space plasmas. 

The form of Fokker Plank equation derived by landau (Landau, 1936; 

Hochstim, 1969) and Rosenbluth (Rosenbluth et al., 1957). However, the Fokker-

Planck approximation fails far from the thermal equilibrium and the Boltzmann 

integral has to be used (Hellinger and Trávníček, 2009).   

IV. Transport Coefficients 

Transport Coefficients represent the rate of change in a transport property such 

as the mass, momentum, energy, etc, as a result of collisions, Coulomb collisions in 

our case. 

In the ideal situation one would like to solve the Boltzmann equation for each 

of the species in the gas mixture and thereby obtain the individual velocity 

distribution functions, but this can only be done for relatively simple situations. As a 

consequence, one is generally restricted to obtaining information on a limited number 
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of low-order velocity moments of the species distribution function (Barakat and 

Schunk, 1981).  

The procedure of multiplying the species distribution function by powers of 

velocity and then integrating over all velocities is called taking velocity moments. 

However, the definition of all higher-order velocity moments is not unique. For 

example, the temperature is a measure of the spread about some average velocity, and 

this average velocity must be selected before the temperature can be defined. 

As an alternative to defining the transport properties with respect to the 

average gas velocity, Grad (1949, 1958) proposed that the transport properties of a 

given species be defined with respect to the average drift velocity of that species. In 

terms of the species average drift velocity us, the random or thermal velocity is 

defined as 

 

and the physically significant moments of the species distribution function are given 

by Species drift velocity 

 

Absolute temperature 

 

Parallel temperature 
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The symbols ∥ and ⊥ are used to identify quantities that are parallel and 

perpendicular to the magnetic field, respectively, as well as to identify quantities 

related to parallel and perpendicular thermal energy.  

The starting point for the derivation of transport coefficients for gas mixtures 

is Boltzmann's equation Eq.(1). The transport coefficients are obtained by multiplying 

collision term in the right hand side of Boltzmann's equation with an appropriate 

function of velocity and then integrating over velocity space. The resulting transport 

coefficients describe the spatial and temporal behavior of the physically significant 

moments of the distribution function such as species concentration, drift velocity, 

temperature, stress tensor, and parallel and perpendicular heat flow. 

If we multiply Eq.(2) or Eq.(4) by ms, mscs, msc
2
/2, 2

sscm and 2/2

sscm ,  and 

integrate over velocity space, we obtain rate of change of the mass, momentum, 

energy, parallel energy and perpendicular energy, respectively, for species s. are 

symbolically written as, 𝛿ns/𝛿t, 𝛿Ms/𝛿t, 𝛿Es/𝛿t tE
s

 , and tEs  

 
respectively, for 

species s.  

The transport coefficients by using the Boltzmann collision integral: 
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Parallel Energy 

 

 

Perpendicular Energy 

 

 

And the transport coefficients by using the Fokker Planck equation 
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In the next two chapters we will assume a specific form of the distribution 

function fs and ft and insert these functions in the above equations to obtain closed 

expressions for collisional transport coefficients.  
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Chapter Two (Paper 1) 

 

Hypergeometric function representation of transport coefficients for 

drifting bi-Maxwellian plasmas 

 

Abstract 

We derive the momentum, parallel energy, and perpendicular energy collisional transport 

coefficients for drifting bi–Maxwellian plasmas by using Boltzmann collision integral approach, 

and present them in the form of triple hypergeometric functions. In the derivation, we write the 

drift velocity u of the bi-Maxwellian plasma in terms of Parallel and perpendicular components 

(i.e. u= u‖ + u⊥), parallel and perpendicular with respect to the ambient magnetic field, and we 

consider the Coulomb collision interactions. We consider two special cases, firstly, when the drift 

velocity is parallel to the ambient magnetic field (i.e. u= u‖), and secondly, when the drift velocity 

is perpendicular to the ambient magnetic field (i.e. u= u⊥).  For the first case, the transport 

equations and consequently, the transport coefficients are derived and presented in the form of 

double hypergeometric functions, these results are consistent with the findings of Hellinger and 

Trávníček (2009).  For the second case, the transport coefficients are obtained and found to be in 

the form of double hypergeometric functions. When we combine these two special cases, i.e. for 

general u, the transport coefficients are shown to be in the form of triple hypergeometric function.  

Also, we investigate the above problem by using another approach, i.e.  Fokker Planck 

approximation. We obtain similar results for both approaches. 

I. Introduction 

Transport equations based on a bi-Maxwellian distribution function were first 

derived by Chew et al (1965) for collisionless anisotropic plasma, their study was 

extended by several authors (Kennal and Green,1966; Macmahon,1965; Frieman et al., 

1966; Bowers and Haines, 1968; Oraevskii et al., 1968; Espedal, 1969) who derived the 
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transport equations including transport phenomena such as collisionless plasma, 

viscosity, and heat flow. 

All of these studies were dealing with collisionless anisotropic plasmas. Chodura 

and Pohl (1971) derived transport equation for an arbitrary anisotropic plasma taking care 

of collisionless as well as Coulomb collision effect. Since, then, Demars and Schunk 

(1979) have extended the work of Chodura and Pohl (1971) by deriving transport 

equations based on a bi-Maxwellian species distribution function for arbitrary anisotropic 

plasma (i.e. arbitrary temperature differences between the interacting gases and arbitrary 

temperature anisotropy). The relevant collision term have been calculated for resonant 

charge exchange interaction between an ion and it’s neutral parent, inverse-power 

interaction potential that include non-resonant ion-neutral (Maxwell molecule) and 

Coulomb collision, and constant  cross-section (hard sphere) interaction. 

The last two studies valid just for small relative drift between the interacting 

gases. However, Barakat and Schunk (1981) removed this restriction and derived 

collision terms based on drift bi-Maxwellian gases that are valid for arbitrary drift 

velocities differences and for an arbitrary temperature differences between the interacting 

gases as well as arbitrary temperature anisotropy. 

These transport equations were all derived based on velocity moments of 

Boltzmann’s equation and the collision terms were all derived based on velocity moments 

of the Boltzmann collision integral. 

Mitchener and Kruger (1973) and Hinton (1983) approximated Boltzmann 

collision integral by the Fokker Planck equation under the assumption that small angle 

deflections dominate. Hellinger and Trávníček (2009) calculated collision terms for bi-

Maxwellian distribution function with drift along an ambient magnetic field by using 

Fokker Planck equation and obtained similar results by using Boltzmann collision 

integral method.  
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It is the purpose of this paper to extend the work of Hellinger and Trávníček 

(2009) by deriving transport coefficients based on drift (in general, i.e. u= u‖ + u⊥ ) bi-

Maxwellian distribution function, and taking into consideration the Coulomb interactions. 

We are interested in the derivation of collisional transport coefficients for drifting 

bi-Maxwellian velocity distribution function with respect to the background magnetic 

field because many applications in plasma physics are in special need to these 

coefficients. Usually, the differential velocity between different species is aligned with 

the ambient magnetic field. However, the drift velocity perpendicular to the ambient field 

is typically connected with non-gyrotropic velocity distribution function and could be 

also related to plasma inhomogeneity. For example, different studies investigated the 

behavior of O+ ions in the ionpsphere under the effect of ExB drift, ion-ion Coulomb 

collision and ion-neutral collisions (Barghouthi et al., 1994, 2003; Barghouthi, 2005), 

also many studies investigated the ion outflow along “open geomagnetic” field lines 

(Ganguli, 1996; Barghouthi, 2008; Nilsson et al., 2013). In order to go forward in above 

and similar studies we need well established formulas for these collisional coefficients.  

This paper is organized as follows: Theoretical formulation (Boltzmann equation, 

Boltzmann collision integral, Fokker Planck equation, and transport coefficients) are 

presented in section II. In section III we presented transport coefficients for drifting bi-

Maxwellian velocity distribution function. Special cases (drift velocities perpendicular 

and parallel to the ambient magnetic field) are presented in section IV. Our results and 

discussion are summarized in section V. 

II. Theoretical Formulation  

In dealing with plasma or gas mixture it is convenient to investigate the 

distribution of these particles or species, each species in the plasma is described by a 

separate velocity distribution function fs(r, vs, t) which define such that fs(r,vs,t)drdvs 

represents the number of particles of species s which at time t have positions between r 

and r + dr and velocities between vs and vs + d vs. The species distribution function 

changed with respect to time as a result of collisions and particle motions under the 
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influence of external forces, this velocity distribution function is obtained by solving the 

following Boltzmann’s equation:  

 

 

where qs, and ms, are the charge and mass of species s, G is the acceleration due to 

gravity, E is the electric field, B is the magnetic field, c is the speed of light, ∂/∂t is the 

time derivative, is the coordinate space gradient,    is the velocity space gradient, and 

the operator 𝛿fs /𝛿t represents the rate of change of fs due to the collisions, this term is 

given in two forms: Boltzmann collision integral and Fokker Planck approximation. 

II. 1 Boltzmann Collision Integral 

For Coulomb collision between s and t particles, the appropriate collision 

operator in the right hand side of Boltzmann’s equation is the Boltzmann collision 

integral, which can be presented as 

 

where dvt is the velocity-space volume element of species t, gst is the relative 

velocity of the colliding particles s and t, dΩ is an element of solid angle in the s 

particle reference frame, θ is the scattering angle, the primes denote quantities 

evaluated after a collision, and ζ(gst, θ) is the differential scattering cross-section 

(Goldston and Rutherford, 1995; Schunk and Nagy, 2009): 

 

where qs and qt are  the charge of species and t species, respectively, 

 tstsst mmmm   is the reduced mass, mt is the mass of t particle, and εo is the 

permittivity of free space.  

)1(
1

t

f
f

cm

q
f

t

f s
s

s

s
s

s


























svss BvEGv

  )2(),( tstsststst

t

s ffffggdd
t

f
 




tv




44222

22

sin

1

64 g

qq

st

ts







14 
 

II.  2 Fokker- Planck Equation 

The collision operator can be represented by another equation that called Fokker-

Planck equation, this equation can be derived directly from the Boltzmann collision 

integral (i.e. Eq. (2)) by taking the first order of Taylor expansion of it, this expansion is 

valid for binary collisions, under the assumption that a series of consecutive weak (small-

angle deflection) binary collisions is a valid representation for the Coulomb interactions. 

 

 

where 1 is the unity tensor, and ln is the Coulomb logarithm, which is typically 

between 10 to 25 for space plasmas. 

There are two approximations were employed in the transformation of the 

Boltzmann collision integral, i.e. Eq. (2), to a Fokker–Planck equation. The first is to 

remove the scattering angle singularity by evaluating the total momentum transfer cross-

section such that scattering angles not smaller than θmin are included. The angle θmin is 

defined in terms of the ratio of the Debye length, NekTbD

24  to a temperature-

averaged impact parameter, btso kTqqb 3 , that is, sin
2
(θmin/ 2)=[1+ ]−

1
, where 

oD b/ . The impact parameter, bo, is recognized as the impact parameter that 

corresponds to a deflection of θ=π/2 (Shizgal, 2004; Rosenbluth et al., 1957). 

The momentum transfer cross-section is obtained from the integration over the 

scattering solid angle in the Boltzmann collision integral, Eq. (2). The momentum 

transfer cross section, which occurs in the calculation of collisional energy transfer is 

given by (Schunk and Nagy, 2009): 
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The second approximation is to assume that collisions with large impact 

parameters that are small scattering angles dominate and the Boltzmann collision integral 

can be replaced with the differential Fokker–Planck equation. The details of these 

calculations are provided elsewhere and are important for the interpretation of the results 

of this paper (Mitchener et al., 1973). 

II. 3 Transport Coefficients 

Transport Coefficients represent the change in a transport property (momentum, 

energy, etc.) as a result of collisions, Coulomb collisions in our case. 

Although it would be nice to know the individual velocity distribution functions 

of the different species, the mathematical difficulties associated with obtaining closed-

form solutions to Boltzmann’s equation preclude this approach for most flow situations. 

As a consequence, one is generally restricted to obtaining information on a limited 

number of low-order velocity moments of the species distribution function. 

Burgers (1969) and Grad (1949, 1958) proposed that the transport properties of a 

given species  defined with respect to the average drift velocity of that species, us, 

alternative to defining them with respect to the average as velocity, vs. This definition is 

more appropriate for large relative drifts between interacting species can occur. In terms 

of the species average drift velocity, the random or thermal velocity is defined as  

sss uvc   

For most applications, the physically significant moments of the species distribution 

function are given by 

            Species drift velocity                sssss vvvu  fdns1  

            Parallel temperature                
  kcmfdnkcmT

sss
/1/ 22

sssss
c

 

Perpendicular temperature      
  kcmfdnkcmT sss 2/12/ 22

  sssss c
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where ns is the number density of species s, k is Boltzmann’s constant and the symbols ∥ 

and ⊥ are used to identify quantities that are parallel and perpendicular to the magnetic 

field, respectively. 

The starting point for the derivation of transport coefficients is the collision term 

in the right hand side of Boltzmann equation. Moments of Boltzmann collision integral 

are obtained by multiplying the right hand side of Boltzmann equation with an 

appropriate function of velocity Qs=Qs(cs) and integrating over all velocity space. The 

corresponding moment of the Boltzmann collision Integral 

 

 

For Qs(cs) = scsm , 2

sscm and 2\2

sscm , the obtained moments of the Boltzmann collision 

integral are momentum, parallel energy and perpendicular energy, are symbolically 

written as, 𝛿Ms/𝛿t, and tE
s

 , tEs   respectively, for species s.  

Due to the reversibility of elastic collisions, we can interchange primed and 

unprimed quantities in the expression on the right side of Eq. (5) without changing the 

result  

 

Where 


sQ is the moment evaluated with the velocity found after the Coulomb collision. 

Integrals in Eq. (6) are called transfer integrals because of transfer of momentum and 

kinetic energy from one particle to the other particle due to the change in Qs in a 

collision. Eq.(6) is easier than that Eq.(5) because they do not require the distribution 

functions after the collision. 

The evaluation of the integral over dΩ in Eq. (6) has to be done using two steps. 
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gst= vs-vt, while the second step in evaluating the collision integral is to integrate over 

solid angle dΩ=sinθdθdφ by using the spherical coordinates system in the center of mass 

reference frame with relative velocity before the collision (Barakat and Schunk, 1981; 

Schunk and Nagy, 2009; Burgers, 1969; Chapman and Cowling, 1970.The resulting 

system of transport coefficients is given by:  

Momentum  

 

 

Parallel Energy 

 

 

Perpendicular Energy 

 

 

where
ts

ts

mm

mm




 ts

c

vv
V  is the center of velocity. 

Also these moments can be obtained by using the other form of collision term 

which is the Fokker Planck approximation by multiplying also it with an appropriate 

function of velocity Qs=Qs(cs) and integrating over all velocity space as follow 

 

 

After integration by parts, the corresponding transport coefficients can be 

expressed as 
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)7(ln
4

4

2

2 















t

tsst

st

ts
st ffgdd

g

qq

t
st

stts

s gcc
M










    )8(3)(.
4

8 22

2

2 tsstststst

t st

ts
st

s
ffgggddgdd

g

qq

t

E

st

 













 tsscstts ccuVgcc










   )9(3
2

)(.
4

4 22

2

2 


















  


tsststst

s

st
tsst

t st

ts
st

s ffgggdd
m

ffgdd
g

qq

t

E

st

tsscstts ccuVgcc











)10()(
1

8

ln
.

3

2

2

22

ts

st

cc
cc

.
gg

  




















t

s
s

s

tt

t

s

s

ts
v

s ddcQ
f

m

ff

m

f

g

g

m

qq

t

Q





)11(
1

8

ln
3

2

2

22

ts

st

cc
cc

.
gg

  




















t

s

s

tt

t

s

s

tss dd
f

m

ff

m

f

g

g

n

qq

t 





18 
 

Parallel Energy 

 

 

Perpendicular Energy 

 

 

In this study we assume the distribution function to be drifting bi-Maxwellian 

function. This assumption will be used to evaluate the integrals in the equations (7, 8, 9, 

11, 12, 13). 

III. Transport coefficients for drifting bi-Maxwellian velocity distribution function 

We assume that all considered species in the plasma have bi-Maxwellian velocity 

distribution functions with drift velocity Parallel and perpendicular components with 

respect to the ambient magnetic field (i.e.  uuu ). 

 

 

 

 

where a and a  are the average parallel and perpendicular thermal speeds of species s, 

that are equal to   21
2 smkT  and   21

2 smkT , respectively. 

In this section we will derived the transport coefficients by using the two 

approaches: Boltzmann collision integral and Fokker Planck equation, and verify that 

they are equivalent. 
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III. 1 Boltzmann collision integral 

The first step in calculating the momentum coefficient by using Boltzmann 

collision integral is the multiply fs by ft (fsft) and write it in the form 

 

 

The momentum coefficient according to Eq. (6)becomes 

 

 

The integrations over dcs and dct can be performed by changing the variables of 

 ts cc ,  integration from   to (h, l) by using variables defined as follows 
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Substituting Equations (18) to (21) into the equation (17) and by using Jacobian 

transformation lhccs dddd t  the expression for momentum transport coefficients 

therefore becomes 

 

 

)22(
11

expexp 2

22

2)1(

22

22

22

22

223
lgh

Ms daa
aa

lQgd
aa

ha

aa

ha

aaaa

n

t t ts

t

ts

s

ttss

tst








  



















































)16(exp
2

2

2

2

2

2

2

2

223 






















 t

t

t

t

s

s

s

s

ttss

ts
ts

a

c

a

c

a

c

a

c

aaaa

nn
ff



)17(ln
4

4
2

2

2

2

2

2

2

2

223

2

2 







































 
t

t

t

t

s

s

s

s

t

st

ttss

ts

st

ts
st

a

c

a

c

a

c

a

c
xpegdd

aaaa

nn

g

qq

t
st

stts

s gcc
M












20 
 

Because the first integral depends only on the variable z, it can be evaluated immediately 

by using a Gaussian integral technique, so Eq.(22) reduce to 

 

 

The calculation is further simplified by changing of variables and integrate over 

dx instead of dl where old and new variables are related by the following equations: 
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So Eq. (29) can be expressed as
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 is constant with respect to variable x , we 

can get it out of the integration. The integration over all variables v using a spherical 

coordinate system in velocity space, then becomes 
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In order to solve this integral, we used the technique Maclaurin series expansion 

for the exponential terms with cosθ, and finally, write it in the triple hypergeometric 

function (Hellinger and Trávníček, 2009; Lebedev , 1965; Koepf,  2014). 

 

 

 

where 

)49(ln
32 22

22


ststst

tts

st
vv

nqq






 

is a collision frequency of species s on species t. 

Also, an equations for the energy transport coefficients (7) and (8) ,δEs/δt, can be 

derived in a manner similar to that described above for δμs /δt . The first steps in 

evaluating these integrals are expressing them in term of relative velocity, and the 

variable (x), 

 

 

 

 

 

 

 

The next step in evaluating the energy collision integrals is the substitution of  

Eq.(38)  in equations (50) and (51), 
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By taking the integration over φ, the last two equations become 
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And finally, write them in the triple hypergeometric function. 
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III. 2 Fokker Planck Equation 

The first step in evaluating the transport coefficients by using the Fokker Planck 

equation is the derivation of fs and ft with respect to cs, ct respectively as follows 
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Using equations (60) and (61), the integration in equations (9,10,11) may be 

simplified by using matrix technique as follow 
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The transport Coefficients reduced to  
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For momentum, the first term is the same as we get from Boltzmann collision 

integral, and the second integral vanishes when integrating over the solid angle Ω. For 

parallel and perpendicular energy, the first integral the same as obtained from Boltzmann 

collision integral, and the second integral reduce to  gnn ts  and 
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The transport coefficients are summarized as follow 
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Because of the Fokker Planck derivation from expanding the Boltzmann collision 

integral and taking first terms in the Taylor series, the transport coefficients by using the 

Fokker Planck equation for drifting bi-Maxwellian distribution functions with velocities 

parallel and perpendicular to the ambient magnetic field give approximately similar 

results when compared to the result of Boltzmann collision integral. 

IV. Special cases 

IV. 1 (u∥ = 0, i.e. u = u⊥), no drift velocity component parallel to the ambient magnetic 

field, and the drift velocity is perpendicular with respect to the ambient magnetic field, 

the integrals in equations ( 47,54, 55) reduce to: 
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The coefficients may be evaluated by expanding exponential terms with cosθ 

into infinite sums and integrating the resulting terms, and then writes the results in 

the form of double hypergeometric functions. The transport coefficients are 

summarized as follows 
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is generalized double hypergeometric or Kamṕe de Fériet functions. 

The transport coefficients can be also calculated from the Fokker Planck equation. 

This calculation also leads to transport coefficients in the form of double hypergeometric 

function which nearly the same transport coefficients (74–76) as obtained from the 

Boltzmann collision integral. 

 

 

 

 

 

 

 

 

IV. 2 (u⊥= 0, i.e. u = u∥), no drift velocity component perpendicular to the ambient 

magnetic field, and the drift velocity is parallel with respect to the ambient magnetic 

field, the transport coefficients take the form: 
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or Kamṕe de Fériet functions.

 These results agree with the results of Hellinger and Trávníček (2009).  

V. Results and Discussions 

Coulomb collisions play a very important role in the kinetics of the inner 

magnetosphere, plasmasphere, ionosphere coupling processes. They are responsible for 

the plasma production in these regions as well as for the energy and momentum transfer 

between the different plasma species as a result of collisions. The mathematical 

description of the change in a transport property (momentum, energy, etc.) as a result of 

collisions called the transport coefficients which depend on the form of velocity 

distribution function of colliding species.  

For temperature anisotropic plasmas (i.e., unequal species temperatures parallel 

and perpendicular to the ambient magnetic field, with the degree of the anisotropy given 

by the parallel to perpendicular temperature ratio)we obtained the transport coefficients 

(momentum, parallel energy, and perpendicular energy) based on a bi-Maxwellian 

velocity distribution functions with drift velocity u(parallel and perpendicular) with 

respect to the ambient magnetic field (i.e. u= u‖ + u⊥) by using Boltzmann collision 

integral, and Fokker Planck approximation. The final results are presented in the form of 

triple hypergeometric function.  The two approaches give nearly the same results, and 

valid for arbitrary temperature anisotropies, arbitrary temperature differences between 

interacting gases, and arbitrary relative drift velocities both parallel and perpendicular to 

the magnetic field. 

We also calculated the transport coefficients by using Boltzmann collision 

integral for two special cases where the relative drift is either parallel or perpendicular to 
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the magnetic field, which are the two most common cases in astronomy and space 

physics. Then we investigated the previously problem by using another approach, Fokker 

Planck approximation, we obtained nearly similar results. The transport coefficients are 

in the form of double hypergeometric functions. These results can be further generalized 

to an inverse power force interaction. 

It should be noted that significant temperature anisotropies occur in plasma at all 

levels of ionization. The temperature anisotropy in the solar wind measured typically 

varies between a factor of 2 to 4 at the orbit of the Earth (cf.  Brandt ,1970; Hundhausen 

,1972) and developed in a region of the flow where only Coulomb collisions are 

important (i.e., the flow is effectively fully ionized), while in the terrestrial polar wind 

proton initial theoretical calculations indicate that the temperature anisotropy is about a 

factor of 20 at a distance of eight Earth radii (Holzer et al., 1971) and developed in a 

region of flow where Coulomb collisions and non-resonant ion- neutral interaction occur 

(i.e., the flow is partially ionized). 

To sum up, we extended the work of Hellinger and Trávníček (2009) and 

calculated the transport coefficients for drifting bi-Maxwellian plasmas. Hellinger and 

Trávníček (2009) consider the plasma drift is along the ambient magnetic field, but in our 

study we have consider general drift (u= u‖ + u⊥) and investigated two special cases (u= 

u‖ ,u⊥=0, and u= u⊥, u‖ =0).We have reproduced the results of Hellinger and Trávníček 

(2009) for case(u= u‖ , u⊥=0). In our study we showed in detailed derivation for transport 

coefficients by using two approaches Boltzmann collision integral and Fokker Planck 

equation. 
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Chapter Three (Paper 2) 

 

Transport coefficients for drifting Maxwellian plasmas: The effect of 

Coulomb collisions 

 

Abstract 

We derive the collisional momentum and energy transport coefficients in 

Maxwellian plasmas with a general drift velocity with respect to the ambient magnetic 

field by using two approaches, the Fokker-Planck approximation and Boltzmann collision 

integral. We find the transport coefficients obtained from Fokker-Planck representation 

are similar to those obtained by using Boltzmann collision integral approach, and both 

results are presented in a closed form in terms of hypergeometric functions. This has been 

done for drifting Maxwellian plasmas with special emphasis on Coulomb collision, i.e. 

inverse-square force. 

Also, we calculate the transport coefficients for two special cases, firstly, when 

the drift velocity is parallel to the ambient magnetic field (i.e. u = u‖, and zero 

perpendicular drift velocity), and secondly, when the drift velocity is perpendicular to the 

ambient magnetic field (i.e. u = u⊥, and zero parallel drift velocity). It is worthy to 

mention that, up to our knowledge, none of the derived transport coefficients for the 

above mentioned case are presented in closed form and in terms of hypergeometric 

function. 

I. Introduction 

Transport equations based on an isotropic Maxwellian distribution function were 

first derived by Tanenbaum (1967), Burgers (1969), and reviewed by Schunk (1977). 

They obtained these transport equations by using Boltzmann collision integral approach 

and presented them in terms of the Chapman–Cowling collision integrals (Chapman and 
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Cowling, 1970). These coefficients are valid for arbitrary temperature differences 

between the interacting gases, and are restricted to small relative drift velocity between 

the interacting gases. In this study, we removed the latter restriction and calculated 

transport coefficients for general drifting Maxwellian plasmas that are valid for arbitrary 

drift velocity differences as well as for temperature differences between the interacting 

plasma species. We also derived these transport coefficients for two special cases, the 

first one, when the drift velocity is parallel to the ambient magnetic field and the second 

one when the drift velocity is perpendicular to the ambient magnetic field. These 

coefficients are obtained by using two different approaches; Fokker-Planck 

approximation and Boltzmann collision integral. 

This paper starts with a discussion of the theoretical formulation of Boltzmann’s 

equation and the relevant collision terms i.e. Boltzmann collision integral and Fokker-

Planck approximation. This is followed by showing the general forms of Boltzmann 

collision integral and Fokker-Planck approximation. Then, we derived the closed set of 

transport coefficients for drifting Maxwellian distribution function with emphasis on the 

effect of Coulomb collisions, and finally we investigated two special cases (i.e. drift 

velocities perpendicular and parallel to the ambient magnetic field) by using two forms of 

the collision terms. The last section discusses our results and future studies. 

I.1 Theoretical Formulation  

In dealing with plasma it is convenient to investigate the distribution function of 

these species, in general each species in the plasma is described by a separate velocity 

distribution function fs(r, vs, t) which defined such that fs(r, vs, t) drdvs represents the 

number density of particles of species s which at time t have positions between r and r + 

d r and velocities between vs and vs + d vs. The species distribution function changed with 

respect to time as a result of collisions and particle motions under the influence of 

external forces, the mathematical description of this effect is giving by Boltzmann’s 

equation:  
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where qs, and ms, are the charge and mass of species s, G is the acceleration due to 

gravity,E is the electric field, B is the magnetic field, c is the speed of light, ∂/∂t is the 

time derivative, is the coordinate space gradient,    is the velocity space gradient, and 

the quantity𝛿fs /𝛿t represents the rate of change of fs due to the collisions, this term is 

given in different forms, in this study we are interested in Boltzmann collision integral 

and Fokker-Planck approximation forms. 

I. 2 Boltzmann Collision Integral 

For binary elastic Coulomb collision between s and t charged particles, the 

appropriate collision term is the Boltzmann collision integral, which can be 

presented as 

 

where dvt is the velocity-space volume element of species t, gst is the relative velocity of 

the colliding particles s and t, dΩ is an element of solid angle in the s particle reference 

frame, θ is the scattering angle, the primes denote quantities evaluated after a collision, 

and ζ(gst, θ) is the differential scattering cross-section ( Goldstein, 1980; Schunk and 

Nagy, 2009): 

 

where qs and qt are  the charges of species s and t species, respectively, 

 tstsst mmmm   is the reduced mass, mt  and ms are the masses of particles t and s, 

and εo is the permittivity of free space.  

I.  3 Fokker- Planck Approximation 

Sometimes Boltzmann collision integral appears to be difficult to evaluate, so that 

the Boltzmann collision integral (i.e. Eq. (2)) reduces to another simpler form by taking 

the first order of Taylor expansion of it under the assumption that a series of consecutive 
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weak (small-angle deflection) binary collisions is a valid representation for the Coulomb 

interactions, the result is the Fokker-Planck approximation. 

 

 

where 1 is the unity tensor, and ln  is the Coulomb logarithm, which is typically 

between 10 to 25 for space plasmas. 

The moments of fs are most conveniently defined in terms of the random or 

thermal velocity of the species s, cs, with respect to their own mean flow velocity, 

us, as follow  

)5(ssc uvc   

so that the integration over the velocity space dcs = dvs and the only difference being a 

displacement of the origin of the velocity space (Grad ,1949,1958; Burgers, 1969). The 

advantage of it that if there are large drift velocity difference or temperature difference 

between interacting species, the velocity distribution function of a given species more 

likely to be Maxwellian about its own drift velocity than to be Maxwellian about the 

average velocity. Consequently, a series expansion of the species distribution function 

about Maxwellian will converge more rapidly if the species average drift velocity is used 

to define the transport properties (Schunk, 1977).  

II. Transport Coefficients 

The starting point for the derivation of transport coefficients for gas mixtures is 

Boltzmann’s equation i.e. Eq. (1). The transport equations are obtained by multiplying 

the right hand side of the Boltzmann’s equation by an appropriate function of 

velocity Qs= Qs(cs) and then integrating over all velocity space. The resulting 

transport coefficients describe the effect of collisions between different species.  

If we multiply the right hand side of Eq. (1) by Q s = 1, mscs, and mscs
2
/2 and 

integrate over velocity space, we obtain the rate of change of density, momentum 
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and energy, and are symbolically written as 𝛿ns/𝛿t, 𝛿Ms/𝛿t, and 𝛿Es/𝛿t, respectively, 

for species s. 

For Boltzmann collision integral, the corresponding transport coefficients are 

given as 

 

 

 

Due to reversibility of elastic collision, we can interchange primed and unprimed 

quantities in the Eq. (6) without changing the result (Schunk and Nagy, 2009).  

 

 

where Qˊ is a function of velocity after the collision. The evaluation of Eq. (7) is 

easier than that of Eq.(6), as it does not require the calculation of fˊsfˊt. 

However, this integral can be evaluated by transform it from (cs,ct) to (Vc, 

gst), where Vc is the center-of-mass velocity, and gst is the relative velocity, which 

are 
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And the next step in evaluating the collision integral is to integrate over the solid 

angle dΩ = sinθ dθ dφ by using spherical polar coordinate system in the center of mass 

reference frame, so we obtain 
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Density 
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Also, these moments can be obtained by using the Fokker-Planck approximation 

by multiplying it with an appropriate function of velocity Qs=Qs(cs) and integrating over 

all velocity space as follows: 

 

 

After integration by parts, the corresponding transport coefficients can be expressed as 
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Momentum  

 

 

Energy 

 

 

Note that for all elastic collisions the rate of change of density is zero because the 

particle’s mass does not change. 

The remaining integrals in equations (11, 12, 16, 17) can be evaluated after 

adopting approximate expressions for fs and ft. However, in this study we assume the 

distribution function to be drifting Maxwellian function. This assumption will be used to 

evaluate these integrals. 

III. Transport Coefficients for Drifting Maxwellian Velocity Distribution 

Function 

As noted in the last section, it is necessary to adopt approximate expression for 

the species velocity distribution functions, in order to evaluate the transport coefficients 

as presented in equations (11,12,16,17). So we assume all colliding species in the gas 

have drifting Maxwellian velocity distributions function. This case is known as the 5-

moment approximation because each species in the gas mixture is characterized by five 

parameters (i.e. species density, three components of drift velocity, and temperature).  
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In the following sub-sections, we will derive the transport coefficients by using 

firstly Boltzmann collision integral and then Fokker-Planck approximation, and finally 

verify that they are equivalent. 

III.1 Boltzmann Collision Integral  

The rate of change of the momentum and energy are obtained from equations (11) 

and (12) respectively, the term fsft can be expressed as 

 

 

 

The integrations over the velocity space can be performed by introducing the 

following variables as follows: 
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Substituting Equations from 21 to 28 into Eq.(20) and then into the expression for 

δMs/δt (11) and δEs/δt (12) yields 

 

 

 

 

Integration with respect to dc can be evaluated immediately, using a spherical 

coordinate system (Gaussian integral) 
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Schunk (1977) calculated these remaining integral over g by expanded the 

exponential terms with cosθ, and he assumed a small relative drifts between the 

interacting gases (i.e., when the drift velocity differences are much smaller than thermal 

speeds), so that Schunk (1977) neglected the exponential term of (Δu/α)
2
 , and finally the 

transport coefficients expressed in terms of the so-called Chapman–Cowling collision 

integrals (Chapman and Cowling ,1970). 

In this study, we removed the latter restriction and calculated transport 

coefficients by using other strategy in which we introduced new variables as follow: 
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hypergeometric function, so with these changes the final expressions for the coefficients 

are 
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F is hypergeometric function(Lebedev,1965; Koepf, 2014). 

 

III. 2 Fokker-Planck Approximation 

The first step in evaluating the transport coefficient for momentum by using the 
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This is the same as we obtained from Boltzmann collision integral (i.e. Eq. (11)), 

so the final expression is 

   

 

Similarly, the energy coefficient δEs/δt can be calculated as we did for the 

momentum coefficient δMs/δt.  We obtained approximately similar results as those 

obtained from Boltzmann collision integral. 

 

 

The comparison between the results of Eq. (47) and Eq. (39) produce similar 

results and the little difference due to the Fokker-Planck approximation which obtained 

from expanding the Boltzmann collision integral and taking first terms in the Taylor 

series and neglect the other terms. 

III. 3 Special Cases: 

1)  (u∥= 0, i.e. u= u⊥), zero drift velocity parallel to the ambient magnetic field, 

and the drift velocity is perpendicular to the ambient magnetic field, the transport 

coefficients equations reduce to: 
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2)  (u⊥=0, i.e. u= u∥),  zero drift velocity component perpendicular to the ambient 

magnetic field, and the drift velocity is parallel to the ambient magnetic field, the 

transport coefficients take the form: 

 

 

 

 

 

 

These coefficients derived by using Fokker-Planck approximation are, nearly, 

similar to the results obtained by using Boltzmann collision integral approach. 

IV. Results and Discussions  

For temperature isotropic plasmas, we obtained the transport coefficients (density, 

momentum, and energy) based on a drifting Maxwellian velocity distribution functions 

with drift velocity u with respect to the ambient magnetic field (i.e. u= u‖ + u⊥) by using 

Boltzmann collision integral, and Fokker Planck approximation. The final results are 

presented in the closed form in terms of hypergeometric functions.  The two approaches 

produce approximately similar results. 

We extended the work of Schunk (1977) and calculated the transport coefficients 

by using Boltzmann collision integral for two special cases where the relative drift is 

either parallel or perpendicular to the magnetic field, which are the two most common 

cases in astronomy and space physics. Then we investigated the previously problem by 

using another approach, Fokker Planck approximation, we obtained nearly similar results. 

The transport coefficients are presented in the form of hypergeometric functions. These 

results can be further generalized to an inverse power force interaction. 
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Finally, it should be noted that we derived the closed set of the collisional 

momentum and energy transport coefficients, however Chapman and Cowling (1970) 

calculated these coefficients approximately and for special case i.e. when the drift 

velocity differences between the various species are much smaller than typical thermal 

speeds, and they performed approximation for some specific collision processes. 

Similarly, Jubeh and Barghouthi (2017) derived the above transport coefficients 

for bi-Maxwellian drifting plasma with special emphasis on the effect of Coulomb 

collisions. In an on-going study we are interested to derive, in closed form, the velocity 

diffusion coefficients for both cases, Maxwellian and bi-Maxwellian drifting plasma, and 

provide them in terms of Hypergeometric functions. These diffusion coefficients are 

going to be very useful to the solar and polar wind communities, especially in modeling 

the plasma behavior in these regions. 
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Chapter Four 

Results and Discussions 

For application to problems dealing with isotropic and anisotropic plasmas with 

special emphasis on the effect of Coulomb collision (i.e. inverse-square force) we have 

derived a closed system of transport coefficients based on a Maxwellian and bi-

Maxwellian drifting plasmas by using Boltzmann collision integral and Fokker-Planck 

approximation. The system of coefficients includes the mass, momentum and energy 

exchange collision terms, and the final results are presented in the closed form in terms of 

hypergeometric functions, as summarized: 

1) We derive the momentum, parallel energy, and perpendicular energy 

collisional transport coefficients for bi-Maxwellian velocity distribution functions with 

drift velocity u with respect to the ambient magnetic field (i.e. u= u‖ + u⊥) and present 

them in the form of triple hypergeometric functions. We also calculated the transport 

coefficients for two special cases where the relative drift is either parallel or 

perpendicular to the magnetic field, which are the two most common cases in astronomy 

and space physics ( Jubeh and Barghouthi, 2017), as follow: 

a) When the drift velocity is parallel to the ambient magnetic field (i.e. u= u‖), the 

transport coefficients are derived and presented in the form of double hypergeometric 

functions, these results are consistent with the findings of Hellinger and Trávníček 

(2009).   

 b) When the drift velocity is perpendicular to the ambient magnetic field (i.e. u= 

u⊥), the transport coefficients are obtained and found to be in the form of double 

hypergeometric functions. 

2) We derive the collisional density, momentum and energy transport coefficients 

in Maxwellian plasmas with a general drift velocity with respect to the ambient magnetic 

field and presented in a closed form in terms of hypergeometric functions. However, 
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Chapman and Cowling (1970) calculated these coefficients approximately and for special 

case i.e. when the drift velocity differences between the various species are much smaller 

than typical thermal speeds, in this thesis, we removed the latter restriction and calculated 

transport coefficients for general drifting Maxwellian plasmas that are valid for arbitrary 

drift velocity differences as well as for temperature differences between the interacting 

plasma species. Also, we extended the work of Schunk (1977) and calculated the 

collisional transport coefficients for two special cases, as follow: 

a)  When the drift velocity is parallel to the ambient magnetic field (i.e. u = u‖, and 

u⊥=0).  

b) When the drift velocity is perpendicular to the ambient magnetic field (i.e. u = u⊥, 

and u‖=0).  

Then we investigated the previously problems by using another approach, Fokker-

Planck approximation, we obtained nearly similar results. These results can be further 

generalized to an inverse power force interaction. 

In an on-going study we are interested to extend the work of Hinton (1983) and 

Hellinger and Trávníček (2012) and derive, in closed form, the velocity diffusion 

coefficients for both cases, Maxwellian and bi-Maxwellian drifting plasma, and provide 

them in terms of Hypergeometric functions. These diffusion coefficients are going to be 

very useful to the solar and polar wind communities, especially in modeling the plasma 

behavior in these regions. 
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Appendix 

Hypergeometric function 

A generalized hypergeometric function pFq (a1, … ap; b1, …, bq,;x) is a function 

which can be defined in the form of a hypergeometric series, i.e., a series for which the 

ratio of successive terms can be written 
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(The factor of (k+1) in the denominator is present for historical reasons of notation). 

The function 2F1 (a, b; c; x) corresponding to p=2, q=1, in general, arises the most 

frequently in physical problems, and so is frequently known as "the" hypergeometric 

equation or, more explicitly, Gauss's hypergeometric function (Gauss, 1812; Barnes, 

1908) that define by the power series 
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It is undefined (or infinite) if c equals a non-positive integer. Here (q)n is the 

(rising) Pochhammer symbol, which is defined by: 

                                               
0

0

)1)...(1(

1
)(












n

n

nqqq
q n

 (3) 

Example: The cosine function has the power series representation (Koepf, 2014) 
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To find its hypergeometric counterpart, we start with 

                                                n
n

k x
n

a 2

)!2(

)1(
  (5) 

Then we get the term ratio 

http://mathworld.wolfram.com/GeneralizedHypergeometricFunction.html
http://mathworld.wolfram.com/HypergeometricSeries.html
http://mathworld.wolfram.com/Denominator.html
https://en.wikipedia.org/wiki/Pochhammer_symbol
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Since a0 = 1, this leads finally to the hypergeometric representation 
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In 1921, Appell’s four double hypergeometric functions F1, F2, F3, F4 (Qureshi et 

al., 2015) , A special class of double hypergeometric functions or Kamp´e de F´eriet 

functions is considered here (Hellinger and Trávníček, 2009). These functions can be 

represented as double series 

                           
!!)()(

)()(
,,

;

,
F

0,

..2

1.1
k

y

n

x

dc

ba
yx

dc

ba kn

kn kkn

knkn


 









 (8) 

In 1967, the hypergeometric function was extended to three variables, resulting in 

the formula called the triple hypergeometric function FA
3

   (x,y,z) and it defined by 

 
!!!)()()(

)()()()(
,,F

0,, 321

321.3

A
m

z

k

y

n

x

ccc

bbba
zyx

mkn

mkn pkn

mknmkn




  (9) 

where FA
3
  (x,y,z) is called the Lauricella’s triple hypergeometric function (Choi and 

Rathie, 2013). 
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 البلازمية ذات التوزيع ماكسويل و التوزيع ثنائي ماكسويل لمجسيمات نقلمعاملات ال

مقدمة عامة في فيزياء البلازما و معادلة بولتزمان، الفصل الاول حيث فصول، ةتتكون ىذه الرسالة من اربع

يتضمن النتائج و  و الاخير الفصل الرابع ومرسل لمنشر،  بحث الفصل الثالث بينماا، و الفصل الثاني بحثا منشور 

 الدراسات المستقبمية.

في فيزياء البلازما جيث اعتبرنا الجسيمات  النقلاملات معتم اشتقاق في الفصل الثاني من ىذه الرسالة 

و تم تعبير عن ىذه المعاملات  ،توزيع ثنائي ماكسويل و تقع تحت تأثير تصادمات كولوم حسبع وز لبلازمية تتا

 هذىو قمنا باشتقاق ،  (Hypergeometric function) تركييبرجيوميىاقتران ، كمية التحرك، الطاقة( بدلالة ةفاالكث)

 -فوكر معادلة و  (Boltzmann collision integral)بولتزمان تكاملات تصادم طريقتين: المعاملات باستخدام

 :التاليتيين لحالتين الخاصيتيين معاملات النقلحساب  تم أنو  اضافة الى ، (Fokker- Planck equation) بلانك

العمودي اولا، عندما تكون سرعة الانزياح موازية لممجال المغناطيسي، و ثانيا، عندما تكون سرعة الانزياح باتجاه 

 Double) كتر ييبرجيوميىعمى المجال المغناطيسي. في الحالة الاولى، تم اشتقاق معاملات النقل بدلالة اقتران ثنائي 

Hypergeometric function) ( و بالنسبة لمحالة 9002، و ىذه النتائج تتفق مع نتائج ىمنجر و ترافنيسك .)

  ك.تر ييبرجيوميىاقتران ثنائي  الثانية، تم كتابة معاملات النقل ايضا بدلالة

موزعة حسب توزيع ماكسويل بانزياح أن الجسيمات و في الفصل الثالث قمنا بنفس الدراسة و لكن افترضنا 

ك، تر ييبرجيوميىبدلالة اقتران ل بشكل كامل قالتعبير عن معاملات الن تم و  ) التوزيع الطبيعي لمجسيمات(بشكل عام 

تم اشتقاق معاملات النقل لحالتين  كما، بشكل تقريبيىذه المعاملات عمما بان الدراسات السابقة قامت باشتقاق 

كون سرعة الانزياح اما موازية او عمودية عمى المجال المغناطيسي، و ىما الحالتان الأكثر شيوعا خاصيتين عندما ت

 في عمم الفمك و الفضاء.

مسية و الرياح القطبية و شدراسة الرياح الظيفيا في جديدة يمكن تو  نقل نستطيع القول قدمنا معاملات

 .الاخرى  العديد من الظواىر الفمكية




