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Abstract

Collisional momentum and energy transport in drifting Maxwellian and drifting bi-
Maxwellian plasmas are calculated by using two approaches, Boltzmann collision integral and
the Fokker-Planck approximations with special emphasis to the effect of Coulomb collision. The
transport coefficients obtained from both approaches are identical to the leading order
(proportional to the Coulomb logarithm) and are presented here in a closed form involving

generalized hypergeometric functions.

In the derivation, we write the drift velocity u of the bi-Maxwellian plasma in terms of
parallel and perpendicular components (i.e. u= u; + uy) with respect to the ambient magnetic
field. The final results are presented in the form of triple hypergeometric function, and they are
valid for arbitrary temperature anisotropies, arbitrary temperature differences between interacting
gases, and arbitrary relative drift velocities both parallel and perpendicular to the magnetic field.
Also, we calculate the transport coefficients for two special cases, firstly, when the drift velocity
is parallel to the ambient magnetic field (i.e. u = u;, and u.=0), and secondly, when the drift
velocity is perpendicular to the ambient magnetic field (i.e. u = uy, uj=0). For the first case, the
transport coefficients are derived and presented in the form of double hypergeometric functions,
these results are consistent with the findings of Hellinger and Travni¢ek (2009). For the second
case, the transport coefficients are obtained and found to be in the form of double
hypergeometric functions.

Similarly, we derive the collisional transport coefficients for Maxwellian plasmas with a
general drift velocity with respect to the ambient magnetic field, these coefficients are presented
in a closed form in terms of hypergeometric functions. We also extended the work of Schunk
(1977) and calculated the transport coefficients by using Boltzmann collision integral for two
special cases where the relative drift is either parallel or perpendicular to the magnetic field,

which are the two most common cases in astronomy and space physics.

It is worthy to mention that, up to our knowledge, none of the derived transport
coefficients for the above mentioned case are presented in closed form and in terms of

hypergeometric function.
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Chapter One

Introduction

Before discussing the transport Coefficients (momentum and energy) for
drifting Maxwellian and drifting bi-Maxwellian plasmas, it is necessary to start with a
description of the plasma as shown in section I. In section Il, we present Boltzmann’s
equation and the basis of the standard form of the collision terms are presented in
section I1l. This is followed by a derivation of the transport coefficients with special
emphasis on the Coulomb collision in section IV. These transport coefficients are in
the general formula and it is necessary to adopt an expression for species velocity
distribution functions in order to evaluate these coefficients which are discussed in the
next two chapters.

I. Definition of Plasma

Plasma is the fourth state of matter and it exists in many forms in nature. It has
often been said that more than 99% of the visible matter in the universe is in the
plasma state. However, plasma is a quasi-neutral gas consisting of positively and
negatively charged particles (usually ions and electrons) with approximately equal
charge densities, and its properties are dominated by electric, magnetic and other
forces, and which exhibit collective behavior (Chen, 1984; Schwartz, Owen and
Burgess, 2004).

lons and electrons may interact via short range atomic forces (during
collisions) and via long range electro-magnetic forces due to currents and charges in
the plasma (Gravitational forces may also be important in some applications). The
long range nature of the electromagnetic forces means that plasma can show

collective behavior, for example, oscillations, instabilities, etc.

Plasmas can also contain some neutral particles (which interact with charged particles
via collisions or ionization). Examples include the Earth’s ionosphere,
magnetosphere, upper atmosphere, interstellar medium, molecular clouds, etc. The

simplest plasma is formed by ionization of atomic hydrogen, forming plasma of equal



numbers of electrons and protons (Schwartz, Owen and Burgess, 2004; Fitzpatrick,
2014).

I1. Boltzmann’s Equation

In dealing with plasma or gas mixtures it is convenient to describe each
species in the mixture by a separate velocity distribution function, fs (vs, s ,t) . The
velocity distribution function is defined such that fs (vs, rs ,t) dvsdrs represents the
number of particles of species s which at time t have velocities between vs and vg+
dvs, and positions between rs and rs+drs. Alternatively, fs can be viewed as a
probability density in the r, vs, phase space (Barakat and Lemaire, 1990). The
evolution in time of the species distribution function is determined by the net effect of
collisions and the flow in phase space of particles under the influence of external
forces. The mathematical description of this evolution is given by the well-known

Boltzmann equation (Demars and Schunk, 1979):

aE + v, - VI, + G+q—S(E+lvst) -V, fszﬁ @
ot m C : o

S

where s, and ms, are the charge and mass of species s, G is the acceleration
due to gravity, E is the electric field, B is the magnetic field, ¢ is the speed of light,
o/ot is the time derivative, V is the coordinate space gradient, and V. is the velocity
space gradient. The quantity § fs /6t in Boltzmann’s equation represents the rate of
change fs in a given region of phase space as a result of collisions and called the

collision term.
1. Collision Term

Collisions play a fundamental role in the dynamics and energetics of plasma.
They are responsible for the production of ionization, the diffusion of plasma from
high to low density regions, the conduction of heat from hot to cold regions, the
exchange of energy between different species, and other processes. The collisional
processes can be either elastic or inelastic. In an elastic collision, the mass,
momentum and kinetic energy of the colliding particles are conserved, while this is

not the case in an inelastic collision. The exact nature of the collision process depends



both on the relative kinetic energy of the colliding particles and on the type of
particles. In general, for low energies, elastic collisions dominate, but as the relative
kinetic energy increases, inelastic collisions become progressively more important.
The order of importance is from elastic to rotational, vibrational, and electronic
excitation, and then to ionization as the relative kinetic energy increases. However, in
our study we interested with binary elastic Coulomb collisions (Schunk and Nagy,
2009; Khazanov, 2011).

This section presents a short description of two approaches for collision terms
that have been extensively used to describe the relevant Coulomb collision processes
(Schunk, 1977).

I11.1 Boltzmann Collision Integral

For binary elastic collisions between s and t species, the appropriate collision

term & f; /6t is the Boltzmann collision integral, which can be presented as

6fs ’ !
EZZJ.thngsto-st(gst’e)[fs ft - fs ft] (2)
t
where dv; is the velocity-space volume element of species t, g is the relative velocity
of the colliding particles s and t, dQ is an element of solid angle in the s particle
reference frame, 0 is the scattering angle, the primes denote quantities evaluated after
a collision, and o(gy, 0) is the differential scattering cross-section ( Goldstein,1980;
Schunk and Nagy, 2009):
0: 0 1
o= 2.2, 2 ~daind
64r s ug 9 sin” g

©)

where s and q; are the charge of species s and t species, respectively,

My =Mgm, /(ms + mt) is the reduced mass, m; is the mass of t particle, and &, is the

permittivity of free space.



111.2 Fokker Planck Equation

Although the Boltzmann collision integral can be applied to charged particles,
the complexity of this expression resulted in a search for simpler collision models.
The motivation for simplifying the Boltzmann collision integral in the case of
Coulomb collisions is that these are long — range interactions and therefore the change
in velocity of species due to collision is small for most collisions (Schunk, 1977).
Therefore, the Fokker- Planck equation can be derived directly from the Boltzmann
collision integral, which is valid for binary collisions, under the assumption that a
series of consecutive weak (small-angle deflection) binary collisions is a valid
representation for the multiple Coulomb interaction (Goldston and Rutherford, 1995;
Bittencourt,2004). In this case the distribution functions evaluated after the collision
can be expressed in terms of those evaluated before the collision by expanding the
Boltzmann collision integral and taking first terms in the Taylor series one gets the

Fokker-Planck equation, which may be given in the Landau conservative form

242 2
i — _zvv.qs qt ZInAIlg - g9 . L aft _L 8fs th (4)
o n 8rmem, g m, ov, m, oV,

where 1 is the unity tensor, and In A is the Coulomb logarithm, which is typically

between 10 to 25 for space plasmas.

The form of Fokker Plank equation derived by landau (Landau, 1936;
Hochstim, 1969) and Rosenbluth (Rosenbluth et al., 1957). However, the Fokker-
Planck approximation fails far from the thermal equilibrium and the Boltzmann

integral has to be used (Hellinger and Travnicek, 2009).
V. Transport Coefficients

Transport Coefficients represent the rate of change in a transport property such
as the mass, momentum, energy, etc, as a result of collisions, Coulomb collisions in
our case.

In the ideal situation one would like to solve the Boltzmann equation for each
of the species in the gas mixture and thereby obtain the individual velocity
distribution functions, but this can only be done for relatively simple situations. As a

consequence, one is generally restricted to obtaining information on a limited number

4



of low-order velocity moments of the species distribution function (Barakat and
Schunk, 1981).

The procedure of multiplying the species distribution function by powers of
velocity and then integrating over all velocities is called taking velocity moments.
However, the definition of all higher-order velocity moments is not unique. For
example, the temperature is a measure of the spread about some average velocity, and

this average velocity must be selected before the temperature can be defined.

As an alternative to defining the transport properties with respect to the
average gas velocity, Grad (1949, 1958) proposed that the transport properties of a
given species be defined with respect to the average drift velocity of that species. In
terms of the species average drift velocity us, the random or thermal velocity is

defined as
C, =V, —U, (5)

and the physically significant moments of the species distribution function are given

by Species drift velocity
u, =(v,) (6)
Absolute temperature
am, ; ,
T, = T<CS > (7

Parallel temperature

T =l ®)

Perpendicular temperature

T, =2(e) ©)

and the angle brackets denote the average

<A>=nijde%A (10)



The symbols || and L are used to identify quantities that are parallel and
perpendicular to the magnetic field, respectively, as well as to identify quantities

related to parallel and perpendicular thermal energy.

The starting point for the derivation of transport coefficients for gas mixtures
is Boltzmann's equation Eq.(1). The transport coefficients are obtained by multiplying
collision term in the right hand side of Boltzmann's equation with an appropriate
function of velocity and then integrating over velocity space. The resulting transport
coefficients describe the spatial and temporal behavior of the physically significant
moments of the distribution function such as species concentration, drift velocity,
temperature, stress tensor, and parallel and perpendicular heat flow.

If we multiply Eq.(2) or Eq.(4) by ms, msCs, msc?/2, m.c2 and m.c?, /2, and

7|
integrate over velocity space, we obtain rate of change of the mass, momentum,
energy, parallel energy and perpendicular energy, respectively, for species s. are

symbolically written as, dn/8t, 6M/6t, SEJ/6t éESH /ét, and 8Esl/5t respectively, for

species s.

The transport coefficients by using the Boltzmann collision integral:

Density
11
an, _ (11)
ot
Momentum
2
059
=>4 InA|| dc.dc f f
z T, [471'5‘ ﬂstg J J‘J- gstgst t (12)

Energy

ok,

r} :Z_ﬂst”dcsdctgst f, ft(Vc-gstps(tl) (13)

t



Parallel Energy

Z ﬂsr[“-ﬂj;{;g ] [”dc dc gstgstH (V —-u )+HdC dc gst(gst 3gstH )f f ] (14)

Perpendicular Energy

2
R [ yrms J[ﬁ do,de, .. (Ve —Us). 1, 452 [ de.de,ga (05 -39, )1, f} 5)
st

And the transport coefficients by using the Fokker Planck equation

Density
on, i, (16)
ot
Momentum
2
059,
=34 InA (| dc.dc f f,
z U, (47[5 ﬂstg J J.J. 1959t Ts (17)
Energy
2 —_—
€, g @ainAr 1909 (f o f ol o o (18)
o T Arein, g m, dc, m, ac,
Parallel Energy
Z:q 2qf InAJ- 192—99. L@ft _L@fs dc dc 19)
472'6‘ ng SH 93 m, aCt m aCs T
Perpendicular Energy
Zq 27 LI 19°-gg ( f, of _ f o )y g0 (20)
47[8 N, 93 m, ¢, Mg OcC, T



In the next two chapters we will assume a specific form of the distribution
function fs and f; and insert these functions in the above equations to obtain closed

expressions for collisional transport coefficients.
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Chapter Two (Paper 1)

Hypergeometric function representation of transport coefficients for

drifting bi-Maxwellian plasmas

Abstract

We derive the momentum, parallel energy, and perpendicular energy collisional transport
coefficients for drifting bi—-Maxwellian plasmas by using Boltzmann collision integral approach,
and present them in the form of triple hypergeometric functions. In the derivation, we write the
drift velocity u of the bi-Maxwellian plasma in terms of Parallel and perpendicular components
(i.e. u= uy + uy), parallel and perpendicular with respect to the ambient magnetic field, and we
consider the Coulomb collision interactions. We consider two special cases, firstly, when the drift
velocity is parallel to the ambient magnetic field (i.e. u= u,), and secondly, when the drift velocity
is perpendicular to the ambient magnetic field (i.e. u= uy). For the first case, the transport
equations and consequently, the transport coefficients are derived and presented in the form of
double hypergeometric functions, these results are consistent with the findings of Hellinger and
Travnicek (2009). For the second case, the transport coefficients are obtained and found to be in
the form of double hypergeometric functions. When we combine these two special cases, i.e. for
general u, the transport coefficients are shown to be in the form of triple hypergeometric function.
Also, we investigate the above problem by using another approach, i.e. Fokker Planck

approximation. We obtain similar results for both approaches.
I. Introduction

Transport equations based on a bi-Maxwellian distribution function were first
derived by Chew et al (1965) for collisionless anisotropic plasma, their study was
extended by several authors (Kennal and Green,1966; Macmahon,1965; Frieman et al.,
1966; Bowers and Haines, 1968; Oraevskii et al., 1968; Espedal, 1969) who derived the

10



transport equations including transport phenomena such as collisionless plasma,
viscosity, and heat flow.

All of these studies were dealing with collisionless anisotropic plasmas. Chodura
and Pohl (1971) derived transport equation for an arbitrary anisotropic plasma taking care
of collisionless as well as Coulomb collision effect. Since, then, Demars and Schunk
(1979) have extended the work of Chodura and Pohl (1971) by deriving transport
equations based on a bi-Maxwellian species distribution function for arbitrary anisotropic
plasma (i.e. arbitrary temperature differences between the interacting gases and arbitrary
temperature anisotropy). The relevant collision term have been calculated for resonant
charge exchange interaction between an ion and it’s neutral parent, inverse-power
interaction potential that include non-resonant ion-neutral (Maxwell molecule) and

Coulomb collision, and constant cross-section (hard sphere) interaction.

The last two studies valid just for small relative drift between the interacting
gases. However, Barakat and Schunk (1981) removed this restriction and derived
collision terms based on drift bi-Maxwellian gases that are valid for arbitrary drift
velocities differences and for an arbitrary temperature differences between the interacting

gases as well as arbitrary temperature anisotropy.

These transport equations were all derived based on velocity moments of
Boltzmann’s equation and the collision terms were all derived based on velocity moments

of the Boltzmann collision integral.

Mitchener and Kruger (1973) and Hinton (1983) approximated Boltzmann
collision integral by the Fokker Planck equation under the assumption that small angle
deflections dominate. Hellinger and Travnicek (2009) calculated collision terms for bi-
Maxwellian distribution function with drift along an ambient magnetic field by using
Fokker Planck equation and obtained similar results by using Boltzmann collision

integral method.

11



It is the purpose of this paper to extend the work of Hellinger and Travnicek
(2009) by deriving transport coefficients based on drift (in general, i.e. u= u; + ul) bi-
Maxwellian distribution function, and taking into consideration the Coulomb interactions.

We are interested in the derivation of collisional transport coefficients for drifting
bi-Maxwellian velocity distribution function with respect to the background magnetic
field because many applications in plasma physics are in special need to these
coefficients. Usually, the differential velocity between different species is aligned with
the ambient magnetic field. However, the drift velocity perpendicular to the ambient field
is typically connected with non-gyrotropic velocity distribution function and could be
also related to plasma inhomogeneity. For example, different studies investigated the
behavior of O+ ions in the ionpsphere under the effect of ExB drift, ion-ion Coulomb
collision and ion-neutral collisions (Barghouthi et al., 1994, 2003; Barghouthi, 2005),
also many studies investigated the ion outflow along “open geomagnetic” field lines
(Ganguli, 1996; Barghouthi, 2008; Nilsson et al., 2013). In order to go forward in above

and similar studies we need well established formulas for these collisional coefficients.

This paper is organized as follows: Theoretical formulation (Boltzmann equation,
Boltzmann collision integral, Fokker Planck equation, and transport coefficients) are
presented in section I1. In section I11 we presented transport coefficients for drifting bi-
Maxwellian velocity distribution function. Special cases (drift velocities perpendicular
and parallel to the ambient magnetic field) are presented in section IV. Our results and

discussion are summarized in section V.

1. Theoretical Formulation

In dealing with plasma or gas mixture it is convenient to investigate the
distribution of these particles or species, each species in the plasma is described by a
separate velocity distribution function fs(r, vs, t) which define such that fy(r,vst)drdvs
represents the number of particles of species s which at time t have positions between r
and r + dr and velocities between vs and vs + d vs. The species distribution function

changed with respect to time as a result of collisions and particle motions under the

12



influence of external forces, this velocity distribution function is obtained by solving the

following Boltzmann’s equation:

oI, +Vv, - VI + G+&(E+1vsx8j -V, f, =£ @
ot m C : ot

S

where s, and ms, are the charge and mass of species s, G is the acceleration due to
gravity, E is the electric field, B is the magnetic field, c is the speed of light, 0/ot is the
time derivative,Vis the coordinate space gradient, V.is the velocity space gradient, and
the operator &fs /6t represents the rate of change of fs due to the collisions, this term is

given in two forms: Boltzmann collision integral and Fokker Planck approximation.
Il. 1 Boltzmann Collision Integral

For Coulomb collision between s and t particles, the appropriate collision
operator in the right hand side of Boltzmann’s equation is the Boltzmann collision

integral, which can be presented as

& ! ’
S Y [0v,d0g,0. (0,001~ 1.1 @
t

where dv; is the velocity-space volume element of species t, gs is the relative
velocity of the colliding particles s and t, dQ is an element of solid angle in the s
particle reference frame, 0 is the scattering angle, the primes denote quantities
evaluated after a collision, and o(gs, 0) is the differential scattering cross-section
(Goldston and Rutherford, 1995; Schunk and Nagy, 2009):
_ a0 1
647’ uZ g*sint @

where qs and q; are the charge of species and t species, respectively,
e =m.m, /(m,+m,) is the reduced mass, m; is the mass of t particle, and &, is the

permittivity of free space.

13



Il. 2 Fokker- Planck Equation

The collision operator can be represented by another equation that called Fokker-
Planck equation, this equation can be derived directly from the Boltzmann collision
integral (i.e. Eq. (2)) by taking the first order of Taylor expansion of it, this expansion is
valid for binary collisions, under the assumption that a series of consecutive weak (small-
angle deflection) binary collisions is a valid representation for the Coulomb interactions.

22 2
ﬁz_zvv 0s9: InAJ'lg _gg(£ a‘I:t _L afs jdvt (3)

X ~ ' 8re’m, g° m, v, m, ov,

where 1 is the unity tensor, and In A'is the Coulomb logarithm, which is typically

between 10 to 25 for space plasmas.

There are two approximations were employed in the transformation of the
Boltzmann collision integral, i.e. Eq. (2), to a Fokker—Planck equation. The first is to
remove the scattering angle singularity by evaluating the total momentum transfer cross-

section such that scattering angles not smaller than Omin are included. The angle Omin is
defined in terms of the ratio of the Debye length, A, = \/mto a temperature-
averaged impact parameter, b, =q.q,/3kT,, that is, Sin“(Omin/ 2)=[1+A]*, where
A =4, /b,. The impact parameter, bo, is recognized as the impact parameter that

corresponds to a deflection of 6=n/2 (Shizgal, 2004; Rosenbluth et al., 1957).

The momentum transfer cross-section is obtained from the integration over the
scattering solid angle in the Boltzmann collision integral, Eg. (2). The momentum
transfer cross section, which occurs in the calculation of collisional energy transfer is
given by (Schunk and Nagy, 2009):

2r
QY =27 [ o,(g,0)L-cosd)sinalo (4)

emin
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The second approximation is to assume that collisions with large impact
parameters that are small scattering angles dominate and the Boltzmann collision integral
can be replaced with the differential Fokker—Planck equation. The details of these
calculations are provided elsewhere and are important for the interpretation of the results
of this paper (Mitchener et al., 1973).

Il. 3 Transport Coefficients

Transport Coefficients represent the change in a transport property (momentum,
energy, etc.) as a result of collisions, Coulomb collisions in our case.

Although it would be nice to know the individual velocity distribution functions
of the different species, the mathematical difficulties associated with obtaining closed-
form solutions to Boltzmann’s equation preclude this approach for most flow situations.
As a consequence, one is generally restricted to obtaining information on a limited

number of low-order velocity moments of the species distribution function.

Burgers (1969) and Grad (1949, 1958) proposed that the transport properties of a
given species defined with respect to the average drift velocity of that species, us,
alternative to defining them with respect to the average as velocity, vs. This definition is
more appropriate for large relative drifts between interacting species can occur. In terms

of the species average drift velocity, the random or thermal velocity is defined as
Gy =V, —Ug

For most applications, the physically significant moments of the species distribution

function are given by

Species drift velocity u, =(v,)={/n, )I dv, f.v,

T

s

= ms<c§H>/k = (]/ns)j.dcs f,mcs /k

Parallel temperature

— 2 _ 2
Perpendicular temperature Tor = mS<CSi>/2k _ (]/ns).[dcs fm.c., /2k
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where nsis the number density of species s, k is Boltzmann’s constant and the symbols ||
and L are used to identify quantities that are parallel and perpendicular to the magnetic
field, respectively.

The starting point for the derivation of transport coefficients is the collision term
in the right hand side of Boltzmann equation. Moments of Boltzmann collision integral
are obtained by multiplying the right hand side of Boltzmann equation with an
appropriate function of velocity Qs=Qs(cs) and integrating over all velocity space. The

corresponding moment of the Boltzmann collision Integral

aat& = [d%.Q, (cs)% = {[[ de.dc,d0g o (g4, O 1. T/ - f, F. R, () ®)

For Qs(cs) =m.c,, m.c’ and m.c? \2, the obtained moments of the Boltzmann collision

sUst s s
integral are momentum, parallel energy and perpendicular energy, are symbolically

written as, Ms/ét, and &SH /&, OE,, /& respectively, for species s.

Due to the reversibility of elastic collisions, we can interchange primed and
unprimed quantities in the expression on the right side of Eq. (5) without changing the

result
% = Zﬂd scsdsctgst fs ftIdQGSt (gst J 0)[QS' _QS:| (6)

Where Q, is the moment evaluated with the velocity found after the Coulomb collision.

Integrals in Eq. (6) are called transfer integrals because of transfer of momentum and
Kinetic energy from one particle to the other particle due to the change in Qs in a
collision. Eq.(6) is easier than that Eq.(5) because they do not require the distribution

functions after the collision.

The evaluation of the integral over dQ in Eq. (6) has to be done using two steps.

First, express (QS —Qsjin terms of the center-of-mass velocity, V., and the relative

velocity,

16



gst= Vs-Vi, While the second step in evaluating the collision integral is to integrate over
solid angle dQ=sinBdOd¢ by using the spherical coordinates system in the center of mass
reference frame with relative velocity before the collision (Barakat and Schunk, 1981;
Schunk and Nagy, 2009; Burgers, 1969; Chapman and Cowling, 1970.The resulting
system of transport coefficients is given by:

Momentum

2
0,0;
=— InA (| dc.dc f f, 7
Z ﬂst(4ﬂ_ ,Ustg ] H 1994t Ts ()

Parallel Energy

2
=Y t(mﬁ;?;g ] [ de.de, .9, V. ~u,), + [[de,de 9.l02-302 Ji.t] @®

Perpendicular Energy

2
—Z y{ - qjg ][ﬂ de, e, 0.0, (Ve —U,). T f, +22 ([ de.de 0..(0% ~302. ), f} ©)
st

myv, +m.v,

where V, =
m, +m,

is the center of velocity.

Also these moments can be obtained by using the other form of collision term
which is the Fokker Planck approximation by multiplying also it with an appropriate

function of velocity Qs=Qs(cs) and integrating over all velocity space as follow

&:_ZV qfqtzlnAjlgz—gg fg of f o,
X — ' 8re’m, g> \m dc, m, ac,

JQ(Cs)dCstt (10)

After integration by parts, the corresponding transport coefficients can be

expressed as

Momentum

2 2 _
Zq 2 InA (19 g (£ o f o g o (1)
872_8 n g mt aCt ms aCS
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Parallel Energy

ok 2 _
sl =Zq qt glnA.[Cs lg 3gg f_i_f_éf_ dc dC (12)
A T Ameing g m, oc, m, oc,

Perpendicular Energy

2
L_yEainA g g —ggl[Laft _ A s jdcsdct a3

~ Areln, g° m, ¢, m, oc,

In this study we assume the distribution function to be drifting bi-Maxwellian
function. This assumption will be used to evaluate the integrals in the equations (7, 8, 9,
11, 12, 13).

I11. Transport coefficients for drifting bi-Maxwellian velocity distribution function

We assume that all considered species in the plasma have bi-Maxwellian velocity

distribution functions with drift velocity Parallel and perpendicular components with

respect to the ambient magnetic field (i.e. u= u + u,).

2
2
Sl

n 22
fo = 312 : ;€ R (14)
2 S| asl
Gl e
n 2 2
ft = 3 t ;€ R (15

where a and a, are the average parallel and perpendicular thermal speeds of species s,

that are equal to (ZkT‘ /m )’/ and 2le /m ) , respectively.

In this section we will derived the transport coefficients by using the two
approaches: Boltzmann collision integral and Fokker Planck equation, and verify that

they are equivalent.
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I11. 1 Boltzmann collision integral

The first step in calculating the momentum coefficient by using Boltzmann
collision integral is the multiply fs by f; (fsf)) and write it in the form

2 2 2 2

ff = nn exol — €y G Gy G (16)

st 3 2 2 p 2 2 2 2
4 asH asJ_atH au a asJ_ atH au

s

The momentum coefficient according to Eq. (6)becomes

a9 ) n,n G ¢l G ¢
_ MsHt st s sl tL
SN da InA de,de guguexp - -5 -5 | ({7

The integrations over dcs and dc; can be performed by changing the variables of

(c,,c,) integration from to (h, I) by using variables defined as follows

a
¢y =h (18)
3 +3
aZ
¢, =h, —— 1| 19
0N T (19)
2
Coo =h, + 5t | (20)
aSJ_ +aIJ_
a2
CtL :hL_ﬁl (21)
sl 1

Substituting Equations (18) to (21) into the equation (17) and by using Jacobian

transformation dc.dc, = dhdl the expression for momentum transport coefficients

Ba a’dl (22

therefore becomes

agh®  a2n? 1
__z /ust t _[exp a4 N T th‘ 9gQ® exp| — 12 —
r’a, a’a, a’ ajaj alal a,

S| TsL \

)—QJI\)| =
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Because the first integral depends only on the variable z, it can be evaluated immediately

by using a Gaussian integral technique, so Eq.(22) reduce to

1 1 1
=2 fl ) ggQ()eXp[ ' [a_”a_dey (23)

H L

The calculation is further simplified by changing of variables and integrate over
dx instead of dl where old and new variables are related by the following equations:

(x—g) = |2[i2+i2} (24)

a = aSH + atH (25)
a = aszi + atzi (26)
g
x=— 4L 27)
a a
Au, A
g=— + L (28)

With these changes, the integral in Eq. (23) become

49N xe2 9
—_—Z 3,2;2;1 InAfe >de (30)
st

and the exponential in Eq. (30) can be simplified as follows:

(x—¢g) = S B TR S Y 31
a a 3 a,
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(x—e) = ££+%}+{(ut _ZUS)Z N _ZUS)i]{Zg(ut —u: h o5t L 2oluu), Cosej (32

2
aH a aH a,

Also we introduce

q = ‘/Evstu and & T Vav, (33
where
Vg vy 2 2
V =N VS +V
StH 2 , and Vsti = = 2 = (34)

are combined effective parallel and perpendicular velocities, respectively,

2
Vie  m, T, +m[T,,
Ast = 2 (35)

vstH m TSH + mSTtH

is an effective temperature anistropy

And
gH2 =g%cos’ @ (36)
g2 =9g*-g°cos’ @ (37)
then

avi, 4v

o) - gzcos29(ASt_l)+ 9’ ]Jr[(ut—us)2 . (u, —u, J {rgu -u,), cosé g( u,), cos@ -

2
st S[H su 2 st stH su

we need also the substitution

-9 (39)

21



vttt el (40)
V)
(ut -u )J_
_ s 47
VAV,
A=(A, -1) (42)
g 1 v
2 dx=———d 43
g’ " v, v ' )
g/ dv
?dx: A, cos’ 6?— (44)
92 _, dv
de:\/gsm 6?7 (45)

So Eq. (29) can be expressed as

b 4% 4v? 4vz,

61v| __Z q qt t |nAIeXp [(ut_uS) +(ut_us)J_]+ (46)

st

(v? + Av2 cos? 0+ WV cosé +vwcosd) Ll3dv

AN

2
~ (Ut—Usm +(u1—us)i

] is constant with respect to variable x , we

2 2
g Avgy

Because of the term e [
can get it out of the integration. The integration over all variables v using a spherical

coordinate system in velocity space, then becomes

) 2 (ut_us)Hz (ug-ug )2
M 9.9, N, 1w Ted | 27
?:_ZT"‘AG

J'J'e v2+Av2 cos? 9+wW COSHWWCOSB)COS@SInédVdH (47)
Ar™e Hst stH 00
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In order to solve this integral, we used the technique Maclaurin series expansion
for the exponential terms with cos6, and finally, write it in the triple hypergeometric
function (Hellinger and Travnicek, 2009; Lebedev , 1965; Koepf, 2014)

(Uﬁus)f (ug—ug)? 3
M, S (U, —u,), (ut—us)Le[ aZ e, ]FS L2.5 A, (u, —u,) A (U, —u,) 48)
& 2 2 333’ v VUAANVE,
2’2
where
b, = GGN ~InA (49)
KV T StH

is a collision frequency of species s on species t

Also, an equations for the energy transport coefficients (7) and (8) ,0E¢/6t, can be

derived in a manner similar to that described above for ous /ot

. The first steps in
evaluating these integrals are expressing them in term of relative velocity, and the
variable (x),

q2g?n InA | u Ty —Ty
=Zt: 5/2t 2 t4k

2 2
2 S gy 9, [ete? S dx + p1, [e07” T gx 50
T 2V5H ]j gg :ustj g3 :ust.[ (50)

2
sL_ Z g/zqtzn InA Hst 2kB Tu _ZTsL J'e—(x—s)2 g; dx
& t 47[ &, ms/ust stL m 2VsJ_ g
2k sls (U, —U,)
s ~(x-¢) dX+2,uS g (x=2)
N J

2
_ Hg ~(x-¢)2 g,
5 I e - dx}

g

G
2

9\\3 dx
g

The next step in evaluating the energy collision integrals is the substitution of
Eq.(38) inequations (50) and (51)
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-T u,—u,) —u. )
I S}ep[(t S)H (ut uS)i]+(v2+Av200529+vaos¢9+vwc059)

&ESH _ Z qSthZnt InA Hy 4k Tt +
& 4 Ar?em m | 2v? 4v? 4?2
t o Mg Mg | 1T S| st| stL
1 v 2kg Ty (u; —uy), (u, _Us)Hz (u,-u,) Vv
—dv— . exp Tl (V2 + AvE cos? 6+ WV cos6 + vwcosO) —dv
2vstH v 2V, Wy 4vy, 2vstH v
_ ) 2 ;
Uy — U u, —u
- Zyst_[exp o : )H + (u, > )i + (v2 + Av’ cos® 6 +vV cos@+vwcos€) A, cos’® oV .
4vStH 4vg v
(Ue-u) (U, -u,)? |
+ /ustJ‘ exp| | —— Ly (U, - )i + (v2 + Av? cos’ 0 +vV cost9+vwc039) A, sin’ oV (52)
Ay 4vg v

B u, —u. ) —u )
( 9 uJ exp {( () +(Ut US)L}(VZ+Av2cosze+vaose+vwcos:9)

cqen, InA T, -T
= :Z g/szqtznt - &ZKB T2 I 2 2
A t Ar E-M gV, | M, 2VSJ_ 4VstH 4Vsu_
., dv 2k T, (u, -u,) I U -u) (U, -u,) 1 v
VA, sin® g —+ B st s .[exp — +(v2+Av200529+va059+vwc050) ———dv
v \/EVSJ_ 4VstH 4Vsu 2V5tH \Y
2 2
U, — U u, —u
+2ﬂstjexp{ ; L ‘4\/2 )i +(v? + AvZ cos® 0 + vV cosd +vwcosd) ||/ A, c032¢97V
st stl
2 2
U, — U u, —u .
ﬁje p (u, —u,) +( =U)) +(v? + Av? cos® 0 + WV cosd + vwcosd) ||/ A sin? 9 3V (53)
2 AV 4v? t v
st stl

By taking the integration over ¢, the last two equations become

(ut_us)Hz (ug-ug )2
Tt - Ts | a2 ’ 4Vszu
I I e st

e—(vz+Av2 cos? 0+wW cosH+vwcos€) cosOsin&dvdo

O N
O3

2v?

sl

Bo g daininA |y
ot 4z°2e?m g | m, °

~ (ut_us)Hz (ug-ug)?
ZkBTsH (Ut _US)H o 4V52‘H i v

2
Ve,

e—(szrAv2 cos? G+ €os 6+W cos 6) cos@sin&dvdo

O e N
Oty 8

T 0

jje—(v2+Av2 cos? 0+wW cos&+vwcosz9)v COSZ Osinadvdo

(ug=ug) (ug—uy P
00

—Zﬂste [ gy Avg, o0 [Ast
(Utfusﬂ\z (ug—ug)? .
(54)

n
AVSZtH 4k, ]272_ ,Ast IIe—(v2+Av2 cos? 9+W cosé?+vwc059)vsin3 advdo
00

+2uqe {



(v (v, )
OE,, aZgZn, InA Hy T, -T [ o v J (A [ a-lveave cos? b i
sl _ s 2k tL sl e | o e v+ Av? cos® A+W cos6’+vwcos€vsm3 advdo
Z ”5/252m sHgV | My 2v¢ ASt!‘!

sl

_[(“t“s) +(u1—us)i]
n 2kBTsL (ut _us)i e avgy ag,
J2v,,

gl

+AV? cos? 9+W cos€+vwcos¢9> cosdsinadvde

O
O t—38

~ (ut_us)Hz +(U1—U5)i
4V521H
+2pue

2
v,

T o0
]272_ ,Ast J'J'e—(v2+Av2cosza+vV cos€+vwcosH)VCOSZ Osinadvdo
00

[(utus)z +(utu5)iJ
_%e 4Vsth 4, [ tJ‘
0

Oy 8

e~ v 2+ AV? cos® O+W cos€+vwcosa)vsm advde (55)

And finally, write them in the triple hypergeometric function.

a\/Is (ut _US)H (ut u )J_ (st)
FaRD I S F i (56)

22

2
%, _ KT | Pt H—l S0 _3\/; (u, _US)H (U, —u )J_ EG) ol EG) 57
_Zust By (3115 2 55335 1113~ Fa1is (57)
a 4 m | Ty Lo A Ay g By, 2222 ‘2222
ﬁs s s T 3\/; (ut _us) u, —u; 2
= Z t k T |:ﬂt (i_ljlz(ls?ls - : ( : 2 )l Fl(;%w + Fl(ssi)ls - F(l$;)15 (58)
&  TA T Loe 4 2y Wy, 222\ %222 %2222

Here F) are defined through triple hypergeometric functions

[(utus) L us)i] ab (U ) ( )2

v2 v2 —u
E6D _a g st E3 t [ ’ L 59
abcd C C d ( Ast) 4 Sth Ast 4A3t 2 ( )
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I11. 2 Fokker Planck Equation

The first step in evaluating the transport coefficients by using the Fokker Planck
equation is the derivation of fs and f; with respect to cs, c; respectively as follows

C
A A I (60
oc, a; ag

c
GNP AT (61)
oc, a, &

Using equations (60) and (61), the integration in equations (9,10,11) may be

simplified by using matrix technique as follow

19° ~gg (LLL@J:L 90 -9 9.|-2ff | af &
93 m; aCt m aCs 93 ngH gH . msm, MyCy, _ m,Cs,
L atzi aszi
-2 1, (m, +m,Jg 26 (moam)| 9| —2f 8 (g,
_mmtg3 (m,+m)g, |= 7 mm, 9, ——ﬂtg3 Y (62)
S 2 S 2 N
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My My

1gz—gg[fsaft f ﬁsJ:Cs_[ M —ggﬁ—zfsf al @

Cy — = 3 2 |
g m, oc, M, oc, g _QLQH gH mgm, | meC,, L
a,  ag
g[&%j 9 (mscSH +me, )
— s S t
_ 2fsf1 m m.+m
g’ g | M +(ms+mt)°su mey  mag ey +mt(“s ‘“tu) 0
m, +m, 2 2 2 2aIH 2
_-2ff, X, T, )(C ¢, )t [g _Lj_”st(“s -uy) me,
g* | (m,+m Jaf 1 H m, 2(m, +m,)
_ My ¢y Lo ME MGy _ﬂst(msar ~ma )( ) (63
(m+ma; — (m+m) (m+m)  (mo+ma’ 97
MsCy My
‘ 192—99_[Li_iﬂj=‘g 0 -9 0| -2ff | af
o g3 m, oc, m, oc, 93 _ngH gH2 mim, | mgC, _ My,
a,  ag
g_[&g_l] 9 (mscSH +me, )
_2f f m, 2 m, +m,
— St
g’ mgu (m, +m)°su _MSy My &y +mt(“s vy ) 0
2 2atH 2
ffg Tu)c —c, ) :ust g 9, /ust( u)msCsL_l_mC m.c
g3 (m +mt)ai sL | 2 m, 2 tVsl sUL
_:ust(msau_ mtasl) sL_CtL)J (64)
8
The transport Coefficients reduced to
Z 99 '”Aj 9 ¢ fdc.de, +ZMI9—§E f.dc. dc, (65)

47[‘9 HNg 87[‘9 Hg N

27



-y A 0:q; InA I, ft%dcsdct{fkﬁs Ty )(C e, )+&(g _gij_ﬂst(us Uy )J

27[‘9 /ust S g ms + mt )aHZ ms

2 STt
2zetugn, Y (m, +m,)g ”

2 3 mec, m.a’c, «\mai —maj
qut InAJ- T LoMEa Sy pal I )(c ¢, )| (66)
( Y2 &y o 3 T

Z 90, InAjf f, L de,dc (—(k(Tl_Tté)(CsL—Cu) Hs (9 g_l]_ﬂﬂ(usr;_uuq

4re? pugn, g° m, +m, Ja’ m, 2
9292 InA f.f. g m.C,, yt(m a’, —mtai)
E = _dc.dc, | —=+ +mc,, +mc, — s L (c,, —c (67)
Are? pgn, '[(ms +m,)g? Y2 e . aHZ =)

For momentum, the first term is the same as we get from Boltzmann collision
integral, and the second integral vanishes when integrating over the solid angle Q. For
parallel and perpendicular energy, the first integral the same as obtained from Boltzmann

collision integral, and the second integral reduce to(n,n,/g) and
((m, +2mnaz, )/ (2g°m, +m))
+m.n.a2 /(g3(m, +m,))-n,n(m.a2 —ma? )/(aH2 (m, + mt))J, respectively.

The transport coefficients are summarized as follow

~F5s (68)

2
1°===
2222 4 4VstH stl 222

2
555\\ ZU kT :ust TtH =CO 3Wr (ut _US)H (ut u )L EG) o g6 )
5 sthe g TsH 3115 ov 193335 1113~ Fa11s

£y o kT, (69)
t s s| g
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s s T, s 3\/; (ut_uS) u _us : s s s
z : k T |:1Lr:]t [i_]']':l(l;)ls - : ( : )L Fl(z;)” + F(?);)15 - F(1;)15
1

2
(T, 2222 4 Wy 4vg, 222\ Y222 %n2
Uy ms + 2mt 2 msnsatZJ_ nsnt (msatzj_ B mt aszJ_)
+Z KT, sl : (70)
29 g 8

Because of the Fokker Planck derivation from expanding the Boltzmann collision
integral and taking first terms in the Taylor series, the transport coefficients by using the
Fokker Planck equation for drifting bi-Maxwellian distribution functions with velocities
parallel and perpendicular to the ambient magnetic field give approximately similar

results when compared to the result of Boltzmann collision integral.
IV. Special cases

IV. 1 (uy =0, i.e. u=uy), no drift velocity component parallel to the ambient magnetic
field, and the drift velocity is perpendicular with respect to the ambient magnetic field,
the integrals in equations ( 47,54, 55) reduce to:

| (ut US)ZJ T o0
__z qs qt CInAe [ 4vg, 272' J‘J‘e vZ+AvZ cos 9+vwcos€)cosgsmédvdg (7]_)
00

3/2 2
&, Ht stH

2 2 52 i
e_(v +Av? cos 0+vww59)vc032 gsinédvde

(SR L]
Oy 8

(ut us)i
By alalnnA |y o [Ty Tsu [ W, ]
_Z 5/2 .2 4kB Aste
a t Ar g, ms:ust stJ_ mt 2 st|

B (ug—ug)
[ avg, —(v2+Av2 cos? 6+ cos 9) 2 :
— A\ A, 1yl e v Ccos® dsinddvdéd

=
ot—N
O 3 8

| (ut 7U5 )i ]

_|_4_7Z_luSt Aste [ avg, e—(v2+szcoszc9+vwcose)Sin3 odvde (72)

O )y
O ey 3
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(ut S)L (ut’us)i
Zg/n, InA T, -T ( 2 ] [ v J
aEsJ_ :z q qt lust 2kB tL sl e 4vge, 272, Aste Avge,
t

5/2 2
Ar>TeimopgVg, | M,

ot—y
O 3 8

(utfus )i J

2k Tsj_(u us)J_ 27 o [ v ef(v2+Av2coszﬁ+vwcost9) cos@sinadvde

O =y
Oy 8

\/_Vsi 2VstH
{(Ut Us)ij
n 27[;“5{ ag, ,Ast J‘J‘e v2+Av? cos n9+vwcos€)vcos Osinadvdo
_{(U‘—US )i] T o
_%e AV, 21 ,Ast -|'J'e—(v2+Av2 cos? 0+vwcosz9)sin3 odvde (73)
00

The coefficients may be evaluated by expanding exponential terms with cosf

into infinite sums and integrating the resulting terms, and then writes the results in

the form of double hypergeometric functions. The transport coefficients are

summarized as follows

_ Zust sJ_ G(st) (74)

22

oE
S ;us
= ZUSA{ Mg (7, - SH)GM 24,V (G%‘é Gz(i%ﬂ (75)

22 22

2
2VStL 2 2 22 22

kgT
ok L_ Z v, {& kB (Tu N )G CO sl (U —u )J_ G (st) /ustvszu (Gl(fg — G;i% J:| (76)

Where

22
g:g;n, InA 7

st = 32 2 V2
127 &, ;ust stH st

is a collision frequency of species s on species t, and

(LI‘ —Us )i

a
(st) 4v2 2.
G, =e t FM{C A-A,,—————

abc

(U, —u,)) J (78)

2
4 stL
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is generalized double hypergeometric or Kampe de Fériet functions.

The transport coefficients can be also calculated from the Fokker Planck equation.
This calculation also leads to transport coefficients in the form of double hypergeometric
function which nearly the same transport coefficients (74—76) as obtained from the

Boltzmann collision integral.

z SJ_ G (S'[) (79)

t 22

oE

S Hs s s s
&H :ZustAs{Fth(Tt SH)G“’ + 24,V (G(JQ G(f?, J}LZ v Kg sH g (80)
t t

22

OE, y ) 4 kgT, (U, —u )L (st) 2 (st) (st)
_szt k ( tL SL)G G —UgVq | G5 =Gy
2 { m 2vg, s 5 %

t“sL 3

2 2 2

+Z st k T ms +§mt n a2 + msnsatJ_ _ nsnt(msaté_mtasj_) (81)
29 g &

IV. 2 (u= 0, i.e. u = uy), no drift velocity component perpendicular to the ambient

magnetic field, and the drift velocity is parallel with respect to the ambient magnetic

field, the transport coefficients take the form:

M uy —u,
s _ Zust { I H (;ts) (82
a5 2 22

2
SH ZU :ust k ( )H (st) +k.T (ut—)H H (st) + z (st) (st) (83)
st tH SH 15 T B o2 ,35 HgUgt StH
22 22 22

stH 22

X i, TN - i M - H;ztaﬂ 9

t t m; 22 22 22
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qca.n InA

where v, = TP 3 is a collision frequency of species s on species t, and
12777 ¢; MV
(ut’us)z
(st) _TIHH 5| a b (ut _us)Hz . . i
HY =e F5 . b,1— A A, T is generalized double hypergeometric

st|

or Kampe de Fériet functions.

These results agree with the results of Hellinger and Travnicek (2009).

V. Results and Discussions

Coulomb collisions play a very important role in the kinetics of the inner
magnetosphere, plasmasphere, ionosphere coupling processes. They are responsible for
the plasma production in these regions as well as for the energy and momentum transfer
between the different plasma species as a result of collisions. The mathematical
description of the change in a transport property (momentum, energy, etc.) as a result of
collisions called the transport coefficients which depend on the form of velocity

distribution function of colliding species.

For temperature anisotropic plasmas (i.e., unequal species temperatures parallel
and perpendicular to the ambient magnetic field, with the degree of the anisotropy given
by the parallel to perpendicular temperature ratio)we obtained the transport coefficients
(momentum, parallel energy, and perpendicular energy) based on a bi-Maxwellian
velocity distribution functions with drift velocity u(parallel and perpendicular) with
respect to the ambient magnetic field (i.e. u= u; + uy) by using Boltzmann collision
integral, and Fokker Planck approximation. The final results are presented in the form of
triple hypergeometric function. The two approaches give nearly the same results, and
valid for arbitrary temperature anisotropies, arbitrary temperature differences between
interacting gases, and arbitrary relative drift velocities both parallel and perpendicular to

the magnetic field.

We also calculated the transport coefficients by using Boltzmann collision

integral for two special cases where the relative drift is either parallel or perpendicular to
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the magnetic field, which are the two most common cases in astronomy and space
physics. Then we investigated the previously problem by using another approach, Fokker
Planck approximation, we obtained nearly similar results. The transport coefficients are
in the form of double hypergeometric functions. These results can be further generalized

to an inverse power force interaction.

It should be noted that significant temperature anisotropies occur in plasma at all
levels of ionization. The temperature anisotropy in the solar wind measured typically
varies between a factor of 2 to 4 at the orbit of the Earth (cf. Brandt ,1970; Hundhausen
,1972) and developed in a region of the flow where only Coulomb collisions are
important (i.e., the flow is effectively fully ionized), while in the terrestrial polar wind
proton initial theoretical calculations indicate that the temperature anisotropy is about a
factor of 20 at a distance of eight Earth radii (Holzer et al., 1971) and developed in a
region of flow where Coulomb collisions and non-resonant ion- neutral interaction occur

(i.e., the flow is partially ionized).

To sum up, we extended the work of Hellinger and Travnicek (2009) and
calculated the transport coefficients for drifting bi-Maxwellian plasmas. Hellinger and
Travnicek (2009) consider the plasma drift is along the ambient magnetic field, but in our
study we have consider general drift (u= u, + u.) and investigated two special cases (u=
u; ,ur=0, and u= uy u; =0).We have reproduced the results of Hellinger and Travnicek
(2009) for case(u= uy, u,=0). In our study we showed in detailed derivation for transport
coefficients by using two approaches Boltzmann collision integral and Fokker Planck

equation.
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Chapter Three (Paper 2)

Transport coefficients for drifting Maxwellian plasmas: The effect of

Coulomb collisions

Abstract

We derive the collisional momentum and energy transport coefficients in
Maxwellian plasmas with a general drift velocity with respect to the ambient magnetic
field by using two approaches, the Fokker-Planck approximation and Boltzmann collision
integral. We find the transport coefficients obtained from Fokker-Planck representation
are similar to those obtained by using Boltzmann collision integral approach, and both
results are presented in a closed form in terms of hypergeometric functions. This has been
done for drifting Maxwellian plasmas with special emphasis on Coulomb collision, i.e.

inverse-square force.

Also, we calculate the transport coefficients for two special cases, firstly, when
the drift velocity is parallel to the ambient magnetic field (i.e. u = u,, and zero
perpendicular drift velocity), and secondly, when the drift velocity is perpendicular to the
ambient magnetic field (i.e. u = uy, and zero parallel drift velocity). It is worthy to
mention that, up to our knowledge, none of the derived transport coefficients for the
above mentioned case are presented in closed form and in terms of hypergeometric

function.
l. Introduction

Transport equations based on an isotropic Maxwellian distribution function were
first derived by Tanenbaum (1967), Burgers (1969), and reviewed by Schunk (1977).
They obtained these transport equations by using Boltzmann collision integral approach

and presented them in terms of the Chapman—Cowling collision integrals (Chapman and
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Cowling, 1970). These coefficients are valid for arbitrary temperature differences
between the interacting gases, and are restricted to small relative drift velocity between
the interacting gases. In this study, we removed the latter restriction and calculated
transport coefficients for general drifting Maxwellian plasmas that are valid for arbitrary
drift velocity differences as well as for temperature differences between the interacting
plasma species. We also derived these transport coefficients for two special cases, the
first one, when the drift velocity is parallel to the ambient magnetic field and the second
one when the drift velocity is perpendicular to the ambient magnetic field. These
coefficients are obtained by using two different approaches; Fokker-Planck

approximation and Boltzmann collision integral.

This paper starts with a discussion of the theoretical formulation of Boltzmann’s
equation and the relevant collision terms i.e. Boltzmann collision integral and Fokker-
Planck approximation. This is followed by showing the general forms of Boltzmann
collision integral and Fokker-Planck approximation. Then, we derived the closed set of
transport coefficients for drifting Maxwellian distribution function with emphasis on the
effect of Coulomb collisions, and finally we investigated two special cases (i.e. drift
velocities perpendicular and parallel to the ambient magnetic field) by using two forms of

the collision terms. The last section discusses our results and future studies.
1.1 Theoretical Formulation

In dealing with plasma it is convenient to investigate the distribution function of
these species, in general each species in the plasma is described by a separate velocity
distribution function fs(r, vs, t) which defined such that fs(r, vs, t) drdvs represents the
number density of particles of species s which at time t have positions between r and r +
d r and velocities between vs and vs + d vs. The species distribution function changed with
respect to time as a result of collisions and particle motions under the influence of
external forces, the mathematical description of this effect is giving by Boltzmann’s

equation:

o +V, -V, + G+q—S(E+1vstj -V, :i @
ot m c : o

S
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where gs, and m;s, are the charge and mass of species s, G is the acceleration due to
gravity,E is the electric field, B is the magnetic field, ¢ is the speed of light, /0t is the
time derivative,Vis the coordinate space gradient, Vis the velocity space gradient, and
the quantityéfs /6t represents the rate of change of fs due to the collisions, this term is
given in different forms, in this study we are interested in Boltzmann collision integral

and Fokker-Planck approximation forms.
I. 2 Boltzmann Collision Integral

For binary elastic Coulomb collision between s and t charged particles, the
appropriate collision term is the Boltzmann collision integral, which can be

presented as

éf 1§77
S =3 [dv00,0., (0. O 11/ - 1] @
t

where dv; is the velocity-space volume element of species t, g is the relative velocity of
the colliding particles s and t, dQ is an element of solid angle in the s particle reference
frame, 0 is the scattering angle, the primes denote quantities evaluated after a collision,
and o(gs, 0) is the differential scattering cross-section ( Goldstein, 1980; Schunk and
Nagy, 2009):
_ 9%/ 1
6472l g*sin® 0

)

where ¢s and q; are the charges of species s and t species, respectively,
1, =m.m, /(m, +m,) is the reduced mass, m; and m; are the masses of particles t and s,

and ¢, is the permittivity of free space.
I. 3 Fokker- Planck Approximation

Sometimes Boltzmann collision integral appears to be difficult to evaluate, so that
the Boltzmann collision integral (i.e. Eq. (2)) reduces to another simpler form by taking

the first order of Taylor expansion of it under the assumption that a series of consecutive

39



weak (small-angle deflection) binary collisions is a valid representation for the Coulomb
interactions, the result is the Fokker-Planck approximation.

2~2 2
iz_szqsqt InAJ'lg _gg(L aft _Lafs ]dvt (4)
a t 9

2 3
8mem, m, ov, m oV,

where 1 is the unity tensor, and In Ais the Coulomb logarithm, which is typically

between 10 to 25 for space plasmas.

The moments of f; are most conveniently defined in terms of the random or
thermal velocity of the species s, cs, with respect to their own mean flow velocity,
us, as follow

C, =V, —U (5)
so that the integration over the velocity space dcs = dvs and the only difference being a
displacement of the origin of the velocity space (Grad ,1949,1958; Burgers, 1969). The
advantage of it that if there are large drift velocity difference or temperature difference
between interacting species, the velocity distribution function of a given species more
likely to be Maxwellian about its own drift velocity than to be Maxwellian about the
average velocity. Consequently, a series expansion of the species distribution function
about Maxwellian will converge more rapidly if the species average drift velocity is used

to define the transport properties (Schunk, 1977).
Il.  Transport Coefficients

The starting point for the derivation of transport coefficients for gas mixtures is
Boltzmann’s equation i.e. Eq. (1). The transport equations are obtained by multiplying
the right hand side of the Boltzmann’s equation by an appropriate function of
velocity Qs= Qs(cs) and then integrating over all velocity space. The resulting

transport coefficients describe the effect of collisions between different species.

If we multiply the right hand side of Eq. (1) by Qs = 1, msCs, and mscs2/2 and

integrate over velocity space, we obtain the rate of change of density, momentum
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and energy, and are symbolically written as §ns/6t, §M¢/6t, and SE/6t, respectively,
for species s.

For Boltzmann collision integral, the corresponding transport coefficients are

given as

R
&

== .[”. dCSdCtngsto-st (gst ) 0)[1:5’1:(’_ fs ft ps (6)

Due to reversibility of elastic collision, we can interchange primed and unprimed
quantities in the Eq. (6) without changing the result (Schunk and Nagy, 2009).

% = [[[ de,dc,dQg o, (94, 0) T, F.[Q; - Q)] (7

where Q” is a function of velocity after the collision. The evaluation of Eq. (7) is

easier than that of Eq.(6), as it does not require the calculation of f”sf:.

However, this integral can be evaluated by transform it from (cs,c) to (V,

gst), Where V. is the center-of-mass velocity, and gs: is the relative velocity, which

are
gst = Vs - Vt (8)
v = MV, +my,
¢ m, +m,

_ (mye, +mc, +myu, +mu,) )

(m, +m,)

And the next step in evaluating the collision integral is to integrate over the solid
angle dQ = sinf dO de by using spherical polar coordinate system in the center of mass

reference frame, so we obtain
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Density

on
s -0 10
p (10)
Momentum
M
S = Z_ﬂst J.J‘ dcsdctgstgst fs fthtl) (11)
Energy
%,
o= 2 #a [ dede g, £ (Vo9 RY (12)
t
where
27
QY =27 [ o,(94,0)(A—cosO)sinado (13)
Hmin
2
_ 4(LJ inA
dre. 1y 9

Also, these moments can be obtained by using the Fokker-Planck approximation
by multiplying it with an appropriate function of velocity Qs=Qs(cs) and integrating over

all velocity space as follows:

xQ qzqunA 1gz—gg f, of, f, of
—S =_MYV | = ———10Q(c,)dc.dc 14
o i Z‘ " 8re’m, I 3 m, oc, m, ocC, (¢,)de.de, (14)

g
After integration by parts, the corresponding transport coefficients can be expressed as

Density

on
s —0 15
p 15
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Momentum

Zqzqt InAJ']-g _gg f_af__Lafs dc dc (16)
8re?n, g° m dc, m,oc,)
Energy
-3 G INA o 10709 [ f O K o g g, 17)
Arein, g° m, dc, m, oc,

Note that for all elastic collisions the rate of change of density is zero because the

particle’s mass does not change.

The remaining integrals in equations (11, 12, 16, 17) can be evaluated after
adopting approximate expressions for fs and f.. However, in this study we assume the
distribution function to be drifting Maxwellian function. This assumption will be used to

evaluate these integrals.

I1l. Transport Coefficients for Drifting Maxwellian Velocity Distribution

Function

As noted in the last section, it is necessary to adopt approximate expression for
the species velocity distribution functions, in order to evaluate the transport coefficients
as presented in equations (11,12,16,17). So we assume all colliding species in the gas
have drifting Maxwellian velocity distributions function. This case is known as the 5-
moment approximation because each species in the gas mixture is characterized by five

parameters (i.e. species density, three components of drift velocity, and temperature).

Y med
fs — mS e 2KT, (18)
27T,
% met
fo=| | e 2 19
27KT,
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In the following sub-sections, we will derive the transport coefficients by using
firstly Boltzmann collision integral and then Fokker-Planck approximation, and finally
verify that they are equivalent.

I11.1 Boltzmann Collision Integral

The rate of change of the momentum and energy are obtained from equations (11)
and (12) respectively, the term fsf; can be expressed as

fs ft — nsnt ms mt e 2kT,  2KT, (20)
27KT, ) | 27T,

The integrations over the velocity space can be performed by introducing the
following variables as follows:

mT
¢, =C,——————0, (20)
m,T, + m,T,
m.T
c, =C,+———'—q, (22)
m,T, + m,T,
where
T -T
c,=V.—-u +——=— 2 (Au+ 23
Vet HalAurg) (23)
g.=-g—-Au (24)
Au=u, —u, (25)
u, = Msts +Mle (26)

m, +m,

We also introduce
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., 2KTT, o 2k(m.T, +mT,)

m,T, +m,T, m,m,
And
dc.dc, =dc.dg, (28)

Substituting Equations from 21 to 28 into Eq.(20) and then into the expression for
oMyt (11) and JEy/ot (12) yields

2 2 2
oM, Hg Ny 959 7C/2 g 79/2
__ InAle /#dc, | e 7«'d 29
& " 7z3a3a3(47z€cﬂstj " je C*Igge ) -
2 2 -g?
£ ’fkn‘a( 0.9, j inafe édc*j(Lfl)e Vg, (30)
X T raa 47[golust 9

Integration with respect to dc. can be evaluated immediately, using a spherical

coordinate system (Gaussian integral)
J.e/azdc* =z¥%a® (30

It remains to carry out the integrations with respect to dg.. We expressed g« in

terms of gand u
92 = g% + 2g4gAuco+ (Au)z (32
where 0 is the angle between g and v.

With these changes, Eq. (29) and Eq. (30) become

2 (9% +204gucor(au)?)
M, s /,;/s;ntg( a0, J na[Se )i dg (33
S T e’ \ Are, pg 9
2 ~(92+294gucor(au) )
355 _ /';s;nt3 q.9; InAJ'(V;Bg)e 42dg (34)
S - 7% Are, pg, Y
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Schunk (1977) calculated these remaining integral over g by expanded the
exponential terms with cosf, and he assumed a small relative drifts between the
interacting gases (i.e., when the drift velocity differences are much smaller than thermal
speeds), so that Schunk (1977) neglected the exponential term of (Au/a)? , and finally the
transport coefficients expressed in terms of the so-called Chapman—Cowling collision
integrals (Chapman and Cowling ,1970).

In this study, we removed the latter restriction and calculated transport
coefficients by using other strategy in which we introduced new variables as follow:

v=9.y_24 (35)
[04 (04

The momentum and energy exchange collision terms reduce to

__Z n.q’q’ InA
3/2 2

Auz/a IIe % +vaoS€as|n0COSade9 (36)
&, Uy X 00

T O

_ n,.q; qI InA —
Z 3/Z‘CJ‘Z/”st .(')‘.([ms +m;

(m.c, +m,.c, —m,(u, —ut))e’(VZ*WC"Sg)asinecosédvd@ (37)

This integral can be evaluated by using the technique Maclaurin series expansion
for the exponential terms with cos®, and then express them in terms of the
hypergeometric function, so with these changes the final expressions for the coefficients

are

— an qt InA Auz/azF
dre

NN | -

(%n (39
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NN |-

2
where F[ (A_zuj }is hypergeometric function(Lebedev,1965; Koepf, 2014).

I1l. 2 Fokker-Planck Approximation

The first step in evaluating the transport coefficient for momentum by using the
Fokker Planck approximation is the derivation of fs and f; with respect to cs, Ct
respectively as follows

of 2C
S =2 f 40
oc, a? ° (40)
of, 2c,
P S 4 471
ac, a? (43
where
2kT.
2 _ X atz _ 2KT, (42)
ms . mt
Then
Li_Lafs — _2fs ft msft _mtgs (43)
m, oc, Mg oc, mm, \ a; a;

When this term is substituted into Equation (16) and use is made of the relations

19° —gg ( mc, Mg, 1 g
. - - = 44
g° al al ) (my+m)g° (49
the result is
M,  nacg’InA
P __ijj.dcsdctgstgstfsft (45)
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This is the same as we obtained from Boltzmann collision integral (i.e. Eq. (11)),

so the final expression is

22 1 2
é]\/IS :_Z ntqsqt InAe—Auz/azF E’(Ej (46)
& t 2

47zgfyst0!2 2

Similarly, the energy coefficient JEy/ot can be calculated as we did for the
momentum coefficient 6Myor. We obtained approximately similar results as those

obtained from Boltzmann collision integral.

2.2 1 2
6Es :_Z ntq;qt InA2 efAuZ/g,2 3k(-|-t _Ts)_mt (us —Ut)F E,(ﬂj n msCs +ths +msct (47)
ot T dreimma 5 2

The comparison between the results of Eq. (47) and Eq. (39) produce similar
results and the little difference due to the Fokker-Planck approximation which obtained
from expanding the Boltzmann collision integral and taking first terms in the Taylor

series and neglect the other terms.
I11. 3 Special Cases:

1) (w= 0, i.e. u=uy), zero drift velocity parallel to the ambient magnetic field,
and the drift velocity is perpendicular to the ambient magnetic field, the transport

coefficients equations reduce to:

M n.g2g2INA .2/,
s :_Z tqsgt . e—Aui/a F
o T Arel uga

. AUL ’
[TJ J (48)
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2) (uc=0, i.e. u= uy), zero drift velocity component perpendicular to the ambient
magnetic field, and the drift velocity is parallel to the ambient magnetic field, the
transport coefficients take the form:

1 2
_ an 2qf InA o/ E;(AULJ (50)
Are’ ugo 5\ 2

1 2
InA 2/ 2 -
= =-2 4 q—qt D2 el 3K(T, =T,)-m,(uy —u, )F 2;(&j +[_mscs +m,c, +msctj (51)
t 47[80 msmta 2 2 2

S

These coefficients derived by using Fokker-Planck approximation are, nearly,
similar to the results obtained by using Boltzmann collision integral approach.

V. Results and Discussions

For temperature isotropic plasmas, we obtained the transport coefficients (density,
momentum, and energy) based on a drifting Maxwellian velocity distribution functions
with drift velocity u with respect to the ambient magnetic field (i.e. u= u, + u.) by using
Boltzmann collision integral, and Fokker Planck approximation. The final results are
presented in the closed form in terms of hypergeometric functions. The two approaches

produce approximately similar results.

We extended the work of Schunk (1977) and calculated the transport coefficients
by using Boltzmann collision integral for two special cases where the relative drift is
either parallel or perpendicular to the magnetic field, which are the two most common
cases in astronomy and space physics. Then we investigated the previously problem by
using another approach, Fokker Planck approximation, we obtained nearly similar results.
The transport coefficients are presented in the form of hypergeometric functions. These

results can be further generalized to an inverse power force interaction.
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Finally, it should be noted that we derived the closed set of the collisional
momentum and energy transport coefficients, however Chapman and Cowling (1970)
calculated these coefficients approximately and for special case i.e. when the drift
velocity differences between the various species are much smaller than typical thermal
speeds, and they performed approximation for some specific collision processes.

Similarly, Jubeh and Barghouthi (2017) derived the above transport coefficients
for bi-Maxwellian drifting plasma with special emphasis on the effect of Coulomb
collisions. In an on-going study we are interested to derive, in closed form, the velocity
diffusion coefficients for both cases, Maxwellian and bi-Maxwellian drifting plasma, and
provide them in terms of Hypergeometric functions. These diffusion coefficients are
going to be very useful to the solar and polar wind communities, especially in modeling

the plasma behavior in these regions.
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Chapter Four

Results and Discussions

For application to problems dealing with isotropic and anisotropic plasmas with
special emphasis on the effect of Coulomb collision (i.e. inverse-square force) we have
derived a closed system of transport coefficients based on a Maxwellian and bi-
Maxwellian drifting plasmas by using Boltzmann collision integral and Fokker-Planck
approximation. The system of coefficients includes the mass, momentum and energy
exchange collision terms, and the final results are presented in the closed form in terms of

hypergeometric functions, as summarized:

1) We derive the momentum, parallel energy, and perpendicular energy
collisional transport coefficients for bi-Maxwellian velocity distribution functions with
drift velocity u with respect to the ambient magnetic field (i.e. u= uy + uy) and present
them in the form of triple hypergeometric functions. We also calculated the transport
coefficients for two special cases where the relative drift is either parallel or
perpendicular to the magnetic field, which are the two most common cases in astronomy

and space physics ( Jubeh and Barghouthi, 2017), as follow:

a) When the drift velocity is parallel to the ambient magnetic field (i.e. u= u,), the
transport coefficients are derived and presented in the form of double hypergeometric

functions, these results are consistent with the findings of Hellinger and Travnicek

(2009).

b) When the drift velocity is perpendicular to the ambient magnetic field (i.e. u=
uy), the transport coefficients are obtained and found to be in the form of double

hypergeometric functions.

2) We derive the collisional density, momentum and energy transport coefficients
in Maxwellian plasmas with a general drift velocity with respect to the ambient magnetic

field and presented in a closed form in terms of hypergeometric functions. However,
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Chapman and Cowling (1970) calculated these coefficients approximately and for special
case i.e. when the drift velocity differences between the various species are much smaller
than typical thermal speeds, in this thesis, we removed the latter restriction and calculated
transport coefficients for general drifting Maxwellian plasmas that are valid for arbitrary
drift velocity differences as well as for temperature differences between the interacting
plasma species. Also, we extended the work of Schunk (1977) and calculated the
collisional transport coefficients for two special cases, as follow:

a) When the drift velocity is parallel to the ambient magnetic field (i.e. u = u;, and
UJ_:O).

b) When the drift velocity is perpendicular to the ambient magnetic field (i.e. u = uy,
and u;=0).

Then we investigated the previously problems by using another approach, Fokker-
Planck approximation, we obtained nearly similar results. These results can be further

generalized to an inverse power force interaction.

In an on-going study we are interested to extend the work of Hinton (1983) and
Hellinger and Travni¢ek (2012) and derive, in closed form, the wvelocity diffusion
coefficients for both cases, Maxwellian and bi-Maxwellian drifting plasma, and provide
them in terms of Hypergeometric functions. These diffusion coefficients are going to be
very useful to the solar and polar wind communities, especially in modeling the plasma

behavior in these regions.
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Appendix

Hypergeometric function

A generalized hypergeometric function pFq (a1, ... ap; b1, ..., bg,;X) is a function
which can be defined in the form of a hypergeometric series, i.e., a series for which the

ratio of successive terms can be written

Cu  P(K) (k+a)k+a,)...(k+a,) y
Cy QKk)  (k +b)(k+Dy,)...(k+ b, )(k +1) (1)

(The factor of (k+1) in the denominator is present for historical reasons of notation).

The function ,F; (a, b; c; X) corresponding to p=2, g=1, in general, arises the most
frequently in physical problems, and so is frequently known as "the" hypergeometric
equation or, more explicitly, Gauss's hypergeometric function (Gauss, 1812; Barnes,
1908) that define by the power series

Flabc -y @0 2"

= (), n

(2)

It is undefined (or infinite) if ¢ equals a non-positive integer. Here (q), is the

(rising) Pochhammer symbol, which is defined by:

B 1 n=0
(@: _{q(q +1)..(q+n+-1)n>0 ®)

Example: The cosine function has the power series representation (Koepf, 2014)

cosx=y ) x2" (4)
To find its hypergeometric counterpart, we start with

(_1)n 2n
a =——X
<= 2n)! (5)
Then we get the term ratio

55


http://mathworld.wolfram.com/GeneralizedHypergeometricFunction.html
http://mathworld.wolfram.com/HypergeometricSeries.html
http://mathworld.wolfram.com/Denominator.html
https://en.wikipedia.org/wiki/Pochhammer_symbol

By _ -n™ W 20+2 (2n)! K2 = 1 —x? ©)
a,  (2n+2)! -1" (N+1/2)(n+1)
Since a = 1, this leads finally to the hypergeometric representation
2
X )

In 1921, Appell’s four double hypergeometric functions Fi, Fy, F3, F4 (Qureshi et
al., 2015) , A special class of double hypergeometric functions or Kamp'e de F’eriet
functions is considered here (Hellinger and Travnic¢ek, 2009). These functions can be

represented as double series

(a)n+k(b)n+k X y
F“(c, ’ ’yJ nkzo (©),., (d), n k! (8)

In 1967, the hypergeometric function was extended to three variables, resulting in

the formula called the triple hypergeometric function Fa® (x,y,z) and it defined by
i (@) neicom (01) 0 (0,) (B3), X" y* 2™
n,k,m=0 (Cl)n(cz)k(CB)p nt kI m!

where Fa® (x,y,z) is called the Lauricella’s triple hypergeometric function (Choi and
Rathie, 2013).

Fa(x.y,2)=

(9)
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