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Abstract 

 

       A systematic study of the vortex states of Bi2Sr2CaCu2Ox thick tape 

was carried out in the temperature range of 4 - 300 K.  The tapes were 

grown on MgO single crystal, silver foil, or MgO coated with thin Ag-
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layer.  The temperature dependence of the electrical resistivity in the 

vortex state was found to behave according to Arrhenius like relation as: 

ρ(T) = ρo exp (-Uo/kBT), where Uo is the activation energy with values 

ranged between 10 and 200 meV.  The activation energy is found to 

depend on both applied field and the growth conditions of the sample.  In 

addition, the activation energy was found to decrease by increasing the 

applied field. 

       The current dependence on the voltage in the vortex state may be 

expressed by a relation I  V 

, where  is an exponent parameter whose 

values ranges between 0.5-1 depending on growth conditions and applied 

fields.  The current was found to decrease by increasing the magnetic field 

at constant voltages according to the following power relation:  I(B)  e
- 

cB/B*
,.  The general dependence of current on applied fields and voltages 

can be written as:  

I V  e 
- cB/B*
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       The I-V characteristics were found to depend on magnetic field, 

voltage, heat treatment, and growth conditions. 
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 ملخّص

 

 
   سةابد  سةاسل كا لخص ئصا انه ب ئية،اانلاآيا لح اةا ا    ة،ا ا لح اةا لدختلطة،ا ا لح اةاو نىاه ها ل

،ا ا عت   ه اعلىاط  قةا لد  آلةا لح    ة،ا ان عيةاBi2Sr2CaCu2Oxاة اف ئقةا لد صليةاالش  ئحا اس ينةاآياآ  

 اع دا حصا لدق  آةا K 300 - 4.  ،ا ا لمج لا لدغ  طيسي،اع دا    ااح   ةاوتر  حابين( لدفترش) اق عدةا اتحتيةا

ا اتياو طىااب لد   اةاArrhenius  هي ي زاا(علاقة) ا  عيةاالح اةا لدختلطةالذ ها لد  ةا  دا نه اوتغ ا  ق ااق ن نا

 : ات اية

ρ(T) = ρO exp-(UO/kBT)ا
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قداا اتا اد  سةا نا اط قةا.اmeV 200 - 10اتمثلا اط قةا لد شطة،ا ا اتيااقي ته اوتر  حابيناUOحيثا نا

ب لإض  ةاإلىاذاكا إنه او ت دا.اا لد شطةاو ت داعلىا لمج لا لدغ  طيسي،اإذا  دا نه اوقلاع داز   ةاشدةا لمج لا لدؤث 

.ا  ض اعلىاظ  فاإنم ءا ا ي ة

 افياه ها اد  سةاتما  ض ا   سةا عت   ا اتي  اعلىا لجهدا انه ب ئياالح اةا لدختلطةاال  كب،ا اقدا  دا نا

 :ه ها ا لاقةابينا اتي  ا ا  قا لجهداايمنياتمثيله اب لد   اةا ات اية

I ~ V 
βا

 آ اعلاقةا اتي  اآ ا لمج ل،ا.اااآ  آلاقي ت او ت داعلىاظ  فاإنم ءا ا ي ة،ا اعلىا لمج لا لدغ  طيسيا لدؤث βحيثا نا

:ا قدا  دا نا اتي  اع دا هداث بتا قلاآ ا ز    اوأث ا لمج لا  ق اال لاقةا ات اية

I(B) ~ e 
- cB/B*

 

 :ع مايمنيا نايمثلا عت   ا اتي  ا انه ب ئياعلىا لجهد،ا ا لمج لا لدغ  طيسي،اب ا لاقةا ات اية ا ابشنل

 

vi 

 

I ~ V
 β

 e 
-cB/B* 

 ابشنلاع م،ا قدا  دا ناظ  فا لد  آلةا لح    ة،ا اظ  فاإنم ءا اش  طا ان عيةا لدفترشاب لإض  ةاا اكا

.ا لجهد- اتي  ا( ص ئص)لذ اوأث اك  اعلىامميز ااا( اق عدةا اتحتية)

ا
ا
ا
ا
ا
ا
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Chapter One 

Introduction and general considerations 

 

1.1 Introduction. 

 

Superconductivity is that state of matter, which appears in certain, 

metals, alloys, and compounds when cooled below a certain temperature 

called the transition temperature, Tc. 

Onnes first observed such phenomena in 1911 when studying 

electrical resistance of various metals such as mercury (Hg), lead (Pb) and 

tin (Sn).   Ones observations confirmed that resistivity of these metals 

disappeared completely when the temperature was lowered below the 

transition temperature (Rose-Innes, 1994).  The complete disappearance 

of the resistance of the specimen is most sensitively demonstrated by 

experiments with persistent currents in superconducting rings.  This 

temperature differs from one element (or compound) to another, and it 

was found to decrease as the average isotope mass increases (Poole et al., 

1988). 

 



 18 

 

 

4 8 12 16 20 24
0

1

2

3

4

T
c

 

 (

a
.u

.)

T (K)

 

Figure 1.1: Typical resistivity dependence on temperature for a certain superconductor. 

One of the most fundamental properties of superconductors is the 

so-called Meissner effect, in which the magnetic flux originally present in 

normal state is ejected from the bulk specimen when cooling below Tc.  

The superconductivity might be destroyed, if sufficient and strong 

magnetic fields were applied.  The threshold or critical value of the 

applied magnetic field Hc, sufficient for the destruction of 

superconductivity as a function of temperature, is defined through the 

relation: 
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Figure 1.2: The phase diagram of a superconductor showing the variation 

                  of critical magnetic field with temperature. 

There should be an upper limit to the amount of current flow 

through a superconductor in order to remain resistanceless.  This current is 

known as the critical current, Ic.  If the current exceeds this value, some 

resistance appears and the material reverts to normal state.  For a 

cylindrical specimen, Ic is related to Hc through a relation (Rose-Innes, 

1994): 

                                         
cc

aH2I                                    (1.2) 

where a is the radius of a cylindrical wire. 
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Figure 1.3: The variation of Ic with applied magnetic field strength. 

There are two kinds of superconductors known as type-I and type-

II.  Most of pure elements exhibit the type-I characteristics, whereas 

alloys, compounds and ceramics are generally exhibit type-II 

characteristics.  The two types have too many properties in common but 

they have shown considerable differences in the presence of magnetic 

fields (Kittel, 1996). 

The mixed (or vortex) state is a region in type-II superconductors in 

which the material might split into some fine–scale mixture of   

superconducting and  normal regions whose boundaries  lie parallel to the 
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Figure 1.4: Typical behavior of magnetic fields on superconductors a) Type-I superconductor, 

                           b) Type-II superconductor. 
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applied field.  Generally speaking, type-I superconductors are mainly pure 

metallic elements and characterized by sharp transition from normal to 

superconducting state, while type-II superconductors are compounds and 

alloys and characterized by gradual transition. 

The classic 1957 papers of Bardeen, Cooper, and Schrieffer laid the 

basis of a quantum theory of superconductivity.  The central feature of the 

BCS state is that the one-particle orbital are occupied in pairs, the pairs 

are called Cooper pairs, they have spin zero and have many attributes of 

bosons (Kittel, 1996). 

1.2  High-Tc superconductors. 

One of the most and important recent developments in physics of 

superconductors that created much excitement in the scientific community 

is the discovery of high-temperature (high-Tc) copper oxide 

superconductors, in (1987).  In this case, Tc > 77 K (the liquid N2-

temperature).  This discovery was surprising and exciting, not simply 

because of the large increase in Tc, but also because it was revealed that 

oxides formed an unsuspected new class of superconducting materials 

with great scientific and technological potential (Tinkham, 1996).  The 

new high-Tc superconductors were classified into 3 main categories, 

namely:  
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        1-             YBa2Cu3O7                     Y-123                       Tc = 93 K. 

        2-             Tl2Ba2Ca2Cu3O10           Tl-2223                     Tc = 125 K. 

        3-             Bi2Sr2CaCu2O8              Bi-2212                      Tc = 85 K. 

Such are superconducting ceramics categories are of extreme 

interest, from both scientific and from practical points of view because of 

their high-Tc that can be achieved easily by the using the of available 

liquid nitrogen. 

The high–Tc superconducting ceramics have a layered crystal 

structure in general.  The neighboring layers of copper oxide were 

separated from the next group of copper oxide layers by different layers of 

other metal oxides. Technically, these ceramics are not strong enough 

because of this layered structure.  The electrical conductivity and the 

superconductivity properties were associated with the copper oxide 

planes.  It was found that, the higher the number of neighboring copper 

oxide planes in a unit cell, the higher is the Tc.  Besides, most ceramic 

superconductors have a very short coherence range (length ζ), and a very 

deep penetration depth (λ); and they are classified as type-II 

superconductors. Furthermore, their superconducting properties are very 

anisotropic; this is because the atoms are arranged in parallel planes.    

That is: the properties along the c-axis may be widely different than those 

along a or b-axis.  
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1.3 The general structure and properties of bismuth, strontium, 

calcium, copper oxide (BSCCO) superconductors. 

The first of the new families of superconductors to compete with 

(YBCO) is the compound of bismuth, strontium, calcium, copper oxide 

(BSCCO) where its superconductivity state was observed below ~ 114 K.  

The discovery was reported on the compound Bi2Sr2Ca1Cu2Ox with a Tc 

of about 105 K (Meada et al., 1988) and a resistive extending to 80 K 

before dc resistivity dropped to zero.  

The family of bismuth compounds has one, two or three copper-

oxygen-layers that are characterized the superconducting ceramics. The 

description of the structural properties of the BSCCO system is more 

complex than that in the YBCO.  Three distinct superconducting phases 

have been identified in BSCCO system (Bi-2201, Bi-2212, and Bi-2223 

phase) with transition temperatures of about 15 K, 85 K and 110 K, 

respectively A schematic plot of the structure of the three phases 

belonging to the BSCCO family are shown in Appendix C.  The building 

unit of these compounds can be written as Bi2Sr2Can-1CunOy, with n equal 

to 1, 2, or 3 (Balastrino, 1989). 

The typical tetragonal structure of the Bi-2212 system is displayed 

in Figure 1.5. The vectors a and b formed the base axes of the tetragonal.  

The primitive axes of the unit cell have dimensions of |a| ~ |b| ~3.8 Å, and  
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|c| ~ 30.8 Å. The Bi-2212 phase has two CuO2 layers that are responsible 

for the supercurrent.  High quality textured thin films and thick tapes 

could be fabricated with ab-plane is parallel to the substrate (Saleh et al., 

1997).  The bismuth compounds are in general moderately ductile, 

resistant to chemical attack, exhibit stability in water and are fabricated 

easily.  In addition, these compounds may be employed in several 

technological applications such as wires, tapes, and superconducting 

magnets (Doss, 1989). 

 

 

 

 

 

 

 

 

 ااااا

                    |a| = |b| = 3.8 Å  

                    |c| = 30.8 Å  

Figure 1.5: A schematic plot of the crystallographic Bi-2212 tetragonal structure showing the location 

of the different atoms in the unit cell. 
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Chapter Two 

Theoretical Review 

 

2.1 Introduction  

The discovery of the high-Tc non-rare element superconductor 

Bismuth-Struntium-Calcium-Copper oxide (BSCCO) fifteen years ago by 

Meada and coworkers opened a new and promising era for the power and 

technical applications a long with scientific research using high-Tc 

superconductors (HTSCs)(Maeda et al., 1988). The transition 

temperature, Tc, of BSCCO oxide is about 110 K.  This is higher than that 

of YBa2Cu3O7 by approximately 15 K.  The coexistence of Sr and Ca in 

this oxide is necessary to obtain high-Tc (Maeda et al., 1988).  The oxide 

is being prepared by mixing powder reagents of Bi2O3, SrCO3, CaCO3 and 

CuO, and then calcined at 800 to 870 
°
C for several hours (~ 6 hours).  

Then, the mixture was thoroughly reground, cold-pressed into disk-shape 

pellets and then sintered at about 870 
°
C in air or in an oxygen atmosphere 

for several hours.  After that the mixture is furnace-cooled or quenched to 

room temperature.  Great effort has been employed to the syntheses of Bi-

2212 or Pb doped Bi-2212 superconductor to describe the optimum 

conditions for the fabrication of the superconductor.  Solid state reaction, 

partial melt, laser ablation and other techniques have been developed and  
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employed to fabricate the superconductor and to identify its phase 

diagram (Kase et al.; 1991; Varma et al.; 1989, Lee et al.; 1989 

Holesinger et al.; 1993). 

These oxides may have several industrial, technological and 

scientific fields applications.  They are extremely stable, brittle in water, 

and moister since they are layered compounds. In addition, no change in 

the superconducting properties has been observed even after thermal 

cycling between 4 K and 300 K, even or above than that (Maeda et al., 

1988). 

The syntheses of Bi-2212 and Bi-Pb-2212 superconductors through 

a novel oxide nitrate were recently described by Gibson et al. (2004).  

Mixtures of oxides nitrates, and carbonates with approximate 2:2:1:2 

metal ion compositions are dissolved in HNO3 and dried at 200 
°
C in air.  

The resulting superconductor contains small fraction of second phases like 

Bi-2201 inclusions. 
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2.2 General review.  

To understand and improve the bismuth superconductor properties, 

it is very significant to study the electrical, magnetic, optical and 

structural properties of this compound.  In this study we shall focus on the 

electrical properties.  The temperature dependence of resistance for a 

typical high-Tc superconductor compound namely BSCCO is displayed in 

Figure 2.1 as observed by Maeda and coworkers (1987).  In this figure the 

Bi-2212 phase shows a metallic behavior of the resistance from room 

temperature to 110 K.  Zero resistance is reached at about 75 K.  
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Figure 2.1: The variation of resistance with temperature of BSCCO system as 

observed by Maeda and coworkers (1988). 
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In most cases, devices of high-Tc materials should carry high 

current density in order that they can be used in technological 

applications.  The critical current density, Jc, was found to decrease by 

increasing the temperature.  Gennes et al. (1964) showed for grains 

separated by normal material in conventional superconductor, forming 

superconducting-normal-superconducting (SNS) junctions.  The general 

dependence of Jc on temperature, T, can be described by an empirical 

formula Jc α (1-T/Tc) 
ß
, with ß = 2 for T close to Tc.  The same behavior 

was reported for the high-Tc phase (Bi-2223) (Marino et al., 1993).  It was 

found that Jc is about 10
4
 A/cm

2
 at 10 K, and its dependence on 

temperature follows the same power law but over a range of values 

between 0.03 and 0.7.  This behavior indicates that, the electrical transport 

mechanism in Bi-2223 single-phase film is determined mainly by (SNS) 

junctions. 

Balestrino (1989) deduced the value of the critical current density 

both along the c-direction and in the ab-plane.  For a single crystal of the 

Bi-2212 phase.  Values of 5 10
4
 A cm

-2
, and 1.210

6
 A cm

-2
 along ab-

plane, respectively at 4.2 K The dependence of Jc on the angle between 

magnetic field and c-axis was also measured by Kumakura et al. (1991) 

for textured Bi-2212 tape at 4.2 K in magnetic fields up to 8 T.  A fairly 

large hysteresis in Jc- phase diagram was obtained.  
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This type of hysteresis behavior is attributed to the weakness of 

grain coupling in the sample.  

Saleh et al. (1998)
a
 had studied the current-voltage characteristics 

IVCs for bulk and single grain boundary BSCCO samples grown under 

various growth conditions.  The I-V characteristics for grain boundaries 

were scaled according to the following power relation:  

                                                    n

c
IIV                                        (2.1) 

for I > Ic with an exponent n larger than one.  The curvature of the I-V 

curve is upward above Ic.  This type of IVCs curves was also observed in 

a single grain or polycrystalline bridges (Zitkovsky et al., 1991).  

Gurevich and coworkers (1993) showed that the V-I curves are nonlinear 

at I near Ic and become linear above the critical current, I > Ic.  The 

nonlinearity of V(I) at small voltages in BSCCO was explained on the 

basis of flux creep model.  Unlike the low-Tc composites phase, the 

nonlinearity of V(I) often results from macroscopic variations of Ic along 

the superconducting filament (Warnes et al., 1986). 

Tinkham and Lobb (1989) have proposed the dual superconducting 

transition model for a network of weak links that connect superconducting 

grains.  According to this model, as the superconducting transition within 

grains occurred, followed at lower temperature, the establishment of long-

range superconducting order, or phase coherence, between grains will be 
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followed at low temperatures.  Usually, these mechanisms were referred 

to as the intragranular and intergranular superconducting transition, 

respectively. 

In an extensive set of measurements, Pekala et al. (1995) was 

observed an anisotropy in the transport properties of the textured Bi-2223 

superconductor.  A stronger influence of the magnetic field along the c-

axis than along the a-axis has been observed.  Anisotropy measurements 

should be carried out on single crystals; since the sample is uniform along 

each axes with no boundaries and cracks or impurities.  Resistivity 

measurements on single crystals have shown that along c direction, ρc, is 

much larger than the ab-plane resistivity, ρab, (Martin et al., 1989).  At the 

transition temperature, the resistivities ratio ρc/ρab, is about 10
5
.  Such 

result is in agreement with the high structural anisotropy of these 

compounds and with the idea that related to superconducting CuO2 planes. 

Chakrabarti et al. (2003) were studied the anisotropy of the electron 

momentum distribution in Bi-2212 superconductor by positron 

annihilation.  The general behavior for the electron momentum 

distribution has been found to have a larger value along the 

crystallographic c-axis than in the ab-plane throughout the temperature 

range from 30 to 300 K. 

Grader et al. (1988) proposed unit cell formula for the Bi-2212 

phase, that can be written as Bi2Sr3-xCaxCu2O8+δ with x varies between 0.8 
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and 2.2.  The lattice parameters of the Bi-2212 compound decrease 

monotonically with increasing x.  In addition, Shaimoyama et al. (1992) 

were studied the oxygen nonstoichiometry δ of Bi-2212 and its 

dependence on thermodynamic quantities, lattice constant and critical 

temperature.  Anomalous behaviors of such quantities in the dependence 

on δ at δ = 0.235 has been observed.  This is an indicates of the possibility 

existence of two phases in Bi-2212 compound due to this anomaly. 

From thermo-gravimetric measurements and neutron diffraction 

studies, the effect of non-stoichiometric oxygen on Tc has been also 

observed in the BSCCO system (Pena et al., 1989).  An oxidizing 

atmosphere was found to reduce Tc and to increase the superconducting 

transition width.  Systematic studies were performed for Bi-2212 in the 

range 8 < y < 8.30, where y is the oxygen index.  This can be achieved by 

annealing of the highly oxidized single-phase powders under inert 

atmosphere in order to remove oxygen in small steps.  Heating treatment 

was performed at temperatures between 300 and 750 
°
C for 24 h in order 

to attain equilibrium between oxygen contents in samples.  This is resulted 

in a dramatic decrease of Tc in connection with the high oxygen contents 

observed in Bi-2212 (Bock et al., 1990). 

Ishizuka et al. (1990) had confirmed that regulating the activated 

oxygen flux density control the crystalline orientation of BSCCO thin 

films.  Two orientations were observed, one when the c-axis is oriented 
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perpendicularly to the film surface and the other when the c-axis is 

inclined about 50 degrees from the perpendicular to the film surface. 

 

2.3 Dependence of electrical parameters on magnetic field. 

Electrical and magnetic properties of HTSCs are greatly affected by 

the application of magnetic field.  When the applied magnetic field is 

equal to zero, the resistive transition is nearly sharp, while in the presence 

of magnetic field the resistive transition is rather broad and develops a 

large tail.  This behavior was observed when the magnetic field is 

perpendicular to the c-axis in thin films or thick tapes.  The broadening 

becomes more significant, particularly, in the low resistance portion.  A 

tail in the resistance profile was observed over the wide temperature range 

for both directions (parallel and perpendicular to c-axis) of magnetic fields 

(Kobayashi et al., 1989).  In this region, the flux flow resistance will be 

added to the normal resistance, therefore shifting Tc to left (lower 

temperature).  Moreover, by increasing the magnetic field, the resistivity 

shifts to lower temperatures as expected for granular superconductor.  

This same behavior was observed in single crystals of BSCCO and thick 

tapes (Plastra et al., 1989).  As pointed out by Maeda et al. (1991), the 

appearance of the finite resistance under the magnetic field is mainly  
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attributed to the large fluctuation effect, which leads to resistive 

broadening. 

A profound look to the dependence of resistivity on magnetic field 

in the transition region is achieved by studying the transition region in 

terms of the derivative curves (dR/dT).  Two peaks were observed in the 

plots of the temperature derivative of the resistance, (dR/dT versus T) 

(Goldschmidt 1989, Nkum and Datars 1995).  The major peak 

corresponds to intra-granular transition, while the secondary peak 

corresponds to inter-granular transition.  The latter peak is broadened as 

the bias current or the magnetic field strength is increased and shifts to 

lower temperatures.  

The critical current density of the superconducting state is 

extremely dependent on the applied magnetic field especially at high 

temperatures. Togano et al. (1991) found that Jc decreases rapidly as the 

magnetic field strength increased above T > 30 K.  However, below 30 K, 

the critical current density Jc was found to vary slowly with fields even for 

high field strength up to 25 T (Togano et al., 1991, Kase et al., 1991, 

Shimoyama et al., 1992).  Kumarkura et al. (1991) had observed large 

decrease in Jc as the field increased above 25 K and its anisotropy became 

very large. This indication that flux pinning is effective only for cases in 

which the flux is perpendicular to the axis where flux vortices can move 

easily within the ab-plane.  On one hand, Gurevich et al. (1993) showed 



 35 

that Jc(B) decreases as B 
-0.15

 for the Bi-2212 tape at 4.2 K, and on the 

other hand, the Jc(B) dependence becomes exponential at 77 K. 

At temperatures above 30 K, the application of magnetic fields up 

to 8 mT had a little effect on the shape of IVC curves (Saleh et al., 1998).  

At low temperatures, the hysteresis in IVC curves is believed to be typical 

in HTSC material especially in the Bi-based sample.  This behavior may 

be attributed to the weak coupling between grains through Josephson 

junction (Kleiner et al., 1994).  In addition, it was found that the highly 

layered of Bi-2212 gives rise to intrinsic Josephson junction even in single 

crystals.  

The susceptibility measurement is a powerful tool in determining 

valuable information about the electric and magnetic properties of the 

superconductor such as magnetization, critical currents, the order 

parameter and many other properties (Widder et al., 1997).  It is well 

established that the ac susceptibility (χ = χ´– iχ") depends strongly on the 

amplitude and the frequency of the ac field (B = Bocos t) of the primary 

coil and the applied dc field.  Many researchers found that both χ´(T) and 

χ"(T) curves shift to higher temperatures as both the frequency and the 

peak temperature Tp (peak temperature) increase exponentially with the 

frequency (Saleh et al., 2003, Han et al., 1993).  Such observation was 

interpreted in terms of flux creep. 
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The real part of the susceptibility has shown a two-step transition 

corresponding to the superconducting state for different dc magnetic field.  

The first step transition is attributed to the grain forming the specimen.  

This transition is almost independent of the field amplitude.  The second 

transition is related to the intergrain regions and it is observed to be field 

dependent (Gonzalez et al., 1995).  The two step transition to the 

superconducting state is confirmed by measuring the resistive (imaginary) 

part of the susceptibility χ".  This part represents the bulk pinning 

hysteresis losses in the sample due to the motion of the vortices 

(Josephson vortices) in and out grain boundaries (Müller et al., 1989).  Bi-

2212 crystals showed only a single χ" peak, which is more strongly 

affected by magnetic fields and the frequency of measurements than are 

those of YBa2Cu3O7-x (Flippen et al., 1992).  Gonzalez et al. (1995) was 

observed two peaks in the imaginary part of the complex susceptibility of 

Bi-2223 ceramic superconductor. 

Ray et al. (2002) used the field dependence of real (χ´) and 

imaginary (χ") component of ac susceptibility of (Bi-Pb)-2223 

superconductors within the critical state model to evaluate and study the 

temperature dependence of intergranular critical current density of 

polycrystalline near Tc. They found that the intergranular Jc (0 K) has 

values vary between 2.2310
5
 A/cm

2
 and 2.310

5
 A/cm

2
 for sample with 

densities 5.39 gm/cm
3
 and 5.86 gm/cm

3
, respectively.  This result in 
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agreement with the fact that in polycrystalline HTSCs the critical current 

is primarily dominated by weak links. 

 

2.4 The influence of the growth condition on the electrical properties 

of Bi2Sr2CaCu2Ox thick tapes. 

The electrical parameters of the normal, the vortex, and the 

superconducting state of BSCCO are affected greatly by the growth 

conditions. Several factors were found to limit Jc, Tc and other properties 

of the Bi-2212 thick tapes were found to depend on several factors among, 

such as grain boundaries, defects, and second phases, …etc, (Yang et al., 

1992).  Samples of large grain size and grown from melt have shown 

higher Tc and higher Jc than those samples of small grains (Lee et al., 

1991).  The differences in superconducting properties between these 

samples were attributed to the crystal growth conditions and weak-link 

behavior at grain boundaries. 

The type of substrate material was found to be very critical in the 

formation of the superconducting phase under partial melting growth 

technique.  Silver foil, single crystal MgO and MgO coated with thin 

silver layer were good environments for the formation of Bi-2212 

superconducting phase (Saleh et al., 1997).  Silver was found to play an 

important role in grain alignment and the formation of highly textured  
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microstructure (Kase et al., 1991).  In addition, the amount of silver added 

to the sample has a strong influence on Jc at 77 K (Kobel et al., 2003).  

Fujishiro et al. (1993) has pointed that alloying Ag with Au or Cu 

decreases the thermal conductivity relative to pure Ag.  The additions of 

Au were greatly effective in decreasing the thermal conductivity. Nomura 

et al. (1993) has studied the influence of Au or Cu additions to the Ag 

substrate on the microstructure and properties of the Bi-2212 

superconductors.  They found that Bi-2212 prepared on an Ag-Au 

substrate showed excellent Jc values.  In addition, they expected that Ag-

Au alloy to be superior substrate materials of Bi-2212 for power current 

lead in superconducting magnets, taking into account their low thermal 

conductivity. 

Heat treatment conditions also affected the electrical parameters of 

the Bi-2212 superconductor.  Noji et al. (1993) was found that the growth 

of second phases on the tape surfaces is dependent on the cooling rate 

from the sintering temperature all the way down to room temperature.  In 

addition, they found that the grain boundaries depend on the cooling rate 

and this was related to the morphology of the sample surface.  Moreover, 

Shiomyama et al. (1992) was found that a fast cooling rate would 

suppress the decomposition of the Bi-2212.  And thus the grain coupling 

of the superconductors will be improved and hence increasing Jc.  Besides, 
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Tc was found to decrease with decreasing the cooling rate (Noji et al., 

1993). 

Furthermore, the superconductor properties of BSCCO tape were 

found to depend on annealing and sintering temperatures, time of heat 

treatments and the furnace atmosphere (Dimesso et al., 1992).  Also, 

observations have shown that annealing under reducing atmosphere on 

BSCCO textured tapes and for different time periods could vary Tc.  

Besides, Jc was affected greatly by the annealing due to the degradation of 

the interface at the grain boundaries.  Natividad et al. (2004) analyzed the 

changes produced within the bulk Bi-2212 along thermal treatment 

(annealing) and the subsequent cooling to room temperature.  

Accordingly, the different stages of the thermal process, the samples 

present different degrees of homogeneity in their superconducting 

properties.  

Kobel et al. (2003) observed three regions for the dependence of Jc 

on the maximum processing temperature (895 - 905 K).  Firstly, the 

region in which Jc rises slowly with increasing maximum process 

temperature up to 20 
°
C above the solidification temperature.  Secondly, at 

temperatures between 25 - 30 
°
C and above the solidification temperature, 

the highest Jc values were attained. Thirdly, Jc decreases rapidly with 

further increasing processing temperatures.  
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The electrical and magnetic properties of Bi-2212 system were 

being greatly affected by the type of dopant.  Prabhu et al. (1993) studied 

the influence of Fe and Co on the Bi-2212 phase transition.  It was found 

that by increasing dopant concentration, a systematic decrease in Tc would 

be followed.  Susceptibility also indicated a decrease in the volume 

fraction of the doped phases.  Moehlecke et al. (1993) studied the effect of 

Li addition on the Bi-2212 compounds; they found that the addition of 

lithium will increase the volume of superconducting material.  The 

addition of Li enhances the superconducting properties of the weak 

intergranular links, making these regions more homogeneous and less 

sensitive to magnetic fields.  Furthermore, Tc (Tc intra and Tc inter) and Jc are 

found to increase significantly with increasing Li concentration. 

Jin et al. (1993) studied the influence of growth conditions such as 

heating time, amount of Pb doping, temperature, …etc, on the size and 

superconducting phase of the Bi-based grown whiskers.  Whiskers are 

made up of several single crystal plates staking into layered structures 

(needle like), and they have perfectly oriented structures. Besides, they 

have also a very strong current carrying ability.  Jin and coworkers (1993) 

found that the maximum length of the whiskers is proportional to the 

growth time at initial stages, and after a certain growth time, the 

maximum length stays constant.  High-Tc phase emerges when the growth 

time is prolonged for the whiskers whose starting compositions are near 
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the stoichiometry of the high-Tc phase.  The optimum temperature for the 

whisker growth is in a very narrow range, which is just below the melting 

point of the substrate.  They also found that the state of the substrate had 

little effect on the whisker growth.  In addition, the amount of Pb doped in 

the starting materials and a steady stream of oxygen atmosphere play 

catalytic roles in the whisker growth. 
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Chapter Three 

Experimental consideration for data measurements 

 

3.1 Introduction. 

Experimental data were collected for Bi-2212 superconductor thick 

tapes in the temperature range from 4 to 300 K at both North Carolina 

State University (USA) and Regensburg University (Germany).  The main 

aim of the analysis of the data is to develop models able to describe the 

general behaviors of the system.  Besides, the analysis of the data will be 

helpful in estimating certain electrical parameters like activation energy, 

mobility, Hall coefficient, etc… 

In this chapter, we shall focus on describing briefly the 

experimental procedures used in the preparation of Bi-2212, and the 

methods employed in measuring electrical parameters. 

  

3.2 Preparation of the Bi-2212 tapes. 

A commercial fine powder of Bi-2212 thoroughly mixed with organic 

formulation [trichloro-ethiylene as solvent, sorbitan trifoliate as 

dispersant, and poly-vinal butyral as binder] (Saleh et al., 1997 and 1998 

b
).  The mixture was then cast on glass plate, using the doctor blade 

technique, into typically green sheet of about 125 mm-wide and 50 μm- 
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thick (Togano et al., 1991).  Tape samples are then cut from the green 

tape, each sample with dimension of about 4 × 1 mm
2
, are placed on a 

substrate (Saleh et al., 1998). Several substrates were used such as:  silver 

foil of thickness of 50 μm, MgO single crystal, and MgO single crystal 

coated with a silver layer of about 0.5 - 1 μm thickness.  After the 

preparation, the sample was subject to heat treatment to obtain a 

superconductor.  Various heat treatment conditions were employed for the 

different samples to examine their effect on the properties of the 

superconductor. 

 

3.3 The heat treatment profile. 

Figure 3.1 shows a profile of typical heat treatment used for sample 

growth.  Firstly, to remove the organic formulation, the composite tape 

was heated slowly to 500 ºC and kept at that temperature for two hours.  

Secondly, the temperature was raised to either 890 or 900 ºC, depending 

on the substrate material, (the temperature was raised to 890 ºC for Ag 

substrate, or 900 ºC for MgO substrate).  At this temperature, a partial 

melting of the oxide was obtained and the sample is left for about 10 

minutes.  Thirdly, the temperature is slowly cooled at a rate of 0.1 ºC/min 

to 840 ºC; the sample was then kept at this temperature for 6 hours.  

Fourthly, the sample is either quenched or slowly cooled to room 
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temperature at different rates.  The final oxide thickness was about 12 - 20 

μm, which is about 25 to 33 % of the initial green tape thickness. 
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Figure 3.1: A typical heat treatment profile for partial- melts solidified Bi-2212 thick 

tape. 
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3.4 X-ray diffraction. 

To check the composition and the alignment of the grains (sample) on 

the substrate, X-ray diffraction (XRD), was performed on some samples.  

A Seifert XRD 3000R diffractometer using Cukα radiation was utilized for 

X-ray investigation.  Figure 3.2a shows a typical X-ray diffraction pattern 

of Bi-2212 sample grown on silver substrate.  The c-axis orientation of the 

grains is almost perpendicular to the substrate as confirmed by the X-ray 

diffraction profile, which predominantly exhibit (00ι) peaks.  The small 

peaks assigned by * on the graph are due to (hkι) reflection lines.  To 

confirm the alignment of the grains, rocking curves were also taken for 

some samples.  In this case, we select a certain peak (00ι) and XRD 

reflection was taken around it in 360º.  From such rocking curve, we can 

determine the degree of disorientation of the c-axis oriented grains.  

Figure 3.2b demonstrates as an example of the rocking of the (0012) peak.  

The full width at half maximum (FWMA) of this peak is approximately 

8º, indicating a reasonably well-oriented c-axis specimen.  It is worth to 

note that the FWMA in epitixial film growth is typically 1º (Saleh et al., 

1998
 b
). 
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Figure 3.2: a) X-ray diffraction pattern of Bi-2212 sample grown on silver substrate 

where  the reflected lines exhibit (00ι) orientation, and b) The rocking 

curve of (0012) peak. 
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3.5 Measurements. 

3.5.1 The resistivity measurements. 

The superconducting behavior of a sample could be confirmed by 

measuring the resistivity of the material and the AC susceptibility.  Aا

standard four-probe technique was employed for the resistivity 

measurements.  This technique employs two leads (or probes) to measure 

the current flowing in the sample, I; while the other two leads measure the 

potential drop, V, between two equi-potential surfaces resulting from the 

current flow.  A sketch of the four-probe technique apparatus is displayed 

in Figure 3.3.  The resistance of samples with dimension of about 6  2  

0.02 mm
3
 were measured in the temperature range 80 to 150 K with or 

without external field parallel to the c-axis.  Gold leads were attached to 

the sample using silver paint. 
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Figure 3.3: Illustration of the standard four-probe resistance measurement technique. 
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3.5.2 The susceptibility measurements. 

The Ac and Dc susceptibilities are measured using a standard 

homemade susceptometer with a standard lock-in amplifier.  The 

susceptometer consists of a primary coil and two identical pick-up coils, 

one of them surrounding the sample.  In the Ac measurements, the 

susceptibility is measured for samples of dimensions of 2  2 0.02 mm
3
 

for various fields of different amplitudes and frequencies.  The measured 

voltage, V, in the lock-in amplifier (in-phase and out-of-phase voltage) is 

directly proportional to the susceptibility through the relation:    V/Ho, 

where Ho is the magnetic field produced by the current in the primary coil.  

The in-phase voltage gives the real part of , while the out-of-phase 

voltage gives the imaginary part.  In the dc measurements, the strength of 

the applied field is varied.  

3.5.3 The current- voltage measurements. 

The current-voltage characteristics (IVCs) were taken using a 

current source driven by a ramp generator with a maximum output current 

of ± 100 mA.  The sample was mounted on a dipstick that could be 

inserted in a liquid helium container.  A small magnetic field up to 8 mT 

could be applied to the sample.  In the present study, the field was applied 

on the sample parallel to the c-axis to study its effect on the resistivity of 
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the normal and vortex states and its effect on Jc and Tc of the 

superconducting state. 

3.5.4 The critical current measurements. 

Several methods and techniques can be used to determine Jc in 

superconductors.  One of these methods (used in the present study) is the 

determination of the critical current from the IVCs with a 1-μV voltage 

criterion.  The average value of both ends of the curve when the voltage 

starts to develop across the sample was used to determine Ic.  That is: 

                                       
2

I  I
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c


                                         (3.1) 
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Figure 3.4: Determination of Ic from typical IVCs for BSCCO thick tape. 
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3.6 Effect of growth conditions on electrical parameters. 

The dependence of electrical parameters of normal, vortex, and 

superconducting states of BSCCO on the substrate material, heat 

treatment conditions and applied magnetic field were studied for partial 

melt-solidified superconducting tapes. 

The effects of substrate material were studied by growing the samples 

on various types of substrates such as Ag foil (50 μm thick), single crystal 

MgO and MgO substrates coated with silver layer (Saleh et al., 1997).  

Besides, the effect of heat treatment conditions was studied by growing 

many samples under different heat treatment conditions.  Some of the 

samples were annealed in a nitrogen atmosphere at 500 to 550 ºC for 

about 14 hours and then cooled to room temperature either by quenching 

or slow cooling.  Therefore, the effect of heat treatment-conditions, the 

annealing atmosphere, and the cooling rate on the electrical parameters 

were investigated. 
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Chapter Four 

Results and Discussion 

 

The collected data for the Bi-2212 superconducting thick tapes will 

be analyzed on the basis of the models discussed in chapter two.  The 

superconducting behavior was determined by measuring Ac susceptibility 

and the resistivity of the material.  The Ac susceptibility measurements 

provide a great deal of information about electric and magnetic properties 

of the sample and give a better indication of the extent to which the 

sample has transformed to the superconducting state. 

The real part of the susceptibility of Bi-2212 thick tape as a 

function of temperature is shown in Figure 4.1.  From this figure we can 

see the transition in the magnetic behavior for the Bi-2212 thick tape 

from paramagnetism to perfect diamagnetism at Tc = 78 K.  The same 

behavior was found for (Bi,Pb)2Sr2Ca2Cu3Oy superconductor, prepared in 

a single-phase polycrystalline form (Maeda et al.,1989). 

The Curie law may express the magnetic susceptibility of many 

compounds that gives the paramagnetic susceptibility as inversely 

proportional to the absolute temperature T, according to the following 

expression (Mulary, 1963): 
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Figure 4.1: The real part of ac susceptibility of Bi-2212 thick tape sample                                         
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                                      = 


C
                                                  (4.1) 

where C is called the Curie constant, which is equal to (Kittel, 1996): 

                                              C = 





k3

Np 2

B

2

                                            (4.2) 

 where N is the number of atoms per unit volume, kB is the Boltzmann 

constant, B is Bohr magneton, and p is the effective number of Bohr 

magnetons, which may be calculated from the relation: 

                                               p = g    2

1

1JJ                                      (4.3) 

in Bohr magneton units.  Here g is the Lande splitting factor and J is the 

resultant angular momentum, which is a vector sum of L, the total angular 

momentum of the orbital motion of the electrons, and S, the 

corresponding spin angular momentum (Mulary, 1963). 

The linear relation between  and 1/T for Bi-2212 bulk sample 

exhibited in Figure 4.2 is used to find the permanent moment .  The 

Curie constant C estimated from the slope of this figure is equal to 11.6.  

Using this result, we can find the permanent Bohr magneton B in terms 

of C by applying the relation that B = (3kBC/Np
2
)

 1/2
. 
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Figure 4.2: A linear fit of Ac susceptibility with inverse of temperature. 

The variation of the resistance with temperature of Bi-2212 bulk 

sample is shown in Figure 4.3.  The sample shows a metallic behavior of 

the resistance from room temperature to 110 K, while zero resistance is 

reached at 85 K.  Same behaviors for various samples of different growth 

conditions were observed but with different Tc.  The data for different 

samples were plotted (Figure 4.3) and the linear part was fitted to find the 

temperature dependence of the resistance.  The temperature dependence 

of the resistance is well expressed by a linear relation of the form: 

                                      R                                               (4.4) 
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where A is the residual resistance extrapolated to T = 0 (intercept), and B 

is the slope.  The same behavior was found for polycrystalline sample of 

YBa2Cu3O7 system (Pureur et al., 1991), (Bi-Pb)2Sr2Ca2Cu3Ox silver-

sheated tapes (Xu et al., 1997) and for Bi2Sr2-x GdxCa1Cu2O8+ (x = 0 - 

0.65) system (Khan, 1994).  Typical values of A and B for various 

samples are recorded in table 1.   According to the table, the values of A 

and B are strongly dependent on the sample properties (i.e. growth 

conditions, annealing time and atmosphere, substrate type and grain size). 
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Figure 4.3: The resistance as a function of temperature for BSCCO thick tape (sample 46). 
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The temperature dependences of the electrical resistivity in vortex 

state with (or without) applying different magnetic fields are plotted as R 

versus 1/T in semi log scale as shown in Figure 4.4.  The resistance of the 

vortex state can be written in the form of Arrhenius relation as: 

                                     













B
k

U
expRR 


                                   (4.5) 

where Uo is the activation energy. 
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Figure 4.4: A semi log dependence of resistance on inverse of temperature (1/T) for thick tape sample 

at different fields. 
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This relation suggests that the dominant dissipating mechanism is 

thermally activated flux motion as suggested by Kes et al., (1990).  The 

activation energy Uo could be determined from the slope of the Ln R 

versus 1/T graph.  Fitting the data allows us to estimate the activation 

energy that was found to vary in between 10 and 200 meV, depending on 

growth conditions and applied field.  Pekala et al. (1995) found that the 

calculated activation energy for a Pb-free textured Bi-2223 system varies 

from 20 and 80 meV. They observed Uo to depend on both temperature 

and the magnetic field. In general, it decreases by increasing both 

magnetic field and temperature. 

Table 1 displays some typical values of Uo for samples of different 

growth conditions, while in Table 2, a complete list of activation energies 

at different growth conditions is given in Appendix B.  The same 

behavior was found for single phase HgBa2Ca2Cu2O8+ superconductor 

(Liu et al., 2003) and for Bi2Sr2CaCu2O8+x thin films (Attanasio et al., 

1995).  In addition, Pekala et al. (1995) observed that the activation 

energy is 20 - 30 % higher when a magnetic field is applied along the a-

axis than Uo when the field is applied parallel to the c-axis.  This behavior 

may be attributed to the large anisotropy that characterized the sample. 
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Sample 

BSCCO thick tape 

Growth conditions Uo (m eV) 

(B = 0 mT) 

Uo (m eV) 

(B= 4.8 mT) 

Uo (m eV) 

(B= 8 mT) 

46 (bulk) Quenched 271.38 186.91 155.75 

44 (bulk) Quenched-annealed 296.44 192.10 170.40 

13 (laser cut) Annealed then etched 34.20 30.39 26.30 

Table 4.1: Typical activation energy values for different BSCCO samples. 

The effect of magnetic field on the resistance of the normal and 

vortex state and on Tc, was investigated by applying a small magnetic 

field parallel to the c-axis (perpendicular to ab-plane).  Figure 4.5a 

displays the dependence of the resistance of the normal and vortex states 

on the applied magnetic field. We can see that the resistance of the 

sample (thick tape sample) does not change by increasing the field in the 

range between room temperature and the beginning of the transition to 

the superconducting state.  This may be attributed to the full penetration 

of the magnetic flux lines to the entire specimen in the normal state 

(Saleh et al., 1997). 

In the transition period, the specimen is expected to be in the mixed 

state (vortex) in which it is composed of both normal and 

superconducting states.  In this region, the resistance of the sample is 

strongly dependent on the applied magnetic field as could be noticed 

from the Figure 4.5 b. 
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Figure 4.5: a) A typical dependence of resistivity of the normal state on the applied 

magnetic field, and  b) Shows the effect of magnetic field on the mixed 

state for the same sample. 

 

75 90 105 120 135 150
0

2

4

6

 B=0 mT

 B=4.8 mT

 B=8.0 mT
(a)

 

 


 (


W

.m
)

T (K)



 60 

As the field strength is increased, the superconducting state Tc is 

lowered and the resistivity curve develops a tail regime slowly varying 

over a wide temperature range.  This broadening behavior is expected for 

polycrystalline sample due to weak coupling between crystallites (grains) 

of the sample.  Similar results have also been reported for single crystal 

samples of BSCCO (Plastra et al., 1989), bulk BiPbSCCO sample (Gridin 

et al., 1990), YBCO and BSCCO thin films (Kobayashi et al., 1989) and 

in polycrystalline Ru2Gd2BaCu2O8 (Ru-2212) superconductor (Saleh et 

al., 2003).  Maeda et al. (1991) attributed the appearance of finite 

resistance under the influence of magnetic field mainly to the large 

fluctuation effect that leads to resistive broadening.  In other words, the 

flux flow resistance will be added to the normal resistance and therefore 

shifting the critical transition temperature to the left.  As the field is 

increased, more flux lines will be removed thus intensifying the flux flow 

resistance (Saleh et al., 1997). 

More information about the shape of the resistive transition can be 

obtained by studying the variation of dR/dT with temperature.  The point 

at which the first derivative of the resistivity curve reaches its maximum 

value could be selected to define critical temperature Tc.  This point 

corresponds to the inflection point or the point of rapid change on the 

original curve (Nkum and Datars, 1992; Poole et al., 1988).  The width 

T between the points where the first derivative curve is half of its 
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maximum value shown in Figure 4.6, is in a good quantitative measure of 

the width of the transition.  The full width at half maximum (FWHM) is 

equal to 6 K for the present sample (see figure 4.6).  The width of the 

transition is presumably related to the distribution of Tc among grains 

(Nkum and Datars, 1992), or in other words to the quality of the sample.  

That is, the smaller is the width; the better is the quality of the sample.  

The large sharp peak observed in the curve corresponds to the 

superconducting transition occurring inside the grains; while the 

shoulders in the dR/dT against T curve are a signature of weak links 

(boundaries) between grains (Nkum and Datars, 1992).  For bulk 

samples, a secondary peak in the tail was observed.  The secondary peak 

was demolished by the application of magnetic field and the curves thus 

get broader (Goldschmidt, 1989; Nkum and Datars, 1995; Pekala et al., 

1995; Burin et al., 1996).  The appearance of the secondary peak was 

attributed to the deficiency of oxygen molecules in grain boundaries and 

it was reduced or even eliminated by annealing the sample in oxygen 

atmosphere (Goldschmidt, 1989). 
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Figure 4.6: The resistance first derivative dependence on temperature. 

The second derivative showed in Figure 4.7 permits the precise 

measurement of the transition temperature.  The transition temperature 

occurs when the curve crosses the base line.  In addition, the curve of the 

second derivative gives the peak-to-peak width, Tpp of the distribution of 

grains (Poole et al, 1988).  For our sample the peak-to-peak transition 

width, Tpp is 4.1 K.  This result is in good agreement with the results 

obtained for a Ge-doped Bi-Pb-Sr-Ca-Cu-O system, with transition width 

Tpp ranges from 4 - 6.7 K (Nkum and Datars, 1992).  Nkum and Datars 

(1995) also found that the transition width Tpp for In-doped Bi- Pb-Sr-

Ca-Cu-O system ranges between 4.3 - 5.2 K depending on In 

concentration. 
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Figure 4.7: Temperature dependence of the resistance second derivative for BSCCO thick tape 

sample. 

The critical current Ic is found to be affected greatly by 

temperature, magnetic field and growth conditions.  The critical current 

as a function of temperatures is plotted in Figure 4.8 for a laser cut 

sample (sample 22).  The sample showed a slow increase of Ic for 

temperatures close to Tc, however a larger increase is observed below  

50 K. 

In addition, the figure shows a theoretical fit of data according to a 

relation of the form: 

                                        
n

c

c
1II 















                                     (4.6) 
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where Io = 20 mA.  The fitting parameters are n = 1.76 and Tc = 82 K.  

The value of n indicates that the intergrain junctions of our sample 

behave as SNS (superconductor-normal-superconductor) ones.  Similar 

results were obtained for a Pb doped Bi-2223 ceramic but with n = 1.9 

(Gonzalez et al., 1995). 
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Figure 4.8: Temperature dependence of the transport critical current for Bi-2212 laser cut sample. 

The growth conditions and the applied magnetic field were found 

to affect greatly the critical current density.  Figure 4.9a displays the Jc 

versus the magnetic field for two different samples grown under different 

growth conditions at fixed temperature.  A quenched sample (sample 46) 

and a quenched then annealed sample (sample 44).  The Jc data for 

sample 46 was taken at 78 K, while for sample 44 at 75 K.  As shown in 
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the figure, Jc decreases slowly with increasing the magnetic field strength 

near Tc.  The same behavior of Jc (B) was found for (Bi,Pb)2Sr2Ca2Cu3Ox 

silver-sheated tapes (Hensel et al., 1993), Bi2.2Sr1.8Ca2O8.2 single crystal 

(Hayashi et al., 1990), and in bulk Bi1.6Pb0.4Sr2Ca2Cu3O10 (Umemura et 

al., 1990).  Umemura and coworkers (1990) attributed the abrupt 

degradation in Jc with increasing temperature and magnetic field to the 

influence of the significant flux creep due to a large thermal energy and 

weak pinning energy. 

The data of Figure 4.9a is replotted on a semi-log graph as 

displayed in Figure 4.9b.  A good linear fit for log Jc with the applied 

magnetic field is obtained.  It can be easily seen from the Figure that 

Jc(B) exhibits an approximate dependence on B as: 

                                     
















expJJ

cc
                                    (4.7) 

where Jc0 is the critical current density at zero field and B is a constant 

field that prevents the divergence of Jc at B = 0 T.  The same relation was 

observed for a Bi-2223 tape for field perpendicular to c-axis (Bc), and 

for field parallel to c-axis (B||c) (Kung et al., 1995).  Such an exponential 

decay of Jc with B is an evident of the strong flux pinning centers in the 

sample. 
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Figure 4.9: a) The critical current density versus magnetic field for two different Bi-2212 bulk 

samples. 

 b) A semi log plot of Jc versus the applied magnetic field for the same two samples in 

(a) with a linear fit. 

 



 67 

The influence of growth conditions such as heat treatment 

conditions, substrate type, annealing and grain size on electrical and 

magnetic properties were also investigated for Bi-2212 thick tapes.  

Figure 4.10 represents the temperature dependence of critical current 

densities of two samples grown under different heat treatments.  As can 

be seen from the figure, the critical current density of quenched and 

annealed sample for several hours at 500 

C is higher than that obtained 

for only quenched superconducting sample.  Annealing in N2 atmosphere 

can improve coupling between grains, hence increasing Jc.  Noji et al. 

(1993) observed that annealing in N2 at (500 - 600 

C) could improve the 

Tc value of the superconductor by reducing the excess of oxygen content, 

therefore improving the intergranular coupling properties of the samples.  

Moreover, Jc was found to strongly decrease with annealing time periods 

(Dimesso et al., 1992).  In addition, quenching the specimen from 840 
°
C 

to room temperature may increase the electrical parameters of the 

superconductor. It resulted in a higher transition temperature, and in 

higher critical current density, Jc (Saleh et al., 1997). 

The type of substrate material was found to be very important and 

critical in the formation of the superconducting phase.  There are several 

good substrate environments for the formation of Bi-2212 

superconducting phase such as: silver foil, single crystal MgO and single 

crystal MgO coated with thin silver layer (Saleh et al., 1997).  Also Ag-
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Au alloys are a good and superior substrate materials of Bi-2212 for 

power current (super current) leads in superconducting magnets (Nomura 

et al., 1993).  Furthermore, Fujishiro et al. (1993) reported that the 

addition of Au was very effective in decreasing the thermal conductivity 

of the superconductor. 

The amount of silver added to the sample has a strong influence on 

the Jc.  Figure 4.10 shows the influence of Ag on critical current density 

for samples grown on MgO substrate covered with 1 m-silver (a) and 

0.5 m-silver (b).  As it could be seen from the figure, Jc for the sample 

grown on MgO coated with 1 m silver layer is much greater than Jc for 

the sample grown on MgO coated with 0.5 m silver layer.  This 

behavior may be attributed to dependence of the melting point of Bi-2212 

oxide on the substrate material (Togano et al., 1991).  It was reported that 

silver substrate plays an important rule in the grain alignment, by 

lowering the melting point of the oxide and in the formation of highly 

textured microstructure (Kase et al., 1991; Togano et al.; 1991; Zhang 

and Hellstorm, 1993).  Zhang and Hellstorm, (1993) found that the 

thickness of the tape was very important in aligning the grains and in 

increasing Jc, they observed a highly aligned texture for tapes of thickness 

less than 25 m, while it was less pronounced for tapes of thickness 
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greater than 25 m.  This suggests that thinner films have fewer and 

smaller second phases and better alignment of the grains. 
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Figure 4.10: The effect of heat treatment conditions and silver addition on the critical current density 

of Bi-2212 thick tapes. a) The samples grown on MgO substrate covered by1m 

silver layer, and b) The samples grown on MgO substrate covered by 0.5 m silver 

layer. 

 



 70 

The grain size also has a large influence on the determination of Tc 

of the superconducting state and the resistivity of the normal state.  

Larger grains will have lower resistivity in normal state and higher 

critical Tc than those of smaller grain size (Saleh et al., 1997).  In 

addition, grain size and grain boundaries will be greatly affect the critical 

current dependence on both temperature and magnetic field (Saleh et al., 

1998
 b
) 

The study of IVCs is very important in determining the Jc and other 

electrical behavior of the sample.  Typical IVCs of Bi-2212 phase in a 

zero applied magnetic field is displayed in Figure 4.11.   
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Figure 4.11: A typical IVCs of Bi-2212 superconductor thick tape. 
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The figure shows that nonlinearity of I-V curve is observed for I 

very close to Ic and become linear above the critical current I > Ic.  Flux 

creep is assumed to be the main source of nonlinearity of V(I) at small V 

in BSCCO (Warnes et al., 1986).  The same behavior of IVCs was also 

observed in a single grain or polycrystalline bridges (Zitkovsky et al., 

1991).  The critical current Ic can be determined from this curve by taking 

the average value at both ends of the curve when the voltage starts to 

develop a cross the sample (Saleh et al., 1997). 

The IVCs were measured for several samples grown under 

different growth conditions.   The linear portion (I > Ic) of the voltage is 

taken; the data is then replotted on a log-log plot, and then fitted to a 

certain scale law.  It is found that the voltage dependence of the current is 

well expressed by a relation of the form: 

                                            I ~ V 
β
                                               (4.8)

 

where  is an exponent, determined from the slopes of the I-V curve 

shown in Figure 4.12.  In general, its value was found to be in the range 

from 0.1 - 0.5 (as was found by fitting the data in Figure 4.12a and b).  

Figure 4.12a shows the IVCs in log-log scale for same sample at zero 

magnetic fields and at different temperatures 80, 77 and 76. In Figure 

4.12b, the IVCs for different samples grown under different growth 

conditions.  The figure also shows a clear power law behavior in the 
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mean-field transition temperature region.  Same results were found for 

(Bi-Pb)-Sr-Ca-Cu-O single crystal (Pradhan et al,. 1993). 
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Figure 4.12: I-V characteristics in log-log scale for: a) same sample at zero magnetic 

fields at different temperatures and b) for different samples grown 

under different growth conditions. 
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The IVCs are influenced greatly by the applied magnetic field.  

Figure 4.13 shows the IVCs on a log-log scale of Bi-2212 thick tape 

(quenched-annealed sample (sample 44)) in various magnetic fields at 

different temperatures.  By fitting the data, the slope of lines is found to 

be in the range 0.94 - 1. 
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Figure 4.13: IVCs in log-log scale of quenched-annealed Bi-2212 thick tape sample 

at various magnetic fields and temperatures. 

In order to study the dependence of the magnetic field on IVCs and 

more precisely, we made a log-log plot of the current versus the applied  
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magnetic field at different fixed voltages (0.35 mV, 0.3 mV, 0.25 mV and 

0.185 mV). The results were shown in Figure 4.14.  The current I(B) at 

constant voltage decreases with the application of the magnetic field 

according to the relation: 

                                     I(B) ~ e 
- cB/B* 

                                          (4.9) 

  Qualitatively, our results are consistent with the results observed for (Bi-

Pb)-Sr-Ca-Cu-O single crystal (Pradhan et al., 1993), Bi-2223 silver 

sheathed tape, and for Bi-2212 silver sheathed tape with (Gurevich et al., 

1993).  
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Figure 4.14: Dependence of current on applied magnetic field in log-log scale at 

different                fixed voltages, for Bi-2212 thick tape. 

Heat treatment conditions affect greatly the IVCs behavior.  Figure 

4.15 displays the IVCs on log-log scale for two different heat treatment 
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samples; sample 46, a quenched sample (Figure 4.15 a) and sample 44, a 

quenched then annealed sample (Figure 4.15 b).  Two qualitatively 

different I-V curves can be observed in this figure at low applied fields, 0 

mT, 1.6 mT, and 4.8 mT, respectively.  Sample 44 shows a power law 

dependence whose slope is equal to 1, while sample 46 shows a two 

distinct power laws.  At low fields and low voltage, a power law with 

slope equal to 0.3 is observed, whereas at higher voltages and low fields a 

power law with slope equals to 0.42 is observed.  This change of slope 

may be attributed to the different distribution of vortices states within 

the sample (Sun et al., 1991). 

The relation between current and voltage could be written in the form: 
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(4.10)       

  It was also found that a relation related the current to the magnetic field:  

                                          I (B)  e 
- cB/B* 

                                         (4.11)  

    So the general current dependence on field and voltage could be 

written in the form: 

                                  I ~ V 
β e 

- cB/B* 
                                        (4.12) 

or                                I = m V 
β e 

- cB/B*
                                    (4.13)
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Therefore, the current is directly proportional to the voltage and 

inversely proportional to applied field. 
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Figure 4.15: I-V characteristics for two different samples, grown under 

different heat treatment conditions (a) quenched-annealed 

sample (b) only quenched sample. 
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Chapter Five 
 

 

Summary and Future Work 

 
A study of the vortex state of the high-Tc superconductor 

Bi2Sr2CaCu2Ox thick tapes was carried out.  The temperature dependence 

of the electrical resistivity, the IVCs and Ic were investigated for several 

samples with different heat treatment conditions and with or without 

applied magnetic fields.  The resistance was found to behave as an 

Arrhenieus-like relation, R= Ro exp (-Uo/kT) with activation energy Uo in 

the range 10 - 200 meV.  The activation energy values were strongly 

dependent on growth condition, heat treatment conditions and the applied 

magnetic field. 

The current dependence on voltage can be expressed by a power 

law relation of the form I ~ V 

 with exponent  in the range of 0.5 - 1, 

depending on growth conditions of the sample.  The current at constant 

voltages was also found to decay exponentially with increasing the 

magnetic field.  Heat treatment conditions also affect greatly the IVCs 

behavior in the presence of magnetic fields.  Two qualitatively different I-

V curves were observed for two different heat-treated samples.  This type 

of behavior was attributed to the different distribution of vortex states 

within the sample. 
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Jc was found to be affected by heat treatment conditions also.  

Higher Jc values were observed for quenched, then annealed samples than 

those for only quenched samples.  In addition, annealing in N2 has 

increased Jc values, while the amount of silver added to the sample has 

also a strong influence on Jc.  The type of substrate material was found to 

be very important and critical in the formation of the superconducting 

phase. 

The work presented in this thesis can be extended to include the 

effect of different fields and growth conditions on the IVCs for other 

different systems such as YBCO, HgBCCO, Pr (Nd) BCO and RSGCO.  

In addition, more precise measurements should be carried out to examine 

the vortex distribution within the flux lattice. 
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Appendix A 

Table 1: Typical A (intercept) and B (slope) values 

for different samples grown under    

different growth conditions. 

Sample 

BSCCO thick tape 

Growth conditions A B 

QUN-ANL3 Quenched annealed 9.4E-5 2.3E-6 

ANL-SILV Annealed 

Ag/MgO substrate 

3.9E-5 3.9E-7 

13 (laser cut) Annealed then etched 1.8E-4 1E-6 

23 (laser cut) Annealed on MgO 

substrate only 

2.4E-5 1.4E-6 

25 (laser cut) Annealed on Ag/MgO 

substrate 

5.2E-5 1.6E-6 
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Appendix B 

Table 2:  Typical values of activation energy (Uo) for different 

samples at different growth conditions, (At zero 

applied fields). 

Sample 

BSCCO thick tape 

Growth conditions Activation energy 

Uo (meV) 

Anl-mg Annealed sample 

MgO substrate 

443.4 

Amgmgo1 Annealed sample 

Ag/MgO substrate 

24.0 

Anl-Silv Annealed sample 

Ag substrate 

121.6 

21 Annealed then etched 

(on MgO substrate) 

41.6 

14 Annealed then etched 18.1 

19 Annealed then etched 159.6 

13 Annealed then etched 36.0 

23 Annealed then etched 

(on MgO substrate) 

68.3 

24 Annealed then etched 

(on MgO/Ag substrate) 

30.3 
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25 Annealed then etched 

(on MgO/Ag substrate) 

32.4 

3 Laser cut sample 

Annealed then etched 

14.8 

Qun-anl3 Quenched-annealed 21.9 

Qun-anl2 Quenched-annealed 163.2 

Qun-anl Quenched-annealed 132.6 

Q-analag1 Quenched-annealed 290.7 

9 Annealed then etched 10.9 

Mg silver Annealed in N2 32.0 

4 Annealed at 600 C 31.8 
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Appendix C 
 

Schematic diagrams of the structure of the three phases belonging to the 

BSCCO family. 
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