Deanship of Graduate Studies Al-Quds University

Oscillation Criteria of First and Second Order Neutral Difference Equations

Ruba Mohammed Ghaleb Al-Hamouri

M.Sc. Thesis

Jerusalem - Palestine

Oscillation Criteria of First and Second Order Neutral Difference Equations

Prepared by:
Ruba Mohammed Ghaleb Al-Hamouri

B.Sc. in Mathematics - Hebron University - Palestine

Supervisor: Dr. Taha Abu-Kaff

A thesis submitted in partial fulfillment of requirements for the degree of Master of Science in Mathematics Department of Mathematics - Al-Quds University

Thesis Approval

Oscillation Criteria of First and Second Order Neutral Difference Equations

Prepared by: Ruba Mohammed Ghaleb Al-Hamouri Registration No: 20210922

Supervisor: Dr. Taha Abu-Kaff

Master thesis submitted and accepted, Date: 24/6/2006
The names and signatures of the examining committee members are as follows:

1-Head of Committee: Dr. Taha Abu-Kaff 2- Internal Examiner: Dr. Tahseen Mughrabi 3- External Examiner: Dr. Ibrahim Almasri

Signature
Signature
Signatur

Jerusalem - Palestine

Dedication

To my parents,
To my husband Hisham and his parents, To my brothers and my sisters and To my daughters Nada and Tala.

Ruba Mohammed Ghaleb Al-Hamouri

Declaration:

I certify that this thesis submitted for the degree of Master is the result of my own research, except where otherwise acknowledged, and that this thesis (or any part of the same) has not been submitted for a higher degree to any other university or institution.

Signed

Ruba Mohammed Ghaleb Al-Hamouri

Date: 24 / 6/2006

Acknowledgments

It is with genuine appreciation that I here express my thanks to my supervisor Dr. Taha Abu-Kaff for all his help and encouragement.

I am very grateful to my internal referee Dr. Tahseen Mughrabi for his useful suggestions on this thesis.

I thank my external referee Dr. Ibrahim Almasri for his valuable comments and advice.

I would like to thank Eng. Ali Zein - department of mathematics at PPU for his help and encouragement.

My thanks also to the members of the department of mathematics at Al-Quds University.

Abstract

This thesis is concerned with the oscillation criteria of solutions of certain types of neutral difference equations. We study the conditions that control the oscillation of solutions of the first and second order linear and nonlinear neutral difference equations with and without forcing terms, we classify these neutral difference equations depending on the coefficients, whether they are constant values, constant and variable values or all the coefficients are variables, also we study special cases when the neutral difference equations include maximum and sign functions.

The thesis presents main concepts and basic definitions of neutral difference equations and oscillations, also it contains several results in the oscillation theory of certain types of neutral difference equations, in addition to several examples given to illustrate the main theorems in this thesis.

In fact we were interested to study this topic in difference equations because difference equations have many applications in our real life and in the last few years there were many researches that considered studies of qualitative properties of different advanced types of difference equations like neutral difference equations, which arises in many applications in economics, delay reaction diffusion and electrical transmission lines in lossless transmission lines between circuits in high speed computers.

The thesis contains some extensions to theorems, including generalization, deduction and modifications on some conditions so as to use them to prove the oscillation of certain neutral difference equations.

اهتمت هذه الرسالة بمعايير التذبذب لحلول فئة معينة من المعادلات الفرقية المتعادلة، حيث تعرضنا للشروط التي تحكم التذبذب لحلول الارجة الأولى و الثانية الخطية و غير الخطية من المعادلات الفرقية المتعادلة سواء احنوت أو كانت خالية من حدود القوة ، قنا بتصنيف هذه المعادلات الفرقية المتعادلة اعتمادا على المعاملات سواء أكانت قيما ثابتة أو فيما ثابتة و متغيرة أو كل المعاملات متغيرة. أيضا درسنا حالات خاصة عندما تشمل المعادلات الفرقية المتعادلة اقترانات القيمة العظمى و الاشارة.

تعرض الرسالة المفاهيم الرئيسية و التعريفات الأساسية للمعادلات الفرقية المتعادلة و التذبذب ، أيضا تحتوي على العدبد من الننائج التي تتعلق بنظريات التذبذب لتلكك الفئة المعينة من المعادلات الفرقية المتعادلة. بالاضافة لعدد من الأمثلة أدرجت لنوضيح النظريات الرئيسبة في هذه الرسالة.

في الحقيقة توجهنا لدراسة هذا الموضوع في المعادلات الفرقية لأن لها العديد من النطبيقات في حياتتا العملية ، و في السنوات القليلة الماضبة كان هناك العديد من الأبحاث التي اشتملت دراسات للصفات النوعية لأشكال مختلفة و متقدمة من المعادلات الفرقية ، متل المعادلات الفرقية المتعادلة التي تظهر في كثير من التطبيقات ، في الاقتصاد و الانتتـار الحراري في التفاعلات و في النقل الكهربائي في خطوط النقل غير الفاقدة للطاقة بين الدوائر في أجهزة الحاسوب عالية السرعة.

تحتوي الرسالة بعض الاضافات لنظريات تشمل التعميم ، الاستتناج و التغير على بعض الثروط لاستعمالها في برهنة التذبذب لبعض المعادلات الفرقية المتعادلة.

Definitions

Through the research we used

- Δx_{n} to denote the forward difference operator $\Delta x_{n}=x_{n+1}-x_{n}$.
. NDE's to denote neutral difference equations.
. $X=l_{\infty}^{N}$ to denote the space of all real bounded sequences $x=\left\{x_{n}\right\}$ with sup norm $\|x\|=\sup \left\{\left|x_{n}\right|: n \geq N\right\}$.
- \mathbf{R}^{+}to denote positive real numbers.
. $\quad \mathbf{R}^{-}$to denote negative real numbers.
- $\quad \mathbf{R}=\mathbf{R}^{+} \bigcup\{0\} \cup \mathbf{R}^{-}$.
- \mathbf{Z} to denote the set of integers.
- \mathbf{Z}^{+}to denote the set of positive integers.
- $\mathbf{R}^{2}=\{(x, y): x, y \in \mathbf{R}\}$.
. W.L.O.G to denote the sentence "without loss of generality".
- \mathbf{N} to denote the set of natural numbers $=\{0,1,2, \ldots$.$\} .$
. $\mathbf{N}\left(n_{0}\right)$ denote the set $\left\{n_{0}, n_{0}+1, \ldots\right\}$.
. $\mathbf{N}\left(n_{0}, b-1\right)=\left\{n_{0}, n_{0}+1, \ldots, b-1\right\}$ where $n_{0}<b-1<\infty$ and $n_{0}, b \in \mathbf{N}$.
Any one of the last three sets will be denoted by $\overline{\mathbf{N}}$.

Table of Contents

Introduction 1
Chapter 1 Preliminaries 4
1.0 Introduction 4
1.1 Difference equations and neutral difference equations (NDE's) 4
1.2 Solutions and oscillatory solutions of NDE's 5
1.3 Basic definitions and results 5
1.4 Some basic lemmas and theorems 6
Chapter 2 Oscillation Criteria of First - Order Linear Neutral Difference Equations 11
2.0 Introduction 11
2.1 Oscillation criteria of first-order linear NDE's with constant coefficients 11
2.2 Oscillation criteria of first-order NDE's with both constant and variable coefficients 15
2.3 Oscillation criteria of first-order linear NDE's with variable coefficients 20
2.4 Oscillation criteria of first-order linear NDE's with positive and negative variable coefficients 22
Chapter 3 Oscillation Criteria of First - Order Nonlinear Neutral Difference Equations 28
3.0 Introduction 28
3.1 Oscillation criteria of first-order nonlinear NDE's with both constant and variable coefficients 28
3.2 Oscillation criteria of first-order nonlinear NDE's with variable coefficients 31
3.3 Oscillation criteria of first-order forced nonlinear NDE's with both constant and variable coefficients 38
3.4 Oscillation criteria of first-order forced nonlinear NDE's with variable coefficients 42
3.5 Oscillation criteria of certain first-order nonlinear NDE's 49
Chapter 4 Oscillation Criteria of Second - Order Neutral Difference Equations 57
4.0 Introduction 57
4.1 Oscillation criteria of second-order NDE's with both constant and variable coefficients 57
4.2 Oscillation criteria of second-order forced NDE's with both constant and variable coefficients 61
4.3 Oscillation criteria of second-order NDE's with variable coefficients 68
4.4 Oscillation criteria of second-order forced NDE's with variable coefficients 77
4.5 Oscillation criteria of sublinear, linear and superlinear NDE's 85
References 92

Introduction

About 1960, the study of difference equations (DE's) appeared. Works at that time, did not exceed simple forms of linear DE's with constant coefficients and sometimes with variable coefficients. Mathematicians like Boole, Brand, Chorlton, Fort, Miller, Richardson, Spiegal and others, who introduced and presented many books that talk about finite differences and difference equations, so that one can not ignore that those works are quite important, for they are the foundation upon which the more advanced mathematical theory in DE's is built.

The importance of DE's arises in some mathematical models, for example, in probability theory, statistical problems, number theory, electrical networks, economics, psychology and sociology. These mathematical models describe realistic situations, when the variables under study take or assumed to take only a discrete set of values. Moreover, in view of the close relation between the finite difference operator Δ and the differential operator D, it was possible to approximate a differential equation by a difference equation, where the solution of the differential equation is an appropriate limit of the solution of the corresponding DE. So we can say that the subject of DE's is gradually forcing its way out of the difference calculus to become one of the most important instruments in the hands of mathematical physicists when concerned with discontinuous processes.

Since difference equations appeared as a discrete analog to differential equations, different types of DE's were treated and solved using techniques similar to those used in solving differential equations. for instance, the characteristic equation method was used to solve linear homogenous DE's with constant coefficients. While the method of undetermined coefficients was applied successfully to linear nonhomogenous DE's with constant coefficients under certain conditions, reduction of order was used for first order DE's with variable coefficients and also the variation of parameters was used successfully to solve DE's with variable coefficients, provided (in the last two methods) that the general solution of the corresponding homogenous DE is known. Here, we referred to [7] and [15], as they considered basic topics in finite differences and difference equations, also they contain methods that solve linear DE's with constant coefficients or with variable coefficients in addition to some applications of DE's.

About 1980 and after and as a result of the important and useful applications of DE's in many fields of science, mathematicians were encouraged to spend more efforts in working and developing many studies and researches that involve new and more complicated forms of DE's, like delay difference equations (DDE's), advanced difference equations (ADE's), neutral difference equations (NDE's), neutral difference equations of mixed type, partial difference equations (PDE's) nonlinear and higher order DE's, we referred to [1], [4], [6], [8], and [11]. Also new features of DE's were considered, such as the periodicity of solutions, asymptotic behavior and stability of solutions, oscillation and nonoscillation of solutions, boundary value problems, eigenvalue problems, etc. we referred to [1], [21], [22], [24], and [27]. In fact the valuable book of Agarwal "Difference Equations and Inequalities" [1] which is full of advanced topics so that one can find answers to many questions about qualitative properties of solutions of both difference systems and higher order DE's, solutions of boundary value problems of linear, nonlinear systems and higher order DE's.

As we will see later the study of each new form or new feature of DE's concerned many authors, for example in NDE's and oscillations of its solutions one can find many works for Agarwal, Zhang, Cheng, Grace, Parhi, Tripathy, Lalli, Thandapani and others [2-6], [8], [10], [12], [13], [14], [18-20], [24-30], these works were devoted to study the oscillation of NDE's of different orders of NDE's, they also considered the forced and unforced NDE's the linear and nonlinear NDE's, under several conditions on the arguments, coefficients, forcing terms and the nonlinear terms. The importance of NDE's comes from the fact that NDE's arise in many applications, for example, delay reaction diffusion, also in "cobweb" models in economics where demand depends on current price but supply depends on the price at an earlier time, and in electrical transmission in lossless transmission lines between circuits in high speed computers.

In this thesis we consider theorems that provide sufficient conditions for the oscillation of solutions of first and second order, linear and nonlinear NDE's, taking different forms depending on the coefficients and the forcing terms of those NDE's. the difference between the forms we considered mainly depends on the coefficients and forcing terms of NDE's. most works that concern the oscillation of NDE's was done in the last three decades. Again authors employed techniques similar to that used in differential equations to prove the oscillation of NDE's. All the articles were used in this thesis referred to one or more reference in differential equations especially in NDE's, most of the articles referred to [11] which includes a chapter that discusses the oscillation of delay difference equations (DDE's), as we will see later, the results in NDE's mainly depend on those of DDE's, of course with some improvements or needed extra conditions.

This thesis consists of four chapters:
Chapter one: contains basic definitions, notes, lemmas and theorems which are essential in the rest of our research.

Chapter two: studies the oscillation theorems for the first order linear NDE's of the form

$$
\Delta\left(x_{n}+\delta c_{n} x_{n-m}-d_{n} x_{n+g}\right)+p_{n} x_{n-k}+q_{n} x_{n \pm l}=0, \quad n \geq 0
$$

where $\left\{c_{n}\right\},\left\{d_{n}\right\},\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are sequences of real numbers, m, g, k and l are integers and $\delta= \pm 1$.
First we discussed the proof of the oscillation of the first order linear NDE with constant coefficients by contradiction and by means of the characteristic equation. Sufficient and necessary conditions and comparison theorems we considered to the same form but this time when the coefficients are both constants and variables. When the coefficients are all variable theorems involved just sufficient conditions and comparison statements were studied. Finally, we introduced oscillation results for the first order NDE's with positive and negative variable coefficients depending on the treatment of an ordinary difference equation.

Chapter three: studies the oscillation theorems for the first order nonlinear NDE's of the form

$$
\Delta\left(x_{n}+\delta_{1} p_{n} x_{n-m}\right)+\delta_{2} q_{n} G\left(x_{n-k}\right)=f_{n}, \quad n \geq 0
$$

where $\left\{p_{n}\right\},\left\{q_{n}\right\}$ and $\{f\}_{n}$ are sequences of real numbers, $\delta_{1}= \pm 1, \delta_{2}= \pm 1$ and G is a real valued function.

We considered theorems for the special case of the unforced NDE with both constant and variable coefficients when $G\left(x_{n-k}\right)=x_{n-k}^{\alpha}$ where α is the quotient of odd positive integers, then we discussed the general case of $G\left(x_{n-k}\right)$. Next we presented theorems for the same NDE but when the coefficients are all variables, the oscillation theorems considered several ranges of $\left\{p_{n}\right\}$, some of the proofs depend on a non-neutral difference inequality. After that we considered the forced form of NDE's with both constant and variable coefficients, the method used here was defining an oscillatory sequence of real numbers $\left\{h_{n}\right\}$ with $\Delta h_{n}=f_{n}$ in order to transform the NDE to an unforced form. Also the forced form of the NDE's with all coefficients are variables was discussed, two approaches to the proof were used, one by operators and the other by defining an oscillatory sequence $\left\{h_{n}\right\}$ with restricting conditions on $\left\{h_{n}\right\}$. Finally, we introduced some oscillation theorems for special cases when $G\left(x_{n-k}\right)=\left|x_{n-k}\right|^{\alpha} \operatorname{sgn} x_{n-k}, \alpha$ is a positive constant, when $G\left(x_{n-k}\right)=\prod_{i=1}^{n}\left|x_{n-k_{i}}\right|^{\alpha_{i}} \operatorname{sgn} x_{n-k_{i}}$ and $G\left(x_{n-k}\right)=\max _{s \in[n-k, n]} x_{s}$

Chapter four: studies the oscillation criteria for the second order NDE's of the form

$$
\Delta\left(c_{n} \Delta\left(x_{n}+p_{n} x_{n-m}\right)\right)+q_{n} G\left(x_{n-k}\right)=f_{n}, \quad n \geq 0
$$

where $\left\{c_{n}\right\},\left\{p_{n}\right\},\left\{q_{n}\right\}$ and $\left\{f_{n}\right\}$ are sequences of real numbers, G is a real valued function, m and k are nonnegative integers. First we considered the case when $p_{n}=p$ (real number), $c_{n}=1$ and $f_{n}=0$, we got oscillation criteria under certain conditions involving coefficients and arguments, we depended on similar discussion applied to delay difference equations. Next we discussed the oscillation theorems for the forced form when $p_{n}=p$ constant, as in chapter three we defined a periodic oscillatory sequence $\left\{h_{n}\right\}$ with $\Delta^{2} h_{n}=f_{n}$ in order to transform the forced NDE's to the unforced form. After that the second order NDE's with all coefficients are variables was studied considering various ranges of p_{n} with $f_{n}=0$, a new approach was applied in [3] depending on dividing the set of all nontrivial solutions into four sets, one of them is the oscillatory solutions set and trying to find when this set is nonempty. Next we studied the forced form with variable coefficients, once again we need a periodic oscillatory sequence $\left\{h_{n}\right\}$ with $\Delta^{2} h_{n}=f_{n}$ and $\lim _{n \rightarrow \infty} h_{n}=0$ to achieve the oscillation. Finally, we considered the special case when $G\left(x_{n-k}\right)=x_{n-k}^{\beta}$, where β is the ratio of odd positive integers, which includes the sublinear, linear and superlinear NDE's depending on β.

Chapter One

Preliminaries

1.0 Introduction

This chapter mainly contains the basic definitions, results, notes, lemmas and theorems to be used later in this research. Section 1.1 introduces the definition of difference equations, the definition of NDE's and their classification. Section 1.2 defines the solutions of the NDE's and the oscillation of solutions. Section 1.3 contains basic definitions and notes on metric space, characteristic equation, Hölder inequality and Lipschitz condition. Section 1.4 includes lemmas and theorems we need in the rest of this research.

1.1 Difference equations and neutral difference equations (NDE's)

A difference equation in one independent variable $n \in \overline{\mathbf{N}}$ and one unknown x_{n} is a functional equation of the form

$$
\begin{equation*}
f\left(n, x_{n}, x_{n+1}, \ldots, x_{n+k}\right)=0, \tag{1.1.1}
\end{equation*}
$$

where f is a given function of n and the values of x_{n} at $n \in \overline{\mathbf{N}}$.
If the equation

$$
E^{m} f(n)=(I+\Delta)^{m} f(n)=\sum_{i=0}^{m}\binom{m}{i} \Delta^{i} f(n), \Delta^{0}=I
$$

is substituted in equation (1.1.1) the later equation takes the form

$$
g\left(n, x_{n}, \Delta x_{n}, \ldots, \Delta^{k} x_{n}\right)=0
$$

which is a difference equation.
A neutral difference equation (NDE) is a difference equation in which the highest difference of the unknown function appears both with and without delays, NDE's are classified into three classes, delay, advanced and mixed type.

If we consider the first order linear homogenous NDE

$$
\begin{equation*}
\Delta\left(x_{n}+p_{n} x_{n-m}\right)+\sum_{i=1}^{m} Q_{i n} x_{n-k_{i}}=0, n \in \overline{\mathbf{N}} \tag{1.1.2}
\end{equation*}
$$

where $\left\{p_{n}\right\}$ and $\left\{Q_{i n}\right\}$ are sequences of real numbers.

$$
\text { Let } \begin{aligned}
& k=\max \left\{0, k_{1}, \ldots, k_{m}\right\} \\
& l=\max \left\{1,-k_{1}, \ldots,-k_{m}\right\}
\end{aligned}
$$

Then equation (1.1.2) is a difference equation of order $(k+l)$.
If $k \geq 0$ and $l=1$, then equation (1.1.2) is a delay NDE (i.e. it has nonnegative arguments).

If $k=0$ and $l \geq 2$, then equation (1.1.2) is an advanced NDE (i.e. it has nonpositive arguments).

If $k \geq 1$ and $l \geq 2$, then equation (1.1.2) is a NDE of mixed type (i.e. negative and positive arguments).

For the first order NDE

$$
\begin{equation*}
\Delta\left(x_{n}+p_{n} x_{n-m}\right)+\sum_{i=1}^{m} Q_{i n} x_{n-k_{i}}^{\alpha}=f_{n} \tag{1.1.3}
\end{equation*}
$$

If $\alpha=1, f_{n} \neq 0$ then equation (1.1.3) is called linear forced NDE.

If $0<\alpha<1, f_{n} \neq 0$ then equation (1.1.3) is called sublinear forced NDE.

If $\alpha>1, f_{n} \neq 0$ then equation (1.1.3) is called superlinear forced NDE.

Example 1.1.1:

(1) $\Delta\left(x_{n}+p_{n} x_{n-m}\right)+q_{n} x_{n-k}+c_{n} x_{n+l}=(-1)^{n}$ where c_{n}, p_{n} and q_{n} are sequences of real numbers.
(2) $\Delta^{2}\left(x_{n}+\frac{1}{2} x_{n-m}\right)+\frac{n^{2}}{n+1} x_{n-s}^{\frac{1}{3}}=0$
(3) $\Delta^{n}\left(x_{n}+\sqrt{3} x_{n-m}\right)+(-1)^{3 n} G\left(x_{n+k}\right)=f_{n}$

Equation (1) is a first order forced linear NDE of mixed type.
Equation (2) is a second order homogenous sublinear delay NDE.
Equation (3) is an n-th order forced nonlinear advanced NDE.

1.2 Solutions and oscillatory solutions of NDE's

By a solution of equation (1.1.2) we mean a nontrivial sequence $\left\{x_{n}\right\}$ which is defined for $n \geq-\mu$, where $\mu=\max \left\{m, k_{i}{ }^{\prime} s\right\}$ and satisfies equation (1.1.2) for $n \geq 0$.
If the initial condition $x_{n}=\phi_{n}$ for $n=-\mu, \ldots,-1,0$ is given, then equation (1.1.2) has a unique solution satisfying the initial condition.

A solution $\left\{x_{n}\right\}$ of equation (1.1.2) is said to be oscillatory if for every $n_{0}>0$ there exists an $n \geq n_{0}$ such that $x_{n} x_{n+1} \leq 0$, otherwise it is nonoscillatory. Equation (1.1.2) is said to be oscillatory if all its solutions are oscillatory.

1.3 Basic definitions and results

Characteristic equation

Let k, r be positive integers and for each $i, i=1,2, \ldots, k$
Let p_{i} be an $r \times r$ matrix with real entries
Consider the equation

$$
x_{n+k}+p_{1} x_{n+k-1}+\ldots+p_{k} x_{n}=0
$$

then the associated characteristic equation is

$$
\operatorname{det}\left(\lambda^{k} I+\lambda^{k-1} p_{1}+\ldots+\lambda p_{k-1}+p_{k}\right)=0
$$

where I is an $r \times r$ identity matrix

Hölder inequality

Let $p, q \in(1, \infty)$ with $\frac{1}{p}+\frac{1}{q}=1$. If $x \in l_{p}$ and $y \in l_{q}$ then $\left(x_{j}, y_{j}\right), j \in \mathbf{N}$ is in l_{1} and

$$
\sum_{j=1}^{\infty}\left|x_{j} y_{j}\right| \leq\|x\|_{p}\|y\|_{q}
$$

Lipschitz condition

Let $f(x, y)$ be a function defined on \mathbf{R}^{2}, we say that $f(x, y)$ satisfies Lipschitz condition in \mathbf{R}^{2}, if there exists a constant k, such that the function f satisfies the condition

$$
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right| \leq k\left|y_{1}-y_{2}\right|
$$

for every pair of points $\left(x, y_{1}\right)$, and $\left(x, y_{2}\right)$ in \mathbf{R}^{2}. The constant k is called Lipschitz constant.

Superlinear NDE:

We said that a nonlinear NDE of the form

$$
\Delta\left(x_{n}+p_{n} x_{n-m}\right)+q_{n} G\left(x_{n-k}\right)=f_{n},
$$

where $\left\{p_{n}\right\},\left\{q_{n}\right\}$ and $\left\{f_{n}\right\}$ are sequences of real numbers,
is superlinear when G is nondecreasing and for $u \neq 0$

$$
\sum_{i=n^{*}}^{ \pm \infty} \frac{\Delta u_{i}}{G\left(u_{i+1}\right)}<\infty
$$

where n^{*} is any positive integer.
The following notes are from analysis:

- A fixed point: a point $x \in M, M$ is a subset of a Banach space is called a fixed point if $T x=x$.
- A metric space is a set X together with a given distance.
- Banach space is a complete normed vector space. That is, a Banach space is a vector space X with a norm in which every Cauchy sequence converges to a vector in X.
- Let (X, d) be a vector space and let $T: X \rightarrow X$ we say that T is a contraction mapping on X if there exists a number $r \in[0,1]$ such that

$$
d(T x, T y) \leq r d(x, y) \text { for every } x, y \in X
$$

- We say that a Banach space X is partially ordered if X contains a cone K with nonempty interior. The ordering \leq in X is defined as follows:
$x \leq y$ if and only if $y-x \in K$.

1.4 Some basic lemmas and theorems

Lemma 1.4.1: Suppose that There exists a positive integer N such that

$$
c_{N+i m} \leq 1, \text { for } i=0,1,2, \ldots
$$

Let $p_{n} \geq 0$ and is not identically zero for all large n, then for any eventually positive solution $\left\{x_{n}\right\}$ of the difference inequality

$$
\begin{equation*}
\Delta\left(x_{n}-c_{n} x_{n-m}\right)+p_{n} x_{n-k} \leq 0 \tag{1.4.1}
\end{equation*}
$$

the sequence $\left\{z_{n}\right\}$ defined by

$$
\begin{equation*}
z_{n}=x_{n}-c_{n} x_{n-m}, \quad n \geq 0 \tag{1.4.2}
\end{equation*}
$$

will satisfy $\Delta z_{n} \leq 0$ and $z_{n}>0$ for all large n.
Proof: Since $\left\{x_{n}\right\}$ satisfies (1.4.1) then $\Delta z_{n} \leq 0$, we have that $\left\{z_{n}\right\}$ is a nonincreasing sequence, and we want to show that $z_{n}>0$.
On the contrary suppose that $z_{n}<0$ for $n \geq n_{1}$ and $x_{n}>0$, so $z_{n} \leq z_{n_{1}}<0$ for $n \geq n_{1}$.
Choose n^{*} large enough so that $N+n^{*} m \geq n_{1}$, from (1.4.2) and for $j \geq 0$ we have

$$
\begin{aligned}
& z_{N+n^{*} m+j m}=x_{N+n^{*} m+j m}-c_{N+n^{*} m+j m} x_{N+n^{*} m+(j-1) m} \\
& x_{N+n^{*} m+j m}=z_{N+n^{*} m+j m}+c_{N+n^{*} m+j m} x_{N+n^{*} m+(j-1) m} \\
& \leq z_{n_{1}}+x_{N+n^{*} m+(j-1) m} \\
&= z_{n_{1}}+z_{N+n^{*} m+(j-1) m}+c_{N+n^{*} m+(j-1) m} x_{N+n^{*} m+(j-2) m} \\
& \quad \leq \ldots \leq(j+1) z_{n_{1}}+x_{n_{1}+n^{*} m} \quad, \quad j \geq 0
\end{aligned}
$$

as $j \rightarrow \infty$

$$
(j+1) z_{n_{1}}+x_{n_{1}+n^{*} m} \rightarrow-\infty,
$$

which is a contradiction, so $z_{n}>0$.

Lemma 1.4.2: Assume that $\alpha>1$. Suppose further that there exists $\lambda>k^{-1} \ln \alpha$ such that $\liminf _{n \rightarrow \infty} q_{n} \exp \left(-e^{\lambda n}\right)>0$,
then every solution of the equation

$$
\Delta x_{n}+q_{n} x_{n-k}^{\alpha}=0, n=0,1,2, \ldots
$$

is oscillatory.
Proof: See [17].
Lemma 1.4.3: If

$$
\liminf _{n \rightarrow \infty} \sum_{i=n-k}^{n-1} q_{i}>\frac{k^{k+1}}{(k+1)^{k+1}}, \quad k \geq 1
$$

then the inequality $\Delta y_{n}+q_{n} y_{n-k} \leq 0$ does not have a positive solution and hence the inequality $\Delta y_{n}+q_{n} y_{n-k} \geq 0$ does not have a negative solution.

Proof: See [8] page 184.
Lemma 1.4.4: Let $\left\{f_{n}\right\},\left\{g_{n}\right\}$ and $\left\{p_{n}\right\}$ be sequences of real numbers defined for $n \geq n_{0}>0$ such that

$$
\begin{equation*}
f_{n}=g_{n}+p_{n} g_{n-m}, \quad n \geq n_{0}+m \tag{1.4.3}
\end{equation*}
$$

where $m \geq 0$ is an integer, suppose that there exist real numbers b_{1}, b_{2}, b_{3} and b_{4} such that p_{n} is in one of the following ranges:
(i) $-\infty<b_{1} \leq p_{n} \leq 0$,
(ii) $0 \leq p_{n} \leq b_{2}<1$, or
(iii) $1<b_{3} \leq p_{n} \leq b_{4}<\infty$.

If $g_{n}>0$ for $n \geq n_{0}, \lim _{n \rightarrow \infty} \inf g_{n}=0$ and $\lim _{n \rightarrow \infty} f_{n}=L$ exists, then $L=0$.
Proof: we may write (1.4.3) as

$$
\begin{equation*}
f_{n+m}-f_{n}=g_{n+m}+\left(p_{n+m}-1\right) g_{n}-p_{n} g_{n-m}, n \geq n_{0}+m \tag{1.4.4}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} \inf g_{n}=0$, there exists a subsequence $\left\{g_{n_{k}}\right\}$ of $\left\{g_{n}\right\}$ such that $\lim _{k \rightarrow \infty} g_{n_{k}}=0$.
Suppose that (i) holds. As the sequence $\left\{p_{n_{k}+m}-1\right\}$ is bounded, we have $\lim _{k \rightarrow \infty}\left(p_{n_{k}+m}-1\right) g_{n_{k}}=0$ and hence (1.4.4) yields that

$$
\lim _{k \rightarrow \infty}\left(g_{n_{k}+m}-p_{n_{k}} g_{n_{k}-m}\right)=0
$$

Since $g_{n_{k}+m}>0$ for large k, we have $\lim _{k \rightarrow \infty} p_{n_{k}} g_{n_{k}-m}=0$. From (1.4.3) it follows that

$$
L=\lim _{k \rightarrow \infty} f_{n_{k}}=\lim _{k \rightarrow \infty}\left(g_{n_{k}}+p_{n_{k}} g_{n_{k}-m}\right)=0
$$

Next suppose that (ii) holds. Replacing n by $n_{k}-m$ in (1.4.4) and then taking limit as $k \rightarrow \infty$, we obtain

$$
\lim _{k \rightarrow \infty}\left(\left(1-p_{n_{k}}\right) g_{n_{k}-m}+p_{n_{k}-m} g_{n_{k}-2 m}\right)=0
$$

Since $1-b_{2}>0$, we have

$$
0 \leq\left(1-b_{2}\right) \liminf _{k \rightarrow \infty} g_{n_{k}-m} \leq \liminf _{k \rightarrow \infty}\left(\left(1-p_{n_{k}}\right) g_{n_{k}-m}+p_{n_{k}-m} g_{n_{k}-2 m}\right)=0
$$

and

$$
0 \leq\left(1-b_{2}\right) \limsup g_{k \rightarrow \infty} g_{n_{k}-m} \leq \limsup _{k \rightarrow \infty}\left(\left(1-p_{n_{k}}\right) g_{n_{k}-m}+p_{n_{k}-m} g_{n_{k}-2 m}\right)=0
$$

Hence $\lim _{k \rightarrow \infty} g_{n_{k}-m}=0$
From (1.4.3) we get

$$
L=\lim _{k \rightarrow \infty} f_{n_{k}}=\lim _{k \rightarrow \infty}\left(g_{n_{k}}+p_{n_{k}} g_{n_{k}-m}\right)=0
$$

Finally, let (iii) hold. Putting $n_{k}+m$ in place of n in (1.4.4) and letting $k \rightarrow \infty$, one obtains

$$
\lim _{k \rightarrow \infty}\left(g_{n_{k}+2 m}+\left(p_{n_{k}+2 m}-1\right) g_{n_{k}+m}-p_{n_{k}+m} g_{n_{k}}\right)=0
$$

As the sequence $\left\{p_{n_{k}+m}\right\}$ is bounded, we have

$$
\lim _{k \rightarrow \infty}\left(g_{n_{k}+2 m}+\left(p_{n_{k}+2 m}-1\right) g_{n_{k}+m}\right)=0
$$

Since $g_{n_{k}+2 m}>0$ for large k and $\left\{p_{n_{k}+2 m}-1\right\}$ is a positive bounded sequence, we conclude that $\lim _{k \rightarrow \infty} g_{n_{k}+m}=0$. Thus from (1.4.3) we obtain

$$
L=\lim _{k \rightarrow \infty} f_{n_{k}+m}=\lim _{k \rightarrow \infty}\left(g_{n_{k}+m}+p_{n_{k}+m} g_{n_{k}}\right)=0
$$

Hence the lemma is proved.
Lemma 1.4.5: Let $1 \leq m \leq k-1$ and x_{n} be defined on $\mathbf{N}(a)$. Then
(i) $\liminf _{n \rightarrow \infty} \Delta^{m} x_{n}>0$ implies $\lim _{n \rightarrow \infty} \Delta^{i} x_{n}=\infty, 0 \leq i \leq m-1$
(ii) $\lim _{n \rightarrow \infty} \sup \Delta^{m} x_{n}<0$ implies $\lim _{n \rightarrow \infty} \Delta^{i} x_{n}=-\infty, 0 \leq i \leq m-1$

Proof:

(i) $\liminf _{n \rightarrow \infty} \Delta^{m} x_{n}>0$ implies that there exists a large $n_{1} \in \mathbf{N}(a)$ such that $\Delta^{m} x_{n} \geq c>0$ for all $n \in \mathbf{N}\left(n_{1}\right)$, since

$$
\Delta^{m-1} x_{n}=\Delta^{m-1} x_{n_{1}}+\sum_{l=n_{1}}^{n-1} \Delta^{m} x_{l}
$$

It follows that $\Delta^{m-1} x_{n} \geq \Delta^{m-1} x_{n_{1}}+c\left(n-n_{1}\right)$ and hence $\lim _{n \rightarrow \infty} \Delta^{m-1} x_{n}=\infty$. The rest of the proof is by induction.
(ii) Similar to case (i)

Theorem 1.4.1: (Discrete Kneser's Theorem)

Let x_{n} be defined on $\mathbf{N}(a)$, and $x_{n}>0$ with $\Delta^{k} x_{n}$ of constant sign on $\mathbf{N}(a)$ and not identically zero. Then there exits an integer $m, 0 \leq m \leq k$ with $k+m$ odd for $\Delta^{k} x_{n} \leq 0$, or $k+m$ even for $\Delta^{k} x_{n} \geq 0$, and such that
$m \leq k-1$ implies that $(-1)^{m+i} \Delta^{i} x_{n}>0$ for all $n \in \mathbf{N}(a), m \leq i \leq k-1$
$m \geq 1$ implies $\Delta^{i} x_{n}>0$ for all large $n \in \mathbf{N}(a), 1 \leq i \leq m-1$

Proof: There are two cases to consider
Case 1: $\Delta^{k} x_{n} \leq 0$ on $\mathbf{N}(a)$
Before that we prove that $\Delta^{k-1} x_{n}>0$ on $\mathbf{N}(a)$. If not, then there exists some $n_{1}>a$ in $\mathbf{N}(a)$ such that $\Delta^{k-1} x_{n_{1}} \leq 0$. Since $\Delta^{k-1} x_{n}$ is decreasing and not identically constant on $\mathbf{N}(a)$, there exists $n_{2} \in \mathbf{N}\left(n_{1}\right)$, such that $\Delta^{k-1} x_{n} \leq \Delta^{k-1} x_{n_{2}} \leq \Delta^{k-1} x_{n_{1}} \leq 0$ for all $n \in \mathbf{N}\left(n_{2}\right)$. But from lemma 1.4.4 we find $\lim _{n \rightarrow \infty} x_{n}=-\infty$ which is a contradiction to $x_{n}>0$.
Thus $\Delta^{k-1} x_{n}>0$ on $\mathbf{N}(a)$ and there exists a smallest integer $m, 0 \leq m \leq k-1$ with $k+m$ odd and

$$
\begin{equation*}
(-1)^{m+i} \Delta^{i} x_{n}>0 \text { on } \mathbf{N}(a), m \leq i \leq k-1 \tag{1.4.5}
\end{equation*}
$$

next let $m>1$ and

$$
\begin{equation*}
\Delta^{m-1} x_{n}<0 \text { on } \mathbf{N}(a), \tag{1.4.6}
\end{equation*}
$$

then again from lemma 1.4.5 it follows that

$$
\begin{equation*}
\Delta^{m-2} x_{n}>0 \text { on } \mathbf{N}(a), \tag{1.4.7}
\end{equation*}
$$

Inequalities (1.4.5) - (1.4.7) can be unified to

$$
(-1)^{(m-2)+i} \Delta^{i} x_{n}>0 \text { on } \mathbf{N}(a), m-2 \leq i \leq k-1
$$

which is a contradiction to the definition of m.
so, inequality (1.4.6) fails and

$$
\Delta^{m-1} x_{n} \geq 0 \text { on } \mathbf{N}(a) .
$$

From inequality (1.4.5), $\Delta^{m-1} x_{n}$ is nondecreasing and hence

$$
\lim _{m \rightarrow \infty} \Delta^{m-1} x_{n}>0
$$

We found from lemma 1.4.5 that

$$
\lim _{n \rightarrow \infty} \Delta^{i} x_{n}=\infty \quad, \quad 1 \leq i \leq m-2
$$

Thus

$$
\Delta^{i} x_{n}>0 \text { for all large } n \in \mathbf{N}(a), \quad 1 \leq i \leq m-1
$$

Case2: $\Delta^{k} x_{n} \geq 0$ on $\mathbf{N}(a)$
Let $n_{3} \in \mathbf{N}\left(n_{2}\right)$ be such that $\Delta^{k-1} x_{n_{3}} \geq 0$, then since $\Delta^{k-1} x_{n}$ is nondecreasing and not identically constant, there exists some $n_{4} \in \mathbf{N}\left(n_{3}\right)$ such that

$$
\Delta^{k-1} x_{n}>0 \text { for all large } n \in \mathbf{N}\left(n_{4}\right)
$$

Thus

$$
\lim _{n \rightarrow \infty} \Delta^{k-1} x_{n}>0
$$

and from lemma 1.4.5

$$
\lim _{n \rightarrow \infty} \Delta^{i} x_{n}=\infty, \quad 1 \leq i \leq k-2
$$

and so

$$
\Delta^{i} x_{n}>0 \text { for all large } n \in \mathbf{N}(a), 1 \leq i \leq k-1
$$

This proves the theorem for $m=k$.
In case $\Delta^{k-1} x_{n}<0$ for all $n \in \mathbf{N}(a)$, we find from lemma 1.4.4 that $\Delta^{k-2} x_{n}>0$ for all $n \in \mathbf{N}(a)$. And we continue as in the proof of case1.

Corollary 1.4.1: Let x_{n} be defined on $\mathbf{N}(a)$, and $x_{n}>0$ with $\Delta^{k} x_{n} \leq 0$ on $\mathbf{N}(a)$ and not identically zero. Then there exists a large n in $\mathbf{N}(a)$ such that

$$
x_{n} \geq \frac{1}{(k-1)!} \Delta^{k-1} x_{2^{k-m-1 n}}\left(n-n_{1}\right)^{k-1} \quad, \quad n \in \mathbf{N}\left(n_{1}\right)
$$

or

$$
x_{n} \geq \frac{\left(\frac{n}{2}\right)^{k-1}}{(k-1)!} \Delta^{k-1} x_{2^{k-2} n_{n}}, \quad n \in \mathbf{N}\left(2 n_{1}\right)
$$

Proof: See [1].

Theorem 1.4.2: (Knaster-Tarski fixed-point theorem)

Let X be a partially ordered Banach space with ordering \leq. Let M be a subset of X with the following properties: the infimum of M belongs to M and every nonempty subset of M has a supremum which belongs to M. Let $T: M \rightarrow M$ be an increasing mapping, that is $x \leq y$ implies $T x \leq T y$. Then T has a fixed point in M.

Chapter Two

Oscillation Criteria of First-Order Linear Neutral Difference Equations

2.0 Introduction

In this chapter we will study the oscillation of the first-order linear NDE's of the form

$$
\begin{equation*}
\Delta\left(x_{n}+\delta c_{n} x_{n-m}-d_{n} x_{n+g}\right)+p_{n} x_{n-k}+q_{n} x_{n \pm l}=0, \tag{2.0.1}
\end{equation*}
$$

where $\left\{c_{n}\right\},\left\{d_{n}\right\},\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are sequences of real numbers, m, g, k and l are integers and $\delta= \pm 1$

Oscillation of NDE's with delays has received a great attention since 1980.
Many valuable works for Agarwal [1] , [2], Grace [8], Lalli [5], [14], Zhang [30], Cheng [26], [30], ... etc deal with different topics in oscillation and nonoscillation, these works can be considered as good references in this field.

This chapter contains four sections. In the first section we studied the sufficient conditions for the oscillation of equation (2.0.1) when the coefficients are all constants. Section two introduces sufficient and necessary conditions for the oscillation of equation (2.0.1) taking $c_{n}=c,-1<c \leq 0$ and $d_{n}=q_{n}=0$. Section three presents the oscillation of equation (2.0.1) with variable coefficients letting $d_{n}=q_{n}=0$. Finally, section four concerns with the oscillation theorems of equation (2.0.1) with positive and negative variable coefficients.

2.1 Oscillation criteria of first-order linear NDE's with constant coefficients

Consider the NDE of the form

$$
\begin{equation*}
\Delta\left(x_{n}+\delta c x_{n-m}-d x_{n+g}\right)+p x_{n-k}+q x_{n+l}=0, \tag{2.1.1}
\end{equation*}
$$

with c, d, p and $q \in \mathbf{R}^{+} \bigcup\{0\}, m, g, k$ and $l \in \mathbf{Z}^{+} \bigcup\{0\}$ and $\delta=1$.

In fact equations of the form (2.1.1) are called NDE's of mixed type, it is clear here that the sequences of coefficients are all constants. This section shows two different approaches to achieve the oscillation of equation (2.1.1); one by establishing sufficient conditions for oscillation and the other by means of the characteristic equation.

Lemma 2.1.1: Assume that $p \in \mathbf{R}^{+}$and $g \in \mathbf{Z}^{+}$, then
a. If

$$
p>\frac{(g-1)^{g-1}}{g^{g}}, g>1
$$

then the difference inequality

$$
\Delta y_{n} \geq p y_{n+g}
$$

has no eventually positive solution $\left\{y_{n}\right\}$ which satisfies $\Delta^{j} y_{n} \geq 0$ eventually, $j=0,1$.
b. If

$$
p>\frac{g^{g}}{(g+1)^{g+1}} \quad, g>1
$$

then the difference inequality

$$
(-1) \Delta y_{n} \geq p y_{n-g}
$$

has no eventually positive solution $\left\{y_{n}\right\}$ which satisfies $(-1)^{j} \Delta^{j} y_{n}>0$ eventually, $j=0,1$.

Proof: See [8].
Lemma 2.1.2: Consider the linear difference equation

$$
\begin{equation*}
x_{n+s}+\sum_{j=1}^{s} q(j) x_{n+s-j}=0 \tag{2.1.2}
\end{equation*}
$$

for $n=0,1,2, \ldots$, where $s \in \mathbf{Z}^{+} \bigcup\{0\}$ and $q(j) \in \mathbf{R}, j=1,2, \ldots, s$, then the following statements are equivalent:
(I_{1}) Every solution of (2.1.14) oscillates
$\left(I_{2}\right)$ The associated characteristic equation

$$
\lambda^{s}+\sum_{j=1}^{s} q(j) \lambda^{s-j}=0
$$

has no positive roots.
Proof: See [11].
Theorem 2.1.1: Let $d>0$, if

$$
\begin{equation*}
\frac{p}{1+c}>\frac{(k-m)^{k-m}}{(1+k-m)^{1+k-m}} \quad, k-m \geq 1 \tag{2.1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{q}{d}>\frac{(l-g-1)^{l-g-1}}{(l-g)^{l-g}}, \quad l-g>1 \tag{2.1.4}
\end{equation*}
$$

Then equation (2.1.1) is oscillatory.

(I) The proof by contradiction:

Suppose to contrary that $\left\{x_{n}\right\}$ is an eventually positive solution of equation (2.1.1) (i.e. $x_{n}>0$ for $n \geq n_{0}$).

Let

$$
\begin{equation*}
y_{n}=x_{n}+c x_{n-m}-d x_{n+g}, \tag{2.1.5}
\end{equation*}
$$

then

$$
\begin{equation*}
\Delta y_{n}=-p x_{n-k}-q x_{n+l} \leq 0 \quad, \quad n \geq n_{1} \geq n_{0} \tag{2.1.6}
\end{equation*}
$$

so either $y_{n}<0$ or $y_{n}>0$
Case 1: If $y_{n}<0$, for $n \geq n_{1}$, set

$$
0<v_{n}=-y_{n}=d x_{n+g}-c x_{n-m}-x_{n} \leq d x_{n+g}
$$

$$
\begin{equation*}
\frac{1}{d} v_{n-g} \leq x_{n}, n \geq n_{2} \tag{2.1.7}
\end{equation*}
$$

Using (2.1.7) we have

$$
\begin{align*}
& -\Delta v_{n}=-p x_{n-k}-q x_{n+l} \\
& \Delta v_{n} \geq \frac{p}{d} v_{n-(g+k)}+\frac{q}{d} v_{n-g+l} \\
& \Delta v_{n} \geq \frac{q}{d} v_{n-g+l} \tag{2.1.8}
\end{align*}
$$

Using lemma 2.1.1 (a) and inequality (2.1.4) then inequality (2.1.8) has no eventually positive solution
Case2: If $y_{n}>0$, for $n \geq n_{1}$, let

$$
\begin{equation*}
w_{n}=y_{n}+c y_{n-m}-d y_{n+g}, \tag{2.1.9}
\end{equation*}
$$

then

$$
\begin{equation*}
\Delta w_{n}+p y_{n-k}+q y_{n+l}=0 \tag{2.1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta\left(w_{n}+c w_{n-m}-d w_{n+g}\right)+p w_{n-k}+q w_{n+l}=0 \tag{2.1.11}
\end{equation*}
$$

Clearly that $\Delta w_{n}<0$ and $\Delta^{2} w_{n}>0$, for $n \geq N_{1} \geq n_{1}$, there are two cases to consider: either
(i) $w_{n}<0$ eventually, or
(ii) $w_{n}>0$ eventually
(i) If $w_{n}<0$ for $n \geq N_{1}$, let

$$
0<W_{n}=-w_{n}=d y_{n+g}-c y_{n-m}-y_{n} \leq d y_{n+g},
$$

then

$$
\begin{equation*}
\frac{1}{d} W_{n-g} \leq y_{n} \tag{2.1.12}
\end{equation*}
$$

Using inequality (2.1.12) in equation (2.1.10) to get

$$
\begin{equation*}
\Delta W_{n} \geq \frac{q}{d} W_{n+l-g} \tag{2.1.13}
\end{equation*}
$$

Using condition (2.1.4) and lemma 2.1.1(a), inequality (2.1.13) has no eventually positive solution, which is a contradiction
(ii) If $w_{n}>0$ for $n \geq N_{1}$

We have that $\left\{-\Delta w_{n}\right\}$ is decreasing together with equation (2.1.11) we have

$$
0=\Delta\left(w_{n}+c w_{n-m}-d w_{n+g}\right)+p w_{n-k}+q w_{n+l} \geq(1+c) \Delta w_{n-m}+p w_{n-k}
$$

or

$$
\begin{equation*}
\Delta w_{n}+\frac{p}{1+c} w_{n-(k-m)} \leq 0, \quad n \geq N_{1} \tag{2.1.14}
\end{equation*}
$$

so using condition (2.1.3) and lemma 2.1.1 (b), inequality (2.1.14) has no eventually positive solution, which is a contradiction.
So every solution of equation (2.1.1) is oscillatory.

(II) The proof by using characteristic equation:

The associated characteristic equation with (2.1.1) is

$$
\begin{equation*}
F(\lambda)=(\lambda-1)\left[1+c \lambda^{-m}-d \lambda^{g}\right]+p \lambda^{-k}+q \lambda^{l}=0 \tag{2.1.15}
\end{equation*}
$$

we want to show that equation (2.1.15) has no positive roots, two cases are to be discussed:
Case (I): $\lambda>1$

$$
\begin{aligned}
\frac{F(\lambda) \lambda^{-g}}{(\lambda-1)} & =\frac{p \lambda^{-(k+g)}+q \lambda^{l-g}}{(\lambda-1)}+\lambda^{-g}+c \lambda^{-(m+g)}-d \\
& \geq \frac{q \lambda^{l-g}}{(\lambda-1)}-d,
\end{aligned}
$$

since the minimum of $f(x)=\frac{x^{\alpha}}{(x-1)^{\beta}}, \quad \alpha>\beta$ and $x>1$ occurs at $x=\frac{\alpha}{\alpha-\beta}$ we see that

$$
\frac{F(\lambda) \lambda^{-g}}{(\lambda-1)} \geq q \frac{\left(\frac{l-g}{l-g-1}\right)^{l-g}}{\left(\frac{1}{l-g-1}\right)}-d>0
$$

Case (II): $0<\lambda<1$
We have

$$
\begin{aligned}
-\frac{F(\lambda) \lambda^{m}}{(\lambda-1)} & =-\frac{\left(p \lambda^{-(k-m)}+q \lambda^{(m+g)}\right)}{(\lambda-1)}-\left(\lambda^{m}+c-d \lambda^{m+g}\right) \\
& =\frac{p \lambda^{-(k-m)}+q \lambda^{(m+g)}}{(1-\lambda)}-\left(\lambda^{m}+c-d \lambda^{m+g}\right) \\
& \geq \frac{p \lambda^{-(k-m)}}{(1-\lambda)}-\lambda^{m}-c \\
& \geq \frac{p \lambda^{(m-k)}}{(1-\lambda)}-1-c \\
& \geq \frac{p\left(\frac{k-m}{k-m+1}\right)^{-(k-m)}}{\left(\frac{1}{k-m+1}\right)}-1-c>0
\end{aligned}
$$

since the minimum of the function $f(x)=\frac{x^{-\alpha}}{(1-x)^{\beta}}$ occurs at $x=\frac{\alpha}{\alpha+\beta}$, where α and β are positive.
From cases (I) and (II) we got that $F(\lambda)>0$ on $(0,1) \cup(1, \infty)$ and $F(1)>0 \Rightarrow F(\lambda)>0$ for $\lambda \in \mathbf{R}^{+}$, which is a contradiction.

Example 2.1.1: Consider the linear NDE

$$
\begin{equation*}
\Delta\left(x_{n}+2 x_{n-3}-2 x_{n+3}\right)+x_{n-4}+x_{n+4}=0 \tag{2.1.16}
\end{equation*}
$$

It is clear that conditions (2.1.3) and (2.1.4) of theorem 2.1.1 are satisfied, so every solution of equation (2.1.16) is oscillatory. Indeed, one of the solutions is $x_{n}=(-1)^{n}$, which is an oscillatory solution.

Remark 2.1.1: The results of this section are mainly referred to [2] and [8].

2.2 Oscillation criteria of first-order NDE's with both constant and variable coefficients

Consider the NDE of the form

$$
\begin{equation*}
\Delta\left(x_{n}+\delta c x_{n-m}\right)+p_{n} x_{n-k}=0 \tag{2.2.1}
\end{equation*}
$$

with $p_{n}>0,-1<c \leq 0$ and $\delta=1$.
The main results of this section are included in theorem 2.2.1 and theorem 2.2.3.
Theorem 2.2.1: Assume that $p_{n}>0$ and $-1<c \leq 0$. Then every solution of equation (2.2.1) is oscillatory if and only if the following difference inequality

$$
\begin{equation*}
\Delta\left(x_{n}+c x_{n-m}\right)+p_{n} x_{n-k} \leq 0, \tag{2.2.2}
\end{equation*}
$$

has no eventually positive solution.
Proof: On the contrary, suppose W.L.O.G that $\left\{x_{n}\right\}$ is a nonoscillatory solution of inequality (2.2.2), say $x_{n}>0$ eventually, we want to show that equation (2.2.1) has also an eventually positive solution.
Let

$$
\begin{equation*}
z_{n}=x_{n}+c x_{n-m}, \tag{2.2.3}
\end{equation*}
$$

then $z_{n}>0$ and $\Delta z_{n}<0$ eventually by lemma 1.4.1.
Define

$$
\begin{equation*}
w_{n}=\frac{-\Delta z_{n}}{z_{n}}>0, n \geq N \tag{2.2.4}
\end{equation*}
$$

we have $w_{n}<1$ for $n \geq N$, using (2.2.2) we have

$$
\begin{align*}
& \Delta\left(x_{n}+c x_{n-m}\right)+p_{n} x_{n-k} \leq 0 \\
& \quad \Delta z_{n}+p_{n} x_{n-k} \leq 0 \\
& \Delta z_{n}+p_{n} x_{n-k}+\left(c p_{n} x_{n-m-k}-c p_{n} x_{n-m-k}\right) \leq 0 \\
& \Delta z_{n}+p_{n}\left(x_{n-k}+c x_{n-m-k}\right)-c p_{n} x_{n-m-k} \leq 0 \\
& \Delta z_{n}+p_{n} z_{n-k}-\frac{c p_{n}}{p_{n-m}} p_{n-m} x_{n-m-k} \leq 0, \tag{2.2.5}
\end{align*}
$$

dividing (2.2.5) by z_{n} to get

$$
\begin{align*}
& \frac{\Delta z_{n}}{z_{n}}+\frac{p_{n} z_{n-k}}{z_{n}}-\frac{c p_{n} p_{n-m}}{p_{n-m} z_{n}} x_{n-m-k} \leq 0 \\
& -w_{n}+p_{n} \prod_{i=n-k}^{n-1}\left(1-w_{i}\right)^{-1}-\frac{c p_{n}}{p_{n-m}} w_{n-m} \prod_{i=n-m}^{n-1}\left(1-w_{i}\right)^{-1} \leq 0 \tag{2.2.6}
\end{align*}
$$

Taking in consideration that

$$
\frac{z_{n-k}}{z_{n}}=\prod_{i=n-k}^{n-1}\left(1-w_{i}\right)^{-1}
$$

Equation (2.2.6) becomes

$$
\begin{equation*}
p_{n} \prod_{i=n-k}^{n-1}\left(1-w_{i}\right)^{-1}-\frac{c p_{n}}{p_{n-m}} w_{n-m} \prod_{i=n-m}^{n-1}\left(1-w_{i}\right)^{-1} \leq w_{n} \tag{2.2.7}
\end{equation*}
$$

Define

$$
\begin{array}{r}
\lambda_{n}^{(0)}=\{0\}, n=N, N+1, \ldots, N+M-1, \text { where } M=\max \{m, k\} \\
\left\{\lambda_{n}^{(r)}\right\}=\left\{p_{n} \prod_{j=n-k}^{n-1}\left(1-\lambda_{j}^{(r-1)}\right)^{-1}-\frac{c p_{n}}{p_{n-m}} \lambda_{n-m}^{(r-1)} \prod_{j=n-m}^{n-1}\left(1-\lambda_{j}^{(r-1)}\right)^{-1}\right\}, \text { for } n \geq N+M \tag{2.2.8}
\end{array}
$$

We have that

$$
\lambda_{n}^{(0)} \leq \lambda_{n}^{(1)} \leq \ldots \leq \lambda_{n}^{(r)} \leq \ldots \leq w_{n}, \quad r>0, n \geq N
$$

and so

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \lambda_{n}^{(r)}=\lambda_{n}, \text { for each fixed } n \geq N \tag{2.2.9}
\end{equation*}
$$

taking the limit in (2.2.8), to obtain

$$
\begin{align*}
& \lambda_{n}=0, \quad n=N, N+1, \ldots, N+M-1 \\
\lambda_{n}= & p_{n} \prod_{j=n-k}^{n-1}\left(1-\lambda_{j}\right)^{-1}-\frac{c p_{n}}{p_{n-m}} \lambda_{n-m} \prod_{j=n-m}^{n-1}\left(1-\lambda_{j}\right)^{-1}, n \geq N+M \tag{2.2.10}
\end{align*}
$$

Define the recurrence relation

$$
\begin{aligned}
& z_{n}=1, \quad n=N \\
& z_{n+1}=z_{n}\left(1-\lambda_{n}\right), \quad n>N
\end{aligned}
$$

so

$$
\begin{equation*}
z_{n}=\prod_{i=N}^{n-1}\left(1-\lambda_{i}\right)>0, n>N \tag{2.2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{n}=\frac{-\Delta z_{n}}{z_{n}}>0 \tag{2.2.12}
\end{equation*}
$$

Using (2.2.11) and (2.2.12) in (2.2.10) we get

$$
-\frac{\Delta z_{n}}{z_{n}}=\frac{p_{n} z_{n-k}}{z_{n}}-\frac{c p_{n}}{p_{n-m}}\left(1-\frac{z_{n-m+1}}{z_{n-m}}\right) \frac{z_{n-m}}{z_{n}}, \text { for } n \geq N+M
$$

so

$$
\begin{equation*}
-\frac{\Delta z_{n}}{p_{n}}=z_{n-k}+\frac{c}{p_{n-m}} \Delta z_{n-m}, \text { for } n \geq N+M \tag{2.2.13}
\end{equation*}
$$

since $-\frac{\Delta z_{n}}{p_{n}}>0$, so define

$$
\begin{equation*}
y_{n}=-\frac{\Delta z_{n+k}}{p_{n+k}}, \quad n \geq N+M-k \tag{2.2.14}
\end{equation*}
$$

and substitute y_{n} in (2.2.13) to get

$$
\begin{equation*}
y_{n-k}=z_{n-k}-c y_{n-m-k}, \text { for } n \geq N+M \tag{2.2.15}
\end{equation*}
$$

combining (2.2.15) with (2.2.14), we get

$$
\Delta\left(y_{n}+c y_{n-m}\right)+p_{n} y_{n-k}=0, n \geq N+M
$$

which is a contradiction.
Suppose there exists a nonoscillatory solution $\left\{x_{n}\right\}$ for equation (2.2.1), such that $x_{n}>0$, then $\left\{x_{n}\right\}$ will be a solution of (2.2.2) which is a contradiction.

Remarks 2.2.1 ([14])
(1) The oscillation of (2.2.1) implies the oscillation of equation

$$
\Delta\left(x_{n}+c x_{n-m}\right)+p_{n} x_{n-k}+f\left(n, x_{n-h_{1}}, \ldots, x_{n-h_{l}}\right)=0,
$$

provided that the assumption of theorem 2.2.1 and $f\left(n, \eta_{1}, \ldots, \eta_{l}\right) \eta_{1} \geq 0$ whenever $\eta_{1} \eta_{j}>0, j=1,2, \ldots, l$ hold.
(2) The oscillation of (2.2.1) implies the oscillation of equation

$$
\Delta\left(x_{n}+c x_{n-m}\right)+p_{n} x_{n-k}+q_{n} x_{n+h}=0,
$$

provided that $-1<c \leq 0, p_{n} \geq 0, q_{n} \geq 0, k, h>0$
The following theorem provides us with a comparison condition for the oscillation, when there is a relation between the sequences of coefficients.

Theorem 2.2.2: Assume that

$$
\begin{equation*}
\Delta\left(x_{n}+\bar{c} x_{n-m}\right)+q_{n} x_{n-k}=0, \tag{2.2.16}
\end{equation*}
$$

and $\bar{c}, c \in(-1,0]$, so that

$$
\begin{equation*}
q_{n} \geq p_{n}>0 \tag{2.2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\bar{c} q_{n}}{q_{n-m}}\right) \leq\left(\frac{c p_{n}}{p_{n-m}}\right) \tag{2.2.18}
\end{equation*}
$$

hold, then the oscillation of (2.2.1) implies the oscillation of (2.2.16)
Proof: Let $\left\{x_{n}\right\}$ be a positive solution of equation (2.2.16), $x_{n}>0$ for $n \geq N$, proceeding as in the proof of theorem 2.2.1, there exists a sequence $\left\{w_{n}\right\}, w_{n} \in(0,1)$ such that

$$
w_{n}=q_{n} \prod_{i=n-k}^{n-1}\left(1-w_{i}\right)^{-1}-\frac{\bar{c} q_{n}}{q_{n-m}} w_{n-m} \prod_{i=n-m}^{n-1}\left(1-w_{i}\right)^{-1}
$$

using conditions (2.2.17) and (2.2.18) it follows from the above equation that

$$
w_{n} \geq p_{n} \prod_{i=n-k}^{n-1}\left(1-w_{i}\right)^{-1}-\frac{c p_{n}}{p_{n-m}} w_{n-m} \prod_{i=n-m}^{n-1}\left(1-w_{i}\right)^{-1}
$$

Thus we get inequality (2.2.7), again proceeding as in proof of theorem 2.2.1 to get a contradiction.

Theorem 2.2.3: If

$$
\begin{equation*}
q_{i} \geq p_{i}>0, \tag{2.2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=N}^{\infty} q_{i}=\infty, \quad-1<\bar{c} \leq c<0 \tag{2.2.20}
\end{equation*}
$$

then the oscillation of (2.2.1) implies the oscillation of (2.2.16) .
Proof: Suppose that $\left\{x_{n}\right\}$ is a positive solution of equation (2.2.16), let

$$
\begin{equation*}
z_{n}=x_{n}+\bar{c} x_{n-m} \tag{2.2.21}
\end{equation*}
$$

then

$$
\Delta z_{n}+q_{n} x_{n-k}=0
$$

It follows that $z_{n} \rightarrow 0$ as $n \rightarrow \infty$, and

$$
\begin{equation*}
z_{n}=\sum_{n}^{\infty} q_{i} x_{i-k} \tag{2.2.22}
\end{equation*}
$$

now from (2.2.21) and (2.2.22)

$$
x_{n}=-\bar{c} x_{n-m}+\sum_{n}^{\infty} q_{i} x_{i-k}
$$

by (2.2.19)

$$
\begin{aligned}
x_{n} & \geq-c x_{n-m}+\sum_{n}^{\infty} p_{i} x_{i-k} \\
& \geq-c x_{n-m} \geq \ldots \geq(-c)^{L} x_{n-L m} \\
& =(-c)^{\frac{\left(n-n_{0}\right)}{m}} x_{n_{0}} \\
& =\alpha(-c)^{\frac{n}{m}}
\end{aligned}
$$

where $\alpha=(-c)^{\frac{-n_{0}}{m}} x_{n_{0}}$ and $L=\frac{n-n_{0}}{m}$
Define

$$
\begin{align*}
& \left\{\lambda_{n}^{(0)}\right\}=\left\{x_{n}\right\}, \quad n \geq n_{0} \\
& \lambda_{n}^{(r)}=-c \lambda_{n-m}^{(r-1)}+\sum_{n}^{\infty} p_{i} \lambda_{i-k}^{(r-1)}, \quad n \geq n_{0}+\max \{m, k\} \\
& \lambda_{n}^{(r)}=\lambda_{n}^{(0)}, \quad n_{0} \leq n \leq n_{0}+\max \{m, k\}, r=1,2,3, \ldots \tag{2.2.23}
\end{align*}
$$

we have

$$
\lambda_{n}^{(r)} \geq \alpha(-c)^{\frac{n}{m}}
$$

and

$$
\lambda_{n}^{(r+1)} \leq \lambda_{n}^{(r)}, n \geq n_{0}, r=0,1,2, \ldots
$$

hence, for each $n \geq n_{0}$ we have

$$
\lambda_{n}^{(r)} \rightarrow \lambda_{n}^{(*)} \text { as } r \rightarrow \infty
$$

so

$$
\lambda_{n}^{(*)}=-c \lambda_{n-m}^{*}+\sum_{i=n}^{\infty} p_{i} \lambda_{i-k}^{*}
$$

hence,

$$
\Delta\left(\lambda_{n}^{*}+c \lambda_{n-m}^{*}\right)+p_{n} \lambda_{n-k}^{*}=0, \quad n \geq n_{0}+M
$$

which is a contradiction, so equation (2.2.1) is oscillatory.

Remarks 2.2.2

(1) As a special case of theorem 2.2.3, when $c=\bar{c}=0$, then for the equations

$$
\begin{align*}
& \Delta y_{n}+p_{n} y_{n-k}=0 \tag{2.2.24}\\
& \Delta x_{n}+q_{n} x_{n-k}=0 \tag{2.2.25}
\end{align*}
$$

with $q_{n} \geq p_{n}$, then
the oscillation of (2.2.24) implies that of (2.2.25) .
(2) One can extend the results in theorem 2.2.3 to the equation

$$
\begin{equation*}
\Delta\left(x_{n}+c x_{n-m}\right)+\sum_{j=1}^{l} p_{j n} x_{n-k_{j}}=0 \tag{2.2.26}
\end{equation*}
$$

Theorem 2.2.4: If

$$
\begin{equation*}
q_{j i} \geq p_{j i}>0, \quad j=1,2, \ldots, l \tag{2.2.27}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=N}^{\infty} q_{j i}=\infty, \text { for } j=1,2, \ldots, l \tag{2.2.28}
\end{equation*}
$$

with $-1<\bar{c} \leq c<0$, then the oscillation of equation (2.2.26) implies the oscillation of

$$
\begin{equation*}
\Delta\left(x_{n}+\bar{c} x_{n-m}\right)+\sum_{j=1}^{l} q_{j n} x_{n-k_{j}}=0 \tag{2.2.29}
\end{equation*}
$$

Proof: Suppose that $\left\{x_{n}\right\}$ is a positive solution of equation (2.2.29), let z_{n} as in (2.2.21), then

$$
\begin{equation*}
\Delta z_{n}+\sum_{j=1}^{l} q_{j n} x_{n-k_{j}}=0 \tag{2.2.30}
\end{equation*}
$$

We have $z_{n} \rightarrow 0$ as $n \rightarrow \infty$, let

$$
\begin{equation*}
z_{n}=\sum_{i=n}^{\infty}\left(\sum_{j=1}^{l} q_{j i} x_{i-k_{j}}\right) \tag{2.2.31}
\end{equation*}
$$

so,

$$
x_{n}=-\bar{c} x_{n-m}+\sum_{i=n}^{\infty}\left(q_{1 i} x_{i-k_{1}}+q_{2 i} x_{i-k_{2}}+\ldots+q_{l i} x_{i-k_{l}}\right),
$$

by (2.2.27)

$$
\begin{aligned}
x_{n} & \geq-\bar{c} x_{n-m}+\sum_{n}^{\infty}\left(p_{1 i} x_{i-k_{1}}+p_{2 i} x_{i-k_{2}}+\ldots+p_{l i} x_{i-k_{l}}\right) \\
& \geq-\bar{c} x_{n-m} \geq \ldots \geq(-\bar{c})^{s} x_{n-s m} \\
& =(-c)^{\frac{\left(n-n_{0}\right)}{m}} x_{n_{0}}, \quad n_{0}=n-s m
\end{aligned}
$$

Let $\alpha=(-c)^{\frac{-n_{0}}{m}} x_{n_{0}}$, then

$$
x_{n} \geq \alpha(-c)^{\frac{n}{m}}
$$

Define

$$
\begin{aligned}
& \left\{\lambda_{n}^{(0)}\right\}=\left\{x_{n}\right\} \\
& \lambda_{n}^{(r)}=-c \lambda_{n-m}^{(r-1)}+\sum_{n}^{\infty}\left(p_{1 i} \lambda_{i-k_{1}}^{(r-1)}+\ldots p_{l i} \lambda_{i-k_{l}}^{(r-1)}\right) \\
& \lambda_{n}^{(r)}=\lambda_{n}^{(0)},
\end{aligned}
$$

we have

$$
\lambda_{n}^{r+1} \leq \lambda_{n}^{r} \quad \text { (i.e. } \lambda_{n}^{(r)} \text { is decreasing) }
$$

Since $\lambda_{n}^{(r)} \geq \alpha(-c)^{\frac{n}{m}}, r=0,1,2, \ldots$
then for each $n \geq n_{0}$ we have

$$
\lambda_{n}^{(r)} \rightarrow \lambda_{n}^{*} \text { as } r \rightarrow \infty
$$

so

$$
\lambda_{n}^{*}=-c \lambda_{n-m}^{*}+\sum_{n}^{\infty}\left(p_{1 i} \lambda_{i-k_{1}}^{*}+\ldots+p_{L i} \lambda_{i-k_{l}}^{*}\right)
$$

Hence,

$$
\Delta\left(\lambda_{n}^{*}+c \lambda_{n-m}^{*}\right)+p_{1 n} \lambda_{n-k_{1}}^{*}+\ldots+p_{l n} \lambda_{n-k_{l}}^{*}=0, \quad n \geq n_{0}+M
$$

This means that λ_{n}^{*} is a positive solution of equation (2.2.21), which is a contradiction.
Example 2.2.1: Consider the NDE's

$$
\begin{equation*}
\Delta\left(x_{n}-\frac{1}{2} x_{n-1}\right)+2^{n} x_{n-3}=0, \tag{2.2.32}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta\left(x_{n}-\frac{1}{2} x_{n-1}\right)+3^{n} x_{n-3}=0 \tag{2.2.33}
\end{equation*}
$$

using theorem 2.2.2 we conclude that the oscillation of (2.2.32) implies the oscillation (2.2.33) since conditions (2.2.17) and (2.2.18) are satisfied.

Note also that example 2.2.1 satisfies the conditions of theorem 2.2.3.
Remark 2.2.3: The results of this section are mainly referred to [14].

2.3 Oscillation criteria of first-order linear NDE's with variable coefficients

Consider the first-order linear NDE of the form

$$
\begin{equation*}
\Delta\left(x_{n}+\delta c_{n} x_{n-m}\right)+p_{n} x_{n-k}=0 \quad, \quad n \geq 0 \tag{2.3.1}
\end{equation*}
$$

where $\left\{c_{n}\right\}$ and $\left\{p_{n}\right\}$ are nonnegative sequences of real numbers, m and k are nonnegative integers and $\delta=-1$.

Equation (2.3.1) has been extensively investigated in literature. Authors like Tang, Yu and Ladas discussed the boundedness and the asymptotic behavior of the solutions of equation (2.3.1) with and without the condition $\sum_{n=0}^{\infty} p_{n}=\infty$, also Zhang, Cheng, Chen, Lalli and Yu as in [5] and [30] studied the oscillation property of equation (2.3.1) under several conditions.

In fact in this section we will consider some of those theorems in [5] and [30], but before that, we need the following assumptions:
$\left(\mathrm{H}_{1}\right)$ There exists a positive integer N such that

$$
c_{N+i m} \leq 1, \text { for } i=0,1,2, \ldots
$$

$\left(\mathrm{H}_{2}\right)$ For $n \geq 0$

$$
\sum_{n=0}^{\infty} n p_{n} \sum_{j=n}^{\infty} p_{j}=\infty
$$

Lemma 2.3.1: Assume that $\left(\mathrm{H}_{2}\right)$ holds, and $c_{n} \geq 1, p_{n} \geq 0$, for $n=0,1,2, \ldots$, then for any eventually positive solution $\left\{x_{n}\right\}$ of the inequality

$$
\begin{equation*}
\Delta\left(x_{n}-c_{n} x_{n-m}\right)+p_{n} x_{n-k} \leq 0 \tag{2.3.2}
\end{equation*}
$$

the sequence $\left\{z_{n}\right\}$ defined by

$$
\begin{equation*}
z_{n}=x_{n}-c_{n} x_{n-m}, \quad n \geq 0 \tag{2.3.3}
\end{equation*}
$$

satisfies that $\Delta z_{n} \leq 0$ and $z_{n}<0$.

Proof: see [5].
Theorem 2.3.1: Suppose that $c_{n}=1$ and $p_{n} \geq 0$, for $n=0,1,2, \ldots$, and $\left(\mathrm{H}_{2}\right)$ holds then every solution of equation (2.3.1) is oscillatory.

Proof: From lemma 1.4.1, the sequence $\left\{z_{n}\right\}$ defined by (2.3.3) would be positive, and from lemma 2.3.1, the sequence $\left\{z_{n}\right\}$ would be negative for all large n. (i.e. positive and negative at the same time) , hence every solution of equation (2.3.1) is oscillatory.

Theorem 2.3.2: Suppose that $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ hold, then every solution of equation (2.3.1) oscillates provided that for all large n.

$$
\begin{equation*}
p_{n-m} \leq c_{n-k} p_{n} \tag{2.3.4}
\end{equation*}
$$

Proof: On the contrary, suppose that equation (2.3.1) has an eventually positive solution $\left\{x_{n}\right\}$, let z_{n} as in (2.3.3), then from (2.3.1)

$$
\begin{array}{rlrl}
\Delta z_{n} & +p_{n} x_{n-k}=0 & \tag{2.3.5}\\
\Delta z_{n} & =-p_{n} x_{n-k} & \\
& =-p_{n}\left(z_{n-k}+c_{n-k} x_{n-k-m}\right) & \\
& =-p_{n} z_{n-k}-p_{n} c_{n-k} x_{n-k-m} & & \\
& \leq-p_{n} z_{n-k}-p_{n-m} x_{n-k-m}, & \text { by using (2.3.4) } \\
& =-p_{n} z_{n-k}+\Delta z_{n-m}, \quad n \geq n_{0}+k+m, & & \text { by using (2.3.5) }
\end{array}
$$

i.e.

$$
\begin{equation*}
\Delta\left(z_{n}-z_{n-m}\right)+p_{n} z_{n-k} \leq 0, \quad n \geq n_{0}+k+m \tag{2.3.6}
\end{equation*}
$$

using $\left(\mathrm{H}_{2}\right)$ and by lemma 1.4.1 and lemma 2.3.1, then the sequence $\left\{z_{n}-z_{n-m}\right\}$ is eventually negative and positive at the same time, which is a contradiction, so every solution of equation (2.3.1) is oscillatory.

Theorem 2.3.3: Suppose that $\left(\mathrm{H}_{1}\right)$ holds, $p_{n} \geq 0$ and there is some number $\alpha \in[0,1]$ such that

$$
\begin{equation*}
\alpha p_{n-m} \leq p_{n} c_{n-k}, \text { for all large } n \tag{2.3.7}
\end{equation*}
$$

then every solution of equation (2.3.1) is oscillatory provided that the recurrence relation

$$
\begin{equation*}
\Delta w_{n}+\frac{p_{n}}{1-\alpha} w_{n-(k-m)} \leq 0 \quad, n \geq 0 \tag{2.3.8}
\end{equation*}
$$

has no eventually positive solution.
Proof: Suppose that (2.3.1) has an eventually positive solution $\left\{x_{n}\right\}$, define z_{n} as in (2.3.3) , then

$$
\begin{align*}
& \Delta z_{n}+p_{n} x_{n-k}=0 \tag{2.3.9}\\
& \Delta z_{n-m}+p_{n-m} x_{n-(m+k)}=0
\end{align*}
$$

$$
\alpha \Delta z_{n-m}=-\alpha p_{n-m} x_{n-(m+k)}
$$

using (2.3.7)

$$
\alpha \Delta z_{n-m} \geq-c_{n} p_{n-m} x_{n-(m+k)}
$$

or

$$
\begin{equation*}
-\alpha \Delta z_{n-m}-c_{n} p_{n-k} x_{n-(m+k)} \leq 0 \tag{2.3.10}
\end{equation*}
$$

adding (2.3.9) with (2.3.10) we get

$$
\Delta z_{n}-\alpha \Delta z_{n-m}+p_{n} x_{n-k}-p_{n} c_{n-k} x_{n-(m+k)} \leq 0
$$

using (2.3.3) we get

$$
\Delta\left(z_{n}-\alpha z_{n-m}\right)+p_{n} z_{n-k} \leq 0
$$

Define

$$
w_{n}=z_{n}-\alpha z_{n-m}, \quad n \geq 0
$$

satisfies $w_{n}>0$ for all large n, we have

$$
z_{n-m} \geq \frac{w_{n}}{1-\alpha}
$$

and

$$
z_{n-k} \geq \frac{w_{n-(k-m)}}{1-\alpha}, \quad n \geq 0
$$

and hence $\left\{w_{n}\right\}$ is an eventually positive solution of (2.3.8), which is a contradiction.

Remarks 2.3.1:

(1) In theorem 2.3.2, if we replace $\left(\mathrm{H}_{1}\right)$ by $c_{n} \geq 1$, for $n=0,1,2, \ldots$, and replace (2.3.4) by $c_{n-k} p_{n} \leq p_{n-m}$, then every solution of (2.3.1) is oscillatory.
(2) In theorem 2.3.3, if we replace $\left(\mathrm{H}_{1}\right)$ by $c_{n} \leq 0$, for $n=0,1,2, \ldots$, and replace (2.3.7) by $-c_{n-k} p_{n} \leq \alpha p_{n-m}$, we will have another criteria for the oscillation of equation (2.3.1) provided that

$$
\Delta w_{n}+\frac{p_{n}}{1+\alpha} w_{n-(k-m)} \leq 0 \quad, n \geq 0
$$

has no eventually positive solution.
Remark 2.3.2: The results of this section are mainly referred to [5] and [30].

2.4 Oscillation criteria of first-order linear NDE with positive and negative variable coefficients

Consider the NDE of the form

$$
\begin{equation*}
\Delta\left(x_{n}+\delta c_{n} x_{n-m}\right)+p_{n} x_{n-k}-q_{n} x_{n-l}=0 \tag{2.4.1}
\end{equation*}
$$

where m, k and l are integers such that $0 \leq l<k, m>0,\left\{c_{n}\right\},\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are nonnegative sequences of real numbers, the sequence $h_{n}=p_{n}-q_{n-k+l}, n \geq k-l$ is nonnegative and has a positive subsequence and $\delta=-1$.

Authors, since 1990 studied equation (2.4.1), they discussed several cases, when $q_{n}=0$, $c_{n}=0$ or when $c_{n}=c$ and $0 \leq c<1$.

In [22] Tang, Yu and Peng investigated the oscillation of equation (2.4.1) depending on the treatment of an ordinary difference equation, while in [26] Tian and Cheng did some modifications on the results of [22], we will see later that the results in [22] are taken to be the special case of those in [26].

Before starting we have to consider the following definitions:

$$
\begin{align*}
& R_{n}(t)=c_{n}+\sum_{s=n-t}^{n-1} q_{s}+\sum_{s=n}^{n-t+k-l-1} p_{s}, \text { where } t=\{0,1, \ldots, k-l\} \tag{2.4.2}\\
& M^{*}(t)= \begin{cases}m, & \text { if } q_{n}=0 \text { and } t=k-l \\
\max \{m, k\}, & \text { otherwise }\end{cases} \tag{2.4.3}\\
& m^{*}(t)= \begin{cases}m, & \text { if } q_{n}=0 \text { and } t=k-l \\
\min \{m, l+1\}, & \text { otherwise }\end{cases} \tag{2.4.4}
\end{align*}
$$

Lemma 2.4.1: Suppose that $\left\{x_{n}\right\}$ is an eventually positive solution of the functional difference inequality

$$
\begin{equation*}
\Delta\left(x_{n}-c_{n} x_{n-m}\right)+p_{n} x_{n-k}-q_{n} x_{n-l} \leq 0, \tag{2.4.5}
\end{equation*}
$$

and there exists an integer $t \in\{0,1, \ldots, k-l\}$, such that $R_{n}(t) \leq 1$, for all large n, then the sequence $\left\{z_{n}\right\}$ defined by

$$
\begin{equation*}
z_{n}=x_{n}-c_{n} x_{n-m}-\sum_{s=n-t}^{n-1} q_{s} x_{s-l}-\sum_{s=n}^{n+k-l-t-1} p_{s} x_{s-k}, \tag{2.4.6}
\end{equation*}
$$

for all large n, will satisfy $z_{n}>0$ and $\Delta z_{n} \leq 0$ eventually.

Proof: Let $N_{1} \in \mathbf{Z}^{+}$, such that for $n \geq N_{1}, x_{n}>0$. By inequality (2.4.5) and equation (2.4.6), it is clear that $\Delta z_{n} \leq 0$, which means that z_{n} is nonincreasing for $n \geq N_{1}$.

To prove that $z_{n}>0$, suppose not that is $z_{n}<0$ for all large n. Thus there exists a constant $\alpha>0$ such that $z_{n}<-\alpha$ for $n \geq N_{2} \geq N_{1}$, so from equation (2.4.6)

$$
\begin{align*}
-\alpha>z_{n} & =x_{n}-c_{n} x_{n-m}-\sum_{s=n-t}^{n-1} q_{s} x_{s-l}-\sum_{s=n}^{n+k-l-t-1} p_{s} x_{s-k} \\
x_{n} & \leq-\alpha+c_{n} x_{n-m}+\sum_{s=n-t}^{n-1} q_{s} x_{s-l}+\sum_{s=n}^{n+k-l-t-1} p_{s} x_{s-k} \tag{2.4.7}
\end{align*}
$$

The question appears here whether $\left\{x_{n}\right\}$ is bounded or not ?
If $\left\{x_{n}\right\}$ is bounded: This means that $\lim _{n \rightarrow \infty} \sup x_{n}=\beta<\infty$, we can choose a sequence of integers $\left\{n_{i}^{*}\right\}_{i=1}^{\infty}$ such that $\lim _{i \rightarrow \infty} n_{i}^{*}=\infty$ and $\lim _{i \rightarrow \infty} x_{n_{i}}=\beta$.
Let $\left\{\lambda_{i}\right\}$ be a sequence of integers such that

$$
n_{i}^{*}-M^{*}(t) \leq \lambda_{i} \leq n_{i}^{*}-m^{*}(t),
$$

and

$$
x_{\lambda}=\max \left\{x_{n}: n_{i}^{*}-M^{*}(t) \leq n \leq n_{i}^{*}-m^{*}(t)\right\},
$$

with $\lim _{i \rightarrow \infty} \lambda_{i}=\infty$ and $\lim _{n \rightarrow \infty} \sup x_{\lambda} \leq \beta$.
From equation (2.4.2) and inequality (2.4.7) we have

$$
\begin{aligned}
x_{n} & \leq-\alpha+c_{n} x_{n-m}+\sum_{s=n-t}^{n-1} q_{s} x_{s-l}+\sum_{s=n}^{n+k-l-t-1} p_{s} x_{s-k} \\
& \leq-\alpha+x_{\lambda}
\end{aligned}
$$

then

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \sup x_{n} \leq \limsup _{i \rightarrow \infty} \sup \left(-\alpha+x_{\lambda}\right)<\beta \\
\beta \leq-\alpha+\beta<\beta
\end{gathered}
$$

which is a contradiction.
If $\left\{x_{n}\right\}$ is unbounded: This means that $\lim _{n \rightarrow \infty} \sup x_{n}=\infty$, so there exists a sequence of integers $\left\{n_{i}^{*}\right\}_{i=1}^{\infty}$ such that for $N_{2}+M^{*}(t) \leq n_{i}^{*}$, we have

$$
\lim _{i \rightarrow \infty} n_{i}^{*}=\infty, \quad \lim _{i \rightarrow \infty} x_{n_{i}^{*}}=\infty, \quad \text { and } \quad x_{n}=\max \left\{x_{n}: N_{2} \leq n \leq n_{i}^{*}, i=1,2, \ldots\right\}
$$

From equation (2.4.2) and inequality (2.4.7), we get

$$
\begin{aligned}
x_{n} & \leq-\alpha+c_{n} x_{n-m}+\sum_{s=n-t}^{n-1} q_{s} x_{s-l}+\sum_{s=n}^{n+k-l-t-1} p_{s} x_{s-k} \\
& \leq-\alpha+x_{n} \\
& <x_{n}
\end{aligned}
$$

which is a contradiction. So z_{n} must be positive.

Lemma 2.4.2: Suppose that the second-order difference inequality

$$
\begin{equation*}
\Delta^{2} y_{n}+\frac{1}{M^{*}(t)} h_{n-t+k-l} y_{n} \leq 0 \tag{2.4.8}
\end{equation*}
$$

does not have any eventually positive solution, and there exists an integer $t \in\{0,1, \ldots, k-l\}$ such that $R_{n}(t) \geq 1$, for all large n, then for any eventually positive solution $\left\{x_{n}\right\}$ of inequality (2.4.5), the sequence $\left\{z_{n}\right\}$ defined by equation (2.4.6) satisfies $z_{n}<0$ and $\Delta z_{n} \leq 0$ for all large n.

Proof: See [26].
Lemma 2.4.3: The difference inequality

$$
\Delta^{2} y_{n}+d_{n} y_{n} \leq 0 \quad, \quad n \geq 0
$$

has no eventually positive solutions if

$$
\lim _{n \rightarrow \infty} \inf n \sum_{s=n}^{\infty} d_{s}>\frac{1}{4}
$$

where $\left\{d_{n}\right\}$ is a sequence of nonnegative real numbers.

Proof: See [22].
Theorem 2.4.1: Suppose there exist two integers $t, t_{1} \in\{0,1, \ldots, k-l\}$ such that

$$
\begin{align*}
& R_{n}\left(t_{1}\right)=c_{n}+\sum_{s=n-t_{1}}^{n-1} q_{s}+\sum_{s=n}^{n-t_{1}+k-l-1} p_{s} \leq 1 \tag{2.4.9}\\
& R_{n}(t)=c_{n}+\sum_{s=n-t}^{n-1} q_{s}+\sum_{s=n}^{n-t+k-l-1} p_{s} \geq 1 \tag{2.4.10}
\end{align*}
$$

for all large n. Further suppose that the functional inequality (2.4.8) does not have any eventually positive solution. Then every solution of equation (2.4.1) oscillates.

Proof: Using lemma 2.4.1, then we have that $z_{n}>0$ and $\Delta z_{n} \leq 0$ eventually. However, using lemma 2.4.2 gives that $z_{n}<0$ eventually, so we obtain a contradiction, thus equation (2.4.1) can not have any eventually positive, nor eventually negative solution.

Corollary 2.4.1: Suppose that (2.4.10) holds for $t=0$, and all large n and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf n \sum_{s=n}^{\infty}\left(p_{s+k-l}-q_{s}\right)>\frac{\max \{m, k\}}{4}, \tag{2.4.11}
\end{equation*}
$$

holds. Further suppose $\left\{\frac{p_{n}}{p_{n}-q_{n-k+l}}\right\}$ is nondecreasing and there exist two nonnegative constants δ_{1} and δ_{2} such that $\delta_{2} \geq p_{n}-q_{n-k+l}$ eventually and for all large n,

$$
\begin{align*}
& c_{n-k}\left(p_{n}-q_{n-k+l}\right) \leq \delta_{1}\left(p_{n-m}-q_{n-k+l-m}\right), \tag{2.4.12}\\
& p_{n}\left(p_{n+l}-q_{n-k+2 l}\right) \leq \delta_{2}\left(p_{n}-q_{n-k+l}\right), \tag{2.4.13}
\end{align*}
$$

and

$$
\delta_{1}+(k-l) \delta_{2}=1, \text { and } h_{n}<\delta_{2} \text { eventually. }
$$

Then every solution of equation (2.4.1) oscillates.
Proof: Suppose that equation (2.4.1) has an eventually positive solution $\left\{x_{n}\right\}$, and let z_{n} be defined by (2.4.6).
Applying lemma 2.4.2 and lemma 2.4.3 to get that $z_{n}<0$ and $\Delta z_{n} \leq 0$ eventually.
In view of inequalities (2.4.12) and (2.4.13) we have

$$
\Delta z_{n}=-h_{n-t+k-l} x_{n-t-l},
$$

for simplicity let $h^{*}=h_{n-t+k-l}$, so

$$
\begin{aligned}
& \Delta z_{n}=-h^{*} x_{n-t-l} \\
&=-h^{*}\left(z_{n-t-l}+c_{n-t-l} x_{n-t-l-m}\right)-h^{*}\left(\sum_{s=n-2 t-l}^{n-t-l-1} q_{s} x_{s-l}+\sum_{s=n-t-l}^{n-2 t+k-2 l-1} p_{s-k}\right) \\
& \geq-h^{*} z_{n-t-l}-\delta_{1} h_{n-t+k-l-m} x_{n-t-l-m}-h^{*} \sum_{s=n-2 t-l}^{n-t-1} \frac{q_{s} h_{s+k-l}}{h_{s+k-l}} x_{s-l} \\
& \quad-h^{*} \sum_{s=n-t-l}^{n-2 t-2 l-1} \frac{p_{s} h_{s}}{h_{s}} x_{s-k} \\
& \geq-h^{*} z_{n-t-l}-\delta_{1} \Delta z_{n-m}-\frac{q_{n-t-l} h^{*}}{h_{n-t+k-2 l}} \sum_{s=n-2 t-l}^{n-t-l-1}\left(-\Delta z_{s+l}\right) \\
& \quad-\frac{p_{n-2 t+k-2 l} h^{*}}{h_{n-2 t+k-2 l}} \sum_{s=n-n+t-l}^{n-2 l-1}\left(-\Delta z_{s+t-k+l}\right) \\
& \geq-h^{*} z_{n-l}-\delta_{1} \Delta z_{n-m}-\delta_{2}\left(z_{n-l}-z_{n-k}\right)
\end{aligned}
$$

Thus

$$
\Delta\left(z_{n}-\delta_{1} z_{n-m}\right)-\left(\delta_{2}+h_{n-t+k-l}\right) z_{n-l}+\delta_{2} z_{n-k} \geq 0
$$

Hence $\left\{-z_{n}\right\}$ is an eventually positive solution of inequality

$$
\Delta\left(x_{n}-\delta_{1} x_{n-m}\right)+\delta_{2} x_{n-k}-\left(\delta_{2}-h_{n+k-l}\right) x_{n-l} \leq 0
$$

Comparing the last inequality with equation (2.4.1) and using lemmas 2.4.1, 2.4.2 and 2.4.3, we have that z_{n} is simultaneously positive and negative eventually, which is a contradiction.
Remark 2.4.2: Similar results can be obtained for $(t=k-l)$, where $\left\{\frac{q_{n}}{p_{n+k-l}-q_{n}}\right\}$ is nondecreasing and for $\delta_{1}, \delta_{2} \in \mathbf{Z}^{+} \cup\{0\}$

$$
q_{n-k}\left(p_{n}-q_{n-k+l}\right) \leq \delta_{2}\left(p_{n-l}-q_{n-k}\right),
$$

holds together with (2.4.12) and $\delta_{1}+(k-l) \delta_{2}=1$.
Theorem 2.4.2: Suppose there exists an integer $t \in\{0,1, \ldots, k-l\}$ such that

$$
\begin{equation*}
c_{n}+\sum_{s=n-k+l}^{n-1} q_{s}=1 \tag{2.4.14}
\end{equation*}
$$

holds eventually, further suppose that there exists a constant $\alpha \in[0,1)$ such that

$$
\begin{equation*}
c_{n-k}\left(p_{n}-q_{n-k+l}\right) \geq \alpha\left(p_{n-m}-q_{n-k+l-m}\right), \tag{2.4.15}
\end{equation*}
$$

then every solution of equation (2.4.1) is oscillatory. Provided that there exists a constant $\bar{\alpha} \in[0, \alpha)$ such that the following recurrence relation

$$
\begin{equation*}
\Delta u_{n}+\frac{\bar{\alpha}}{1-\alpha} h_{n-t+k-l} u_{n-t-l-m} \leq 0 \quad, \quad n=0,1,2, \ldots \tag{2.4.16}
\end{equation*}
$$

does not have an eventually positive solution.
Proof: Suppose to contrary that $\left\{x_{n}\right\}$ is an eventually positive solution of equation (2.4.1), from lemma 2.4.1 we have $z_{n}>0$ and $\Delta z_{n} \leq 0$ for all large n.

$$
\begin{aligned}
\Delta z_{n} & \leq-h_{n-t+k-l} x_{n-t-l} \\
& =-h_{n-t+k-l}\left(z_{n-t-l}+c_{n-t-l} x_{n-t-l-m}\right)-h_{n-t+k-l}\left(\sum_{s=n-2 t-l}^{n-t-l-1} q_{s} x_{s-L}+\sum_{s=n-t-l}^{n-2 t+k-2 l-1} x_{s-k}\right),
\end{aligned}
$$

hence,

$$
\begin{equation*}
\Delta z_{n}+h_{n-t+k-l} z_{n-t-l}+c_{n-t-l} h_{n-t+k-l} x_{n-t-l-m} \leq 0 \tag{2.4.17}
\end{equation*}
$$

for all large n, by inequality (2.4.15) and inequality (2.4.17) becomes

$$
\begin{equation*}
\Delta z_{n}+h_{n-t+k-l} z_{n-t-l}+\alpha h_{n-t+k-l-m} x_{n-t-l-m} \leq 0 \tag{2.4.18}
\end{equation*}
$$

Inequality (2.4.18) together with

$$
-\alpha \Delta z_{n-m}-\alpha h_{n-t+k-m-l} x_{n-t-l-m}=0,
$$

we get

$$
\begin{equation*}
\Delta\left(z_{n}-\alpha z_{n-m}\right)-h_{n-t+k-l} z_{n-t-l} \leq 0 \tag{2.4.19}
\end{equation*}
$$

for all large n.
Let $u_{n}=z_{n}-\alpha z_{n-m}$, similar to the proof of lemma 2.4.1, we have $u_{n}>0$ and $\Delta u_{n} \leq 0$ for all large n. Hence, there exists an integer $N>0$ such that $z_{n}>0$ and $\Delta z_{n} \leq 0$, and $u_{n}>0$ and $\Delta u_{n} \leq 0$, for $n \geq N$. Thus

$$
\begin{aligned}
z_{n} & =u_{n}+\alpha z_{n-m} \\
& =u_{n}+\alpha\left(u_{n-m}+\alpha z_{n-2 m}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =u_{n}+\alpha u_{n-m}+\ldots+\alpha^{i} u_{n-i m}+\alpha z_{n-(i+1) m} \\
& \geq\left(\alpha+\alpha^{2}+\ldots+\alpha^{i}\right) u_{n-m} \\
& =\frac{\alpha\left(1-\alpha^{i+1}\right)}{1-\alpha} u_{n-m}
\end{aligned}
$$

for $n \geq(i+1) m+N$, for all large n, which is a contradiction.
Example 2.4.1: Consider the NDE

$$
\begin{equation*}
\Delta\left(x_{n}-\frac{1}{2} x_{n-1}\right)+\left(\frac{1}{4}+(n+1)^{-2}\right) x_{n-3}-\left(\frac{1}{4}-(n+3)^{-2}\right) x_{n-1}=0 \tag{2.4.20}
\end{equation*}
$$

using theorem 2.4.1 we have for $c_{n}=\frac{1}{2}$ and $t=0, t_{1}=2$,

$$
\begin{aligned}
R_{n}\left(t_{1}\right)=R_{n}(2) & =\frac{1}{2}+q_{n-2}+q_{n-1} \\
& =1-(n+1)^{-2}-(n+2)^{-2}<1
\end{aligned}
$$

and

$$
\begin{aligned}
R_{n}(t)=R_{n}(0) & =\frac{1}{2}+p_{n}+p_{n+1} \\
& =1+(n+1)^{-2}+(n+2)^{-2}>1, \text { for all large } n
\end{aligned}
$$

but $h_{n}=p_{n}-q_{n-2}=2(n+1)^{-2}$ and

$$
\lim _{n \rightarrow \infty} \inf \left(n \sum_{s=n}^{\infty} h_{s+k-l}\right)=2 \operatorname{limimf}_{n \rightarrow \infty}\left(n \sum_{s=n+3}^{\infty} s^{-2}\right)=2>\frac{3}{4}=\frac{\max \{m, k\}}{4}
$$

So we can conclude that every solution of equation (2.4.20) is oscillatory.
Remark 2.4.3: The results of this section are mainly referred to [22], and [26].

Chapter Three

Oscillation Criteria of First-Order Nonlinear Neutral Difference Equations

3.0 Introduction

This chapter mainly concerns with the oscillation of nonlinear NDE's of the form

$$
\begin{equation*}
\Delta\left(x_{n}+\delta_{1} p_{n} x_{n-m}\right)+\delta_{2} q_{n} G\left(x_{n-k}\right)=f_{n}, \quad n \geq 0 \tag{3.0.1}
\end{equation*}
$$

where $\left\{p_{n}\right\},\left\{q_{n}\right\}$ and $\left\{f_{n}\right\}$ are sequences of real numbers, G is a real valued function and $\delta_{1}= \pm 1, \delta_{2}= \pm 1$.
We studied oscillation of equation (3.0.1) under several conditions depending on the form we consider.

Authors like Zhang [29], Lalli [12] studied nonlinear NDE's with both constant and variable coefficients. However, as in [23] and [20] authors considered the case when all the coefficients are variables, also homogenous and nonhomogenous (forced) cases are discussed as in [18] and [10].

In this chapter, the first section concerns with the oscillation of equation (3.0.1) when $p_{n}=p, f_{n}=0$ and $G\left(x_{n-k}\right)=x_{n-k}^{\alpha}$, where α is the quotient of odd positive integers. In section two we discuss the oscillation of equation (3.0.1) with several conditions on $G\left(x_{n-k}\right)$. Section three considered the forced form of (3.0.1) with both constant and variable coefficients. While in section four the coefficients are all variables. Finally, section five studies oscillation theorems when $G\left(x_{n-k}\right)=\left|x_{n-k}\right| \operatorname{sgn} x_{n-k}$ and when $G\left(x_{n-k}\right)=\max _{s \in[n-k, n]} x_{s}$.

3.1 Oscillation criteria of first - order nonlinear NDE's with both constant and variable coefficients

Consider the first-order nonlinear NDE's of the form

$$
\begin{equation*}
\Delta\left(x_{n}+\delta_{1} p x_{n-m}\right)+\delta_{2} q_{n} G\left(x_{n-k}\right)=0, \quad n \geq 0 \tag{3.1.1}
\end{equation*}
$$

where $\left\{q_{n}\right\}$ is a sequence of nonnegative real numbers, m and k are positive integers, $\delta_{1}=-1, \delta_{2}=+1$ and $q_{n} \geq 0$.

We start this chapter by taking the special case where $G\left(x_{n-k}\right)=x_{n-k}^{\alpha}$, where $\alpha \in(0, \infty)$ is a quotient of odd positive integers and $0 \leq p<1$, the oscillation here is discussed for two cases, (i) $\alpha<1$, (ii) $\alpha>1$

Theorem 3.1.1: Assume that $0 \leq p<1$ and $0<\alpha<1$. Then every solution of the equation

$$
\begin{equation*}
\Delta\left(x_{n}-p x_{n-m}\right)+q_{n} x_{n-k}^{\alpha}=0, \tag{3.1.2}
\end{equation*}
$$

Oscillates if and only if $\sum_{n=0}^{\infty} q_{n}=\infty$.

Proof: Assume that $\alpha \in(0,1)$ and $\left\{x_{n}\right\}$ is an eventually positive solution of equation (3.1.2). If we let

$$
z_{n}=x_{n}-p x_{n-m}, \text { assuming that } 0 \leq p<1
$$

Using lemma 1.4.1 we have that $z_{n}>0$ eventually
Now,

$$
\begin{aligned}
x_{n-k} & =z_{n-k}+p x_{n-m-k} \\
& \geq z_{n-k}+p z_{n-m-k} \\
& \geq(1+p) z_{n},
\end{aligned}
$$

so equation (3.1.2) becomes

$$
\Delta z_{n}+q_{n}(1+p)^{\alpha} z_{n}^{\alpha} \leq 0
$$

multiplying the last inequality by $z_{n}^{-\alpha}$

$$
\begin{equation*}
z_{n}^{-\alpha} \Delta z_{n}+q_{n}(1+p)^{\alpha} \leq 0 . \tag{3.1.3}
\end{equation*}
$$

Define

$$
r(t)=z_{L}+(t-L) \Delta z_{L}, \quad L \leq t \leq L+1,
$$

so $\quad z_{L+1} \leq r(t) \leq z_{L}$, since $\Delta z_{L} \leq 0$,
but

$$
\begin{aligned}
& r^{\prime}(t)=\Delta z_{L} \\
& r^{\alpha}(t)=\left(z_{L}+(t-L) \Delta z_{L}\right)^{\alpha} \leq z_{L}^{\alpha},
\end{aligned}
$$

so

$$
\begin{equation*}
\frac{r^{\prime}(t)}{r^{\alpha}(t)} \leq \frac{\Delta z_{L}}{z_{L}^{\alpha}} \tag{3.1.4}
\end{equation*}
$$

using (3.1.3), (3.1.4) and the condition $\sum_{n=0}^{\infty} q_{n}=\infty$, we get

$$
\int_{r(N)}^{r(\infty)} \frac{d r}{r^{\alpha}}=-\infty,
$$

which contradicts the fact that $\alpha \in(0,1)$.

Note that to prove the other case we assume that $\alpha>1$ there exists $\lambda>k^{-1} \ln \alpha$ such that $\lim _{n \rightarrow \infty} \inf q_{n} \exp \left(-e^{\lambda n}\right)>0$. Then if $\left\{x_{n}\right\}$ is an eventually positive solution of equation (3.1.2). we have

$$
\begin{aligned}
x_{n-k} & =z_{n-k}+p x_{n-m-k} \\
& =z_{n-k}+p z_{n-m-k}+p^{2} x_{n-m-2 k} \\
& \vdots \\
& =z_{n-k}+p z_{n-m-k}+\ldots .+p^{L} z_{n-m-L k}+p^{L+1} x_{n-m-(L+1) k} \\
& \leq p^{L} z_{n-m-L k} .
\end{aligned}
$$

Back to (3.1.2) it becomes

$$
\Delta z_{n}+q_{n} p^{L \alpha} z_{n-m-L k}^{\alpha} \leq 0,
$$

for any $L \geq 0$ and where $p>0$

$$
\liminf _{n \rightarrow \infty} q_{n} \exp \left(-e^{\lambda n}\right)>0 \quad \text { iff } \quad \liminf _{n \rightarrow \infty} p^{L \alpha} q_{n} \exp \left(-e^{\lambda n}\right)>0
$$

Then by lemma 1.4.2, we get a contradiction, so $\left\{x_{n}\right\}$ is an oscillatory solution of equation (3.1.2). For other direction of the proof see [10].

Remark 3.1.1: In [17] Lin obtained a bounded oscillation for the higher order form of equation (3.1.1) if and only if $\sum_{n=n_{0}}^{\infty} n^{s} q_{n}=\infty$ where s is the order of the NDE.
Theorem 3.1.2: Suppose that $p=-1, \quad q_{n} \geq 0$ and $\sum_{n=N}^{\infty} q_{n}=\infty$ where N is a positive integer. Suppose further that for G is nondecreasing, $x G(x)>0$ for $x \neq 0$, and

$$
\int_{0}^{ \pm \varepsilon} \frac{d u}{G(u)}<\infty \quad \text { for all } \varepsilon>0
$$

then every solution of equation (3.1.1) is oscillatory.
Proof: Let $\left\{x_{n}\right\}$ be an eventually positive solution of equation (3.1.1), and define z_{n} again as in theorem 3.1.1, from equation (3.1.1) we have

$$
\Delta z_{n}=-q_{n} G\left(x_{n-k}\right) \leq 0, \quad n \geq 0
$$

(i.e. $\Delta z_{n} \leq 0$ eventually). Since q_{n} is not identically zero, z_{n} can not be eventually identically zero. Thus either z_{n} is eventually negative or eventually positive.
If $z_{n}<0$ eventually, then

$$
z_{n} \leq z_{N} \text { for } n \geq N,
$$

now

$$
\begin{aligned}
& z_{n}=x_{n}+p x_{n-m}, \quad p=-1 \\
& x_{n}=z_{n}+x_{n-m} \\
& x_{N+m n}=z_{N+m n}+x_{N+m n-m} \\
& \leq z_{N}+x_{N+(n-1) m} \\
& \leq z_{N}+z_{N+(n-1) m}+x_{N-(n-2) m} \\
& \vdots \\
& \leq n z_{N}+x_{N} \\
& \text { (i.e. } x_{N+m n} \leq n z_{N}+x_{N}, n \geq N \text {) }
\end{aligned}
$$

As $n \rightarrow \infty$ then $x_{N+m n}<0$ eventually, which is a contradiction, so z_{n} must be eventually positive. ($z_{n} \geq 0$ eventually).
Now

$$
\Delta z_{n}+q_{n} G\left(z_{n-k}\right) \leq 0,
$$

dividing by $G\left(z_{n-k}\right)$ we get

$$
\begin{equation*}
\frac{\Delta z_{n}}{G\left(z_{n-k}\right)}+q_{n} \leq 0 \quad, \quad n \geq N \tag{3.1.5}
\end{equation*}
$$

but we have that

$$
G(t) \leq G\left(z_{n-k}\right), \quad t \in\left[z_{n+1}, z_{n-k}\right],
$$

this implies

$$
\begin{equation*}
-\int_{z_{n+1}}^{z_{n}} \frac{d t}{G(t)} \leq \frac{\Delta z_{n}}{G\left(z_{n-k}\right)} \tag{3.1.6}
\end{equation*}
$$

using (3.1.5) and (3.1.6) we get

$$
\begin{aligned}
& -\int_{z_{n+1}}^{z_{n}} \frac{d t}{G(t)}+q_{n} \leq 0 \\
& -\int_{z_{n+1}}^{z_{N}} \frac{d t}{G(t)}+\sum_{i=N}^{n} q_{i} \leq 0
\end{aligned}
$$

Which is a contradiction, so $\left\{x_{n}\right\}$ is an oscillatory solution of equation (3.1.1).
Remark 3.1.2: The authors in [21] studied the Linearized oscillation of the first-order nonlinear NDE of the form

$$
\begin{equation*}
\Delta\left(x_{n}-p x_{n-m}\right)+\sum_{i=1}^{L} q_{i} G_{i}\left(x_{n-k_{i}}\right)=0, \quad n \geq n_{0} \tag{3.1.7}
\end{equation*}
$$

where , $p \in(-1,0], G_{i} \in C(\mathbf{R}, \mathbf{R}), q_{i} \in(0, \infty), m, k_{i} \in\{0,1,2, \ldots\}$ and $i=1, \ldots, L$
The theorems show that the oscillation of equation (3.1.7) is related to that of the linear case of equation (3.1.7). i.e. the equation of the form

$$
\begin{equation*}
\Delta\left(x_{n}-p x_{n-m}\right)+\sum_{i=1}^{L} q_{i} x_{n-k_{i}}=0 \tag{3.1.8}
\end{equation*}
$$

Remark 3.1.3: The results included in this section all mainly referred to [12], [21] and [29].

3.2 Oscillation criteria of first-order nonlinear NDE's with variable coefficients

Consider the first-order nonlinear NDE's of the form

$$
\begin{equation*}
\Delta\left(x_{n}+\delta_{1} p_{n} x_{n-m}\right)+\delta_{2} q_{n} G\left(x_{n-k}\right)=0, \quad n \geq 0 \tag{3.2.1}
\end{equation*}
$$

$\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are sequences of real numbers, k and m are integers and $\delta_{1}=\delta_{2}=1$.
In this section we discussed theorems which give sufficient conditions for the oscillation of all bounded solutions of equation (3.2.1) when $q_{n} \geq 0, m>0$ and $k \geq 0$ in theorem 3.2.3 and when $p_{n}>0, q_{n}>0, m>0$ and k is any integer in theorem 3.2.4.

Theorem 3.2.1: Suppose that $-1<b_{1} \leq p_{n} \leq 0$, where b_{1} is a constant.
Let

$$
\begin{equation*}
\lim _{|u| \rightarrow 0} \inf \frac{G(u)}{u}>\gamma>0 \tag{3.2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf \sum_{i=n-k}^{n-1} q_{i}>\frac{1}{\gamma} \frac{k^{k+1}}{(k+1)^{k+1}}, \tag{3.2.3}
\end{equation*}
$$

then every solution of the equation

$$
\begin{equation*}
\Delta\left(x_{n}+p_{n} x_{n-m}\right)+q_{n} G_{n}\left(x_{n-k}\right)=0, \tag{3.2.4}
\end{equation*}
$$

where, $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are sequences of real numbers with $q_{n} \geq 0, G \in C(\mathbf{R}, \mathbf{R})$ is nondecreasing and $u G(u)>0$ for $u \neq 0$ and $m>0, k \geq 0$ are integers, also the value of γ is limited by inequality (3.2.3).

Proof: Let $\left\{x_{n}\right\}$ be an eventually positive solution of equation (3.2.4) ($x_{n}>0$ for $n \geq N>0)$, let $r=\max \{m, k\}$ and define

$$
\begin{equation*}
z_{n}=x_{n}+p_{n} x_{n-m}, \tag{3.2.5}
\end{equation*}
$$

then $\Delta z_{n} \leq 0$ for $n \geq N+r$. Then either

$$
z_{n}>0 \text { or } z_{n}<0 \text { for } n \geq N_{1}>N+r
$$

Let $z_{n}>0$ for $n \geq N_{1}$. If $\lim _{n \rightarrow \infty} z_{n}=\alpha$, then $0 \leq \alpha<\infty$. Suppose that $0<\alpha<\infty$, then $z_{n}>\beta>0$ for $n \geq N_{2}>N_{1}$. As $z_{n}<x_{n}$ for $n \geq N_{1}$, then for $n \geq N_{3}>N_{2}+r$

$$
\begin{equation*}
G(\beta) \sum_{n=N_{3}}^{j-1} q_{n}<\sum_{n=N_{3}}^{j-1} q_{n} G\left(z_{n-k}\right) \leq \sum_{n=N_{3}}^{j-1} q_{n} G\left(x_{n-k}\right)=-\sum_{n=N_{3}}^{j-1} \Delta z_{n}<z_{N_{3}} \tag{3.2.6}
\end{equation*}
$$

From (3.2.6) we get a contradiction. Hence $\lim _{n \rightarrow \infty} z_{n}=0$.
From inequality (3.2.2) we have for $n \geq N_{4}>N_{1}$,

$$
G\left(z_{n}\right)>\gamma z_{n},
$$

So we get from equation (3.2.1) that for $n \geq N_{4}+r$

$$
\begin{equation*}
\Delta z_{n}+\gamma q_{n} z_{n-k}<\Delta z_{n}+q_{n} G\left(z_{n-k}\right) \leq \Delta z_{n}+q_{n} G\left(x_{n-k}\right)=0, \tag{3.2.7}
\end{equation*}
$$

inequality (3.2.7) with lemma 1.4.3 leads to a contradiction. Hence $z_{n}<0$ for $n \geq N_{1}$ Thus $x_{n}<x_{n-m}$ for $n \geq N_{1}$ consequently, $\left\{z_{n}\right\}$ is bounded, since $\lim _{n \rightarrow \infty} z_{n}$ exists, then $z_{n}<\alpha<0$ for $n \geq N_{2}>N_{1}$.
Hence for $n \geq N_{3}>N_{2}+r$,

$$
z_{n}=x_{n}+p_{n} x_{n-m}>b_{1} x_{n-m},
$$

that is

$$
x_{n-k}>\left(\frac{1}{b_{1}}\right) z_{n+m-k}>\left(\frac{\alpha}{b_{1}}\right),
$$

from equation (3.2.1) we obtain

$$
G\left(\frac{\alpha}{b_{1}}\right) \sum_{n=N_{3}}^{j-1} q_{n}<\sum_{n=N_{3}}^{j-1} q_{n} G\left(x_{n-k}\right)=-\sum_{n=N_{3}}^{j-1} \Delta z_{n}<-z_{j}
$$

Thus $\sum_{n=N_{3}}^{\infty} q_{n}<\infty$, which is a contradiction, that completes the proof.
In fact we will make use of theorem 3.2.1 to determine the sufficient conditions for which the nonlinear NDE

$$
\begin{equation*}
\Delta\left(x_{n}+p_{n} x_{n-m}\right)+\left.\left.q_{n}\right|_{n-k}\right|^{\alpha} \operatorname{sgn}\left(x_{n-k}\right)=0, \tag{3.2.8}
\end{equation*}
$$

oscillates.

Remark 3.2.1: Suppose that $-1<b_{1} \leq p_{n} \leq 0$, where b_{1} is a constant, and the relations (3.2.2) and (3.2.3) hold. Then every solution of equation (3.2.8) is oscillatory, provided that $0<\alpha \leq 1$.

Proof: Let $\left\{x_{n}\right\}$ be an eventually positive solution of equation (3.2.7) for $n \geq N>0$, let z_{n} as in (3.2.5) and $r=\max \{m, k\}$
then $\Delta z_{n} \leq 0$, for $n \geq N+r$, two possible choices for z_{n} arise:
If $z_{n}<0$ for $n \geq N_{1}$, then $x_{n}<x_{n-m}$ for $n \geq N_{1}$, but $\lim _{n \rightarrow \infty} z_{n}$ exists, this means that $\left\{z_{n}\right\}$ is bounded, then $z_{n}<\alpha_{1}<0$, for $n \geq N_{2}>N_{1}$.
Now

$$
z_{n}=x_{n}+p_{n} x_{n-m}>b_{1} x_{n-m},
$$

so

$$
z_{n+m-k}>b_{1} x_{n-k},
$$

or

$$
\begin{equation*}
x_{n-k}>\frac{1}{b_{1}} z_{n+m-k}>\frac{\alpha_{1}}{b_{1}}, \quad n \geq N_{3}>N_{2}+r \tag{3.2.9}
\end{equation*}
$$

Using equation (3.2.8) and taking the summation for (3.2.9) we have for $0<\alpha \leq 1$

$$
\begin{aligned}
\left|\frac{\alpha_{1}}{b_{1}}\right|^{\alpha} \operatorname{sgn}\left(\frac{\alpha_{1}}{b_{1}}\right) \sum_{n=N_{3}}^{j-1} q_{n} & <\sum_{n=N_{3}}^{j-1} q_{n}\left|x_{n-k}\right|^{\alpha} \operatorname{sgn}\left(x_{n-k}\right) \\
& =-\sum_{n=N_{3}}^{j-1} \Delta z_{n}<-z_{j},
\end{aligned}
$$

let $j \rightarrow \infty$, then $\sum_{n=N_{3}}^{\infty} q_{n}<\infty$, which contradicts inequality (3.2.3).
If $z_{n} \geq 0$ for $n \geq N_{1}$, then,
if $\lim _{n \rightarrow \infty} z_{n}=\alpha_{2}$ then $0 \leq \alpha_{2}<\infty$
Suppose to contrary that $0<\alpha_{2}<\infty$, then $z_{n}>\beta>0$ for $n \geq N_{2}>N_{1}$, similarity using (3.2.8) and taking the summation from N_{3} to $(j-1)$, we get for $0<\alpha \leq 1$

$$
\begin{aligned}
|\beta|^{\alpha} \operatorname{sgn}(\beta) \sum_{n=N_{3}}^{j-1} q_{n} & <\sum_{n=N_{3}}^{j-1} q_{n}\left|z_{n-k}\right|^{\alpha} \operatorname{sgn}\left(z_{n-k}\right) \\
& \leq \sum_{n=N_{3}}^{j-1} q_{n}\left|x_{n-k}\right|^{\alpha} \operatorname{sgn}\left(x_{n-k}\right) \\
& =-\sum_{n=N_{3}}^{j-1} \Delta z_{n}<z_{N_{3}}, \quad n \geq N_{3}>N_{2}+r
\end{aligned}
$$

which also a contradiction, hence

$$
\lim _{n \rightarrow \infty} z_{n}=0
$$

now, from (3.2.2) we have

$$
\left|z_{n}\right|^{\alpha} \operatorname{sgn}\left(z_{n}\right)>\gamma_{n}, \text { for } n \geq N_{4}>N_{1}
$$

so

$$
\Delta z_{n}+\gamma q_{n} z_{n-k}<\Delta z_{n}+\left.\left.q_{n}\right|_{n-k}\right|^{\alpha} \operatorname{sgn}\left(z_{n-k}\right)
$$

$$
\leq \Delta z_{n}+q_{n}\left|x_{n-k}\right|^{\alpha} \operatorname{sgn}\left(x_{n-k}\right)=0, \quad 0<\alpha \leq 1
$$

which contradicts lemma 1.4.3, so every solution of equation (3.2.8) is oscillatory.
Remark 3.2.2: When $\alpha>1$ we can apply theorem 3.2.2 fails to hold.
Remark 3.2.3: We will see later (in section 3.5) some oscillation theorems for equation (3.2.8) when $p_{n}=-1$, for $\alpha>0$ which includes the sublinear, the linear and the super linear cases.

Remark 3.2.4: In theorem 3.2 .1 if we replace the condition $-1<b_{1} \leq p_{n} \leq 0$ by $-\infty<a_{1} \leq p_{n} \leq-1$ where b_{1}, a_{1} are constants then the conclusion we get, that every solution of equation (3.2.4) oscillates or tends to $\pm \infty$ as $n \rightarrow \infty$.

Theorem 3.2.2: Let $0 \leq p_{n} \leq 1$ and there exist $\lambda, \mu>0$ such that for $v, u>0$

$$
\begin{equation*}
G(u+v) \leq \lambda[G(u)+G(v)], \tag{3.2.10}
\end{equation*}
$$

and for $v, u<0$

$$
\begin{equation*}
G(u+v) \geq \mu[G(u)+G(v)], \tag{3.2.11}
\end{equation*}
$$

and suppose that G satisfies the condition

$$
\begin{equation*}
\int_{0}^{ \pm \varepsilon} \frac{d u}{G(u)}<\infty, \text { for all } \varepsilon>0 \tag{3.2.12}
\end{equation*}
$$

If $m \leq k$ and $\sum_{n=k}^{\infty} q_{n}^{*}=\infty$, then every solution of equation (3.2.4) oscillates, where $q_{n}^{*}=\min \left\{q_{n}, q_{n-m}\right\}, n \geq m$.

Proof: Let $\left\{x_{n}\right\}$ be an eventually positive solution of equation (3.2.4), $x_{n}>0$ for $n \geq N$. Setting $r=\max \{m, k\}$ and z_{n} as in (3.2.5) we get that $z_{n}>0$ and $\Delta z_{n} \leq 0$ for $n \geq N+r$. Hence $\lim _{n \rightarrow \infty} z_{n}$ exists.
Using (3.2.10), there exists $\lambda>0$ such that

$$
G\left(x_{n-k}+x_{n-m-k}\right) \leq \lambda\left[G\left(x_{n-k}\right)+G\left(x_{n-m-k}\right)\right], \quad n \geq N_{1}>N+2 r
$$

but $z_{n} \leq x_{n}+x_{n-m}$ for $n \geq N_{1}$, then from equation (3.2.4) we get:

$$
\begin{aligned}
0 & =\lambda \Delta z_{n}+\lambda q_{n} G\left(x_{n-k}\right)+\lambda \Delta z_{n-m}+\lambda q_{n-m} G\left(x_{n-m-k}\right) \\
& \geq \lambda \Delta z_{n}+\lambda \Delta z_{n-m}+\lambda q_{n}^{*}\left[G\left(x_{n-k}\right)+G\left(x_{n-m-k}\right)\right] \\
& \geq \lambda \Delta z_{n}+\lambda \Delta z_{n-m}+q_{n}^{*} G\left(x_{n-k}+x_{n-m-k}\right) \\
& \geq \lambda \Delta z_{n}+\lambda \Delta z_{n-m}+q_{n}^{*} G\left(z_{n-k}\right)
\end{aligned}
$$

Dividing by $G\left(z_{n-k}\right)$ we get

$$
\begin{equation*}
q_{n}^{*}+\frac{\lambda \Delta z_{n}}{G\left(z_{n-k}\right)}+\frac{\lambda \Delta z_{n-m}}{G\left(z_{n-k}\right)} \leq 0, \tag{3.2.13}
\end{equation*}
$$

also

$$
\begin{equation*}
q_{n}^{*}+\frac{\lambda \Delta z_{n}}{G\left(z_{n}\right)}+\frac{\lambda \Delta z_{n-m}}{G\left(z_{n-k}\right)} \leq 0, \quad n \geq N_{1} \tag{3.2.14}
\end{equation*}
$$

for $z_{n+1}<x<z_{n}$ and $z_{n+1-m}<y<z_{n-m}$, we have

$$
\int_{z_{n+1}}^{z_{n}} \frac{d x}{G(x)} \geq \int_{z_{n+1}}^{z_{n}} \frac{d x}{G\left(z_{n}\right)}=-\frac{\Delta z_{n}}{G\left(z_{n}\right)}
$$

and

$$
\int_{z_{n+1-m}}^{z_{n-m}} \frac{d y}{G(y)} \geq \int_{z_{n+1-m}}^{z_{n-m}} \frac{d y}{G\left(z_{n-m}\right)}=-\frac{\Delta z_{n-m}}{G\left(z_{n-m}\right)}
$$

From equation (3.2.14) we get

$$
\begin{aligned}
\sum_{n=N_{1}}^{j-1} q_{n}^{*} & \leq-\sum_{n=N_{1}}^{j-1} \int_{z_{n}}^{z_{n+1}} \frac{d x}{G(x)}-\sum_{n=N_{1}}^{j-1} \int_{z_{n-m}}^{z_{n+1}-m} \frac{d y}{G(y)} \\
& =-\int_{z_{N_{1}}}^{z_{j}} \frac{d x}{G(x)}-\int_{z_{N_{1-m}-m}}^{z_{j-m}} \frac{d y}{G(y)}
\end{aligned}
$$

Hence, $\sum_{n=N_{1}}^{\infty} q_{n}^{*}<\infty$, which is a contradiction.
Remark 3.2.5: In theorem 3.2.3 if we take the sequence $\left\{p_{n}\right\}$ to be $-1 \leq p_{n} \leq a_{2}<\infty$ where a_{2} is a constant and conditions (3.2.10) and (3.2.12) hold then every solution of equation (3.2.4) oscillates provided that $\sum_{n=k}^{\infty} Q_{n}=\infty, Q_{n}=\min \left\{q_{n}, \frac{q_{n-m}}{G\left(a_{2}\right)}\right\}$, and for $u, v \in \mathbf{R}$ we have $G(u v)=G(u) G(v)$

The following theorem will prove the oscillatory behavior of equation (3.2.4) without the asymptotic condition on $\left\{q_{n}\right\}$, here the oscillation is related by a non-neutral difference inequality. But before that we need the following conditions:
(C1) $G \in C(\mathbf{R}, \mathbf{R})$ is nondecreasing and $u G(u)>0$ for $u \neq 0$.
(C2) There exists a continuous function $\varphi: \mathbf{R} \rightarrow \mathbf{R}$ such that $\varphi(u)$ is nondecreasing in $u \in \mathbf{R}, u \varphi(u)>0$ for $u \neq 0$ and

$$
|\varphi(u+v)| \leq|G(u)+G(v)|, \text { for } u v>0
$$

(C3) There exists a continuous function $w: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$such that

$$
|G(u v)| \leq w(u)|G(v)|, \text { for } u>0 \text { and } v \in \mathbf{R}
$$

Theorem 3.2.3: Suppose that $p_{n}>0$ and $q_{n}>0$ real sequences, $m>0, k$ is any integer, suppose further that (C 1)-(C3) hold. Then every solution of equation (3.2.4) is oscillatory if there exists a positive real sequence $\left\{\lambda_{n}\right\}$ such that $0<\lambda_{n}<1$ for $n \geq n_{0}$, and the difference inequality

$$
\left\{\Delta y_{n}+Q_{n} \varphi\left(y_{n+m-k}\right)\right\} \operatorname{sgn} y_{n} \leq 0
$$

does not have any nonoscillatory solution, where

$$
Q_{n}=\min \left\{\lambda_{n} q_{n}, \frac{\left[1-\lambda_{n-m}\right] q_{n-m}}{w\left(p_{n-k}\right)}\right\}
$$

Proof: Suppose that $\left\{x_{n}\right\}$ is an eventually positive solution of equation (3.2.4). letting $z_{n}=x_{n}+p_{n} x_{n-m}$. Then $z_{n}>0$ and z_{n} is decreasing for all large $n \geq n_{0}$. Summing equation (3.2.4) from n to ∞, we have

$$
z_{n}=\lim _{n \rightarrow \infty} z_{n}+\sum_{s=n}^{\infty} q_{s} G\left(x_{s-k}\right) \geq \sum_{s=n}^{\infty} q_{s} G\left(x_{s-k}\right),
$$

for all large $n \geq n_{0}$, we see that

$$
\begin{aligned}
z_{n} & \geq \sum_{s=n}^{\infty} \lambda_{s} q_{s} G\left(x_{s-k}\right)+\sum_{s=n}^{\infty}\left(1-\lambda_{s}\right) q_{s} G\left(x_{s-k}\right) \\
& =\sum_{s=n}^{\infty} \lambda_{s} q_{s} G\left(x_{s-k}\right)+\sum_{s=n+m}^{\infty}\left(1-\lambda_{s-m}\right) q_{s-m} G\left(x_{s-k-m}\right) \\
& \geq \sum_{s=n+m}^{\infty} Q_{s} G\left(x_{s-k}\right)+\sum_{s=n+m}^{\infty} Q_{s} w\left(p_{s-k}\right) G\left(x_{s-k-m}\right) \\
& \geq \sum_{s=n+m}^{\infty} Q_{s} G\left(x_{s-k}\right)+\sum_{s=n+m}^{\infty} Q_{s} G\left(p_{s-k} x_{s-k-m}\right) \\
& =\sum_{s=n+m}^{\infty} Q_{s}\left[G\left(x_{s-k}\right)+G\left(p_{s-k} x_{s-k-m}\right)\right] \\
& \geq \sum_{s=n+m}^{\infty} Q_{s} \varphi\left(x_{s-k}+p_{s-k} x_{s-k-m}\right) \\
& =\sum_{s=n+m}^{\infty} Q_{s} \varphi\left(z_{s-k}\right), \text { for all } n \geq n_{0},
\end{aligned}
$$

now let

$$
y_{n}=\sum_{s=n}^{\infty} Q_{s} \varphi\left(z_{s-k}\right)>0,
$$

then $z_{n} \geq y_{n+m}$ eventually. But

$$
\Delta y_{n}=-Q_{n} \varphi\left(z_{n-k}\right) \leq-Q_{n} \varphi\left(y_{n-k+m}\right), \text { for all } n \geq n_{0}
$$

this means that the last inequality has an eventually positive solution, which is a contradiction, so every solution of equation (3.2.4) is oscillatory.

Corollary 3.2.1: Every solution of the equation

$$
\begin{equation*}
\Delta\left(x_{n}+p_{n} x_{n-m}\right)+q_{n} x_{n-k}^{\alpha}=0, \tag{3.2.15}
\end{equation*}
$$

where α is ratio of odd positive integers, $\left\{p_{n}\right\}$ is a positive real sequence and $m>0$, $\left\{q_{n}\right\}$ is a positive real sequence and k is any integer,
is oscillatory if the difference inequality

$$
\Delta y_{n}+Q_{n} y_{n-k+m}^{\alpha} \leq 0
$$

does not have any eventually positive solution, where

$$
Q_{n}=\min \left\{1,2^{1-\alpha}\right\} \min \left\{\frac{q_{n}}{1+p_{n-k+m}^{\alpha}}, \frac{q_{n-m}}{1+p_{n-k}^{\alpha}}\right\}
$$

Proof: Suppose that $\left\{x_{n}\right\}$ is an eventually positive solution of equation (3.2.15). Let $z_{n}=x_{n}+p_{n} x_{n-m}$, it is clear that $z_{n}>0$ and z_{n} is decreasing for all large $n \geq n_{0}$. Summing equation (3.2.15) from n to ∞, to get

$$
z_{n}=\lim _{n \rightarrow \infty} z_{n}+\sum_{s=n}^{\infty} q_{s} x_{s-k}^{\alpha}
$$

$$
\geq \sum_{s=n}^{\infty} q_{s} x_{s-k}^{\alpha}, \text { for all large } n \geq n_{0} .
$$

But we have

$$
\begin{aligned}
z_{n} & \geq \sum_{s=n}^{\infty} \frac{q_{s}}{1+p_{s-k+m}^{\alpha}} x_{s-k}^{\alpha}+\sum_{s=n}^{\infty} \frac{p_{s-k+m}^{\alpha}}{1+p_{s-k+m}^{\alpha}} q_{s} x_{s-k}^{\alpha} \\
& =\sum_{s=n}^{\infty} \frac{q_{s}}{1+p_{s-k+m}^{\alpha}} x_{s-k}^{\alpha}+\sum_{s=n+m}^{\infty} \frac{p_{s-k}^{\alpha}}{1+p_{s-k}^{\alpha}} q_{s-m} x_{s-m-k}^{\alpha} \\
& \geq \sum_{s=n+m}^{\infty} Q_{s} x_{s-k}^{\alpha}+\sum_{s=n+m}^{\infty} Q_{s} p_{s-k}^{\alpha} x_{s-m-k}^{\alpha} \\
& \geq \sum_{s=n+m}^{\infty} Q_{s} x_{s-k}^{\alpha}+\sum_{s=n+m}^{\infty} Q_{s}\left(p_{s-k} x_{s-m-k}\right)^{\alpha} \\
& =\sum_{s=n+m}^{\infty} Q_{s}\left(x_{s-k}^{\alpha}+\left(p_{s-k} x_{s-m-k}\right)^{\alpha}\right) \\
& \geq \sum_{s=n+m}^{\infty} Q_{s} \varphi\left(x_{s-k}+p_{s-k} x_{s-m-k}\right) \\
& =\sum_{s=n+m}^{\infty} Q_{s} \varphi\left(z_{s-k}\right), \text { for all } n \geq n_{0},
\end{aligned}
$$

let

$$
y_{n}=\sum_{s=n}^{\infty} Q_{s} \varphi\left(z_{s-k}\right)>0,
$$

hence, $z_{n} \geq y_{n+m}$ eventually. We see that

$$
\Delta y_{n}=-Q_{n} \varphi\left(z_{n-k}\right) \leq-Q_{n} \varphi\left(y_{n-k+m}\right),
$$

i.e. $\quad \Delta y_{n}+Q_{n} y_{n-k+m}^{\alpha} \leq 0$, for all $n \geq n_{0}$
so y_{n} is an eventually positive solution of the above inequality which is a contradiction.

Note: in the last corollary it is clear that

$$
\begin{aligned}
& \lambda_{n}=\frac{1}{1+p_{n-k+m}^{\alpha}}, w(u)=u^{\alpha} \\
& \varphi(u)=u^{\alpha}
\end{aligned}
$$

Example 3.2.1: Consider the NDE

$$
\begin{equation*}
\Delta\left(x_{n}+\frac{1}{8}\left((-1)^{n+1}-1\right) x_{n-1}\right)+\frac{5}{3} x_{n-2}^{\frac{1}{3}}=0, n \geq 0 \tag{3.2.16}
\end{equation*}
$$

using theorem 3.2.1, we have

$$
\sum_{i=n-2}^{n-1} q_{i}=\frac{10}{3}>\frac{1}{\gamma}\left(\frac{8}{27}\right) \text { if and only if } \gamma>\frac{8}{90} .
$$

As a consequence, every solution of the equation (3.2.16) is oscillatory.
Example 3.2.2: Consider the NDE

$$
\begin{equation*}
\Delta\left(x_{n}+\frac{1}{3}\left(1+(-1)^{n}\right) x_{n-1}\right)+\frac{4}{3} x_{n-2}^{\frac{1}{3}}=0, n \geq 0 \tag{3.2.17}
\end{equation*}
$$

Applying theorem (3.2.3), it is clear that the sequence $\left\{p_{n}\right\}$ satisfies $0 \leq p_{n} \leq 1$ since $0 \leq \frac{1}{3}\left(1+(-1)^{n}\right) \leq 1$.
To check conditions (3.2.10) and (3.2.11)

$$
\begin{aligned}
& (u+v)^{\frac{1}{3}} \leq \lambda\left(u^{\frac{1}{3}}+v^{\frac{1}{3}}\right) \text { for } u, v>0 \text { and } \lambda>0 \\
& (u+v)^{\frac{1}{3}} \geq \mu\left(u^{\frac{1}{3}}+v^{\frac{1}{3}}\right) \text { for } u, v<0 \text { and } \mu>0
\end{aligned}
$$

also

$$
\int_{0}^{ \pm \sigma} \frac{d u}{u^{\frac{1}{3}}}=\frac{3}{2}\left[u^{\frac{2}{3}}\right]_{0}^{ \pm \sigma}<\infty, \text { for all } \sigma>0
$$

and finally,

$$
\sum_{n=k}^{\infty} q_{n}^{*}=\sum_{n=-2}^{\infty} \frac{4}{3}=\infty \text { is satisfied. }
$$

Then every solution of equation (3.2.17) is oscillatory. In particular $x_{n}=(-1)^{3 n}$ is an oscillatory solution of equation (3.2.17).

Remark 3.2.6: The results of this section are mainly referred to [20] and [23].

3.3 Oscillation criteria of first-order forced nonlinear NDE's with both constant and variable coefficients

Consider the first-order forced nonlinear NDE of the form

$$
\begin{equation*}
\Delta\left(x_{n}+\delta_{1} p x_{n-m}\right)+\delta_{2} q_{n} G\left(x_{k_{n}}\right)=f_{n}, \tag{3.3.1}
\end{equation*}
$$

where, $\delta_{1}=+1, \delta_{2}=-1, p$ is nonnegative real number, $\left\{k_{n}\right\}$ is a sequence of nonnegative integers with $\lim _{n \rightarrow \infty} k_{n}=\infty,\left\{f_{n}\right\}$ and $\left\{q_{n}\right\}$ are also sequences of real numbers with $q_{n} \geq 0$ eventually, the function G is a real valued function satisfying $x G(x)>0$ for $x \neq 0$ and $m \in \mathbf{N}(1)$.

In this section we discuss theorems that establish sufficient conditions of the oscillation of equation (3.3.1) under certain assumptions on the forcing term.

Theorem 3.3.1: Suppose that there exists a sequence $\left\{h_{n}\right\}$ of real numbers such that

$$
\begin{equation*}
\Delta h_{n}=f_{n} \text { and }\left\{h_{n}\right\} \text { is oscillatory }, \tag{3.3.2}
\end{equation*}
$$

also $\left\{h_{n}\right\}$ satisfies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup h_{n}=\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} \inf h_{n}=-\infty, \tag{3.3.3}
\end{equation*}
$$

then every bounded solution of equation (3.3.1) is oscillatory.
Proof: Suppose to contrary that $\left\{x_{n}\right\}$ is an eventually positive bounded solution of (3.3.1), so there exists a positive integer n_{0} such that $x_{n}>0, x_{n-m}>0$ and $x_{k_{n}}>0$ for $n \geq n_{0}$.

Define

$$
\begin{equation*}
y_{n}=x_{n}+p x_{n-m} \text { and } z_{n}=y_{n}-h_{n} \tag{3.3.4}
\end{equation*}
$$

equation (3.3.1) becomes

$$
\Delta y_{n}-q_{n} G\left(x_{k_{n}}\right)=f_{n},
$$

hence

$$
\Delta z_{n}=q_{n} G\left(x_{k_{n}}\right) \geq 0 \text { for } n \geq n_{0}
$$

also $z_{n}>0$ for $n \geq n_{0}$ because if not, then $z_{n} \leq 0$ for $n \geq n_{1} \geq n_{0}$ and $y_{n}-h_{n} \leq 0 \Rightarrow$ $0<y_{n} \leq h_{n}$ for $n \geq n_{1}$, which is a contradiction because $\left\{h_{n}\right\}$ is oscillatory.
Thus $z_{n}>0$ for $n \geq n_{0}$ holds and

$$
\Delta\left(y_{n}-h_{n}\right) \geq 0 \text { and } y_{n}-h_{n} \geq 0 \text { for } n \geq n_{0}
$$

then

$$
\lim _{n \rightarrow \infty}\left(y_{n}-h_{n}\right)=\beta, \text { such that } \beta \in[0, \infty)
$$

but

$$
\lim _{n \rightarrow \infty} \sup h_{n}=\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} \inf h_{n}=-\infty
$$

So there exists a sequence $\left\{n_{L}\right\}$ such that $\lim _{L \rightarrow \infty} h_{n_{L}}=\infty$, but we have $\lim _{L \rightarrow \infty}\left(y_{n_{L}}-h_{n_{L}}\right)=\beta$, then $\left\{y_{n_{L}}\right\}$ is unbounded, which is a contradiction, then every bounded solution of (3.3.1) is oscillatory.

Theorem 3.3.2: Assume that $q_{n} \leq 0$ eventually, then every solution of equation (3.3.1) is oscillatory provided that the conditions (3.3.2) and (3.3.3) hold.

Proof: Suppose that $\left\{x_{n}\right\}$ is an eventually positive solution of equation (3.3.1), also we choose n_{0} such that $x_{n}>0, x_{n-m}>0$ and $x_{k_{n}}>0$ for $n \geq n_{0}>0$.
With y_{n} and z_{n} as in theorem (3.3.1) we have

$$
\Delta z_{n}=q_{n} G\left(x_{k_{n}}\right) \leq 0, \text { for } n \geq n_{0}
$$

again with $z_{n}>0$ for $n \geq n_{0}$, so

$$
\Delta\left(y_{n}-h_{n}\right) \leq 0 \quad \text { and } \quad y_{n}-h_{n}>0 \text { for } n \geq n_{0}
$$

then $\lim _{n \rightarrow \infty}\left(y_{n}-h_{n}\right)=\beta^{*}$, but from (3.3.3) it follows that there exists a sequence $\left\{n_{L}\right\}$ such that

$$
\lim _{L \rightarrow \infty} h_{n_{L}}=-\infty
$$

but we have

$$
\lim _{L \rightarrow \infty}\left(y_{n_{L}}-h_{n_{L}}\right)=\beta^{*},
$$

then the sequence $\left\{y_{n_{L}}\right\}$ can not be positive, which is a contradiction, then every solution of (3.3.1) must be oscillatory.

Theorem 3.3.3: Suppose that equation (3.3.1) is superlinear. Suppose further that the sequence $\left\{h_{n}\right\}$ is periodic of period ρ and satisfies (3.3.2) and (3.3.3). If

$$
\sum_{n \in A} q_{n}=\infty
$$

where $A=\left\{n \in N: k_{n}>n+1\right\}$, then equation (3.3.1) is oscillatory provided that $0 \leq p<1$

Proof: Suppose that $\left\{x_{n}\right\}$ is an eventually positive solution of equation (3.3.1), again we choose a positive integer n_{0} such that x_{n}, x_{n-m} and $x_{k_{n}}$ are all positive for $n \geq n_{0}>0$.
We define y_{n} and z_{n} as in theorem (3.3.1),

$$
\begin{align*}
& \Delta y_{n}-q_{n} G\left(x_{k_{n}}\right)=f_{n} \tag{3.3.5}\\
& \Delta z_{n}=q_{n} G\left(x_{k_{n}}\right) \geq 0 \tag{3.3.6}
\end{align*}
$$

with $z_{n}>0$ for $n \geq n_{0}$, now

$$
\begin{aligned}
x_{n}+p x_{n-m} & =z_{n}+h_{n} \\
x_{n} & =z_{n}+h_{n}-p x_{n-m} \\
& =z_{n}+h_{n}-p\left(z_{n-m}+h_{n-m}-p x_{n-2 m}\right) \\
& =z_{n}+h_{n}-p z_{n-m}-p h_{n-m}+p^{2}\left(z_{n-2 m}+h_{n-2 m}-p x_{n-3 m}\right)
\end{aligned}
$$

We proceed so that we can choose a sufficient large integer n_{1} such that

$$
x_{n} \geq(1-p)\left(z_{n}+h_{n}\right) \text { for } n \geq n_{1},
$$

also there exists an integer $n_{2} \geq n_{1}$ such that

$$
\begin{equation*}
x_{n} \geq(1-p)\left(z_{n}+h_{n_{2}}\right)=\xi_{n} \text { for } n \geq n_{2}, \tag{3.3.7}
\end{equation*}
$$

but we have

$$
\begin{align*}
& (1-p)\left(z_{n+1}+h_{n_{2}}\right)=\xi_{n+1} \tag{3.3.8}\\
& (1-p)\left(z_{n}+h_{n_{2}}\right)=\xi_{n} . \tag{3.3.9}
\end{align*}
$$

Subtracting (3.3.9) from (3.3.8) to get

$$
\Delta z_{n}=\frac{1}{1-p} \Delta \xi_{n} \text { for } n \geq n_{2}
$$

and

$$
\begin{aligned}
& \xi_{n}=(1-p)\left(z_{n}+h_{n_{2}}\right) \\
& \xi_{n} \geq(1-p)\left(z_{n_{2}}+h_{n_{2}}\right)>0 \text { for } n \geq n_{2} .
\end{aligned}
$$

It follows, from (3.3.6) and (3.3.7) that

$$
\begin{equation*}
\Delta \xi_{n} \geq(1-p) q_{n} G\left(\xi_{k_{n}}\right) \text { for } n \geq n_{2} \tag{3.3.10}
\end{equation*}
$$

dividing (3.3.10) by $G\left(\xi_{n+1}\right)$ and summing from n_{2} to n, we get

$$
\sum_{i=n_{2}}^{n} \frac{\Delta \xi_{i}}{G\left(\xi_{i+1}\right)} \geq(1-p) \sum_{i \in D} q_{i},
$$

where $D=A \cap\left[n_{2}, n\right]$, taking in consideration that $\xi_{n+1} \geq \xi_{k_{n}}$ on D and hence

$$
\sum_{i \in D} q_{i}<\sum_{i=n_{2}}^{n} \frac{\Delta \xi_{i}}{G\left(\xi_{i+1}\right)}<\infty
$$

Which is a contradiction, and hence every solution of equation (3.3.1) is oscillatory.
The following theorem is for the case when

$$
\begin{equation*}
\frac{G(x)}{x} \geq M \text { for } x \neq 0, M \text { is a positive constant } \tag{3.3.11}
\end{equation*}
$$

Theorem 3.3.4: there exists an integer $l \geq 2$ such that $k_{n} \geq n+l, n \in \mathbf{N}(1)$, also $\left\{h_{n}\right\}$ is periodic of period ρ and satisfies condition (3.3.2), then equation (3.3.1) is oscillatory provided that $0 \leq p<1$, and

$$
\lim _{n \rightarrow \infty} \inf \sum_{i=n-l+1}^{n-1} q_{i}>\gamma^{*}\left(\frac{l}{l+1}\right)^{l+1}
$$

where, $\gamma^{*}=\frac{1}{M(1-p)}$.
Proof: Suppose that equation (3.3.1) has an eventually positive solution, then we proceed as in the proof of theorem 3.3.3 to have

$$
\begin{aligned}
\Delta z_{n} & =q_{n} G\left(x_{k_{n}}\right), \quad \text { using condition (3.3.11) for } n \geq n_{0} \\
& \geq M q_{n} x_{k_{n}},
\end{aligned}
$$

also

$$
\begin{aligned}
& x_{n} \geq(1-p)\left(z_{n}+h_{n_{2}}\right)=\xi_{n} \text { for } n \geq n_{2} \geq n_{1} \\
& \Delta \xi_{n}=(1-p)\left(\Delta z_{n}\right) \\
& \frac{\Delta \xi_{n}}{(1-p)} \geq q_{n} G\left(x_{k_{n}}\right) \\
& \quad \geq M q_{n} x_{k_{n}} \\
& \quad \geq M q_{n} \xi_{k_{n}} \geq M q_{n} \xi_{n+l} \\
& \left.\quad \Delta \xi_{n} \geq M(1-p) q_{n} \xi_{n+l}, \text { for } n \geq N^{*} \text { (sufficiently large) }\right)
\end{aligned}
$$

in view of lemma 1.4.3 the last inequality has no eventually positive solution which is a contradiction, so every solution of equation (3.3.1) is oscillatory.

Theorem 3.3.5: Suppose that $\left\{h_{n}\right\}$ is periodic of period ρ and satisfies condition (3.3.2), suppose that $G^{\prime}(x) \geq 0$ for $x \neq 0$. If

$$
\sum_{n=n_{0}} q_{n}=\infty \quad, \quad n_{0} \geq 0
$$

Then every bounded solution of equation (3.3.1) is oscillatory provided that $0 \leq p<1$.
Proof: Suppose that $\left\{x_{n}\right\}$ is an eventually bounded positive solution, and we proceed as in the proof of theorem 3.3.3 until we reach to

$$
\Delta \xi_{n}>(1-p) q_{n} G\left(\xi_{k_{n}}\right), \quad n \geq n_{2}
$$

but we know that $\left\{\xi_{n}\right\}$ is bounded and increasing sequence, so there exists $c_{1}, c_{2}>0$ such that

$$
0<c_{1} \leq \xi_{n} \leq c_{2}, \quad \text { for } n \geq n_{3} \geq n_{2}
$$

then

$$
\Delta \xi_{n} \geq(1-p) q_{n} G\left(c_{1}\right), \quad \text { for } \quad n \geq n_{3}
$$

summing both sides of the above inequality, we get

$$
\sum_{i=n_{3}}^{n} \Delta \xi_{i} \geq(1-p) G\left(c_{1}\right) \sum_{i \in D} q_{i},
$$

then

$$
\sum_{i \in D} q_{i}<\sum_{i=n_{3}}^{n} \Delta \xi_{i}=\xi_{n+1}-\xi_{n_{3}},
$$

where $D=A \cap\left[n_{3}, n\right], A=\left\{n \in N: k_{n}>n+1\right\}$
which is a contradiction, so every bounded solution of equation (3.3.1) is oscillatory.
Example 3.3.1: Consider the NDE

$$
\begin{equation*}
\Delta\left(x_{n}+x_{n-2}\right)+(1+2 n)\left|x_{n-1}\right|^{5 n} \operatorname{sgn} x_{n-1}=(-1)^{n+1}(2 n+3), n \in N \tag{3.3.12}
\end{equation*}
$$

it is clear that $h_{n}=(-1)^{n}(n+1)$, and $\Delta h_{n}=(-1)^{n+1}(2 n+3)=F_{n}$, also $\left\{h_{n}\right\}$ is oscillatory and satisfies that

$$
\lim _{n \rightarrow \infty} \sup (-1)^{n}(n+1)=\infty, \quad \text { and } \quad \lim _{n \rightarrow \infty} \inf (-1)^{n}(n+1)=-\infty
$$

then by theorem 3.3.1 every bounded solution of equation (3.3.12) is oscillatory.
Example 3.3.2: Consider the NDE

$$
\begin{equation*}
\Delta\left(x_{n}+\frac{1}{2} x_{n-2}\right)-\frac{9(2 n+7)}{n+9}\left|x_{n-1}\right|^{3}=4(-1)^{n+2}, \quad n \in N \tag{3.3.13}
\end{equation*}
$$

taking $h_{n}=2(-1)^{n+1}$ an oscillatory periodic sequence of period 2, applying theorem 3.3.3 to equation (3.3.13), it is clear that

$$
\sum_{n \in D} \frac{9(2 n+7)}{n+9}=\infty,
$$

so every solution of equation (3.3.13) is oscillatory.
Remark 3.3.1: Theorem 3.3.1 and theorem 3.3.2 are also true for the equation

$$
\begin{equation*}
\Delta\left(x_{n}+p x_{n-m}\right)+q_{n} G\left(x_{k_{n}}\right)=f_{n} \tag{3.3.14}
\end{equation*}
$$

(i.e. $\delta_{2}=+1$), but the same thing is not true with the remaining theorems in this section.

Remark 3.3.2: The results of this section are mainly referred to [10].

3.4 Oscillation criteria of first-order forced nonlinear NDE's with variable coefficients

Consider the first-order NDE of the form

$$
\begin{equation*}
\Delta\left(x_{n}+\delta_{1} p_{n} x_{n-m}\right)+\delta_{2} q_{n} G\left(x_{n-k}\right)=f_{n}, \quad n \geq 0 \tag{3.4.1}
\end{equation*}
$$

where $\left\{p_{n}\right\},\left\{q_{n}\right\}$ and $\left\{f_{n}\right\}$ are sequences of real numbers with $q_{n} \geq 0, G \in C(\mathbf{R}, \mathbf{R})$ is nondecreasing and $x G(x)>0$ for $x \neq 0, m>0$ and $k \geq 0$ are integers and $\delta_{1}=\delta_{2}=1$.

In fact this section takes its importance from its main equation (equation (3.4.1)), since we can extract many special cases from this equation, for instance, the linear homogenous case, the linear forced case and the nonlinear homogenous case. However, sometimes the results of this section are applicable to some special cases of equation (3.4.1) with some modifications.

Two approaches are used here to prove the oscillation of equation (3.4.1) by operators and by sufficient conditions while the characteristic equation here does not work.

Theorem 3.4.1: Let $-1<b_{1} \leq p_{n} \leq 0, G(x)$ is nondecreasing and

$$
\begin{equation*}
\left|\sum_{n=0}^{\infty} f_{n}\right|<\infty, \tag{3.4.2}
\end{equation*}
$$

every solution of equation (3.4.1) oscillates or tends to zero as $n \rightarrow \infty$ if and only if

$$
\begin{equation*}
\sum_{n=0}^{\infty} q_{n}=\infty \tag{3.4.3}
\end{equation*}
$$

Proof: Suppose that $\left\{x_{n}\right\}$ is an eventually negative solution of equation (3.4.1), then $x_{n}<0$ for $n \geq N_{1}$, we want to show that $\lim _{n \rightarrow \infty} x_{n}=0$. Let

$$
\begin{equation*}
z_{n}=x_{n}+p_{n} x_{n-m}, \tag{3.4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{n}=z_{n}-\sum_{i=0}^{n-1} f_{i}, \text { for } n \geq N_{1}+m \tag{3.4.5}
\end{equation*}
$$

we get

$$
\begin{equation*}
\Delta w_{n}=-q_{n} G\left(x_{n-k}\right) \geq 0, \text { for } n \geq N_{1}+m+k, \tag{3.4.6}
\end{equation*}
$$

either $w_{n}>0$ or $w_{n}<0$, let $w_{n}>0$ for $n \geq N_{2}$, where $N_{2}>N_{1}+m+k$.
Claim: $\left\{x_{n}\right\}$ is bounded. If not, then there exists a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
x_{n_{j}} \rightarrow-\infty \text { as } n_{j} \rightarrow \infty \text { and } j \rightarrow \infty
$$

and

$$
x_{n_{j}}=\min \left\{x_{n}: N_{2} \leq n \leq n_{j}\right\},
$$

We may choose n_{j} sufficiently large so that $n_{j}-m>N_{2}$, and hence

$$
\begin{align*}
w_{n_{j}} & =x_{n_{j}}+p_{n_{j}} x_{n_{j}-m}-\sum_{i=0}^{n_{j}-1} f_{i} \\
& \leq\left(1+p_{n_{j}}\right) x_{n_{j}}-\sum_{i=0}^{n_{j}-1} f_{i} \leq\left(1+b_{1}\right) x_{n_{j}}-\sum_{i=0}^{n_{j}-1} f_{i}<0 \tag{3.4.7}
\end{align*}
$$

Thus $w_{n_{j}}<0$ for large n_{j}, which is a contradiction, so $\left\{x_{n}\right\}$ is bounded, as a consequence $\left\{w_{n}\right\}$ is bounded and so $\lim _{n \rightarrow \infty} w_{n}$ exists.
If

$$
\lim _{n \rightarrow \infty} \sup x_{n}=\alpha, \quad-\infty<\alpha<0,
$$

then there exists $\beta<0$ such that

$$
x_{n}<\beta, \text { for } n \geq N_{3}>N_{2}
$$

but by (3.4.6) we get

$$
\sum_{n=N_{3}+k}^{r-1} q_{n} G\left(x_{n-k}\right)=-\sum_{n=N_{3}+k}^{r-1} \Delta w_{n}=-w_{r}+w_{N_{3}+k} \geq-w_{r}
$$

hence

$$
\sum_{n=N_{3}+k}^{r-1} q_{n} G\left(x_{n-k}\right)>-w_{r}, \text { as } r \rightarrow \infty
$$

$$
\begin{equation*}
\sum_{n=N_{3}+k}^{\infty} q_{n} G\left(x_{n-k}\right)>-\infty . \tag{3.4.8}
\end{equation*}
$$

However, using equation (3.4.3) we get

$$
\begin{equation*}
\sum_{n=N_{3}+k}^{\infty} q_{n} G\left(x_{n-k}\right)<G(\beta) \sum_{n=N_{3}+k}^{\infty} q_{n}=-\infty \tag{3.4.9}
\end{equation*}
$$

We get a contradiction, hence $\lim \sup x_{n}=0$.
As $\lim _{n \rightarrow \infty} z_{n}$ exists, using lemma 1.4.4 we get that $\lim _{n \rightarrow \infty} z_{n}=0$.
Similarly, when $w_{n}<0$ we have $\lim _{n \rightarrow \infty} \sup x_{n}=0$ and $\lim _{n \rightarrow \infty} z_{n}=0$.
We know that $z_{n} \leq x_{n}+b_{1} x_{n-m}$ for $n \geq N_{2}$, we infer that

$$
\begin{aligned}
0 & =\lim _{n \rightarrow \infty} \inf z_{n} \leq \lim _{n \rightarrow \infty} \inf \left[x_{n}+b_{1} x_{n-m}\right] \\
& \leq \lim _{n \rightarrow \infty} \inf x_{n}+\lim _{n \rightarrow \infty} \sup \left(b_{1} x_{n-m}\right) \\
& =\lim _{n \rightarrow \infty} \inf x_{n}+b_{1} \lim _{n \rightarrow \infty} \inf \left(x_{n-m}\right) \\
& =\left(1+b_{1}\right) \lim _{n \rightarrow \infty} \inf x_{n}
\end{aligned}
$$

Then $\lim _{n \rightarrow \infty} \inf x_{n}=0$. Hence $\lim _{n \rightarrow \infty} x_{n}=0$, so the sufficiency part of the theorem is proved. Now for the necessity part we assume that

$$
\sum_{n=0}^{\infty} q_{n}<\infty .
$$

We want to show that equation (3.4.1) has a positive solution $\left\{x_{n}\right\}$ such that $\lim _{n \rightarrow \infty} \inf x_{n}>0$, since we have that $\lim _{n \rightarrow \infty} \sum_{i=0}^{n} f_{i}=0$, we choose an integer $N>0$, such that

$$
\begin{align*}
& \left|\sum_{n=N}^{\infty} f_{n}\right|<\frac{1+b_{1}}{10}, \text { and } \tag{3.4.10}\\
& G(1) \sum_{n=N}^{\infty} q_{n}<\frac{1+b_{1}}{5}, \tag{3.4.11}
\end{align*}
$$

let $\mathrm{X}=l_{\infty}^{N}$ is a Banach space, let $\mathrm{K}=\left\{x \in \mathrm{X}: x_{n} \geq 0\right.$ for $\left.n \geq N\right\}$, and $W=\left\{x \in \mathrm{X}: \frac{1+b_{1}}{10} \leq x_{n} \leq 1, n \geq N\right\}$, with X is partially ordered Banach space.
If $x^{0}=\left\{x_{n}^{0}\right\}$, where $x_{n}^{0}=\frac{\left(1+b_{1}\right)}{10}$ for $n \geq N$, then $x^{0}=\inf W$ and $x^{0} \in W$. Let W^{*} be a nonempty subset of W, the supremum of W^{*} is the sequence $x^{*}=\left\{x_{n}^{*}: n \geq N\right\}$ and $x_{n}^{*}=\sup \left\{x_{n}: x=\left\{x_{i}: i \geq N\right\} \in W^{*}\right\}$, clearly that $x^{*} \in W$.
Now, for $x \in W$, we define

$$
(T x)_{n}=\left\{\begin{array}{l}
(T x)_{N+r}, N \leq n \leq N+r \\
-p_{n} x_{n-m}+\frac{1+b_{1}}{5}+\sum_{i=n}^{\infty}\left[q_{i} G\left(x_{i-k}\right)-f_{i}\right], n \geq N+r
\end{array}\right.
$$

where $r=\max \{m, k\}$.
Using (3.4.10) and (3.4.11), we get

$$
(T x)_{n} \leq-b_{1}+\frac{2\left(1+b_{1}\right)}{5}+\frac{1+b_{1}}{10}<1
$$

and

$$
(T x)_{n} \geq \frac{1+b_{1}}{5}-\frac{1+b_{1}}{10}=\frac{1+b_{1}}{10}
$$

Thus $T: W \rightarrow W$ for $x, y \in W, x \leq y$ implies $T_{x} \leq T_{y}$. Hence T has a fixed point in W by Knaster-Tarski fixed point theorem (theorem 1.4.2).
If $x=\left\{x_{n}\right\} \in W$ is the fixed point of T, then

$$
x_{n}=\left\{\begin{array}{l}
x_{N+r}, N \leq n \leq N+r \\
-p_{n} x_{n-m}+\frac{1+b_{1}}{5}+\sum_{i=n}^{\infty}\left[q_{i} G\left(x_{i-k}\right)-f_{i}\right], n \geq N+r
\end{array}\right.
$$

Hence, x_{n} is a positive solution of equation (3.4.1) with $\lim _{n \rightarrow \infty} \inf x_{n} \geq \frac{1+b_{1}}{10}>0$.
Theorem 3.4.2: Let $0 \leq p_{n} \leq b_{2}<1$ and let $G(x)$ is nondecreasing and f_{n} satisfies inequality (3.4.2):
i. If equation (3.4.3) holds, then every solution of equation (3.4.1) oscillates or tends to zero as $n \rightarrow \infty$.
ii. Suppose that G satisfies the Lipschitz condition on intervals of the form $[a, b]$, $0<a<b<\infty$, If every solution of equation (3.4.1) oscillates or tends to zero as $n \rightarrow \infty$, then equation (3.4.3) holds.

Proof:

The proof of part (i): is the same as the proof of the sufficiency condition of theorem (3.4.1)

The proof of part (ii): Suppose that $\sum_{n=0}^{\infty} q_{n}<\infty$,
choosing $N>0$ sufficiently large such that

$$
\left|\sum_{n=N}^{\infty} f_{n}\right|<\frac{1-b_{2}}{10} \quad \text { and } \quad L \sum_{n=N}^{\infty} q_{n}<\frac{1-b_{2}}{5},
$$

where, $L=\max \left\{L_{1}, G(1)\right\}$ and L_{1} is the Lipschitz constant of G on $\left[\frac{\left(1-b_{2}\right)}{10}, 1\right]$,
let $\mathrm{X}=l_{\infty}^{N}$ and

$$
S=\left\{x \in \mathrm{X}: \frac{1-b_{2}}{10} \leq x_{n} \leq 1, n \geq N\right\}
$$

Clearly that S is a complete metric space, where the metric is induced by the norm on X . For $x \in S$ define

$$
(T x)_{n}=\left\{\begin{array}{l}
(T x)_{N+r}, N \leq n \leq N+r \\
-p_{n} x_{n-m}+\frac{1+4 b_{2}}{5}+\sum_{i=n}^{\infty}\left[q_{i} G\left(x_{i-k}\right)-f_{i}\right], n \geq N+r
\end{array},\right.
$$

so

$$
(T x)_{n}<\frac{1+4 b_{2}}{5}+L \sum_{i=N}^{\infty} q_{i}+\frac{1-b_{2}}{10}
$$

$$
<\frac{1+4 b_{2}}{5}+\frac{1-b_{2}}{5}+\frac{1-b_{2}}{10}<1, \text { for } n \geq N
$$

and

$$
(T x)_{n}>-b_{2}+\frac{1+4 b_{2}}{5}-\frac{1-b_{2}}{10}=\frac{1-b_{2}}{10} .
$$

This implies that $T: S \rightarrow S$. Further, for $u, v \in S$, and $n \geq N+r$,

$$
\begin{aligned}
\left|(T u)_{n}-(T v)_{n}\right| & \leq b_{2}\|u-v\|+\left(\frac{1-b_{2}}{5}\right)\|u-v\| \\
& =\mu\|u-v\|
\end{aligned}
$$

which implies that

$$
\|T u-T v\| \leq \mu\|u-v\|, \text { for } \mu>0
$$

where $\mu=\frac{1}{5}\left(1+4 b_{2}\right)<1$.
Thus T is a contraction, hence it has a unique fixed point $x=\left\{x_{n}\right\}$ in S, clearly that $\left\{x_{n}\right\}$ is a positive solution of equation (3.4.1) with $\lim \inf x_{n}>0$.

Corollary 3.4.1: Let $0 \leq p_{n}<b_{2}<1$ and let $G(x)$ is nondecreasing and (3.4.2) hold. Suppose that G satisfies the Lipschitz condition on interval of the form $[a, b]$, $0<a<b<\infty$, Then every solution of equation (3.4.1) oscillates or tends to zero as $n \rightarrow \infty$ if and only if equation (3.4.3) holds.

Proof: The proof is an immediate consequence of theorem 3.4.2.

Theorem 3.4.3:

i. If $1<b_{3} \leq p_{n} \leq b_{4}<\infty, G(x)$ is nondecreasing, and equations (3.4.2), (3.4.3) hold, then every solution of equation (3.4.1) oscillates or tends to zero as $n \rightarrow \infty$.
ii. If $1<b_{3} \leq p_{n} \leq b_{4} \leq \frac{1}{2} b_{3}^{2}$, equation (3.4.2) holds, G is nondecreasing and satisfies Lipschitz condition on interval of the form $[a, b], 0<a<b<\infty$ and every solution of equation (3.4.1) oscillates or tends to zero as $n \rightarrow \infty$, then equation (3.4.3) holds.

Proof: The proof is similar to that of theorem 3.4.2, for details see [16].
Remark 3.4.1: for the case when $-\infty<b_{5} \leq p_{n} \leq b_{6}<-1$, the authors in [18] obtained sufficient conditions for oscillation and asymptotic behavior of equation (3.4.3).

In the previous theorems the conditions guarantee the oscillation for equation (3.4.1) when $p_{n} \neq \pm 1$. The question here is whether equation (3.4.1) is oscillatory when $p_{n}= \pm 1$? The answer is yes, but with different sufficient conditions when $m>0$. For that we need the following conditions:
$\left(\mathrm{C}_{1}\right) \quad$ There exists a sequence $\left\{h_{n}\right\}$ that changes sign with

$$
\lim _{n \rightarrow \infty} \inf h_{n}=\alpha \quad \text { and } \quad \lim _{n \rightarrow \infty} \sup h_{n}=\beta
$$

$$
\text { where }-\infty<\alpha<0, \quad 0<\beta<\infty \text { and } \Delta h_{n}=f_{n}
$$

$\left(\mathrm{C}_{2}\right) \quad \sum_{n=k}^{\infty} q_{n} G\left(h_{n-k}^{+}\right)=\infty \quad$ and $\quad \sum_{n=k}^{\infty} q_{n} G\left(h_{n+m-k}^{-}\right)=\infty$
where $h_{n}^{+}=\max \left\{h_{n}, 0\right\}$ and $h_{n}^{-}=\max \left\{-h_{n}, 0\right\}$
$\left(\mathrm{C}_{3}\right) \quad \sum_{n=k}^{\infty} q_{n} G\left(-h_{n+m-k}^{+}\right)=-\infty$ and $\sum_{n=k}^{\infty} q_{n} G\left(-h_{n-k}^{-}\right)=-\infty$
$\left(\mathrm{C}_{4}\right) \quad$ For $u>0$ and $v>0$, there exists $\lambda>0$ such that

$$
G(u+v) \leq \lambda(G(u)+G(v))
$$

$\left(\mathrm{C}_{5}\right) \quad$ For $u<0$ and $v<0$, there exists $\mu>0$ such that

$$
G(u+v) \geq \mu(G(u)+G(v))
$$

(C6) $\quad \sum_{n=r}^{\infty} q_{n}^{*} G\left(h_{n-k}^{+}\right)=\infty$ and $\sum_{n=r}^{\infty} q_{n}^{*} G\left(-h_{n-k}^{-}\right)=-\infty$, where $q_{n}^{*}=\min \left\{q_{n}, q_{n-m}\right\}, n \geq m$ and $r=\max \{k, m\}$

Theorem 3.4.4: Let $-1 \leq p_{n} \leq 0$. Let conditions $\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{3}\right)$ hold. Then all solutions of equation (3.4.1) oscillate.

Proof: Suppose on the contrary that x_{n} is an eventually positive solution of equation (3.4.1), $\left(x_{n}>0\right.$ for $\left.n \geq N_{1}\right)$.

Setting

$$
\begin{equation*}
z_{n}=x_{n}+p_{n} x_{n-m} \quad \text { and } \quad w_{n}=z_{n}-h_{n} \tag{3.4.12}
\end{equation*}
$$

Then

$$
\begin{equation*}
\Delta w_{n}=-q_{n} G\left(x_{n-k}\right) \leq 0, \quad \text { for } n \geq N_{1}+r \tag{3.4.13}
\end{equation*}
$$

then either $w_{n}>0$ or $w_{n}<0$, for $n \geq N_{1}+r$. Let $w_{n}>0, n \geq N_{2}$, then $x_{n} \geq h_{n}^{+}$and equation (3.4.13) yields

$$
\sum_{n=N_{3}}^{j-1} q_{n} G\left(h_{n-k}^{+}\right) \leq \sum_{n=N_{3}}^{j-1} q_{n} G\left(x_{n-k}\right)<w_{N_{3}}
$$

where $j>N_{3}+1$ and $N_{3}>N_{2}+r$, which contradicts $\left(\mathrm{C}_{2}\right)$, so $w_{n}<0$ for $n \geq N_{2}$. Then $x_{n} \geq h_{n+m}^{-}$and $\lim _{n \rightarrow \infty} w_{n}=l,-\infty \leq l<0$
Suppose that $l=-\infty$. Let $\lambda>\beta>0$. For $0<\varepsilon<\lambda-\beta$, there exists $N_{3}>N_{2}$ such that

$$
h_{n}<\beta+\varepsilon, \quad n \geq N_{3}
$$

Further, we have

$$
w_{n}<-\lambda, \quad n \geq N_{4}>N_{3}
$$

that is

$$
\begin{aligned}
x_{n} & \leq-p_{n} x_{n-m}+h_{n}-\lambda \\
& \leq x_{n-m}+\beta+\varepsilon-\lambda
\end{aligned}
$$

So for $n \geq N_{4}+j m$

$$
x_{n} \leq x_{n-j m}+j(\beta+\varepsilon-\lambda)
$$

In particular

$$
x_{N_{4}+j m} \leq x_{N_{4}}+j(\beta+\varepsilon-\lambda)<0 \text { for large } j,
$$

which is a contradiction. So $-\infty<l<0$, now from equation (3.4.13) we get

$$
\sum_{n=N_{3}}^{j-1} q_{n} G\left(h_{n+m-k}^{-}\right) \leq \sum_{n=N_{3}}^{j-1} q_{n} G\left(x_{n-k}\right) \leq-w_{j},
$$

which is also a contradiction, so $\left\{x_{n}\right\}$ is an oscillatory solution of equation (3.4.1).

Theorem 3.4.5: Let $0 \leq p_{n} \leq 1$. If conditions $\left(\mathrm{C}_{1}\right),\left(\mathrm{C}_{4}\right),\left(\mathrm{C}_{5}\right)$ and $\left(\mathrm{C}_{6}\right)$ hold then all solutions of equation (3.4.1) oscillate.

Proof: Let $\left\{x_{n}\right\}$ satisfies $x_{n}>0$ for $n \geq N_{1}$. Setting z_{n} and w_{n} as in equation (3.4.12) to get equation (3.4.13). Using (C_{1}) we have $w_{n}>0$, for $n \geq N_{2} \geq N_{1}$
hence

$$
x_{n}+x_{n-m} \geq h_{n}^{+}, \text {for } n \geq N_{2}
$$

Using $\left(\mathrm{C}_{4}\right)$ we have

$$
\begin{aligned}
\lambda\left(f_{n}+f_{n-m}\right) & =\lambda \Delta z_{n}+\lambda \Delta z_{n-m}+\lambda q_{n} G\left(x_{n-k}\right)+\lambda q_{n-m} G\left(x_{n-k-m}\right) \\
& \geq \lambda \Delta\left(z_{n}+z_{n-m}\right)+q_{n}^{*} G\left(x_{n-k}+x_{n-k-m}\right) \\
& \geq \lambda \Delta\left(z_{n}+z_{n-m}\right)+q_{n}^{*} G\left(h_{n-k}^{+}\right)
\end{aligned}
$$

That is

$$
q_{n}^{*} G\left(h_{n-k}^{+}\right) \leq \lambda \Delta\left(h_{n}+h_{n-m}\right)-\lambda \Delta\left(z_{n}+z_{n-m}\right),
$$

taking the summation from N_{2} to $j-1$ to the last inequality to get

$$
\begin{aligned}
\sum_{n=N_{2}}^{j-1} q_{n}^{*} G\left(h_{n-k}^{+}\right) & \leq \lambda \sum_{n=N_{2}}^{j-1} \Delta\left(h_{n}+h_{n-m}\right)-\lambda \sum_{n=N_{2}}^{j-1} \Delta\left(z_{n}+z_{n-m}\right) \\
& <\lambda\left(h_{j}+h_{j-m}\right)-\lambda\left(h_{N_{2}}+h_{N_{2}-m}\right)+\lambda\left(z_{N_{2}}+z_{N_{2}-m}\right)
\end{aligned}
$$

Consequently

$$
\sum_{n=N_{2}}^{\infty} q_{n}^{*} G\left(h_{n-k}^{+}\right) \leq 2 \lambda \lim _{j \rightarrow \infty} \sup h_{j}-\lambda\left(h_{N_{2}}+h_{N_{2}-m}\right)+\lambda\left(z_{N_{2}}+z_{N_{2}-m}\right)<\infty
$$

Which contradicts $\left(\mathrm{C}_{6}\right)$. So $\left\{x_{n}\right\}$ must be an oscillatory solution of equation (3.4.1).

Example 3.4.1: Consider the NDE

$$
\begin{equation*}
\Delta\left(x_{n}+\frac{1}{4} x_{n-m}\right)+\frac{3^{n}}{2^{n+1}}\left(2^{n+1}-1\right) x_{n-k}^{\frac{1}{3}}=\frac{3(-1)^{n}}{2^{n+1}}, \quad n \geq 0 \tag{3.4.14}
\end{equation*}
$$

equation (3.4.14) satisfies the conditions of theorem 3.4.2(i), where $G(x)=x^{\frac{1}{3}}$ is nondecreasing and $f_{n}=\frac{3(-1)^{n}}{2^{n+1}}$ satisfies inequality (3.4.2), also

$$
\left|\sum_{n=0}^{\infty} q_{n}\right|=\left|\sum_{n=0}^{\infty} \frac{3^{n}}{2^{n+1}}\left(2^{n+1}-1\right)\right|=\infty,
$$

so every solution of equation (3.4.15) oscillates or tends to zero as $n \rightarrow \infty$.

Example 3.4.2: Consider the NDE

$$
\begin{equation*}
\Delta\left(x_{n}+\left(\frac{(-1)^{n}}{5}-\frac{1}{4}\right) x_{n-1}\right)+e^{n} x_{n-2}^{3}=(-1)^{n+1} \quad, \quad n \geq 0 \tag{3.4.15}
\end{equation*}
$$

it is clear that equation (3.4.15) satisfies the conditions of theorem 3.4.4 since

$$
-1 \leq-\frac{9}{20} \leq p_{n}=\left(\frac{(-1)^{n}}{5}-\frac{1}{4}\right)<0
$$

also

$$
h_{n}=\frac{1}{2}(-1)^{n}, \quad h_{n}^{+}=\left\{\begin{array}{l}
\frac{1}{2}, n \text { even } \\
0, n \text { odd }
\end{array} \quad, \quad \text { and } \quad h_{n}^{-}=\left\{\begin{array}{l}
0, n \text { even } \\
\frac{1}{2}, n \text { odd }
\end{array},\right.\right.
$$

so

$$
\sum_{n=k}^{\infty} q_{n} G\left(h_{n-k}^{+}\right)=\sum_{n=2}^{\infty} e^{n}\left(h_{n-2}^{+}\right)^{3}=\sum_{i=0}^{\infty} e^{i}\left(h_{2 i}^{+}\right)^{3}=\infty,
$$

and

$$
\sum_{n=k}^{\infty} q_{n} G\left(h_{n-k+m}^{-}\right)=\sum_{n=2}^{\infty} e^{n}\left(h_{n-1}^{-}\right)^{3}=\sum_{i=0}^{\infty} e^{i}\left(h_{2 i+1}^{-}\right)^{3}=\infty,
$$

also

$$
\sum_{n=2}^{\infty} e^{n} G\left(-h_{n-1}^{+}\right)=\sum_{n=2}^{\infty} e^{n} G\left(-h_{n-2}^{-}\right)=-\infty,
$$

hence, all solutions of equation (3.4.15) oscillate.
Remark 3.4.2: The results of this section are mainly referred to [18] and [20].

3.5 Oscillation criteria of certain nonlinear NDE's

In this section we introduce some oscillation theorems for nonlinear NDE's with $G(x)$ replaced by special functions, such as the maximum function and the product function multiplied by the sign function, the theorems in [9] and [16] discuss the special case when $p_{n} \equiv 1$ and $f_{n}=0$. All the theorems of this section considered special cases of the form

$$
\Delta\left(x_{n}+\delta_{1} p_{n} x_{n-m}\right)+\delta_{2} q_{n} G\left(x_{n-k}\right)=0,
$$

with $\delta_{1}=-1$ and $\delta_{2}=1$.
Consider the nonlinear NDE of the form

$$
\begin{equation*}
\Delta\left(x_{n}-p_{n} x_{n-m}\right)+q_{n}\left|x_{n-k}\right|^{\alpha} \operatorname{sgn} x_{n-k}=0, \tag{3.5.1}
\end{equation*}
$$

where $\left\{q_{n}\right\}$ is a sequence of nonnegative real numbers, α is a positive constant and m and k are positive integers and $\delta_{1}=-1, \delta_{2}=1$.

Theorem 3.5.1: If

$$
\sum_{n=n_{0}}^{\infty} n^{\alpha} q_{n}\left(\sum_{j=n}^{\infty} q_{j}\right)^{\alpha}=\infty, \quad n \geq n_{0} \geq 0
$$

Then equation (3.5.1) is oscillatory, provided that

$$
\sum_{j=n}^{\infty} q_{j}<\infty
$$

$p_{n}=1$ and $\alpha>0$
Proof: Let $\left\{x_{n}\right\}$ be a nonoscillatory solution of equation (3.5.1), W.L.O.G let $x_{n-r}>0$ for $n \geq n_{1} \geq n_{0}$, where $r=\max \{m, k\}$,
let

$$
z_{n}=x_{n}-x_{n-m}
$$

then

$$
\Delta z_{n}=-q_{n} x_{n-k}^{\alpha} \leq 0 \quad \text { for } n \geq n_{1}
$$

Two cases to be considered here: either $z_{n}>0$ or $z_{n}<0$
Case1: $z_{n}<0$ and $\Delta z_{n}<0$ eventually:
z_{n} is nonincreasing, so there exists a constant $c_{1}>0$ such that

$$
z_{n}<-c_{1}, \text { for } n \geq N \geq n_{1}
$$

thus

$$
x_{N}=z_{N}+x_{N-m}<-c_{1}+x_{N-m}
$$

or

$$
x_{N+m}=z_{N+m}+x_{N}<-c_{1}+x_{N}<-2 c_{1}+x_{N-m},
$$

hence, for any integer $h>1$

$$
x_{N+h m}<-(h+1) c_{1}+x_{N-m} \rightarrow-\infty, \text { as } h \rightarrow \infty
$$

which is a contradiction.
Case 2: $z_{n}>0$ and $\Delta z_{n}<0$ eventually:
We have $x_{n}>x_{n-m}$, for $n \geq n_{1}$, so there exists a constant $c_{2}>0$ such that

$$
x_{n-k} \geq c_{2}, \text { for } n \geq N_{1} \geq n_{1}+k
$$

then

$$
\Delta z_{n} \leq-\left(c_{2}\right)^{\alpha} q_{n}, \text { for } n \geq N_{1}
$$

hence

$$
z_{s}-z_{n} \leq-\left(c_{2}\right)^{\alpha} \sum_{j=n}^{s-1} q_{j} \quad, \quad n \geq N_{1}
$$

now, letting $s \rightarrow \infty$, we have

$$
z_{n} \geq\left(c_{2}\right)^{\alpha} \sum_{j=n}^{\infty} q_{j}, \quad n \geq N_{1}
$$

and hence

$$
\Delta z_{n} \geq\left(c_{2}\right)^{\alpha} q_{n}
$$

but since $c_{2}>0$ and α is a positive constant, then $\Delta z_{n} \geq 0$, which is a contradiction, so equation (3.5.1) is oscillatory.

Theorem 3.5.2: If

$$
\sum_{j=n}^{\infty} q_{j}=\infty, \quad n \geq n_{0} \geq 0
$$

then equation (3.5.1) with $p_{n}=1$ is oscillatory.

Proof: Suppose that $\left\{x_{n}\right\}$ is an eventually positive solution of equation (3.5.1), and let z_{n} be defined as in theorem 3.5.1, the case $z_{n}>0$ and $\Delta z_{n}>0$ is as that in theorem 3.5.1.

* If $z_{n}>0$ and $\Delta z_{n}<0$,
so

$$
x_{n}>x_{n-m}, \quad n \geq n_{1}
$$

and there exists a constant number $c_{2}>0$ such that

$$
x_{n-k} \geq c_{2}, \text { for } n \geq n_{2} \geq n_{1}
$$

then

$$
\Delta z_{n}=-q_{n} x_{n-k}^{\alpha} \leq 0,
$$

so

$$
\Delta z_{n} \leq-\left(c_{2}\right)^{\alpha} q_{n}
$$

Taking the summation to the last inequality from n_{2} to $h-1 \geq n_{2}$, to get

$$
0<z_{h} \leq z_{n_{2}}-c_{2}^{\alpha} \sum_{n=n_{2}}^{h-1} q_{n} \rightarrow-\infty, \text { as } \quad h \rightarrow \infty
$$

which is a contradiction, so equation (3.5.1) is oscillatory.
Now we will discuss the oscillation for solutions of a more general equation. Several criteria for the oscillation are to be discussed for the first-order nonlinear NDE of the form

$$
\begin{equation*}
\Delta\left(x_{n}-p_{n} x_{n-m}\right)+q_{n} \prod_{i=1}^{h}\left|x_{n-k_{i}}\right|^{\alpha_{i}} \operatorname{sgn} x_{n-k_{i}}=0, n \geq 0 \tag{3.5.2}
\end{equation*}
$$

where m is a positive integer, k_{i} 's are nonnegative integers, $p_{n} \geq 0, q_{n} \geq 0$ such that q_{n} is not identically zero for all large n and $\alpha_{i}>0$ with $\sum_{i=1}^{h} \alpha_{i}=1$.

Lemma 3.5.1: Suppose there is an integer $N>0$ such that $p_{N+i m} \leq 1$ for $i \geq 0$ holds. Suppose further that
$\left(\mathrm{H}_{1}\right) p_{n}+q_{n} \min \left\{k_{1}, k_{2}, \ldots, k_{h}\right\}>0 \quad$ or
$\left(\mathrm{H}_{2}\right) \min \left\{k_{1}, k_{2}, \ldots, k_{h}\right\}>0$
and q_{n} doesn't vanish identically over sets of consecutive integers of the form $\left\{a, a+1, \ldots, a+k_{h}\right\} \min \left\{k_{1}, \ldots, k_{h}\right\}$. Then every solution of equation (3.5.2) is oscillatory if and only if

$$
\begin{equation*}
\Delta\left(x_{n}-p_{n} x_{n-m}\right)+q_{n} \prod_{i=1}^{h}\left|x_{n-k_{i}}\right|^{\alpha_{i}} \operatorname{sgn} x_{n-k_{i}} \leq 0, \quad n=0,1,2, \ldots \tag{3.5.3}
\end{equation*}
$$

has no eventually positive solution.
Proof: See [16].
Lemma 3.5.2: Suppose $p_{n} \geq 1, q_{n} \geq 0$, for $n \geq 0$ and

$$
\begin{equation*}
\sum_{n=0}^{\infty} q_{n} \prod_{j=0}^{n-1}\left(1+\frac{j q_{j}}{m}\right)=\infty \tag{3.5.4}
\end{equation*}
$$

Then for every eventually positive solution $\left\{x_{n}\right\}$ of inequality (3.5.3), the sequence z_{n} defined by $z_{n}=x_{n}-p_{n} x_{n-m}$ will satisfy $z_{n}<0$ and $\Delta z_{n} \leq 0$ for all large n.

Proof: It is clear that $\Delta z_{n} \leq 0$, and is not identically zero for all large n. Suppose to the contrary that $x_{n}>0, \Delta z_{n} \leq 0$ and $z_{n}>0$ for $n \geq T$, then

$$
x_{n}>p_{n} x_{n-m} \geq x_{n-m}>0, \quad n \geq T+m
$$

thus

$$
\begin{equation*}
x_{n} \geq \min \left\{x_{T-m}, x_{T-m+1}, \ldots, x_{T-1}\right\}=M>0, \quad n \geq T+2 m=T_{1} \tag{3.5.5}
\end{equation*}
$$

let

$$
N(n)=\left[\frac{n-T_{1}}{m}\right],
$$

where $\left[\frac{n-T_{1}}{m}\right]$ is the integer part of $\left(\frac{n-T_{1}}{m}\right)$, then

$$
\begin{align*}
x_{n} & \geq z_{n}+x_{n-m} \\
& \geq z_{n}+z_{n-m}+\ldots+z_{n-(N(n)-1) m}+x_{n-N(n) m}, \quad n \geq T_{1} \tag{3.5.6}
\end{align*}
$$

since $\left\{z_{n}\right\}$ is nonincreasing then

$$
\begin{equation*}
x_{n} \geq N(n) z_{n}+M, \quad n \geq T_{1} \tag{3.5.7}
\end{equation*}
$$

substituting (3.5.7) into (3.5.3) to get

$$
\begin{equation*}
\Delta z_{n}+q_{n} \prod_{i=1}^{h}\left[N\left(n-k_{i}\right) z_{n-k_{i}}+M\right]^{\alpha_{i}} \leq 0, \quad n \geq T_{1}+m=T_{2} \tag{3.5.8}
\end{equation*}
$$

by Hölder inequality we have

$$
\prod_{i=1}^{h}\left[N\left(n-k_{i}\right) z_{n-k_{i}}+M\right]^{\alpha_{i}} \geq \prod_{i=1}^{h}\left[N\left(n-k_{i}\right)\right]^{\alpha_{i}} \prod_{i=1}^{h}\left[z_{n-k_{i}}\right]^{\alpha_{i}}+M
$$

also

$$
\Delta z_{n}+q_{n} \prod_{i=1}^{h}\left[N\left(n-k_{i}\right)\right]^{\alpha_{i}} z_{n}+q_{n} M \leq 0, \quad n \geq T_{2}
$$

then

$$
\begin{equation*}
\Delta\left[z_{n} \prod_{j=T_{2}}^{n-1}\left[1+q_{j} \prod_{i=1}^{n}\left(N\left(i-k_{i}\right)\right)^{\alpha_{i}}\right]\right]+M q_{n} \prod_{j=T_{2}}^{n-1}\left[1+q_{j} \prod_{i=1}^{h}\left(N\left(i-k_{i}\right)\right)^{\alpha_{i}}\right] \leq 0, \quad n \geq T_{2} \tag{3.5.9}
\end{equation*}
$$

Taking the summation to inequality (3.5.9) from T_{2} to $n \geq T_{2}$, to get

$$
\begin{equation*}
z_{n+1} \prod_{j=T_{2}}^{n}\left[1+q_{j} \prod_{i=1}^{h}\left(N\left(i-k_{i}\right)\right)^{\alpha_{i}}\right]-z_{T_{2}}+M \sum_{s=T_{2}}^{n} q_{s} \prod_{j=T_{2}}^{s-1}\left[1+q_{j} \prod_{i=1}^{h}\left(N\left(i-k_{i}\right)\right)^{\alpha_{i}}\right] \leq 0, n \geq T_{2} \tag{3.5.10}
\end{equation*}
$$

we assume that

$$
\sum_{n=0}^{\infty} q_{n}<\infty
$$

We have that

$$
\prod_{i=1}^{n} \frac{\left[N\left(n-k_{i}\right)\right]^{\alpha_{i}}}{n} \rightarrow \frac{1}{m}, \text { as } n \rightarrow \infty
$$

also $\sum_{n=T_{2}}^{\infty} q_{n}\left[\frac{n}{m}-\prod_{i=1}^{h}\left(N\left(n-k_{i}\right)\right)^{\alpha_{i}}\right]$ is absolutely convergent,
then, $\quad \lim _{n \rightarrow \infty} \frac{\prod_{j=T_{2}}^{n-1}\left[1+q_{j} \prod_{i=1}^{h}\left(N\left(i-k_{i}\right)\right)^{\alpha_{i}}\right]}{\prod_{j=T_{2}}^{n-1}\left[1+q_{j}\left(\frac{i}{m}\right)\right]}$ exists.
By condition (3.5.4), we get

$$
\sum_{n=T_{2}}^{\infty} q_{n} \prod_{j=T_{2}}^{n-1}\left[1+q_{j}\left(\frac{i}{m}\right)\right]=\infty,
$$

letting $n \rightarrow \infty$ in inequality (3.5.10), to get a contradiction, hence $z_{n}<0$.

Theorem 3.5.3: Suppose that $p_{n}=1, q_{n} \geq 0$ for $n \geq 0$ and equation (3.5.4) holds. Then every solution of equation (3.5.2) is oscillatory.

Proof: Using lemma 1.4.1 and lemma 3.5 .2 then z_{n} is simultaneously positive and negative for large n, which is a contradiction, so equation (3.5.2) is oscillatory.

Remark 3.5.1: Theorem 3.5.3 is an extension and improvement to theorem 2.3.1.
Theorem 3.5.4: Suppose there is an integer $N>0$ such that $p_{N+i m} \leq 1, i \geq 0$ holds suppose also that $p_{n}, q_{n} \geq 0$ for $n \geq 0$ and equation (3.5.4) holds. Suppose further that

$$
q_{n} \prod_{i=1}^{n} p_{n-k_{i}}^{\alpha_{i}} \geq q_{n-m}, \text { for all large } n
$$

Then every solution of equation (3.5.2) is oscillatory.
Proof: Suppose to the contrary that $\left\{x_{n}\right\}$ is an eventually positive solution of equation (3.5.2). Then by lemma 1.4.1, $z_{n}>0$ for all large n, but $z_{n}=x_{n}-p_{n} x_{n-m}$, so

$$
\begin{aligned}
\Delta z_{n} & =-q_{n} \prod_{i=1}^{h} x_{n-k_{i}}^{\alpha_{i}} \\
& =-q_{n} \prod_{i=1}^{h}\left(z_{n-k_{i}}+p_{n-k_{i}} x_{n-m-k_{i}}\right)^{\alpha_{i}}
\end{aligned}
$$

By Hölder inequality we have

$$
\begin{equation*}
\Delta z_{n} \leq-q_{n}\left[\prod_{i=1}^{h} z_{n-k_{i}}^{\alpha_{i}}+\prod_{i=1}^{h} p_{n-k_{i}}^{\alpha_{i}} \prod_{i=1}^{h} x_{n-m-k_{i}}^{\alpha_{i}}\right], \text { for all large } n \tag{3.5.11}
\end{equation*}
$$

but we have

$$
\begin{equation*}
\Delta z_{n-m}+q_{n-m} \prod_{i=1}^{m} x_{n-m-k_{i}}^{\alpha_{i}}=0 \tag{3.5.12}
\end{equation*}
$$

subtracting equation (3.3.10) from inequality (3.5.9) to get

$$
\Delta z_{n}-\Delta z_{n-m}+q_{n} \prod_{i=1}^{h} z_{n-k_{i}}^{\alpha_{i}} \leq\left[q_{n-m}-q_{n} \prod_{i=1}^{h} p_{n-k_{i}}^{\alpha_{i}}\right] \prod_{i=1}^{h} x_{n-m-k_{i}}^{\alpha_{i}}
$$

by the hypothesis of this theorem

$$
\Delta\left(z_{n}-z_{n-m}\right)+q_{n} \prod_{i=1}^{h} z_{n-k_{i}}^{\alpha_{i}} \leq 0
$$

which is a contradiction to theorem 3.5.3, so every solution of equation (3.5.2) is oscillatory.

Remark 3.5.2: Theorem 3.5.4 is an extension and improvement to theorem 2.3.2.
In a similar manner used in the proof of theorem 3.5.4 and using theorem 2.3.3 and theorem 4 in [30] we deduced the following result.

Theorem 3.5.5: Suppose that $p_{n}, q_{n} \geq 0$ for $n \geq 0$ such that $p_{N+i m} \leq 1$ for some $N>0, i \geq 0$ and equation (3.5.4) hold, suppose further that there is some number $r \in(0,1)$ such that

$$
\begin{equation*}
-q_{n} \prod_{i=1}^{h} p_{n-k_{i}}^{\alpha_{i}} \leq r q_{n-m}, \quad \text { for all large } n \tag{3.5.13}
\end{equation*}
$$

Then equation (3.5.2) is oscillatory provided that the following difference inequality

$$
\Delta w_{n}+\frac{q_{n}}{1+r} w_{n-(m-k)} \leq 0, k=\min \left\{k_{1}, \ldots, k_{h}\right\}, n \geq 0
$$

has no eventually positive solution.

Proof: Suppose to the contrary that $\left\{x_{n}\right\}$ is an eventually positive solution of equation (3.5.2), by lemma 1.4.1 then $z_{n}=x_{n}-p_{n} x_{n-m}$ satisfies $z_{n}>0$ and $\Delta z_{n} \leq 0$ for all large n.
From equation (3.5.2) we get

$$
\begin{equation*}
0=r \Delta z_{n-m}+r q_{n-m} \prod_{i=1}^{h}\left|x_{n-m-k_{i}}\right|^{\alpha_{i}} \geq r \Delta z_{n-m}-q_{n} \prod_{i=1}^{h} p_{n-k_{i}}^{\alpha_{i}}\left|x_{n-m-k_{i}}^{\alpha_{i}}\right|, \quad \text { for large } n, \tag{3.5.14}
\end{equation*}
$$

but we have

$$
\begin{equation*}
\Delta z_{n}+q_{n} \prod_{i=1}^{h}\left|x_{n-k_{i}}^{\alpha_{i}}\right|=0 \tag{3.5.15}
\end{equation*}
$$

adding inequality (3.5.14) to equation (3.5.15) to get

$$
\begin{equation*}
\Delta\left(z_{n}+r z_{n-m}\right)+q_{n}\left(\prod_{i=1}^{h}\left|x_{n-k_{i}}^{\alpha_{i}}\right|-\prod_{i=1}^{h} p_{n-k_{i}}^{\alpha_{i}}\left|x_{n-m-k_{i}}^{\alpha_{i}}\right|\right) \leq 0, \tag{3.5.16}
\end{equation*}
$$

however, by Hölder inequality we have

$$
z_{n} \leq \prod_{i=1}^{h} z_{n}^{\alpha_{i}}=\prod_{i=1}^{h}\left|x_{n}-p_{n} x_{n-m}\right|^{\alpha_{i}} \leq\left|\prod_{i=1}^{h} x_{n}^{\alpha_{i}}-\prod_{i=1}^{h} p_{n}^{\alpha_{i}} x_{n-m}^{\alpha_{i}}\right|,
$$

so inequality (3.5.16) becomes

$$
\Delta\left(z_{n}+r z_{n-m}\right)+q_{n} z_{n-k} \leq 0, \text { for all large } n
$$

where $k=\min \left\{k_{1}, \ldots, k_{h}\right\}$,
so the sequence w_{n} defined by

$$
w_{n}=z_{n}+r z_{n-m}>0, \quad n \geq 0
$$

and

$$
w_{n} \leq(1+r) z_{n-m}
$$

thus

$$
z_{n-k}=z_{(n+m-k)-m} \geq \frac{w_{n-(k-m)}}{1+r}
$$

for all large n, so $\left\{w_{n}\right\}$ is an eventually positive solution of inequality

$$
\Delta w_{n}+\frac{q_{n}}{1+r} w_{n-(k-m)} \leq 0
$$

which is a contradiction.
the following theorem concerns with another special case of the nonlinear NDE of the form

$$
\begin{equation*}
\Delta\left(x_{n}-p_{n} x_{n-m}\right)+q_{n} \max _{s \in[n-k, n]} x_{s}=0 \quad, \quad n \geq 0 \tag{3.5.17}
\end{equation*}
$$

where m and k are positive integers, $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are nonnegative real sequences and $\left\{q_{n}\right\}$ has a positive subsequence.

Theorem 3.5.6: Assume that there exists a nonnegative integer $N \geq 0$ such that $p_{N+i m} \leq 1$ for $i=0,1,2, \ldots$ Suppose further that there exists some positive integer T such that the difference inequality

$$
\Delta z_{n}+q_{n} \min _{s \in[n-k, n]} \sum_{i=0}^{T-1} \prod_{j=0}^{i} p_{s+j m} z_{n-m} \leq 0
$$

has no eventually positive solution. Then all solution of equation (3.5.17) are oscillatory.
Proof: Let x_{n} be an eventually positive solution of (3.5.17) then $\Delta z_{n} \leq 0$ and $z_{n}=x_{n}-p_{n} x_{n-m}>0$ eventually. Thus

$$
\begin{aligned}
x_{n} & =z_{n}+p_{n} x_{n-m} \\
& =z_{n}+p_{n} z_{n-m}+p_{n} p_{n-m} x_{n-2 m} \\
& \vdots \\
& =z_{n}+p_{n} z_{n-m}+\ldots+\prod_{j=0}^{T-1} p_{n-j m} z_{n-(j+1) m} \\
& \geq \sum_{i=0}^{T-1} \prod_{j=0}^{i} p_{n-j m} z_{n-m}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\max _{s \in[n-k, n]} x_{s} & \geq \max _{s \in[n-k, n]} \sum_{i=0}^{T-1} \prod_{j=0}^{i} p_{s-j m} z_{s-m} \\
& \geq \max _{s \in[n-k, n]}^{T-1} \sum_{i=0}^{T-1} \prod_{j=0}^{i} p_{s-j m} z_{n-m}
\end{aligned}
$$

Substituting the last inequality into (3.5.17), we have

$$
\Delta z_{n}+q_{n} \max _{s \in[n-k, n]} \sum_{i=0}^{T-1} \prod_{j=0}^{i} p_{s-j m} z_{n-m} \leq 0
$$

which is a contradiction, that complete the proof.
Example 3.5.1: Consider the NDE

$$
\begin{equation*}
\Delta\left(x_{n}-x_{n-3}\right)+\left(e^{5}-1\right)\left(1-e^{-1}\right)^{2} e^{-n} x_{n-2}=0 \tag{3.5.18}
\end{equation*}
$$

It is clear

$$
\sum_{j=n}^{\infty} \frac{\left(e^{5}-1\right)\left(1-e^{-1}\right)^{2}}{e^{j}}=\infty
$$

So every solution of equation (3.5.18) is oscillatory by theorem 3.5.2.
Example 3.5.2: Consider the NDE

$$
\begin{align*}
& \Delta\left(x_{n}-x_{n-1}\right)+n^{-\frac{5}{3}}\left|x_{n-2}\right|^{2} \operatorname{sgn} x_{n-2}=0 \tag{3.5.19}\\
& \sum_{j=n}^{\infty} q_{j}=j^{-\frac{5}{3}} \geq \frac{1}{\left(\frac{5}{3}-1\right) n^{\left(\frac{5}{3}-1\right)}}
\end{align*}
$$

so by theorem 3.5.1 equation (3.5.19) is oscillatory.
Example 3.5.3: Consider the NDE

$$
\begin{equation*}
\Delta\left(x_{n}-\frac{n}{n+1} x_{n-2}\right)+n^{\frac{7}{4}} x_{n-1}=0 \tag{3.5.20}
\end{equation*}
$$

It is clear that $p_{n}, q_{n} \geq 0$, and that there exists $N>0$ such that $p_{N+i m} \leq 1$, and

$$
\sum_{n=0}^{\infty} n^{\frac{7}{4}} \prod_{j=0}^{n-1}\left(1+\frac{j(j)^{\frac{7}{4}}}{2}\right)=+\infty
$$

Then by theorem 3.5.5 every solution of equation (3.5.20) is oscillatory.
Remark 3.5.3: the results of this section are mainly referred to [6], [9] and [16].

Chapter Four

Oscillation Criteria of Second-Order Neutral Difference Equations

4.0 Introduction

In this chapter we discuss the oscillatory behavior of the second-order NDE's of the form

$$
\begin{equation*}
\Delta\left(c_{n} \Delta\left(x_{n}+p_{n} x_{n-m}\right)\right)+q_{n} G\left(x_{n-k}\right)=f_{n} \quad, \tag{4.0.1}
\end{equation*}
$$

where $\left\{c_{n}\right\},\left\{p_{n}\right\},\left\{q_{n}\right\}$ and $\left\{f_{n}\right\}$ are sequences of real numbers,$G \in C(\mathbf{R}, \mathbf{R})$ with $u G(u)>0$ for $u \neq 0$ and m and k are nonnegative integers.

In fact the problem of oscillation for second-order NDE's has received a great deal of attention during the last few years, most of the researches to the best we know do not separate the linear and nonlinear second-order NDE's, they studied the nonlinear case as a general case, so they did not use the expression "nonlinear" in the titles of the researches. However, they used this expression when the brackets containing the difference operator is of degree more than one.

This chapter mainly includes five sections. The first section deals with the unforced form of equation (4.0.1) when $c_{n}=1, p_{n}=p$. Section two concerns with the forced form of the equation studied in section one. Section three studies the unforced form of equation (4.0.1) with the coefficients are all variables. Section four discusses the oscillation theorems for equation (4.0.1) and finally section five studies the nonlinear form

$$
\Delta\left(c_{n}\left[\Delta\left(x_{n}+p_{n} x_{n-m}\right)\right]\right)+q_{n} x_{n-k}^{\beta}=0, \quad n>0
$$

where β is the ratio of odd positive integers.

4.1 Oscillation theorems for second-order NDE's with both constant and variable coefficients

Consider the second-order NDE of the form

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+p x_{n-m}\right)+q_{n} G\left(x_{n-k}\right)=0, \quad n \geq 0 \tag{4.1.1}
\end{equation*}
$$

where p is a positive real number, m and k are nonnegative integers with $k \geq m,\left\{q_{n}\right\}$ is a sequence of nonnegative real numbers and $G \in C(\mathbf{R}, \mathbf{R})$ is a nonincreasing function.

Theorem 4.1.1: Suppose that for a nonnegative constant M the condition

$$
\begin{equation*}
x G(x)>0 \text { and } G(x) \operatorname{sgn} x \geq M|x|^{\gamma} \text { for } x \neq 0 \quad \text {, for } \gamma=1 \tag{4.1.2}
\end{equation*}
$$

suppose further that there exists a positive sequence $\left\{\rho_{n}\right\}$ such that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left[M \rho_{n} q_{n}-\frac{\left(\Delta \rho_{n}\right)^{2}}{4 \rho_{n}}\right]=\infty \tag{4.1.3}
\end{equation*}
$$

Then every solution of equation (4.1.1) is oscillatory.
Proof: Suppose to contrary that $\left\{x_{n}\right\}$ is a positive solution of equation (4.1.1), there exists a positive integer n_{0} such that

$$
x_{n-k}>0, \text { for } n \geq n_{0}
$$

let

$$
z_{n}=x_{n}+p x_{n-m},
$$

then $z_{n}>0$ and

$$
\begin{equation*}
\Delta^{2} z_{n}=-q_{n} G\left(x_{n-k}\right) \leq 0, \text { for } n \geq n_{0} \tag{4.1.4}
\end{equation*}
$$

hence $\left\{\Delta z_{n}\right\}$ is an eventually nonincreasing sequence, either $\Delta z_{n}>0$ or $\Delta z_{n} \leq 0$ for $n \geq n_{0}$.
Suppose that $\Delta z_{n} \leq 0$, then there exists an integer $n_{1} \geq n_{0}$ such that $\Delta z_{n} \leq 0$ for all $n \geq n_{1}$. using inequality (4.1.4) we get

$$
\Delta z_{n} \leq \Delta z_{n_{1}} \leq 0, \text { for } n \geq n_{1}
$$

but q_{n} is not eventually identically zero, so there exists an integer $n_{2} \geq n_{1}$ such that

$$
\Delta^{2} z_{n}<0, \text { for } n \geq n_{2}
$$

so

$$
\begin{equation*}
\Delta z_{n} \leq \Delta z_{n_{2}+1}<\Delta z_{n_{2}} \leq \Delta z_{n_{1}} \leq 0, \text { for } n \geq n_{2}+1 \tag{4.1.5}
\end{equation*}
$$

Taking the summation to the first two terms of inequality (4.1.5) we have

$$
\sum_{n_{2}+1}^{n} \Delta z_{n} \leq \sum_{n_{2}+1}^{n} \Delta z_{n_{2}+1} \quad, \quad n \geq n_{2}+1
$$

so

$$
z_{n+1}-z_{n_{2}+1} \leq\left(n-n_{2}\right) \Delta z_{n_{2}+1} \rightarrow-\infty \text { as } n \rightarrow \infty
$$

which contradicts the fact that $z_{n}>0$ for $n \geq n_{0}$, so $\Delta z_{n}>0$ and so we have

$$
\begin{equation*}
z_{n-k}>0, \Delta z_{n}>0, \Delta^{2} z_{n} \leq 0 \text { for } n \geq n_{0} \tag{4.1.6}
\end{equation*}
$$

Set

$$
w_{n}=\rho_{n} \frac{\Delta z_{n}}{z_{n-k}}, \quad n \geq n_{0}
$$

then

$$
\begin{equation*}
\Delta w_{n}=\rho_{n+1} \frac{\Delta z_{n+1}}{z_{n+1-k}}-\rho_{n} \frac{\Delta z_{n}}{z_{n-k}} \tag{4.1.7}
\end{equation*}
$$

adding and subtracting the terms $\left(\rho_{n} \frac{\Delta z_{n+1}}{z_{n+1-k}}\right)$ and $\left(\rho_{n} \frac{\Delta z_{n+1}}{z_{n-k}}\right)$ to equation (4.1.7) we get

$$
\Delta w_{n}=\Delta \rho_{n} \frac{\Delta z_{n+1}}{z_{n+1-k}}+\frac{\rho_{n}}{z_{n-k}}\left[\Delta^{2} z_{n}-\frac{\Delta z_{n+1}}{z_{n+1-k}} \Delta z_{n-k}\right]
$$

using equation (4.1.1), the last equation becomes

$$
\Delta w_{n}=-\rho_{n} \frac{q_{n} G\left(x_{n-k}\right)}{z_{n-k}}+\Delta \rho_{n} \frac{\Delta z_{n+1}}{z_{n+1-k}}-\rho_{n}\left(\frac{\Delta z_{n+1}}{z_{n+1-k}}\right)\left(\frac{\Delta z_{n-k}}{z_{n-k}}\right)
$$

then

$$
\begin{equation*}
\Delta w_{n} \leq-\rho_{n} \frac{q_{n} G\left(z_{n-k}\right)}{z_{n-k}}+\Delta \rho_{n} \frac{\Delta z_{n+1}}{z_{n+1-k}}-\rho_{n}\left(\frac{\Delta z_{n+1}}{z_{n+1-k}}\right)\left(\frac{\Delta z_{n-k}}{z_{n-k}}\right) \tag{4.1.8}
\end{equation*}
$$

since $\Delta z_{n}>0$ and nonincreasing, there exists an integer $n_{1} \geq n_{0}$ such that $\Delta z_{n-k} \geq \Delta z_{n}$ for $n \geq n_{1}$. Thus

$$
\begin{equation*}
\Delta w_{n} \leq-M \rho_{n} q_{n}+\Delta \rho_{n} \frac{\Delta z_{n+1}}{z_{n+1-k}}-\rho_{n}\left(\frac{\Delta z_{n+1}}{z_{n+1-k}}\right)\left(\frac{\Delta z_{n}}{z_{n-k}}\right) \tag{4.1.9}
\end{equation*}
$$

Now we have

$$
\Delta z_{n} \leq \Delta z_{n_{2}+1}, \text { for } n \geq n_{2}+1
$$

so

$$
z_{n}-z_{n_{1}}=\sum_{i=n_{1}}^{n-1} \Delta z_{i} \geq\left(n-n_{1}\right) \Delta z_{n-1}
$$

and so

$$
\begin{equation*}
z_{n} \geq\left(\frac{n}{2}\right) \Delta z_{n}, \text { for } n \geq n_{2} \geq 2 n_{1}+1 \tag{4.1.10}
\end{equation*}
$$

There exists an integer $n_{3} \geq n_{2}+k$ such that

$$
\begin{equation*}
z_{n-k} \geq \frac{n-k}{2} \Delta z_{n-k} \geq \frac{n-k}{2} \Delta z_{n}, n \geq n_{3} \tag{4.1.11}
\end{equation*}
$$

and

$$
0<\frac{\Delta z_{n}}{z_{n-k}} \leq \frac{2}{n-k} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Thus letting $h_{n}=\frac{\Delta z_{n}}{z_{n-k}}, h_{n}>0$ and nonincreasing (i.e. $h_{n+1} \leq h_{n}, n \geq n_{3}$) substituting the value of h_{n} in inequality (4.1.9) it becomes

$$
\begin{aligned}
\Delta w_{n} & \leq-M \rho_{n} q_{n}+\Delta \rho_{n} h_{n+1}-\rho_{n} h_{n+1}^{2}, n \geq n_{3} \\
& \leq-M \rho_{n} q_{n}+\frac{\left(\Delta \rho_{n}\right)^{2}}{4 \rho_{n}}-\left(\sqrt{\rho_{n}} h_{n+1}-\frac{\Delta \rho_{n}}{2 \sqrt{\rho_{n}}}\right)^{2} \\
& \leq-M \rho_{n} q_{n}+\frac{\left(\Delta \rho_{n}\right)^{2}}{4 \rho_{n}}, n \geq n_{3}
\end{aligned}
$$

summing both sides of the above inequality from n_{3} to $m \geq n_{3}$, we have

$$
w_{m+1}-w_{n_{3}} \leq-\sum_{n=n_{3}}^{m}\left(M \rho_{n} q_{n}-\frac{\left(\Delta \rho_{n}\right)^{2}}{4 \rho_{n}}\right) \rightarrow-\infty \text { as } m \rightarrow \infty
$$

using equation (4.1.3).This contradicts the fact that $w_{m}>0$ for $m \geq n_{3}$, so every solution of equation (4.1.1) is oscillatory and the proof is complete.

Theorem 4.1.2: Suppose that condition (4.1.2) holds with $\gamma=1$ and $k \geq 1$. If

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf \sum_{i=n-k}^{n-1}(i-k) q_{i}>\frac{2}{M}\left(\frac{k}{k+1}\right)^{k+1} \tag{4.1.12}
\end{equation*}
$$

Then every solution of equation (4.1.1) is oscillatory.
Proof: Suppose to the contrary that $\left\{x_{n}\right\}$ is an eventually positive solution of equation (4.1.1). Proceeding as in the proof of theorem 4.1.1, we have that the inequalities in (4.1.6) holds for $n \geq n_{0}>0$. From equation (4.1.1) and condition (4.1.2) we have

$$
\begin{aligned}
\Delta^{2} z_{n} & =-q_{n}\left(\frac{G\left(x_{n-k}\right)}{z_{n-k}}\right) z_{n-k} \\
& \leq-q_{n}\left(\frac{G\left(z_{n-k}\right)}{z_{n-k}}\right) z_{n-k}
\end{aligned}
$$

$$
\begin{equation*}
\leq-M q_{n} z_{n-k}, \text { for } n \geq n_{0} \tag{4.1.13}
\end{equation*}
$$

using inequality (4.1.11) we get

$$
\Delta^{2} z_{n} \leq-M q_{n}\left(\frac{n-k}{2}\right)\left(\Delta z_{n-k}\right), \quad n \geq n_{1} \geq n_{0}
$$

where n_{1} is sufficiently large.
Set

$$
\begin{align*}
& 0<\Delta z_{n}=\xi_{n}, n \geq n_{1} \\
& \Delta \xi_{n}+M q_{n}\left(\frac{n-k}{2}\right)\left(\xi_{n-k}\right) \leq 0, \text { for } n \geq n_{1} \tag{4.1.14}
\end{align*}
$$

by lemma 1.4.3 inequality (4.1.14) has no eventually positive solution, which is a contradiction.

Remark 4.1.1: The oscillation of all solutions of equation (4.1.1) with condition (4.1.2) was proved in [13] for
(i) $0<\gamma<1$, provided that $\sum_{n=1}^{\infty} n^{\gamma} q_{n}=\infty$
(ii) $\gamma>1$, provided that there exists a sequence $\left\{\rho_{n}\right\}$ such that $\rho_{n}>0, \Delta \rho_{n}>0$,

$$
\Delta^{2} \rho_{n} \leq 0 \text { and } \sum_{n=1}^{\infty} \rho_{n} q_{n}=\infty
$$

Theorem 4.1.3: Suppose that G is monotone nondecreasing with $x G(x)>0$ for $x \neq 0$, if inequalities in (4.1.6) hold and

$$
\sum_{n=1}^{\infty} q_{n}=\infty,
$$

Then every solution of equation (4.1.1) is oscillatory.
Proof: Let $\left\{x_{n}\right\}$ be an eventually positive solution of equation (4.1.1). There exists a sufficiently large positive integer n_{0} such that the inequalities in (4.1.6) are satisfied for $n \geq n_{0}$, so we can find an integer $n_{1} \geq n_{0}$ and a constant $c>0$ such that

$$
x_{n-k} \geq c, \text { for } n \geq n_{1}
$$

then equation (4.1.12) becomes

$$
\Delta^{2} z_{n}+q_{n} G(c) \leq 0, \text { for } n \geq n_{1}
$$

and then

$$
\sum_{n=n_{1}}^{L} \Delta^{2} z_{n} \leq-G(c) \sum_{n=n_{1}}^{L} q_{n}, \quad L \geq n_{1}
$$

hence

$$
\Delta z_{L+1}-\Delta z_{n_{1}} \leq-G(c) \sum_{n=n_{1}}^{L} q_{n},
$$

as $L \rightarrow \infty$ then $\lim _{L \rightarrow \infty} \Delta z_{L+1}=-\infty$, which is a contradiction.

Remark 4.1.2: The result in theorems 4.1.1-4.1.3 can be found in [13] but for the delay difference equations, we make some modifications on the conditions, and the proof so as to apply these theorems on the neutral delay difference equation (4.1.1).

Example 4.1.1: Consider the NDE

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+p x_{n-m}\right)+\frac{m}{n^{2}} x_{n-k}=0, \tag{4.1.15}
\end{equation*}
$$

with $\rho_{n}=n \in \mathbf{N}-\{0\}, k \in \mathbf{N}$
It is clear that $x G(x)=x^{2}>0$ and

$$
G(x) \operatorname{sgn} x=x \operatorname{sgn} x \geq M|x|, \quad x \neq 0
$$

taking $M=1$, we have

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(M \rho_{n} q_{n}-\frac{\left(\Delta \rho_{n}\right)^{2}}{4 \rho_{n}}\right) & =\sum_{n=1}^{\infty}\left(n\left(\frac{m}{n^{2}}\right)-\frac{1}{4 n}\right) \\
& =\sum_{n=1}^{\infty}\left(\frac{m}{n}-\frac{1}{4 n}\right)=\infty \text { iff } m>\frac{1}{4}
\end{aligned}
$$

Hence using theorem 4.1.1 we have that every solution of equation (4.1.15) is oscillatory provided that $m>\frac{1}{4}$.
Example 4.1.2: Consider the NDE

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+\frac{5}{3} x_{n-1}\right)+\left(\frac{4 n^{2}+8 n+6}{(n-2)^{4}}\right)\left(x_{n-2}\right)^{4} \operatorname{sgn} x_{n-2}=0 \quad, n>2 \tag{4.1.16}
\end{equation*}
$$

taking $\rho_{n}=n$
condition (4.1.2) is already satisfied for $M=1$. Now

$$
\sum_{n=3}^{\infty} \rho_{n} q_{n}=\sum_{n=3}^{\infty} n\left(\frac{4 n^{2}+8 n+6}{(n-2)^{4}}\right)=\infty
$$

so using remark 4.1.1(ii) equation (4.1.16) is oscillatory.
Example 4.1.3: Consider the NDE

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+\frac{1}{3} x_{n-1}\right)+(n-2)^{\frac{3}{2}}\left(\frac{1}{(n+2)^{3}}+\frac{2}{(n+1)^{3}}+\frac{1}{n^{3}}\right)\left|x_{n-2}\right|^{\frac{1}{2}}=0, n>2 \tag{4.1.17}
\end{equation*}
$$

clearly that condition (4.1.2) is satisfied with $0<\gamma<1$. Now

$$
\sum_{n=3}^{\infty} n^{\frac{1}{2}}\left[(n-2)^{\frac{3}{2}}\left(\frac{1}{(n+2)^{3}}+\frac{2}{(n+1)^{3}}+\frac{1}{n^{3}}\right)\right]=\infty
$$

Since $(n-2)^{\frac{3}{2}}\left(\frac{1}{(n+2)^{3}}+\frac{2}{(n+1)^{3}}+\frac{1}{n^{3}}\right) \geq \frac{4(n-2)^{\frac{3}{2}}}{(n+2)^{3}} \quad, n>2$
Then every solution of equation (4.1.17) is oscillatory by remark 4.1.1(i).
Remark 4.1.3: The results of this section are mainly referred to [13].

4.2 Oscillation criteria of second-order forced NDE's with both constant and variable coefficients

Consider the second-order NDE of the form

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+p x_{n-m}\right)+q_{n} G\left(x_{n-k}\right)=f_{n}, \quad n \geq 0 \tag{4.2.1}
\end{equation*}
$$

where p is a positive real number, $\left\{q_{n}\right\}$ and $\left\{f_{n}\right\}$ are sequences of real numbers with $q_{n} \geq 0$ for all $n \in \mathbf{N}$ and $G \in C(\mathbf{R}, \mathbf{R})$ with $u G(u)>0$ for $u \neq 0, m, k$ are nonnegative integers and $r=\max \{m, k\}$.

Authors in [25] established sufficient conditions for the oscillation of equation (4.2.1) for the special case when p is identically one and other cases. However, more general case was studied by Zafer in [28] when $0 \leq p_{n}<1$ with different sufficient conditions. Also in [10] Grace and Lalli treated equation (4.2.1) but for the case when p is nonnegative real number.

We need the following conditions:
$\left(\mathrm{C}_{1}\right) G$ is nondecreasing and there exists $K>0$ such that

$$
|G(u v)| \geq K|G(u)||G(v)|, \text { for all } u, v \in \mathbf{R}
$$

and

$$
\int_{0}^{ \pm c} \frac{d s}{G(s)}<\infty, \text { for all } c>0
$$

$\left(\mathrm{C}_{2}\right)$ There exists a real sequence $\left\{h_{n}\right\}$ such that

$$
\Delta^{2} h_{n}=f_{n} \text { with } h_{n} \text { is } m \text { periodic }
$$

$\left(\mathrm{C}_{3}\right)$ There exists $\gamma>0$ such that $\frac{G(u)}{u} \geq \gamma>0$ for $u \neq 0$.
(C4) $\sum_{n=n_{0}}^{\infty} q_{n}=\infty$
Theorem 4.2.1: If $p_{n}=p=1$ and the conditions $\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{4}\right)$ hold then all the solutions of equation (4.2.1) are oscillatory.

Proof: Let $\left\{x_{n}\right\}$ be an eventually positive solution of equation (4.2.1) with $x_{n}>0$, $x_{n-m}>0$ and $x_{n-k}>0$ for all $n \geq n_{1} \geq n_{0}$. Since $\left\{h_{n}\right\}$ is periodic, there is a real number w such that the sequence $\left\{h_{n}-w\right\}$ is oscillatory. For $n \geq n_{1}$ let $z_{n}=x_{n}+x_{n-m}-\left(h_{n}-w\right)$. Then

$$
\begin{equation*}
\Delta^{2} z_{n}=-q_{n} G\left(x_{n-k}\right) \leq 0, \tag{4.2.2}
\end{equation*}
$$

and so $\left\{z_{n}\right\}$ is monotonic, so either $z_{n}<0$ eventually or $z_{n}>0$ eventually.
If $z_{n}<0$ eventually then $0<x_{n}<h_{n}-w$ for large n, which is impossible. Thus $z_{n}>0$ for $n \geq n_{2}$ for some $n_{2} \geq n_{1}$, by lemma 1.4.1, we have $\Delta z_{n}>0$ for $n \geq n_{2}$. Taking the summation to equation (4.2.2) and applying (C_{3}), we obtain

$$
\begin{align*}
\Delta z_{n_{2}} & =\sum_{s=n_{2}}^{n-1} q_{s} G\left(x_{s-k}\right)+\Delta z_{n} \\
& >\sum_{s=n_{2}}^{n-1} q_{s} G\left(x_{s-k}\right)>\gamma \sum_{s=n_{2}}^{n-1} q_{s} x_{s-k} \tag{4.2.3}
\end{align*}
$$

hence

$$
\begin{equation*}
\sum_{s=n_{2}}^{\infty} q_{s} x_{s-k}<\infty \tag{4.2.4}
\end{equation*}
$$

Now, from theorem 1.4.1 $\Delta z_{n}>0$ for $n \geq n_{2}$. This means that for $n \geq n_{2}$

$$
\begin{equation*}
z_{n}-z_{n-m}=x_{n}-x_{n-2 m}-\left(h_{n}-h_{n-m}\right), \tag{4.2.5}
\end{equation*}
$$

but h_{n} is m periodic, this yields

$$
\begin{equation*}
z_{n}-z_{n-m}=x_{n}-x_{n-2 m}>0 \tag{4.2.6}
\end{equation*}
$$

or $x_{n}>x_{n-2 m}$ for $n \geq n_{2}$. Therefore

$$
\lim _{n \rightarrow \infty} \inf x_{n}>0 \text { and so } \sum_{s=n_{2}}^{\infty} q_{s}<\infty
$$

Which contradicts $\left(\mathrm{C}_{4}\right)$.
Consider the second-order NDE

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+p x_{\tau_{n}}\right)+q_{n} G\left(n, x_{n}, x_{\sigma_{n}}\right)=f_{n}, n \geq 0 \tag{4.2.7}
\end{equation*}
$$

where $\quad \sigma, \tau: \mathbf{N} \rightarrow \mathbf{N}, \quad \sigma_{n} \leq n, \tau_{n} \leq n \quad$ and $\quad \lim _{n \rightarrow \infty} \sigma_{n}=\lim _{n \rightarrow \infty} \tau_{n}=\infty, \quad f: \mathbf{N} \rightarrow \mathbf{R}$. $G: \mathbf{N} \times \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ such that $y G(n, x, y)>0$ for $x y>0$ and $n \in \mathbf{N}(s), q_{n}=1$ and $0 \leq p<1$.

Theorem 4.2.2:

Suppose that:
I. ϕ_{n} is nonnegative function on I and $w(x)>0$ for $x>0$ is continuous and nondecreasing on \mathbf{R}_{+}such that

$$
|G(n, x, y)| \geq \phi_{n} w\left(\frac{|y|}{\sigma_{n}}\right),
$$

and

$$
\int_{0}^{ \pm a} \frac{d x}{w(x)}<\infty, \text { for any } a>0
$$

II. h_{n} is an oscillatory function such that $\Delta^{2} h_{n}=f_{n}$ and $\lim _{n \rightarrow \infty} h_{n}=0$
III. $\sum_{n=0}^{\infty} \phi_{n}=\infty$,

Then every solution of equation (4.2.7) is oscillatory.
Proof: Let x_{n} be an eventually positive solution of equation (4.2.7), define $z_{n}=x_{n}+p x_{\tau_{n}}$ and $y_{n}=z_{n}-h_{n}$. It follows that z_{n}, y_{n} and $-\Delta^{2} y_{n}$ are eventually positive, by Theorem 1.4.1, we have that Δy_{n} is eventually positive and, since $\lim _{n \rightarrow \infty} \sigma_{n}=\infty$, it is clear that we can find a natural number n_{0} such that $x_{\sigma_{n}}>0$ on $\mathbf{N}\left(n_{0}\right)$, substituting y_{n} in equation (4.2.7) we have

$$
\begin{equation*}
\Delta^{2} y_{n}=-G\left(n, x_{n}, x_{\sigma_{n}}\right)<0, \tag{4.2.8}
\end{equation*}
$$

for $n \in \mathbf{N}\left(n_{0}\right)$, let $\left\{n_{k}\right\}$ be an increasing sequence in \mathbf{N} so that $\lim _{k \rightarrow \infty} n_{k}=\infty$ and $\sigma_{n_{k}} \in \mathbf{N}\left(n_{0}\right)$ for $k \geq 1$. In view of corollary 1.4.1

$$
\begin{equation*}
y_{\sigma_{n_{k}}}>c_{1} \sigma_{n_{k}} \Delta y_{\sigma_{n_{k}}}, \tag{4.2.9}
\end{equation*}
$$

where c_{1} is an appropriate constant, since $\sigma_{n} \leq n$ and Δy_{n} is decreasing, it follows from inequality (4.2.9) that

$$
\begin{equation*}
y_{\sigma_{n_{k}}}>c_{1} \sigma_{n_{k}} \Delta y_{n_{k}}, \tag{4.2.10}
\end{equation*}
$$

on the other hand, since Δh_{n} is oscillatory function, then Δz_{n} must be eventually positive. In view of the fact that $x_{n} \leq z_{n}$ and $\tau_{n} \leq n$ using the increasing nature of z_{n} it follows that

$$
z_{n}=x_{n}+p x_{\tau_{n}} \leq x_{n}+p z_{n},
$$

from which we obtain

$$
\begin{equation*}
x_{n} \geq(1-p) z_{n} \tag{4.2.11}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} h_{n}=0$, there exists a $c_{2} \in(0,1)$ such that for n sufficiently large

$$
\begin{equation*}
z_{n} \geq c_{2} y_{n} \tag{4.2.12}
\end{equation*}
$$

by inequality (4.2.11) we get

$$
\begin{equation*}
x_{\sigma_{n}} \geq c_{2}(1-p) y_{\sigma_{n}} \tag{4.2.13}
\end{equation*}
$$

combining inequalities (4.2.10) and (4.2.13), we obtain

$$
x_{\sigma_{n_{k}}}>c_{1} c_{2}(1-p)\left(\sigma_{n_{k}}\right) \Delta y_{n_{k}}
$$

let $c_{1} c_{2}(1-p)=c$ by condition (I) of this theorem we get

$$
\begin{equation*}
G\left(n_{k}, x_{n_{k}}, x_{\sigma_{n_{k}}}\right) \geq \phi_{n_{k}} w\left(c \Delta y_{n_{k}}\right) \tag{4.2.14}
\end{equation*}
$$

If we set $v_{n}=c \Delta y_{n}$ it follows from inequalities (4.2.8) and (4.2.14) that

$$
\begin{equation*}
\frac{\Delta v_{n_{k}}}{w\left(v_{n_{k}}\right)}+c \phi_{n_{k}} \leq 0 \tag{4.2.15}
\end{equation*}
$$

note that $v_{n}>0$ is decreasing and by using the nondecreasing nature of $w(x)$, then

$$
w(s) \leq w\left(v_{n_{k}}\right) \text { for } v_{n_{k+1}} \leq s \leq v_{n_{k}}
$$

In view of the last observation, we find

$$
\begin{equation*}
\int_{v_{n_{k+1}}}^{v_{n_{k}}} \frac{d s}{w(s)} \geq \frac{v_{n_{k}}-v_{n_{k+1}}}{w\left(v_{n_{k}}\right)} \geq \frac{v_{n_{k}}-v_{n_{k}+1}}{w\left(v_{n_{k}}\right)}=\frac{-\Delta v_{n_{k}}}{w\left(v_{n_{k}}\right)} \tag{4.2.16}
\end{equation*}
$$

Using (4.2.16) and (4.2.15) and summing both sides of the resulting inequality from $k=1$ to $k=K$ we have

$$
\begin{equation*}
-\int_{v_{m_{1}}}^{v_{n+1}} \frac{d s}{w(s)}+c \sum_{k=1}^{K} \phi_{n_{k}} \leq 0 \tag{4.2.17}
\end{equation*}
$$

let $\lim _{n \rightarrow \infty} v_{n}=L$. It is clear that the limit L exists and is nonnegative. If $L \neq 0$ then inequality (4.2.17) implies

$$
\sum_{k=1}^{\infty} \phi_{n_{k}}<\infty
$$

We get a contradiction with condition (III), when $L=0$ making use of the condition that $\int_{0}^{ \pm a} \frac{d x}{w(x)}<\infty$ for any $a>0$, we again get a contradiction with condition (III), the proof is complete.

Consider the second-order NDE of the form

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+p x_{n-m}\right)+q_{n} G\left(x_{k_{n}}\right)=f_{n}, \tag{4.2.18}
\end{equation*}
$$

where p is a nonnegative real number, $k \geq 1$, the sequence $\left\{k_{n}\right\}$ is a sequence of nonnegative integers with $\lim _{n \rightarrow \infty} k_{n}=\infty$ and $\left\{f_{n}\right\}$ and $\left\{q_{n}\right\}$ are also sequences of real numbers with $q_{n} \geq 0$ eventually, the function G is a real valued function satisfying $x G(x)>0$ for $x \neq 0$.

We need the following assumptions:
$\left(\mathrm{A}_{1}\right) G(x) \geq M x, x \neq 0 M$ is a positive number
(A_{2}) There exists a sequence $\left\{h_{n}\right\}$ of real numbers such that

$$
\Delta^{2} h_{n}=f_{n} \quad \text { and }\left\{h_{n}\right\} \text { is oscillatory }
$$

$\left(\mathrm{A}_{3}\right)$ The sequence $\left\{h_{n}\right\}$ is periodic of period m

Theorem 4.2.3: In addition to the assumptions $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{3}\right)$, assume that there exists a sequence $\left\{l_{n}\right\}$ of positive integers such that $\left\{n-l_{n}\right\}$ is increasing, $\lim _{n \rightarrow \infty}\left(n-l_{n}\right)=\infty$ and $k_{n} \geq n-l_{n}$ for $n \in \mathbf{N}$. If

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf \frac{1}{l_{n}} \sum_{i=n-l_{n}}^{n-1}\left(i-l_{i}\right) q_{i}>\gamma^{*} \lim _{n \rightarrow \infty} \sup \frac{l_{n}^{l_{n}}}{\left(l_{n}+1\right)^{l_{n}+1}}, \tag{4.2.19}
\end{equation*}
$$

then equation (4.2.18) is oscillatory provided that $0 \leq p<1, \gamma^{*}=\frac{2}{M(1-p)}$.
Proof: Assume that equation (4.2.18) has an eventually positive bounded solution x_{n}, then there exists a positive integer n_{0} such that

$$
\begin{equation*}
x_{n}>0, x_{n-m}>0 \text { and } x_{k_{n}}>0 \text { for } n \geq n_{0} \tag{4.2.20}
\end{equation*}
$$

define

$$
\begin{equation*}
y_{n}=x_{n}+p x_{n-m} \text { and } z_{n}=y_{n}-h_{n} \tag{4.2.21}
\end{equation*}
$$

Then

$$
\begin{equation*}
\Delta^{2} z_{n}=-q_{n} G\left(x_{k_{n}}\right) \leq 0, \text { for } n \geq n_{0} \tag{4.2.22}
\end{equation*}
$$

Which implies that $\left\{\Delta z_{n}\right\}$ is an eventually nonincreasing sequences, also $z_{n}>0$ for $n \geq n_{0}$, we claim that $\Delta z_{n}>0$ for $n \geq n_{1}$ for some $n_{1} \geq n_{0}$. If not, then there exists an integer $n_{2} \geq n_{1}$ such that $\Delta z_{n} \leq 0$ for $n \geq n_{2}$. Since q_{n} is not eventually zero there exists an integer $n_{3} \geq n_{2}$ such that $\Delta^{2} z_{n}<0$ for $n \geq n_{3}$. It follows that

$$
\Delta z_{n_{3}+1}<\Delta z_{n_{3}} \leq \Delta z_{n_{2}} \leq 0
$$

Hence

$$
\Delta z_{n} \leq \Delta z_{n_{3}+1}<0
$$

Summing both sides of the above inequality from $n_{3}+1$ to $n \geq n_{3}+1$, we have

$$
z_{n+1}-z_{n_{3}+1} \leq\left(n-n_{3}\right) \Delta z_{n_{3}+1} \rightarrow-\infty \text { as } n \rightarrow \infty,
$$

which is a contradiction. Thus

$$
\begin{equation*}
\Delta^{2} z_{n} \leq 0, \quad \Delta z_{n}>0, \quad z_{n}>0 \text { and } x_{k_{n}}>0, \text { for } n \geq n_{3} \tag{4.2.23}
\end{equation*}
$$

now using $\left(\mathrm{A}_{1}\right)$ in (4.2.22) we get

$$
\begin{equation*}
\Delta^{2} z_{n} \leq-M q_{n} x_{k_{n}}, \text { for } n \geq n_{1} \tag{4.2.24}
\end{equation*}
$$

in view of inequality (4.2.23) there exists an integer $N_{0} \geq n_{1}$ such that

$$
\begin{aligned}
x_{n}+p x_{n-m} & =z_{n}+h_{n} \\
x_{n} & =z_{n}+h_{n}-p x_{n-m} \\
& =z_{n}+h_{n}-p\left(z_{n-m}+h_{n-m}-p x_{n-2 m}\right)
\end{aligned}
$$

so

$$
x_{n} \geq(1-p)\left(z_{n}+h_{n}\right), \text { for } n \geq n_{1}
$$

and

$$
x_{n} \geq(1-p)\left(z_{n}+h_{N_{0}}\right)=\xi_{n}, \text { for } N_{0} \geq n_{2}
$$

It is clear that

$$
\Delta z_{n}=\frac{1}{1-p} \Delta \xi_{n}, \text { for } n \geq n_{2}
$$

and

$$
\begin{aligned}
\xi_{n} & =(1-p)\left(z_{n}+h_{N_{0}}\right) \\
& \geq(1-p)\left(z_{N_{0}}+h_{N_{0}}\right), \text { for } N_{0} \geq n_{2}
\end{aligned}
$$

by inequality (4.2.24) we obtain

$$
\begin{equation*}
\Delta^{2} \xi_{n} \leq-M(1-p) q_{n} \xi_{k_{n}}, \text { for } n \geq N_{0} \tag{4.2.25}
\end{equation*}
$$

clearly that ξ_{n} satisfies (4.2.23) with z replaced by ξ. Hence there exists an integer $N_{1} \geq N_{0}$ such that

$$
\begin{equation*}
\Delta^{2} \xi_{n} \leq-M(1-p) q_{n} \xi_{n-l_{n}}, \text { for } n \geq N_{1} \tag{4.2.26}
\end{equation*}
$$

by corollary 1.4.1 there exists an integer $N_{2} \geq N_{1}$ such that

$$
\begin{equation*}
\xi_{n} \geq \frac{n}{2} \Delta \xi_{n}, \text { for } n \geq N_{2} \tag{4.2.27}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi_{n-l_{n}} \geq\left(\frac{n-l_{n}}{2}\right) \Delta \xi_{n-l_{n}} \text {, for } n \geq N_{2} \tag{4.2.28}
\end{equation*}
$$

set $\Delta \xi_{n}=\theta_{n}$ we get

$$
\begin{equation*}
\Delta \theta_{n} \leq-M(1-p)\left(\frac{n-l_{n}}{2}\right) q_{n} \theta_{n-l_{n}}, \text { for } n \geq N_{2} \tag{4.2.29}
\end{equation*}
$$

By lemma 1.4.3, condition (4.2.19) implies that inequality (4.2.29) has no eventually positive solution which is a contradiction.

The following discussion is for equation (4.2.18) when G is superlinear.
Theorem 4.2.4: Let conditions $\left(\mathrm{A}_{2}\right)$ and $\left(\mathrm{A}_{3}\right)$ hold, and suppose that $\sigma_{n}=\min \left\{n, k_{n}\right\}$ such that

$$
\begin{equation*}
\Delta \sigma_{n}>0 \text { and } \Delta^{2} \sigma_{n} \leq 0 \text { for } n \in \mathbf{N} \tag{4.2.30}
\end{equation*}
$$

If

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} \sigma_{n} q_{n}=\infty, \tag{4.2.31}
\end{equation*}
$$

then equation (4.2.18) is oscillatory provided that $0 \leq p<1$.

Proof: Proceeding as in the proof of theorem 4.2.3 we get (4.2.20), also we get (4.2.22) and (4.2.23) hold for $n \geq N_{0}$, and that ξ_{n} satisfies (4.2.23) with z replaced by ξ, so

$$
\Delta^{2} \xi_{n} \leq-M(1-p) q_{n} G\left(\xi_{k_{n}}\right), \text { for } n \geq N_{0}
$$

since G is superlinear and using conditions (4.2.30) and (4.2.23) in the above inequality we get

$$
\begin{equation*}
\Delta^{2} \xi_{n}+M(1-p) q_{n} G\left(\xi_{\sigma_{n}}\right) \leq 0, \text { for } n \geq N_{1} \geq N_{0} \tag{4.2.32}
\end{equation*}
$$

set

$$
w_{n}=\sigma_{n} \frac{\Delta \xi_{n}}{G\left(\xi_{\sigma_{n}}\right)}, \quad n \geq N_{1}
$$

then

$$
\begin{aligned}
\Delta w_{n} & =\sigma_{n+1} \frac{\Delta \xi_{n+1}}{G\left(\xi_{\sigma_{n+1}}\right)}-\sigma_{n} \frac{\Delta \xi_{n}}{G\left(\xi_{\sigma_{n}}\right)} \\
& =\sigma_{n} \frac{\Delta^{2} \xi_{n}}{G\left(\xi_{\sigma_{n}}\right)}+\Delta \xi_{n+1}\left(\frac{\sigma_{n+1}}{G\left(\xi_{\sigma_{n+1}}\right)}-\frac{\sigma_{n}}{G\left(\xi_{\sigma_{n}}\right)}\right)
\end{aligned}
$$

Using (4.2.23) and (4.2.30) along with the fact that the sequences $\left\{\xi_{n}\right\}$ and $\left\{\sigma_{n}\right\}$ are increasing, we get

$$
\begin{equation*}
\Delta w_{n} \leq-\sigma_{n} q_{n}+\Delta \sigma_{n}\left(\frac{\Delta \xi_{\sigma_{n-1}}}{G\left(\xi_{\sigma_{n}}\right)}\right) \text {, for } n \geq N_{2} \geq N_{1} \tag{4.2.33}
\end{equation*}
$$

Summing both sides of inequality from N_{2} to $s \geq N_{2}$, we have

$$
w_{n+1}-w_{N_{2}} \leq-\sum_{n=N_{2}}^{s} \sigma_{n} q_{n}+\Delta \sigma_{N_{2}} \sum_{n=N_{2}}^{s} \frac{\Delta \xi_{\sigma_{n-1}}}{G\left(\xi_{\sigma_{n}}\right)},
$$

by condition (4.2.31), we have

$$
w_{s+1} \rightarrow-\infty \text { as } s \rightarrow \infty,
$$

which is a contradiction.
Theorem 4.2.5: Suppose that the function G is nondecreasing and that conditions $\left(\mathrm{A}_{2}\right)$ and $\left(\mathrm{A}_{3}\right)$ hold. If

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} q_{n}=\infty, \tag{4.2.34}
\end{equation*}
$$

holds, then equation (4.2.18) is oscillatory provided that $0 \leq p<1$.
Proof: We proceed as in the proof of theorem 4.2.3 to get (4.2.20), following the proof of theorem 4.2.4 to arrive at inequality (4.2.23). Choose an integer $N_{1} \geq N_{2}$ and a positive number c such that

$$
\begin{equation*}
\xi_{k_{n}}>c, \text { for } n \geq N_{1} \tag{4.2.35}
\end{equation*}
$$

using inequality (4.2.35) in inequality (4.2.32) to get

$$
\Delta^{2} \xi_{n}+M(1-p) q_{n} G(c) \leq 0, \text { for } n \geq N_{1}
$$

summing both sides of the above inequality from N_{1} to $s>N_{1}$ and using condition (4.2.34) we have

$$
0<\Delta \xi_{s+1} \rightarrow-\infty \text { as } s \rightarrow \infty
$$

which is a contradiction.
Remark 4.2.1: The case when $(p>1)$ are considered to NDE

$$
\Delta^{2}\left(x_{n}+p x_{n+m}\right)+q_{n} G\left(x_{k_{n}}\right)=f_{n},
$$

in [10] using similar arguments used in the proof of theorems 4.2.3, 4.2.4 and 4.2.5.
Example 4.2.1: Consider the NDE

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+x_{n-2}\right)+8 x_{n-4}=16(-1)^{n}, \tag{4.2.36}
\end{equation*}
$$

for $h_{n}=4(-1)^{n}$ which is periodic, $\sum_{n=N_{0}}^{\infty} q_{n}=\infty$, and there exists $\gamma=1>0$ such that

$$
\frac{G(x)}{x}=\frac{x}{x}=1 \geq \gamma>0, \text { for } x \neq 0
$$

by theorem 4.2.1 every solution of equation (4.2.36) is oscillatory.
Example 4.2.2: Consider the NDE

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+\frac{1}{2} x_{\tau_{n}}\right)+q_{n}\left|x_{\sigma_{n}}\right|^{\alpha} \operatorname{sgn}\left(x_{\sigma_{n}}\right)=\frac{2(-1)^{n}}{n(n+2)} \tag{4.2.37}
\end{equation*}
$$

$0<\alpha<1, q_{n}$ is nonnegative and not identically zero
we have

$$
\begin{aligned}
& G(n, x, y)=q_{n}|y|^{\alpha} \operatorname{sgn}(y), \\
& \phi_{n}=(1-p)^{\alpha}\left(\sigma_{n}\right)^{\alpha} q_{n} \text { with } p=\frac{1}{2} \\
& w(x)=x^{\alpha}, h_{n}=\frac{(-1)^{n}}{n}
\end{aligned}
$$

Using theorem 4.2.2 every solution of equation (4.2.37) is oscillatory.
Example 4.2.3: Consider the NDE

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+\frac{2}{3} x_{n-2}\right)+2\left(\frac{16 n-1}{n-3}\right)\left|x_{n-3}\right| \operatorname{sgn}\left(x_{n-3}\right)=4(-1)^{n}, \tag{4.2.38}
\end{equation*}
$$

where $n>3, m=2, k_{n}=n-3$
hence $f_{n}=4(-1)^{n}$ and $h_{n}=(-1)^{n}$ which is periodic of period 2 , let $l_{n}=3$,
then by theorem 4.2.3 or theorem 4.2.4 every solution of equation (4.2.38) is oscillatory. It is clear that $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{3}\right)$ are satisfied with $M=1$, with

$$
\lim _{n \rightarrow \infty} \inf \frac{1}{3} \sum_{i=n-3}^{n-1}(i-3)\left(2 \frac{6 i-1}{i-3}\right)>\gamma^{*} \lim _{n \rightarrow \infty} \sup \left(\frac{3^{3}}{4^{4}}\right)
$$

Remark 4.2.2: The results of this section are mainly referred to [10], [25] and [28].

4.3 Oscillation criteria of second-order NDE's with variable coefficients

Consider the second-order NDE of the form

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+p_{n} x_{n-m}\right)+q_{n} G\left(x_{n-k}\right)=0, \quad n \geq 0 \tag{4.3.1}
\end{equation*}
$$

where p_{n}, q_{n} are sequences of real numbers with $q_{n} \geq 0, G \in C(\mathbf{R}, \mathbf{R})$ is nondecreasing and satisfies $u G(u)>0$ for $u \neq 0, m>0$ and $k \geq 0$ are integers.

Many authors studied the oscillation of solutions of equation (4.3.1) considering various ranges of p_{n}. For example, in [19] Parhi and Tripathy established many sufficient conditions for the oscillation of equation (4.3.1). However, a different approach was achieved by Agarwal, Manuel and Thandapani depending on dividing the set S of all nontrivial solutions into four classes and trying to find under what conditions those classes are empty, as we will see later.

Lemma 4.3.1: Let x_{n} be a real-valued function on $\mathbf{N}\left(n_{0}\right)$ such that $x_{n}>0$ and $\Delta^{m} x_{n} \leq 0$ on $\mathbf{N}\left(n_{0}\right)$ and $\Delta^{m} x_{n} \neq 0$, where $m \geq 2$. If $\Delta x_{n}>0$ and $\Delta^{m-1} x_{n}>0$, then there exists $n_{2}>2 n_{1}$, where n_{1} is a large number in $\mathbf{N}\left(n_{0}\right)$, such that $x_{n}>\frac{\Delta^{m-1} x_{n}}{(m-1)!}$ for $n \geq n_{3}$, where $n_{3}>\max \left\{2^{m-1} n_{2}, N\right\}$ and $N>0$ is a large integer such that $\left(2^{1-m} n\right)^{(m-1)}>1$ for $n \geq N$.

Proof: From corollary 1.4.1

$$
x_{n} \geq \frac{1}{(m-1)!}\left(\frac{n}{2}\right)^{(m-1)} \Delta^{m-1} x_{2^{m-2} n}
$$

for $n \geq 2 n_{1}$, where n_{1} is a large number in $\mathbf{N}\left(n_{0}\right)$. Since x_{n} is increasing, then, for $n \geq 2^{m-1} n_{1}$

$$
x_{n} \geq x_{2^{2-m}} \geq \frac{1}{(m-1)!}\left(2^{1-m} n\right)^{(m-1)} \Delta^{m-1} x_{n}
$$

Hence, for $n \geq n_{3}$

$$
x_{n}>\frac{1}{(m-1)!} \Delta^{m-1} x_{n}
$$

Thus the lemma is proved.
We need the following conditions:
$\left(\mathrm{C}_{1}\right)$ For $u>0$ there exists $\lambda>0$ such that $G(u) \geq \lambda u$.
For $u<0$, there exists $\lambda>0$ such that $G(u) \leq \lambda u$
$\left(\mathrm{C}_{2}\right)$ For $u>0$ and $v>0$, there exists $\lambda>0$ such that $G(u+v) \leq \lambda(G(u)+G(v))$
$\left(\mathrm{C}_{3}\right)$ For $u<0$ and $v<0$, there exists $\lambda>0$ such that $G(u+v) \geq \lambda(G(u)+G(v))$
(C4) $\int_{0}^{ \pm c} \frac{d u}{G(u)}<\infty$ for every $c>0$
(C_{5}) $\sum_{n=m}^{\infty} q_{n}^{*}=\infty$, where $q_{n}^{*}=\min \left\{q_{n}, q_{n-m}\right\}$
$\left(\mathrm{C}_{6}\right)$ For $u>0$ and $v>0, G(u v) \leq G(u) G(v)$
($\left.\mathrm{C}_{7}\right) G(-u)=-G(u), u \in \mathbf{R}$
$\left(\mathrm{C}_{8}\right)$ For $u, v \in \mathbf{R}, G(u v)=G(u) G(v)$
Theorem 4.3.1: Let $-\infty<p_{1} \leq p_{n} \leq 0$ and $k \geq m$. If $\left(\mathrm{C}_{1}\right)$ holds and if

$$
\liminf _{n \rightarrow \infty} \sum_{i=n-k+m}^{n-1} q_{i}>\max \left\{\lambda^{-1}\left(\frac{k}{k+1}\right)^{k+1},-p_{1} \lambda^{-1}\left(\frac{k-m}{k-m+1}\right)^{k-m+1}\right\},
$$

then every solution of equation (4.3.1) is oscillatory.
Proof: Let x_{n} be an eventually positive solution of equation (4.3.1), $x_{n}>0$ for $n>n_{0}$. Setting

$$
\begin{equation*}
z_{n}=x_{n}+p_{n} x_{n-m} \tag{4.3.2}
\end{equation*}
$$

we get

$$
\begin{equation*}
\Delta^{2} z_{n}+q_{n} G\left(x_{n-k}\right)=0 \tag{4.3.3}
\end{equation*}
$$

let $r=\max \{m, k\}, z_{n} \leq x_{n}$ and $\Delta^{2} z_{n} \leq 0$ for $n \geq n_{0}+r$, either $z_{n}>0$ or $z_{n}<0$.
If $z_{n}>0$, the inequalities in theorem 1.4.1 hold. Then $z_{n}>\Delta z_{n}$ for $n \geq n_{2}>n_{1}$ by lemma 4.3.1. Hence, using $\left(\mathrm{C}_{1}\right)$ equation (4.3.3) gives

$$
\Delta^{2} z_{n}+\lambda q_{n} \Delta z_{n-k} \leq 0,
$$

that is the last inequality admits a positive solution $\left\{\Delta z_{n}\right\}$, a contradiction in view of lemma 1.4.3. Hence $z_{n}<0$ for $n \geq n_{1}$, setting $y_{n}=-z_{n}$ for $n \geq n_{1}$, we have $y_{n}>0$, $y_{n}<-p_{1} x_{n-m}$, and

$$
\begin{equation*}
\Delta^{2} y_{n}-q_{n} G\left(x_{n-k}\right)=0 \tag{4.3.4}
\end{equation*}
$$

Hence $\Delta^{2} y_{n} \geq 0$ for $n \geq n_{1}$.
By theorem 1.4.1

$$
-\Delta y_{n}>0
$$

so equation (4.3.4) yields that y_{n} is a positive solution of

$$
\Delta y_{n}-\frac{\lambda}{p_{1}} q_{n} y_{n+m-k} \leq 0,
$$

which is a contradiction by lemma 1.4.3, so every solution of equation (4.3.1) is oscillatory.

Theorem 4.3.2: Let $-\infty<p_{1} \leq p_{n} \leq-1$. If

$$
\begin{equation*}
\sum_{n=0}^{\infty} q_{n}=\infty \tag{4.3.5}
\end{equation*}
$$

then every solution of equation (4.3.1) is oscillatory.
Proof: Let x_{n} be an eventually positive solution of equation (4.3.1), $x_{n}>0$ for $n \geq n_{0}>0$, let z_{n} as in (4.3.2) we get (4.3.3), for $r=\max \{m, k\}$ we have

$$
z_{n}<x_{n} \text { and } \Delta^{2} z_{n} \leq 0 \text { for } n \geq n_{0}+r
$$

let $z_{n}>0$ for $n \geq n_{1} \geq n_{0}+r$, then theorem 1.4.1, $\Delta z_{n}>0$ for $n \geq n_{2} \geq n_{1}$. Since z_{n} is increasing, $z_{n}>M>0$ for $n \geq n_{2}$, from equation (4.3.3) we obtain

$$
\Delta^{2} z_{n}+q_{n} G(M) \leq 0, \text { for } n \geq n_{3}>n_{2}+r
$$

hence $\sum_{n=n_{3}}^{\infty} q_{n}<\infty$, because $\Delta z_{n}>0$, which is a contradiction.

Let $z_{n}<0$ for $n \geq n_{1}$. Set $y_{n}=-z_{n}$ we get $y_{n}>0, y_{n}<-p_{1} x_{n-m}$, and $\Delta^{2} y_{n}-q_{n} G\left(x_{n-k}\right)=0$ for $n \geq n_{1}$, by lemma 1.4.1 we have $-\Delta y_{n}>0$ for $n \geq n_{2}>n_{1}$. As in the proof of theorem 4.3.1 we proceed until we reach to

$$
\Delta y_{n}+q_{n} G\left(x_{n-k}\right) \leq 0
$$

Thus

$$
\liminf _{n \rightarrow \infty} x_{n}=0,
$$

Which is a contradiction, so equation (4.3.1) must have an oscillating solution.
Theorem 4.3.3: Let $-\infty<p_{1} \leq p_{n} \leq p_{3} \leq-1$. If condition (4.3.5) holds, then every solution of equation (4.3.1) is oscillatory.

Proof: Let x_{n} be an eventually positive solution of equation (4.3.1) then $x_{n}>0$ for $n \geq n_{0}>0$. Proceeding as in the proof of theorem 4.3.2 we obtain $\lim _{n \rightarrow \infty} \inf x_{n}=0$.
We consider the case $y_{n}>0$, and $-\Delta y_{n}>0$, hence $\lim _{n \rightarrow \infty} y_{n}=\alpha, 0 \leq \alpha<\infty$. If $\alpha>0$ then $y_{n}>\beta>0$ for $n \geq n_{4}>n_{3}$.
Then

$$
\Delta y_{n}+q_{n} G\left(x_{n-k}\right)=0 \text { and } x_{n-k}>-\frac{y_{n+m-k}}{p_{1}},
$$

this yields $\sum_{n=n_{4}}^{\infty} q_{n}<\infty$, a contradiction, hence $\alpha=0$ and $\lim _{n \rightarrow \infty} z_{n}=0$
but

$$
p_{3} x_{n-m} \geq p_{n} x_{n-m}=z_{n}-x_{n},
$$

then

$$
\liminf _{n \rightarrow \infty}\left(p_{3} x_{n-m}\right) \geq \liminf _{n \rightarrow \infty}\left(z_{n}-x_{n}\right) \geq \lim _{n \rightarrow \infty} z_{n}-\lim _{n \rightarrow \infty} \sup x_{n},
$$

that is

$$
\left(1+p_{3}\right) \lim _{n \rightarrow \infty} \sup x_{n} \geq 0,
$$

that is

$$
\lim _{n \rightarrow \infty} \sup x_{n}=0
$$

hence

$$
\lim _{n \rightarrow \infty} x_{n}=0,
$$

which is a contradiction, equation (4.3.1) is oscillatory.
Theorem 4.3.4: Let $0 \leq p_{n} \leq 1$ and $k \geq m$. If $\left(\mathrm{C}_{2}\right)-\left(\mathrm{C}_{5}\right)$ hold, then every solution of equation (4.3.1) oscillates.

Proof: Let x_{n} be an eventually positive solution of equation (4.3.1), then $x_{n}>0$ for $n \geq n_{0}>0$, setting z_{n} as in equation (4.3.2) we get equation (4.3.3) and $0<z_{n} \leq x_{n}+x_{n-m}$ for $n \geq n_{0}+r(r=\max \{m, k\})$. Hence $\Delta^{2} z_{n} \leq 0$ for $n \geq n_{0}+r$, using theorem 1.4.1 we have $\Delta z_{n}>0$ for $n \geq n_{1} \geq n_{0}+r$. Hence $z_{n}>\Delta z_{n}$ for $n \geq n_{2}>n_{1}$ by lemma 4.3.1. From equation (4.3.3) and using (C_{2}) we have, for $n \geq n_{3}>n_{2}+r$

$$
\begin{aligned}
0 & =\Delta^{2} z_{n}+q_{n} G\left(x_{n-k}\right)+\Delta^{2} z_{n-m}+q_{n-m} G\left(x_{n-m-k}\right) \\
& \geq \Delta^{2} z_{n}+\Delta^{2} z_{n-m}+q_{n}^{*}\left[G\left(x_{n-k}\right)+G\left(x_{n-m-k}\right)\right] \\
& \geq \Delta^{2} z_{n}+\Delta^{2} z_{n-m}+\lambda^{-1} q_{n}^{*} G\left(x_{n-k}+x_{n-m-k}\right) \\
& \geq \Delta^{2} z_{n}+\Delta^{2} z_{n-m}+\lambda^{-1} q_{n}^{*} G\left(z_{n-k}\right) \\
& \geq \Delta^{2} z_{n}+\Delta^{2} z_{n-m}+\lambda^{-1} q_{n}^{*} G\left(\Delta z_{n-k}\right)
\end{aligned}
$$

As $\Delta z_{n}>0$, then the above inequality yields

$$
\lambda^{-1} q_{n}^{*} \leq-\frac{\Delta^{2} z_{n}}{G\left(\Delta z_{n-k}\right)}-\frac{\Delta^{2} z_{n-m}}{G\left(\Delta z_{n-k}\right)}
$$

Since Δz_{n} is decreasing and $k \geq m$, then

$$
\begin{aligned}
\lambda^{-1} q_{n}^{*} & \leq-\frac{\Delta^{2} z_{n}}{G\left(\Delta z_{n}\right)}-\frac{\Delta^{2} z_{n-m}}{G\left(\Delta z_{n-m}\right)} \\
& \leq \int_{\Delta z_{n+1}}^{\Delta z_{n}} \frac{d u}{G(u)}+\int_{\Delta z_{n+1-m}}^{\Delta z_{n-m}} \frac{d u}{G(u)}
\end{aligned}
$$

Hence

$$
\lambda^{-1} \sum_{j=n_{3}}^{t-1} q_{j}^{*} \leq \int_{\Delta z_{t}}^{\Delta z_{n_{3}}} \frac{d u}{G(u)}+\int_{\Delta z_{t-m}}^{\Delta z_{n_{3}-m}} \frac{d u}{G(u)}
$$

that is $\sum_{j=n_{3}}^{t-1} q_{j}^{*}<\infty$, since $\lim _{t \rightarrow \infty} \Delta z_{t}$ exists and greater or equals zero. This contradicts $\left(\mathrm{C}_{5}\right)$, so every solution of equation (4.3.1) is oscillatory.

Theorem 4.3.5: Let $0 \leq p_{n} \leq p_{2}<\infty$ and $k \geq m$. If $\left(\mathrm{C}_{2}\right),\left(\mathrm{C}_{4}\right),\left(\mathrm{C}_{6}\right)$ and $\left(\mathrm{C}_{7}\right)$ hold, and if

$$
\begin{equation*}
\sum_{n=m}^{\infty} Q_{n}=\infty, \tag{4.3.6}
\end{equation*}
$$

where $Q_{n}=\min \left\{q_{n}, \frac{q_{n-m}}{G\left(p_{2}\right)}\right\}$,
then every solution of equation (4.3.1) oscillates.
Proof: The proof is similar to that of theorem (4.3.4), using $\left(\mathrm{C}_{2}\right)$ and $\left(\mathrm{C}_{6}\right)$ we get

$$
0 \geq \Delta^{2} z_{n}+\Delta^{2} z_{n-m}+\lambda^{-1} Q_{n} G\left(\Delta z_{n-k}\right)
$$

using $\left(\mathrm{C}_{4}\right)$ and proceeding as in theorem 4.3.4 yields $\sum_{n=n_{3}}^{\infty} Q_{n}<\infty$, a contradiction, and the proof is complete.

Theorem 4.3.6: Let $-\infty<p_{1} \leq p_{n} \leq 0$, and $k \geq m$. If (C_{4}) and (C_{5}) hold, then every solution of equation (4.3.1) oscillates.

Proof: Let x_{n} be an eventually positive solution of equation (4.3.1), then $x_{n}>0$ for $n \geq n_{0}$. Setting z_{n} as in equation (4.3.2) we get equation (4.3.3) and $z_{n} \leq x_{n}$ for $n \geq n_{0}+r(r=\max \{m, k\})$, either $z_{n}>0$ or $z_{n}<0$ for $n \geq n_{1}>n_{0}+r$.

Let $z_{n}>0$ for $n \geq n_{1}$, then by theorem 1.4.1 $\Delta z_{n}>0$, for $n \geq n_{2}>n_{1}$, hence $z_{n}>\Delta z_{n}$ for $n \geq n_{3}>n_{2}$, and we get

$$
\Delta^{2} z_{n}+q_{n} G\left(\Delta z_{n-k}\right) \leq 0,
$$

since $\Delta z_{n}>0$ and decreasing, then

$$
q_{n} \leq-\frac{\Delta^{2} z_{n}}{G\left(\Delta z_{n-k}\right)} \leq \int_{\Delta z_{n+1}}^{\Delta z_{n}} \frac{d u}{G(u)}
$$

Hence

$$
\sum_{n=n_{3}}^{t-1} q_{n} \leq \int_{\Delta z_{t}}^{\Delta z_{n 3}} \frac{d u}{G(u)}
$$

This leads to a contradiction due to $\left(\mathrm{C}_{4}\right)$ and $\left(\mathrm{C}_{5}\right)$ so $z_{n}<0$ for $n \geq n_{1}$. Set $y_{n}=-z_{n}$, we have $y_{n}>0, y_{n}<-p_{1} x_{n-m}$, we get also equation (4.3.4), by theorem 1.4.1 $-\Delta y_{n}>0$ and equation (4.3.4) yields

$$
\Delta y_{n}+q_{n} G\left(x_{n-k}\right) \leq 0
$$

that is

$$
\Delta y_{n}+q_{n} G\left(-\frac{y_{n}}{p_{1}}\right) \leq 0
$$

using $\left(\mathrm{C}_{4}\right)$ and $\left(\mathrm{C}_{5}\right)$ we get a contradiction which completes the proof.
Theorem 4.3.7: Let p_{n} be allowed to change sign with $-\infty<p_{1} \leq p_{n} \leq p_{2}<\infty$, where $p_{2}>0$ and $p_{1}<0$ are constants. Let $k \geq m$ and $\left(\mathrm{C}_{2}\right),\left(\mathrm{C}_{4}\right),\left(\mathrm{C}_{6}\right)$ and $\left(\mathrm{C}_{7}\right)$ hold. Suppose that equation (4.3.6) holds if $G\left(p_{2}\right) \geq 1$ or $\left(\mathrm{C}_{5}\right)$ holds if $G\left(p_{2}\right)<1$. Then every solution of equation (4.3.1) oscillates.

Proof: Let $x_{n}>0$ for $n \geq n_{0}$ an eventually positive solution of equation (4.3.1), setting z_{n} as in equation (4.3.2) to get equation (4.3.3).
Let $G\left(p_{2}\right) \geq 1$, then equation (4.3.6) holds and hence (C_{5}) holds because $Q_{n} \leq q_{n}^{*}$, since $\Delta z_{n} \leq 0$ for $n \geq n_{0}+r$, then $z_{n}>0$ or $z_{n}<0$ for $n \geq n_{0}+r$. Let $z_{n}>0$ for $n \geq n_{1}$, we have

$$
z_{n} \leq x_{n}+p_{2} x_{n-m}
$$

Proceeding as in the proof of theorem 4.3.5 we obtain a contradiction. Hence $z_{n}<0$ for $n \geq n_{1}$. Putting $y_{n}=-z_{n}$ we obtain $y_{n}>0, \quad y_{n}<-p_{1} x_{n-m}$ and equation (4.3.4) holds, and we obtain a contradiction as in the proof of the second half of theorem 4.3.6.
Let $G\left(p_{2}\right)<1$, then $\left(\mathrm{C}_{5}\right)$ holds and hence equation (4.3.6) holds because $Q_{n} \geq q_{n}^{*}$. If $z_{n}>0$ for $n \geq n_{1}$ then continue as in the proof of theorem 4.3.5 to get a contradiction. If $z_{n}<0$ for $n \geq n_{1}$ then continue as in the proof of the second half of theorem 4.3.6 to arrive a contradiction and the proof is complete.
Remark 4.3.1: Results for the oscillation when $0 \leq p_{n}<1$ and $p_{n} \geq 0$ positive real numbers was achieved by Zafer in [27], those results were applicable to the form

$$
\Delta^{2}\left(x_{n}+p_{n} x_{\tau_{n}}\right)+G\left(n, x_{\sigma_{n}}\right)=0
$$

provided that

$$
\sum_{n=0}^{\infty} G\left(n,\left(1-p\left(\sigma_{n}\right) c\right)\right)=\infty, c>0 .
$$

Consider the second order NDE

$$
\begin{equation*}
\Delta\left(c_{n} \Delta\left(x_{n}+p_{n} x_{n-m}\right)\right)+q_{n+1} G\left(x_{n+1-k}\right)=0 \quad, \quad n \geq 0 \tag{4.3.7}
\end{equation*}
$$

where m, k are fixed nonnegative integers, $\left\{c_{n}\right\},\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are sequences of real numbers, and the following three conditions hold:
(i) $c_{n}>0$, for all $n \in \mathbf{Z}$ and q_{n} is not identically zero for large n
(ii) $G \in(\mathbf{R}, \mathbf{R})$ with $u G(u)>0$ for $u \neq 0$
(iii) there exists a nonnegative function g such that

$$
G(u)-G(v)=g(u, v)(u-v), \text { for all } u \neq v
$$

Let S denote the set of all nontrivial solutions of equation (4.3.7), S can be divided into: $M^{+}=\left\{\left\{x_{n}\right\} \in S:\right.$ there exists an integer $N \in \mathbf{Z}$ such that $x_{n} \Delta x_{n} \geq 0$ for all $\left.n \geq N\right\}$
$M^{-}=\left\{\left\{x_{n}\right\} \in S:\left\{x_{n}\right\}\right.$ is nonoscillatory and there exists an integer $N \in \mathbf{Z}$ such that $x_{n} \Delta x_{n} \leq 0$ for all $\left.n \geq N\right\}$
$O S=\left\{\left\{x_{n}\right\} \in S:\right.$ for every integer $N \in \mathbf{Z}$, there exists $n \geq N$ such that $x_{n} x_{n+1} \leq 0$ for all $n \geq N\}$
WOS $=\left\{\left\{x_{n}\right\} \in S:\left\{x_{n}\right\}\right.$ is nonoscillatory and for every $N \in \mathbf{Z}$ there exists $n \geq N$, such that $\left.\Delta x_{n} \Delta x_{n+1} \leq 0\right\}$

Theorem 4.3.8: Assume that with respect to equation (4.3.7) the following conditions hold:
(1) $m \geq 1$ and $-1 \leq p_{n} \leq 0$,
(2) $q_{n} \geq 0$ for all $n \geq n_{0} \in \mathbf{Z}$,
(3) $\lim _{n \rightarrow \infty} \sum_{s=n_{0}}^{n-1} q_{s+1}=\infty$,
(4) $\sum_{n=n_{0}}^{\infty}\left(\frac{1}{c_{n}}\right)=\infty$, then $M^{+}=\phi$

Proof : Let equation (4.3.7) has a solution $\left\{x_{n}\right\} \in M^{+}$, such that $x_{n}>0, \Delta x_{n} \geq 0$, $x_{n-r}>0, \Delta x_{n-r}>0$ for all $n \geq n_{1}>n_{0}+r, r=\max \{k, m\}$, let $z_{n}=x_{n}+p_{n} x_{n-m}$, then by condition (3) and the fact that $\left\{x_{n}\right\} \in M^{+}$, we have

$$
z_{n}>x_{n-m}+p_{n} x_{n-m} \geq 0, \text { for all } n \geq n_{1}
$$

but equation (4.3.7) becomes

$$
\Delta\left(c_{n} \Delta z_{n}\right)=-q_{n+1} G\left(x_{n+1-k}\right), n \geq n_{1}
$$

the $\left\{c_{n} \Delta z_{n}\right\}$ is nonincreasing for all $n \geq n_{1}$, to prove that $c_{n} \Delta z_{n}>0$, suppose it is not, that is, $c_{n} \Delta z_{n}<0$ for all $n \geq n_{1}$, then there exists an integer $n_{2}>n_{1}$ such that

$$
c_{n} \Delta z_{n}<c_{n_{2}} \Delta z_{n_{2}}<0, \text { for all } n \geq n_{2}
$$

taking the summation from n_{2} to $n-1 \geq n_{2}$ we have

$$
z_{n}-z_{n_{2}} \leq \sum_{s=n_{2}}^{n-1} \frac{c_{n_{2}} \Delta z_{n_{2}}}{c_{s}}
$$

which implies that that $z_{n} \rightarrow-\infty$ as $n \rightarrow \infty$, contradiction, thus $c_{n} \Delta z_{n} \geq 0$, now by equation (4.3.7)

$$
\frac{c_{n} \Delta z_{n}}{G\left(x_{n-k}\right)}-\frac{c_{n_{1}} \Delta z_{n_{1}}}{G\left(x_{n_{1}-k}\right)}+\sum_{s=n_{1}}^{n-1} \frac{c_{s} \Delta z_{s} g\left(x_{s+1-k}, x_{s-k}\right) \Delta x_{s-k}}{G\left(x_{s+1-k}\right) G\left(x_{s-k}\right)}=-\sum_{s=n_{1}}^{n-1} q_{s+1}
$$

and hence

$$
\frac{c_{n} \Delta z_{n}}{G\left(x_{n-k}\right)}-\frac{c_{n_{1}} \Delta z_{n_{1}}}{G\left(x_{n_{1}-k}\right)} \leq-\sum_{s=n_{1}}^{n-1} q_{s+1}, n \geq n_{1}
$$

using condition (3), we find

$$
\lim _{n \rightarrow \infty} \frac{c_{n} \Delta z_{n}}{G\left(x_{n-k}\right)}=-\infty,
$$

which is a contradiction to the assumption that $c_{n} \Delta z_{n} \geq 0$.
Theorem 4.3.9: With respect to equation (4.3.7), suppose in addition to condition (3) and (4) of theorem 4.3.8, suppose that

$$
\begin{equation*}
q_{n}>0, \text { for all large values of } n \tag{4.3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
-1<p_{1} \leq p_{n} \leq 0 \text { for all } n \geq n_{0} \in \mathbf{Z} \tag{4.3.9}
\end{equation*}
$$

then $M^{-}=\phi$
Proof: Suppose that equation (4.3.7) has a solution $\left\{x_{n}\right\} \in M^{-}$so there exists an integer $n \geq n_{0} \in \mathbf{Z}$ such that $x_{n}>0, \Delta x_{n} \leq 0, x_{n-r}>0$ and $\Delta x_{n-r} \leq 0$ for all $n \geq n_{1}$, let $z_{n}=x_{n}+p_{n} x_{n-m}$, since we have that $z_{n}>0$, (otherwise x_{n} vanishes as $n \rightarrow \infty$) then equation (4.3.7) becomes

$$
\Delta\left(c_{n} \Delta z_{n}\right)=-q_{n+1} G\left(x_{n+1-k}\right), n \geq n_{1}
$$

with $\left\{c_{n} \Delta z_{n}\right\}$ is decreasing for $n \geq n_{1}$ as in theorem 4.3 .8 we can prove that $c_{n} \Delta z_{n}>0$ for $n \geq n_{1}$
Define

$$
w_{n}=\frac{c_{n} \Delta z_{n}}{G\left(z_{n}\right)}, \quad n \geq n_{1}
$$

we obtain

$$
\begin{align*}
& \Delta w_{n}=-\frac{q_{n+1} G\left(x_{n+1-k}\right)}{G\left(z_{n+1}\right)}-\frac{c_{n}\left(\Delta z_{n}\right)^{2} g\left(z_{n}, z_{n+1}\right)}{G\left(z_{n}\right) G\left(z_{n+1}\right)} \\
& \Delta w_{n} \leq-\frac{q_{n+1} G\left(x_{n+1-k}\right)}{G\left(z_{n+1}\right)}, \quad n \geq n_{1} \tag{4.3.10}
\end{align*}
$$

using inequality (4.3.9) we have that $z_{n+1} \leq x_{n+1}$, since $\left\{x_{n}\right\} \in M^{-}$, then

$$
z_{n+1} \leq x_{n+1} \leq x_{n+1-k},
$$

and

$$
G\left(z_{n+1}\right) \leq G\left(x_{n+1-k}\right), \text { for } n \geq n_{1}
$$

using this inequality in inequality (4.3.10) and taking the summation from n_{1} to $n-1 \geq n_{1}$, to the resulting inequality we get

$$
w_{n} \leq w_{n_{1}}-\sum_{s=n_{1}}^{n-1} q_{s+1}
$$

and hence $w_{n} \rightarrow-\infty$ as $n \rightarrow \infty$, which is a contradiction so $M^{-}=\phi$.
Theorem 4.3.10: With respect to equation (4.3.7), assume in addition to condition (2) of theorem 4.3.8 that

$$
\begin{equation*}
m \text { is odd positive integer } \tag{4.3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{n}=p \leq 0, \text { for all } n \geq n_{0} \in \mathbf{Z} \tag{4.3.12}
\end{equation*}
$$

then $W O S=\phi$
Proof: Let $\left\{x_{n}\right\} \in W O S$, suppose that there exists an integer $n_{1} \geq n_{0} \in \mathbf{Z}$ such that $x_{n}>0, x_{n-r}>0$ for all $n \geq n_{1}$, let $z_{n}=x_{n}+p_{n} x_{n-m}$, then

$$
\Delta z_{n} \Delta z_{n+1}=\Delta x_{n} \Delta x_{n+1}+p\left[\Delta x_{n} \Delta x_{n+1-m}+\Delta x_{n+1} \Delta x_{n-m}\right]+p^{2} \Delta x_{n-m} \Delta x_{n+1-m}
$$

Using condition (4.3.11) and (4.3.12), we find that

$$
\Delta z_{n} \Delta z_{n+1} \leq 0,
$$

hence $\left\{\Delta z_{n}\right\}$ is oscillatory
Define

$$
w_{n}=c_{n} \Delta z_{n},
$$

then w_{n} is oscillatory, but

$$
\Delta w_{n}=-q_{n+1} G\left(x_{n+1-k}\right), \quad n \geq n_{1}
$$

using condition (2) of theorem 4.3.8

$$
\Delta w_{n} \leq 0
$$

and so w_{n} is nonincreasing which is a contradiction.
Theorem 4.3.11: Assume in addition to the hypothesis of theorem 4.3.9 that $m \geq 1$, then every solution of equation (4.3.7) is either oscillatory or weakly oscillatory.

Proof: It is an immediate consequence of theorems 4.3.8 and 4.3.9.
Theorem 4.3.12: Assume that conditions (2), (3) and (4) of theorem 4.3 .8 hold, and condition (4.3.11) holds, also the inequality $-1 \leq p_{n}=p<0$ holds. Then every solution of equation (4.3.7) is oscillatory.

Proof: It follows from theorems 4.3.8, 4.3.9 and 4.3.10 immediately.

Example 4.3.1: Consider the NDE

$$
\begin{equation*}
\Delta^{2}\left(x_{n}-\left(4+(-1)^{n}\right) x_{n-1}\right)+2 x_{n-3}^{3}=0, n \geq 0 \tag{4.3.13}
\end{equation*}
$$

it clear that $-\infty<p_{1} \leq p_{n}=-\left(4+(-1)^{n}\right) \leq p_{3} \leq-1 \quad$ and $\quad \sum_{n=0}^{\infty} q_{n}=\infty, \quad G=x_{n-3}^{3} \quad$ is continuous on \mathbf{R} and nondecreasing satisfies $u G(u)>0$ for $u \neq 0$, so by theorem 4.3.3 every solution of equation (4.3.13) is oscillatory.

Example 4.3.2: Consider the NDE

$$
\begin{equation*}
\Delta^{2}\left(x_{n}-5(-1)^{n} x_{n-3}\right)+4 x_{n-4}^{\frac{1}{3}}=0, n \geq 0 \tag{4.3.14}
\end{equation*}
$$

using theorem 4.3.7, equation (4.3.14) is oscillatory since $p_{n}=\left\{\begin{array}{ll}5, & n \text { even } \\ -5, & n \text { odd }\end{array}\right.$, and taking $G\left(p_{2}\right)=5^{\frac{1}{3}} \geq 1$, also $\sum_{n=0}^{\infty} Q_{n}=\sum_{n=0}^{\infty} \frac{q_{n}}{G\left(p_{2}\right)}=\sum_{n=0}^{\infty} \frac{4}{5^{\frac{1}{3}}}=\infty$ is satisfied in addition to $u G(u)>0$ for $u \neq 0$

Example 4.3.3: Consider the NDE

$$
\begin{equation*}
\Delta\left(\frac{1}{n} \Delta\left(x_{n}+\sqrt[3]{-0.5} x_{n-1}\right)\right)+\frac{1}{n} x_{n-2}=0, n \geq 0 \tag{4.3.15}
\end{equation*}
$$

applying theorem 4.3.12 it is clear that

$$
\begin{aligned}
& -1<p_{n}=p=(-0.5)^{\frac{1}{3}} \leq 0, q_{n}=\frac{1}{n} \geq 0 \quad \text { for all } n \geq n_{0} \in \mathbf{Z} \\
& \lim _{n \rightarrow \infty} \sum_{s=0}^{n} \frac{1}{(s+1)}=\infty \text { and } \sum_{n=0}^{\infty} n=\infty
\end{aligned}
$$

so every solution of equation (4.3.15) is oscillatory.
Remark 4.3.2: The results of this section are mainly referred to [3] and [19].

4.4 Oscillation criteria of second-order forced NDE's with variable coefficients

Consider the second order forced NDE

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+p_{n} x_{n-m}\right)+q_{n} G\left(x_{n-k}\right)=f_{n} \tag{4.4.1}
\end{equation*}
$$

where $\left\{p_{n}\right\},\left\{q_{n}\right\}$ and $\left\{f_{n}\right\}$ are sequences of real numbers with $q_{n} \geq 0, G \in C(\mathbf{R}, \mathbf{R})$ is nondecreasing and $u G(u)>0$ for $u \neq 0, m>0$ and $k \geq 0$ are integers.

This section studies theorems that establish sufficient conditions for the oscillation of equation (4.4.1). In [19] Parhi and Tripathy proved the oscillation using sufficient conditions used in section 4.3 in addition to conditions concerning the forced term. However, in [25] the authors proved the oscillation of equation (4.4.1) depending on the technique used in the proof of the unforced related equations.

Assuming in the first three theorems that G satisfies the following two conditions
(i) There exists $K>0$ such that $|G(u v)| \geq K|G(u)||G(v)|$ for all $u, v \in \mathbf{R}$
(ii) $\int_{0}^{ \pm c} \frac{d s}{G(s)}<\infty$ for all $c>0$

We need the following conditions:
$\left(\mathrm{H}_{1}\right) 0 \leq p_{n}<p_{1}<1$, where p_{1} is a constant.
$\left(\mathrm{H}_{2}\right)$ there exists a real sequence $\left\{h_{n}\right\}$ such that $\Delta^{2} h_{n}=f_{n}$.
($\left.\mathrm{H}_{3}\right) \sum_{n=N_{0}}^{\infty} q_{n} G\left(\frac{n-k}{2}\right)=\infty$.
$\left(\mathrm{H}_{4}\right)\left\{h_{n}\right\}$ is oscillatory and $\lim _{n \rightarrow \infty} h_{n}=0$.
$\left(\mathrm{H}_{5}\right)\left\{h_{n}\right\}$ is m periodic .
$\left(\mathrm{H}_{6}\right) \sum_{n=N_{0}}^{\infty} q_{n}=\infty$.
$\left(\mathrm{H}_{7}\right)$ there exists $\gamma>0$ such $\frac{G(u)}{u}>\gamma>0$ for $u \neq 0$.
The following result that concerns with the oscillation if all solution of equation (4.4.1) with $f_{n}=0$ is needed to establish the oscillation of all solutions of equation (4.4.1).

Theorem 4.4.1: Let $f_{n}=0$ for all $n \in \mathbf{N}$, and let $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{3}\right)$ hold. Then all solutions of equation (4.4.1) are oscillatory.

Proof: Let $\left\{x_{n}\right\}$ be an eventually positive solution of equation (4.4.1), then $x_{n}>0$, $x_{n-m}>0$ and $x_{n-k}>0$ for $n \geq N_{1} \geq N_{0}$. Setting

$$
\begin{equation*}
z_{n}=x_{n}+p_{n} x_{n-m} \tag{4.4.2}
\end{equation*}
$$

we obtain that $z_{n} \geq x_{n}>0$ and

$$
\begin{equation*}
\Delta^{2} z_{n}=-q_{n} G\left(x_{n-k}\right) \leq 0, \text { for } n \geq N_{1} \tag{4.4.3}
\end{equation*}
$$

by theorem 1.4.1 then $\Delta z_{n}>0$ for $n \geq N_{2}$, from equation (4.4.2) we have

$$
\begin{equation*}
x_{n}=z_{n}-p_{n} x_{n-m} \tag{4.4.4}
\end{equation*}
$$

so $z_{n} \geq x_{n}$ and $\left\{z_{n}\right\}$ is increasing, so

$$
\begin{equation*}
0<\left(1-p_{1}\right) z_{n} \leq\left(1-p_{n}\right) z_{n} \leq x_{n} \tag{4.4.5}
\end{equation*}
$$

by corollary 1.4.1 there exists $N_{3} \geq N_{2}$

$$
\begin{equation*}
x_{n} \geq\left(1-p_{1}\right) z_{n} \geq \frac{\left(1-p_{1}\right) n}{2} \Delta z_{n}, \text { for } n \geq 2 N_{3} \tag{4.4.6}
\end{equation*}
$$

applying (i) and (ii) to inequality (4.4.6) gives

$$
\begin{align*}
G\left(x_{n-k}\right) & \geq K^{2} G\left(1-p_{1}\right) G\left(\frac{n-k}{2}\right) G\left(\Delta z_{n-k}\right) \tag{4.4.7}\\
& \geq K_{1} G\left(\frac{n-k}{2}\right) G\left(\Delta z_{n}\right), \text { for } n \geq N_{4} \geq 2 N_{3}
\end{align*}
$$

where $K_{1}=K^{2} G\left(1-p_{1}\right)>0$. Combining equation (4.4.3) and inequality (4.4.7), we get

$$
\begin{equation*}
\Delta^{2} z_{n}+K_{1} q_{n} G\left(\frac{n-k}{2}\right) G\left(\Delta z_{n}\right) \leq 0, \text { for } n \geq N_{4} \tag{4.4.8}
\end{equation*}
$$

Summing the last inequality, we get

$$
\begin{equation*}
K_{1} \sum_{s=N_{4}}^{n-1} q_{s} G\left(\frac{s-k}{2}\right) \leq-\sum_{s=N_{4}}^{n-1} \frac{\Delta^{2} z_{s}}{G\left(\Delta z_{s}\right)} \leq \int_{\Delta z_{n}}^{\Delta z_{N_{4}}} \frac{d u}{G(u)} \tag{4.4.9}
\end{equation*}
$$

letting $n \rightarrow \infty$ and using (i) and (ii), we get

$$
\begin{equation*}
\sum_{n=N_{4}}^{\infty} q_{n} G\left(\frac{n-k}{2}\right)<\infty \tag{4.4.10}
\end{equation*}
$$

which contradicts $\left(\mathrm{H}_{3}\right)$.
Theorem 4.4.2: If $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ - $\left(\mathrm{H}_{4}\right)$ hold, then all solutions of equation (4.4.1) are oscillatory.

Proof: Let x_{n} be an eventually positive solution of equation (4.4.1) then $x_{n}>0$, $x_{n-m}>0$ and $x_{n-k}>0$ for all $n \geq N_{1} \geq N_{0}$. Let

$$
\begin{equation*}
y_{n}=x_{n}+p_{n} x_{n-m}-h_{n} \tag{4.4.11}
\end{equation*}
$$

from equation (4.4.11) and (C_{2}), we have

$$
\begin{equation*}
\Delta^{2} y_{n}=-q_{n} G\left(x_{n-k}\right) \leq 0 \tag{4.4.12}
\end{equation*}
$$

It is clear that y_{n} must be greater than zero, thus $y_{n}>0$ for $n \geq N_{2} \geq N_{1}$, by theorem 1.4.1 we have

$$
\Delta y_{n}>0 \text { for } n \geq N_{3} \geq N_{2},
$$

now for $0<\varepsilon<\left(1-p_{1}\right) y_{n},\left(\mathrm{H}_{4}\right)$ implies that there exists an integer $N_{4}>N_{3}$ such that

$$
\left|h_{n}\right|<\frac{\varepsilon}{2} . \text { for } n \geq N_{4}
$$

From equation (4.4.11), we have $x_{n} \leq y_{n}+h_{n}$. So

$$
\begin{align*}
y_{n}-p_{n} y_{n-m} & \leq x_{n}-h_{n}+p_{n} h_{n-m} \\
& <x_{n}+\frac{\varepsilon}{2}+\frac{\varepsilon}{2} p_{n} \tag{4.4.13}
\end{align*}
$$

Hence

$$
\begin{equation*}
0<\left(1-p_{1}\right) y_{N_{3}}-\varepsilon<\left(1-p_{1}\right) y_{n}-\varepsilon<x_{n} \text {, for } n \geq N_{4} \tag{4.4.14}
\end{equation*}
$$

Set $r_{n}=\left(1-p_{1}\right) y_{n}-\varepsilon$ for $n \geq N_{4}$, we get

$$
0<r_{n}<x_{n}, \Delta r_{n}>0
$$

and

$$
\Delta^{2} r_{n}=-\left(1-p_{1}\right) q_{n} G\left(x_{n-k}\right) \leq 0
$$

We see that this step is similar to equation (4.4.3) in theorem 4.4.1, so we proceed as in the proof of theorem 4.4.1 to get a contradiction which completes the proof.

Remark 4.4.1: The conclusion of theorem 4.4.2 will be that the solution either oscillate or converge to zero if $\left(\mathrm{H}_{4}\right)$ is replaced by $\lim _{n \rightarrow \infty} h_{n}=0$

Theorem 4.4.3: If $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{3}\right)$ and $\left(\mathrm{H}_{5}\right)$ hold, then every solution of equation (4.4.1) is oscillatory.

Proof: Let $\left\{x_{n}\right\}$ be an eventually positive solution of equation (4.4.1), then $x_{n}>0$, $x_{n-m}>0$ and $x_{n-k}>0$ for $n \geq N_{1} \geq N_{0}$. Define y_{n} as in equation (4.4.11), we have that equation (4.4.12) holds and so either $y_{n}>0$ or $y_{n}<0$ for $n \geq N_{2}$ for some $N_{2} \geq N_{1}$.
We claim that $\left\{x_{n}\right\}$ is bounded. If not, then $\left\{x_{n}\right\}$ is unbounded and since $x_{n}<y_{n}+h_{n}$ and $\left\{h_{n}\right\}$ bounded, $\left\{y_{n}\right\}$ must be unbounded and eventually positive. Clearly that $\Delta y_{n}>0$ for large n since $\Delta y_{n}<0$ implies that $\left\{y_{n}\right\}$ is bounded. From equation (4.4.11) we have

$$
\begin{equation*}
y_{n}-p_{n} y_{n-m}=x_{n}-h_{n}+p_{n} p_{n-m} x_{n-2 m}+p_{n} h_{n-m} \text {, for } n \geq N_{3} \tag{4.4.15}
\end{equation*}
$$

for some $N_{3} \geq N_{2}$. That is

$$
\begin{equation*}
\left(1-p_{n}\right) y_{n} \leq x_{n}-\left(1-p_{n}\right) h_{n}, \tag{4.4.16}
\end{equation*}
$$

or

$$
\begin{equation*}
0<\left(1-p_{1}\right)\left(y_{n}+h_{n}\right) \leq x_{n} \tag{4.4.17}
\end{equation*}
$$

since $\left\{h_{n}\right\}$ is periodic, there exist real numbers a_{1} and a_{2} and two increasing sequences $\left\{n_{i}^{\prime}\right\}$ and $\left\{n_{i}^{\prime \prime}\right\}$ of natural numbers such that

$$
\lim _{i \rightarrow \infty} n_{i}^{\prime}=\lim _{i \rightarrow \infty} n_{i}^{\prime \prime}=\infty,
$$

and

$$
h_{n_{i}^{\prime}}=a_{1}, h_{n_{i}^{n}}=a_{2}, \quad a_{1}<h_{n}<a_{2} \text { for all } n>N_{0}
$$

hence

$$
\begin{equation*}
y_{n}+a_{1} \geq y_{n_{i}^{\prime}}+a_{1}=y_{n_{i}^{\prime}}+h_{n_{i}^{\prime}} \geq x_{n_{i}^{\prime}}>0, \text { for } n>n_{i}^{\prime}, i>1 \tag{4.4.18}
\end{equation*}
$$

Thus

$$
\begin{equation*}
0<\left(1-p_{1}\right)\left(y_{n}+a_{1}\right) \leq\left(1-p_{1}\right)\left(y_{n}+h_{n}\right) \leq x_{n} \text {, for } n \geq n_{i}^{\prime} \tag{4.4.19}
\end{equation*}
$$

Setting

$$
r_{n}=\left(1-p_{1}\right)\left(y_{n}+a_{1}\right), \text { for } n \geq n_{i}^{\prime} \text { and } i \geq 1
$$

We obtain

$$
0<r_{n} \leq x_{n} \text { and } \Delta r_{n}>0
$$

and

$$
\begin{equation*}
\Delta^{2} r_{n}=-\left(1-p_{1}\right) q_{n} G\left(x_{n-k}\right) \leq 0 \tag{4.4.20}
\end{equation*}
$$

Proceeding as in the proof of theorem 4.4.1 to arrive a contradiction, thus $\left\{x_{n}\right\}$ is bounded as we claim $\left\{x_{n}\right\}$ is bounded

The boundedness of $\left\{x_{n}\right\}$ implies that $\left\{y_{n}\right\}$ is bounded and $\Delta y_{n}>0$ for $n>N_{2}$ using theorem 1.4.1. Again we proceed as the proof of theorem 4.4.1 we arrive a contradiction. Hence $\left\{x_{n}\right\}$ oscillates.

In fact, more general ranges of p_{n} are considered in [19], we need some conditions used in section 4.3, so we will mention those conditions as they were in section 4.3 in addition to new conditions (C_{9})-(C_{13})
$\left(\mathrm{C}_{2}\right)$ For $u>0$ and $v>0$, there exists $\lambda>0$ such that $G(u+v) \leq \lambda(G(u)+G(v))$
$\left(\mathrm{C}_{3}\right)$ For $u<0$ and $v<0$, there exists $\lambda>0$ such that $G(u+v) \geq \lambda(G(u)+G(v))$
$\left(\mathrm{C}_{6}\right)$ For $u>0$ and $v>0, G(u v) \leq G(u) G(v)$
$\left(\mathrm{C}_{7}\right) G(-u)=-G(u), u \in \mathbf{R}$
$\left(\mathrm{C}_{8}\right)$ For $u, v \in \mathbf{R}, G(u v)=G(u) G(v)$
$\left(\mathrm{C}_{9}\right)$ There exists a real valued function $\left\{h_{n}\right\}$ defined on N which changes sign and satisfies that $\Delta^{2} h_{n}=f_{n}$
$\left(\mathrm{C}_{10}\right) \sum_{n=r}^{\infty} q_{n}^{*} G\left(h_{n-k}^{+}\right)=\infty$ and $\sum_{n=r}^{\infty} q_{n}^{*} G\left(-h_{n-k}^{-}\right)=-\infty$

$$
\text { where } h_{n}^{+}=\max \left\{h_{n}, 0\right\} \quad, \quad r=\max \{m, k\}
$$

$$
h_{n}^{-}=\max \left\{-h_{n}, 0\right\} \quad, \quad q_{n}^{*}=\min \left\{q_{n}, q_{n-m}\right\}
$$

$\left(\mathrm{C}_{10}^{1}\right) \sum_{n=r}^{\infty} q_{n}^{*} G\left(h_{n-k}^{+}\right)=\infty$ and $\sum_{n=r}^{\infty} q_{n}^{*} G\left(h_{n-k}^{-}\right)=\infty$
$\left(\mathrm{C}_{11}\right) \sum_{n=k}^{\infty} q_{n} G\left(h_{n-k}^{+}\right)=\infty$ and $\sum_{n=k}^{\infty} q_{n} G\left(h_{n+m-k}^{-}\right)=\infty$
($\left.\mathrm{C}_{12}\right) \sum_{n=k}^{\infty} q_{n} G\left(h_{n-k}^{-}\right)=\infty$ and $\sum_{n=k}^{\infty} q_{n} G\left(h_{n+m-k}^{+}\right)=\infty$
$\left(\mathrm{C}_{13}\right) \sum_{n=k}^{\infty} q_{n} G\left(h_{n+m-k}^{+}\right)=\infty$ and $\sum_{n=k}^{\infty} q_{n} G\left(h_{n+m-k}^{-}\right)=\infty$
Theorem 4.4.4: Let $0 \leq p_{n} \leq 1$. If $\left(\mathrm{C}_{2}\right),\left(\mathrm{C}_{3}\right),\left(\mathrm{C}_{9}\right)$ and $\left(\mathrm{C}_{10}\right)$ hold, then every solution of equation (4.4.1) is oscillatory.

Proof:: Let $\left\{x_{n}\right\}$ be an eventually positive solution of equation (4.4.1), then $x_{n}>0$ for $n \geq n_{0}>0$. Setting

$$
\begin{equation*}
z_{n}=x_{n}+p_{n} x_{n-m}, \tag{4.4.21}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{n}=z_{n}-h_{n}, \tag{4.4.22}
\end{equation*}
$$

we obtain for $n \geq n_{0}+r$

$$
\begin{equation*}
\Delta^{2} w_{n}+q_{n} G\left(x_{n-k}\right)=0 \tag{4.4.23}
\end{equation*}
$$

now

$$
0<z_{n} \leq x_{n}+x_{n-m},
$$

and $\Delta^{2} w_{n} \leq 0$. Hence either $w_{n}>0$ or $w_{n}<0$. It is clear that $w_{n}>0$, otherwise we have a contradiction with $\left(\mathrm{C}_{9}\right)$. Hence $w_{n}>0$ for $n \geq n_{1}$.
By theorem 1.4.1, $\Delta w_{n}>0$, for $n \geq n_{2}>n_{1}$. We have

$$
x_{n}+x_{n-m} \geq h_{n}^{+}
$$

using $\left(\mathrm{C}_{2}\right)$ from (4.4.23) we get

$$
\begin{aligned}
0 & =\Delta^{2} w_{n}+q_{n} G\left(x_{n-k}\right)+\Delta^{2} w_{n-m}+q_{n-m} G\left(x_{n+m-k}\right) \\
& \geq \Delta^{2} w_{n}+\Delta^{2} w_{n-m}+q_{n}^{*}\left[G\left(x_{n-k}\right)+G\left(x_{n+m-k}\right)\right] \\
& \geq \Delta^{2} w_{n}+\Delta^{2} w_{n-m}+\lambda^{-1} q_{n}^{*} G\left(x_{n-k}+x_{n+m-k}\right) \\
& \geq \Delta^{2} w_{n}+\Delta^{2} w_{n-m}+\lambda^{-1} q_{n}^{*} G\left(h_{n-k}^{+}\right) \quad, \quad \text { for } n \geq n_{3}>n_{2}+r
\end{aligned}
$$

Hence

$$
\sum_{n=n_{3}}^{\infty} q_{n}^{*} G\left(h_{n-k}^{+}\right)<\infty
$$

which is a contradiction to $\left(\mathrm{C}_{10}\right)$, then $\left\{x_{n}\right\}$ is oscillatory.
Theorem 4.4.5: Let $0 \leq p_{n}<p_{2}<\infty$. If $\left(\mathrm{C}_{2}\right),\left(\mathrm{C}_{6}\right),\left(\mathrm{C}_{7}\right),\left(\mathrm{C}_{9}\right)$ and $\left(\mathrm{C}_{10}\right)$ hold, then every solution of equation (4.4.1) is oscillatory.

Proof: Proceeding as in the proof of theorem (4.4.4) we reach to

$$
0<z_{n}<x_{n}+p_{2} x_{n-m}
$$

to conclude that $w_{n}>0$ and $x_{n}+p_{2} x_{n-m} \geq h_{n}^{+}$
Using $\left(\mathrm{C}_{2}\right)$ and $\left(\mathrm{C}_{6}\right)$ yield

$$
\begin{aligned}
0 & =\Delta^{2} w_{n}+q_{n} G\left(x_{n-k}\right)+G\left(p_{2}\right) \Delta^{2} w_{n-m}+G\left(p_{2}\right) q_{n-m} G\left(x_{n-m-k}\right) \\
& \geq \Delta^{2} w_{n}+G\left(p_{2}\right) \Delta^{2} w_{n-m}+\lambda^{-1} q_{n}^{*} G\left(h_{n-k}^{+}\right)
\end{aligned}
$$

Hence

$$
\sum_{n=n_{3}}^{\infty} q_{n}^{*} G\left(h_{n-k}^{+}\right)<\infty,
$$

which contradicts $\left(\mathrm{C}_{10}^{1}\right)$, hence $\left\{x_{n}\right\}$ oscillates.
Theorem 4.4.6: Let $-\infty<p_{1} \leq p_{n} \leq 0$. If $\left(\mathrm{C}_{8}\right),\left(\mathrm{C}_{9}\right),\left(\mathrm{C}_{11}\right)$ and $\left(\mathrm{C}_{12}\right)$ hold, then every solution of equation (4.4.1) is oscillatory.

Proof: Let $\left\{x_{n}\right\}$ be an eventually positive solution of equation (4.4.1), let w_{n} as in (4.4.22) we obtain equation (4.4.23) since $\Delta^{2} w_{n} \leq 0$ for $n \geq n_{0}+r$, either $w_{n}>0$ or $w_{n}<0$ for $n \geq n_{1}>n_{0}+r$
If $w_{n}>0$ for $n \geq n_{1}$, then $x_{n} \geq h_{n}^{+}$and $\Delta w_{n}>0$, by theorem 1.4.1 from equation (4.4.23) we obtain

$$
\sum_{n=n_{2}}^{\infty} q_{n} G\left(h_{n-k}^{+}\right)<\infty \quad, \quad n_{2} \geq n_{1}+r
$$

which contradicts $\left(\mathrm{C}_{11}\right)$.
If $w_{n}<0$ for $n \geq n_{1}$, then $x_{n}>-p_{1}^{-1} h_{n+m}^{-}$, set $y_{n}=-w_{n}$, then $y_{n}>0$ and

$$
\Delta^{2} y_{n}-q_{n} G\left(x_{n-k}\right)=0
$$

since $\Delta^{2} y_{n} \geq 0$, then $\Delta y_{n}<0$ for $n \geq n_{3}>n_{2}$ by theorem 1.4.1, using (C_{8}) we obtain

$$
\sum_{n=n_{2}}^{\infty} q_{n} G\left(h_{n+m-k}^{-}\right)<\infty,
$$

which again contradicts $\left(\mathrm{C}_{11}\right)$. Thus $\left\{x_{n}\right\}$ is oscillatory.
Theorem 4.4.7: Let p_{n} changes sign such that $-\infty<p_{1} \leq p_{n} \leq p_{2}<\infty$, where $p_{1}<0$ and $p_{2}>0$ are constants. If $\left(\mathrm{C}_{2}\right),\left(\mathrm{C}_{8}\right),\left(\mathrm{C}_{9}\right),\left(\mathrm{C}_{10}^{1}\right)$ and $\left(\mathrm{C}_{13}\right)$ hold, then every solution of equation (4.4.1) is oscillatory.

Proof: Let x_{n} be an eventually positive solution of equation (4.4.1) then $x_{n}>0$ for $n \geq n_{0}>0$. Set w_{n} as in (4.4.22), we get (4.4.23). For $n \geq n_{0}+r, \Delta^{2} w_{n} \leq 0$ and hence either $w_{n}>0$ or $w_{n}<0$ for $n \geq n_{1}$.
If $w_{n}>0$ for $n \geq n_{1}$ we proceed as in the proof of theorem 4.4.5 we get a contradiction.
If $w_{n}<0$ for $n \geq n_{1}$ we proceed as in the proof of theorem 4.4.6 to arrive a contradiction.
Thus x_{n} is oscillatory.
Theorem 4.4.8: Let $p_{n} \geq 0$. If

$$
\lim _{n \rightarrow \infty} \inf n^{-1} h_{n}=-\infty \text { and } \lim _{n \rightarrow \infty} \sup n^{-1} h_{n}=\infty,
$$

then every solution of equation (4.4.1) is oscillatory.
Proof: Let $\left\{x_{n}\right\}$ be an eventually positive solution of equation (4.4.1), then $x_{n}>0$ for $n \geq n_{0}>0$. Setting z_{n} as in (4.4.21) and w_{n} as in (4.4.22), we obtain $z_{n}>0$ for $n \geq n_{0}+r$ and $\Delta^{2} w_{n} \leq 0$ for $n \geq n_{0}+r$ from equation (4.4.23). Hence for $n \geq n_{1} \geq n_{0}+r$, we have

$$
\Delta w_{n} \leq \Delta w_{n_{1}},
$$

and

$$
w_{n} \leq w_{n_{1}}+\left(n-n_{1}\right) \Delta w_{n_{1}},
$$

hence

$$
0<\frac{z_{n}}{n} \leq \frac{h_{n}}{n}+\frac{w_{n_{1}}}{n}+\frac{\left(n-n_{1}\right)}{n} \Delta w_{n_{1}}
$$

Thus

$$
\begin{aligned}
0 & \leq \liminf _{n \rightarrow \infty} \frac{z_{n}}{n} \leq \liminf _{n \rightarrow \infty}\left(\frac{h_{n}}{n}+\frac{w_{n}}{n}+\frac{\left(n-n_{1}\right)}{n} \Delta w_{n_{1}}\right) \\
& =\liminf _{n \rightarrow \infty} \frac{h_{n}}{n}+\lim _{n \rightarrow \infty} \sup \left(\frac{w_{n}}{n}+\frac{\left(n-n_{1}\right)}{n} \Delta w_{n_{1}}\right) \\
& \leq \liminf _{n \rightarrow \infty} \frac{h_{n}}{n}+\lim _{n \rightarrow \infty}\left(\frac{w_{n}}{n}+\frac{\left(n-n_{1}\right)}{n} \Delta w_{n_{1}}\right) \\
& \leq \liminf _{n \rightarrow \infty} \frac{h_{n}}{n}+\Delta w_{n_{1}}=-\infty
\end{aligned}
$$

which is a contradiction so $\left\{x_{n}\right\}$ is oscillatory.

Example 4.4.1:

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+\frac{1}{3} x_{n-2}\right)+3\left(2-\frac{3}{2^{n}}\right) x_{n-5}^{\frac{3}{5}}=\frac{9(-1)^{n}}{2^{n+2}} \tag{4.4.24}
\end{equation*}
$$

It is clear that the condition of theorem 4.4.2 are satisfied since
$\left(\mathrm{H}_{1}\right) 0 \leq p_{n}=\frac{1}{3}<p_{1}<1$
$\left(\mathrm{H}_{2}\right)$ Take $h_{n}=\frac{(-1)^{n}}{2^{n}}$ with $\Delta h_{n}=\frac{3(-1)^{n+1}}{2^{n+1}}$ and $\Delta^{2} h_{n}=\frac{9(-1)^{n}}{2^{n+2}}$
($\left.\mathrm{H}_{3}\right) \sum_{n=N_{0}}^{\infty} 3\left(2-\frac{3}{2^{n}}\right)\left(\frac{n-5}{2}\right)^{\frac{3}{5}}=\infty$
$\left(\mathrm{H}_{4}\right)\left\{h_{n}\right\}$ is oscillatory $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{2^{n}}=0$
Then by theorem 4.4.2 every solution of equation (4.4.24) is oscillatory.

Example 4.4.2:

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+\frac{1}{8} x_{n-2}\right)+3 x_{n-6}^{\frac{1}{3}}=6(-1)^{n} \tag{4.4.25}
\end{equation*}
$$

It is clear that equation (4.4.25) satisfies the conditions of theorem 4.4.3 since
$\left(\mathrm{C}_{1}\right) 0 \leq p_{n}=\frac{1}{8}<p_{1}<1$, where p_{1} is a constant
$\left(\mathrm{C}_{2}\right)$ Taking $h_{n}=\frac{3}{2}(-1)^{-n}$ with $\Delta h_{n}=3(-1)^{-n+1}$ and $\Delta^{2} h_{n}=6(-1)^{-n}=6(-1)^{n}$
(C3) $\sum_{n=N_{0}}^{\infty} 3\left(\frac{n-6}{2}\right)^{\frac{1}{3}}=\infty$
(C_{4}) $\left\{h_{n}\right\}$ is periodic of period 2
By theorem 4.4.3 every solution of equation (4.4.25) is oscillatory.
Example 4.4.3:

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+(-1)^{n} x_{n-2}\right)+2 x_{n-1}^{5}=(-1)^{n} \tag{4.4.26}
\end{equation*}
$$

we have $h_{n}=\frac{1}{4}(-1)^{n}$, so

$$
h_{n}^{+}=\left\{\begin{array}{ll}
\frac{1}{4} & n \text { even } \\
0 & n \text { odd }
\end{array} \quad, \quad \text { and } \quad h_{n}^{-}= \begin{cases}0 & n \text { even } \\
\frac{1}{4} & n \text { odd }\end{cases}\right.
$$

also we have
$\left(\mathrm{C}_{10}^{1}\right) \sum_{n=2}^{\infty} q_{n}^{*} G\left(h_{n-1}^{+}\right)=2 \sum_{n=2}^{\infty}\left(h_{n-1}^{+}\right)^{5}=\infty$
$\left(\mathrm{C}_{8}\right)$ is satisfied
($\left.\mathrm{C}_{13}\right) \sum_{n=1}^{\infty} q_{n} G\left(h_{n+1}^{+}\right)=2 \sum_{n=1}^{\infty}\left(h_{n+1}^{+}\right)^{2}=\infty$
So by theorem 4.4.7 every solution of equation (4.4.26) is oscillatory.

Example 4.4.4:

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+\left(5+(-1)^{n}\right) x_{n-1}\right)+x_{n-2}^{5}=2(-1)^{n}\left(4 n^{2}+8 n+6\right), n \geq 0 \tag{4.4.27}
\end{equation*}
$$

we have $h_{n}=2 n^{2}(-1)^{n}$ which changes sign with

$$
\begin{aligned}
& \Delta h_{n}=2(-1)^{n}\left(2 n^{2}+2 n+1\right) \\
& \Delta^{2} h_{n}=2(-1)^{n}\left(4 n^{2}+8 n+6\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \inf \frac{h_{n}}{n}=-\infty \\
& \lim _{n \rightarrow \infty} \sup \frac{h_{n}}{n}=\infty
\end{aligned}
$$

By theorem 4.4.8 we have that every solution of equation (4.4.27) is oscillatory.
Remark 4.4.2: The results of this section are mainly referred to [19] and [25].

4.5 Oscillation criteria of sublinear, linear and superlinear NDE's

Consider the second-order NDE

$$
\begin{equation*}
\Delta\left(c_{n} \Delta\left(x_{n}+\delta p_{n} x_{n-m}\right)\right)+\delta q_{n} x_{n+1-k}^{\beta}=0, n \geq 0 \tag{4.5.1}
\end{equation*}
$$

Of course the value of β determines the type of the NDE whether it is sublinear or superlinear. In [24] the authors studied the oscillation of equation (4.5.1) where β is in general the ratio of odd positive integers, $0 \leq p_{n} \leq p<1$. However in [17] Lin studied the superlinear NDE, but this time the results were for bounded oscillation.

The following conditions are needed in our discussion
$\left(\mathrm{C}_{1}\right)\left\{p_{n}\right\}$ is nondecreasing such that $0 \leq p_{n} \leq p<1$ and $q_{n} \geq 0$ and $\left\{q_{n}\right\}$ is not identically zero for infinitely many values of n
($\left.\mathrm{C}_{2}\right) c_{n}>0$ and $\sum_{n=n_{0}}^{\infty} \frac{1}{c_{n}}<\infty$,
Let $r=\max \{m, k\}, Q_{n}=\sum_{s=n}^{\infty} \frac{1}{c_{s}}, \delta=1$
We need the following lemmas
Lemma 4.5.1: Let $\left\{x_{n}\right\}$ be an eventually positive solution of equation (4.5.1), then for $z_{n}=x_{n}+p_{n} x_{n-m}$, one of the following two cases holds for all sufficiently large n
(I) $z_{n}>0, c_{n} \Delta z_{n}>0$,
(II) $z_{n}>0, c_{n} \Delta z_{n}<0$
Proof: Assume that $x_{n-k-m}>0$ for $n \geq N_{0} \in \mathbf{N}\left(n_{0}\right)$. Then by the condition $\left(\mathrm{C}_{1}\right)$, we have $z_{n}>0$ and $\Delta\left(c_{n} \Delta z_{n}\right) \leq 0$ for $n \geq N_{0}$. Hence $\left\{c_{n} \Delta z_{n}\right\}$ is eventually of one sign.

Lemma 4.5.2: Let $\left\{x_{n}\right\}$ be an eventually positive solution of equation (4.5.1) and suppose case (I) of lemma 4.5.1 holds. Then there exists an integer $N \in \mathbf{N}\left(n_{0}\right)$ such that

$$
\begin{equation*}
(1-p) z_{n} \leq x_{n} \leq z_{n} \tag{4.5.3}
\end{equation*}
$$

Proof: Cleary that $\left(\mathrm{C}_{1}\right)$ implies that $z_{n} \geq x_{n}$. Moreover we have

$$
x_{n}=z_{n}-p_{n} x_{n-k} \geq z_{n}-p_{n} z_{n-k} \geq z_{n}(1-p)
$$

Since $\left\{z_{n}\right\}$ is nondecreasing. This completes the proof.

Lemma 4.5.3: Let $\left\{x_{n}\right\}$ be an eventually positive solution of equation (4.5.1) and suppose case (II) of lemma 4.5.1 holds. Then there exists an integer $N \in \mathbf{N}\left(n_{0}\right)$ such that

$$
x_{n-k} \geq \frac{z_{n}}{1+p} \geq(1-p) z_{n}, \text { for } n \geq N
$$

Proof: Since $\left\{z_{n}\right\}$ is nonincreasing we may assume that $\left\{x_{n}\right\}$ is also nonincreasing. Hence

$$
\begin{equation*}
z_{n} \leq x_{n-k}+p x_{n-k}=(1+p) x_{n-k} \tag{4.5.4}
\end{equation*}
$$

Since $1 \geq 1-p^{2}$, we have $\frac{1}{1+p} \geq 1-p$, therefore

$$
\frac{z_{n}}{1+p} \geq(1-p) z_{n}
$$

Lemma 4.5.4: Let $\left\{x_{n}\right\}$ be an eventually positive solution of equation (4.5.1). Then $\left\{z_{n}\right\}$ is bounded above and satisfies

$$
\begin{equation*}
z_{n} \geq-Q_{n} c_{n} \Delta z_{n} \tag{4.5.5}
\end{equation*}
$$

for all sufficiently large n.
Proof: Proceeding as in the proof of lemma 4.5.1 we obtain $\Delta\left(c_{n} \Delta z_{n}\right) \leq 0$ for $n \geq N \in \mathbf{N}\left(n_{0}\right)$. Then $c_{n} \Delta z_{n} \leq c_{N} \Delta z_{N}$ for $n \geq N$. Dividing the last inequality by c_{n} and summing we obtain

$$
z_{n}-z_{N} \leq c_{N} \Delta z_{N} \sum_{s=N}^{n-1} \frac{1}{c_{s}}<\infty
$$

Hence $\left\{z_{n}\right\}$ is bounded above. Letting $n \rightarrow \infty$, we obtain $z_{N} \geq-c_{N} \Delta z_{N} Q_{N}$ for sufficiently large n.

Theorem 4.5.1: Assume that $\left(\mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{2}\right)$ hold and $\beta=1$ and $k>m$ in equation (4.5.1). If

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} q_{n}\left(1-p_{n+1-k}\right)=\infty \tag{4.5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{s=n}^{n+k-m-1} q_{s} Q_{s}>1+p \tag{4.5.7}
\end{equation*}
$$

are satisfied, then all solutions of equation (4.5.1) are oscillatory.
Proof: Let $\left\{x_{n}\right\}$ be an eventually positive solution of equation (4.5.1), then $x_{n-r}>0$ for $n \geq N \in \mathbf{N}\left(n_{0}\right)$, using lemma (4.5.1) we have two cases:
(I) $z_{n}>0, c_{n} \Delta z_{n}>0$,
by lemma 4.5.2 we have

$$
\begin{equation*}
\Delta\left(c_{n} \Delta z_{n}\right)+q_{n}\left(1-p_{n+1-k}\right) z_{n+1-k} \leq 0, \quad n \geq N \tag{4.5.8}
\end{equation*}
$$

Let $w_{n}=\frac{c_{n} \Delta z_{n}}{z_{n-k}}$, for $n \geq N \geq n_{0}+k$
then we have

$$
\Delta w_{n} \leq-q_{n}\left(1-p_{n+1-k}\right)-\frac{c_{n} \Delta z_{n} \Delta z_{n-k}}{z_{n-m} z_{n+1-k}} \leq q_{n}\left(1-p_{n+1-k}\right)
$$

Summing the last inequality, we get

$$
\sum_{s=N}^{n} q_{s}\left(1-p_{s+1-k}\right)<w_{N},
$$

as $n \rightarrow \infty$ we have

$$
\sum_{s=N}^{\infty} q_{s}\left(1-p_{s+1-k}\right)<\infty,
$$

which is a contradiction.
(II) $z_{n}>0, c_{n} \Delta z_{n}<0$
Taking the summation to equation (4.5.1) from N to $n-1$, we obtain

$$
c_{n} \Delta z_{n}-c_{N} \Delta z_{N}+\sum_{s=N}^{n-1} q_{s} x_{s+1-k}=0
$$

or

$$
\Delta z_{n}+\frac{1}{c_{s}} \sum_{s=N}^{n-1} q_{s} x_{s+1-k} \leq 0
$$

Summing again from n to $j-1$ and rearranging, we obtain

$$
\begin{equation*}
\sum_{s=n}^{\infty} q_{s} Q_{s} x_{s+1-k}<z_{n} \tag{4.5.9}
\end{equation*}
$$

using inequality (4.5.4) in (4.5.9), and using the fact that $\left\{z_{n}\right\}$ is nonincreasing, we obtain

$$
\sum_{s=n}^{n+k-m+1} q_{s} Q_{s} \leq(1+p),
$$

which contradicts condition (4.5.7), $\left\{x_{n}\right\}$ must be oscillatory.
Theorem 4.5.2: Assume that $\left(\mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{2}\right)$ hold and $\beta>1$ and $k \geq m$ in equation (4.5.1). If

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} q_{n} Q_{n+1}^{\beta}=\infty \tag{4.5.10}
\end{equation*}
$$

then all solutions of equation (4.5.1) are oscillatory.
Proof: Proceeding as in the proof of theorem 4.5.1 we see that lemma 4.5.1 holds for $n \geq N \in \mathbf{N}\left(n_{0}\right)$
(I) $z_{n}>0, c_{n} \Delta z_{n}>0$

Summing equation (4.5.1) from $N \in \mathbf{N}\left(n_{0}\right)$ to ($n-1$), yields

$$
\begin{equation*}
c_{n} \Delta z_{n}-c_{N} \Delta z_{N}+\sum_{s=N}^{n-1} q_{s} x_{s+1-k}^{\beta}=0 \quad, \quad n \geq N \tag{4.5.11}
\end{equation*}
$$

then

$$
\sum_{s=N}^{n-1} q_{s} x_{s+1-k}^{\beta}<c_{N} \Delta z_{N}
$$

letting $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
\sum_{s=N}^{\infty} q_{s} x_{s+1-k}^{\beta}<\infty \tag{4.5.12}
\end{equation*}
$$

but $\left\{z_{n}\right\}$ is increasing, so there exists a positive constant a such that $z_{n}>a$ for $n \geq N$, together with equation (4.5.2) yields

$$
x_{n} \geq a(1-p), \text { for } n \geq N
$$

Thus there exists an integer $N_{1} \geq N$ such that

$$
x_{n} \geq a(1-p) Q_{n}, \quad n \geq N_{1}
$$

since $Q_{n} \rightarrow 0$ as $n \rightarrow \infty$. Because $\left\{Q_{n}\right\}$ is decreasing the last inequality implies that

$$
\begin{equation*}
x_{n+1-k} \geq a(1-p) Q_{n+1-k} \geq a(1-p) Q_{n+1} \tag{4.5.13}
\end{equation*}
$$

Combining (4.5.12) and (4.5.13) we get

$$
\begin{equation*}
\sum_{s=N_{1}}^{\infty} q_{s} Q_{s+1}^{\beta}<\infty \tag{4.5.14}
\end{equation*}
$$

which contradicts (4.5.10)
(II) $z_{n}>0, c_{n} \Delta z_{n}<0$
From equation (4.5.4) and (4.5.5), the facts that $k \geq m$ and z_{n} is decreasing we have

$$
\begin{align*}
x_{n+1-k} & =x_{n+1-k+m-m} \\
& \geq(1-p) z_{n+1-k+m} \\
& \geq(1-p) z_{n+1} \\
& \geq-(1-p) c_{n+1} \Delta z_{n+1} Q_{n+1} \quad, \quad n \geq N \tag{4.5.15}
\end{align*}
$$

Consider the difference

$$
\begin{align*}
\Delta\left(\left(c_{n} \Delta z_{n}\right)^{-\beta+1}\right) & =(-\beta+1) t^{-\beta} \Delta\left(c_{n} \Delta z_{n}\right) \\
& =(\beta-1)\left(q_{n} x_{n+1-k}^{\beta}\right) t^{-\beta} \tag{4.5.16}
\end{align*}
$$

where $c_{n+1} \Delta z_{n+1}<t<c_{n} \Delta z_{n}$
using (4.5.15), equation (4.5.16) becomes

$$
\begin{aligned}
\Delta\left(\left(c_{n} \Delta z_{n}\right)^{\beta-1}\right) & \leq(-\beta+1)\left(-q_{n} x_{n+1-k}^{\beta}\right)\left(c_{n+1} \Delta z_{n+1}\right)^{-\beta} \\
& \leq(-\beta+1) q_{n}(1-p)^{\beta} Q_{n+1}^{\beta}\left(c_{n+1} \Delta z_{n+1}\right)^{\beta}\left(c_{n+1} \Delta z_{n+1}\right)^{-\beta}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\Delta\left(\left(c_{n} \Delta z_{n}\right)^{1-\beta}\right) \leq-(\beta-1)(1-p)^{\beta} q_{n} Q_{n+1}^{\beta} \quad, \quad n \geq N \tag{4.5.17}
\end{equation*}
$$

Summing (4.5.17) from N to n, we have

$$
\left(c_{n+1} \Delta z_{n+1}\right)^{1-\beta}-\left(c_{N} \Delta z_{N}\right)^{1-\beta} \leq-(1-p)^{\beta}(\beta-1) \sum_{s=N}^{n} q_{s} Q_{s+1}^{\beta}
$$

and so letting $n \rightarrow \infty$, we obtain

$$
\sum_{s=N}^{n} q_{s} Q_{s+1}^{\beta}<\infty
$$

which contradicts (4.5.10).
Theorem 4.5.3: Assume that $\left(\mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{2}\right)$ hold and $0<\beta<1$ and $k \geq m$ in equation (4.5.1). If

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} q_{n} Q_{n+1}=\infty \tag{4.5.18}
\end{equation*}
$$

Then all solutions of equation (4.5.1) are oscillatory.

Proof: Again proceeding as in the proof of theorem 4.5.1, we see that lemma 4.5.1 holds so
(I) $z_{n}>0, c_{n} \Delta z_{n}>0$
then (4.5.13) and (4.5.14) hold, we have

$$
Q_{n} \leq 1 \text { and } Q_{n}^{\beta}>Q_{N} \text { for large } n
$$

from (4.5.14) we get

$$
\sum_{n=N}^{\infty} q_{n} Q_{n+1} \leq \sum_{n=N}^{\infty} q_{n} Q_{n+1-k}^{\beta}<\infty
$$

a contradiction to (4.5.18)
(II) $z_{n}>0, c_{n} \Delta z_{n}<0$
from (4.5.11) we have

$$
-\Delta z_{n+1} \geq\left(\frac{1}{c_{n+1}}\right) \sum_{s=n}^{\infty} q_{s} x_{s+1-k}^{\beta} \quad, \text { for } n \geq N
$$

If we consider the difference $\Delta\left(z_{n}^{2 \varepsilon}\right), \varepsilon>0$ is such that $2 \varepsilon<1-\beta$ and

$$
\begin{aligned}
-\Delta\left(z_{n+1}^{2 \varepsilon}\right) & =-2 \varepsilon t^{2 \varepsilon-1} \Delta z_{n+1} \\
& \geq 2 \varepsilon t^{2 \varepsilon-1}\left(\frac{1}{c_{n+1}}\right) \sum_{s=N}^{\infty} q_{s} x_{s+1-k}^{\beta} \\
& \geq 2 \varepsilon z_{n+1}^{2 \varepsilon-1}\left(\frac{1}{c_{n+1}}\right) \sum_{s=N}^{\infty} q_{s} x_{s+1-k}^{\beta} \quad, \quad t \in\left(z_{n+2}, z_{n+1}\right)
\end{aligned}
$$

and $\left\{z_{n}\right\}$ is decreasing, then

$$
\begin{equation*}
-\Delta\left(z_{n+1}^{2 \varepsilon}\right) \geq \frac{2 \varepsilon}{c_{n+1}} \sum_{s=N}^{\infty} q_{s} x_{s+1-k}^{\beta} z_{s+1}^{2 \varepsilon-1} \tag{4.5.19}
\end{equation*}
$$

since $a \geq z_{n}>0$ and $a \geq x_{n}>0$, where a is a constant, from (4.5.4), we obtain

$$
\begin{equation*}
x_{n+1-k} \geq(1-p) z_{n+1}, n \geq N \tag{4.5.20}
\end{equation*}
$$

From (4.5.19) and (4.5.20) we obtain

$$
\begin{aligned}
-\Delta\left(z_{n+1}^{2 \varepsilon}\right) & \geq \frac{2 \varepsilon(1-p)^{\beta}}{c_{n+1}} \sum_{s=N}^{n} q_{s} z_{s+1}^{\beta+2 \varepsilon-1} \\
& \geq \frac{K}{c_{n+1}} \sum_{s=N}^{n} q_{s}
\end{aligned}
$$

where $K=2 \varepsilon(1-p)^{\beta} a^{\beta}+2 \varepsilon-1$
Summing the last inequality we get

$$
z_{N+1}^{2 \varepsilon}-z_{n+2}^{2 \varepsilon} \geq K \sum_{i=N}^{n} q_{i} \sum_{s=i}^{n} \frac{1}{c_{s+1}}
$$

as $n \rightarrow \infty$, we obtain

$$
\sum_{i=N}^{n} q_{i} Q_{i+1}<\infty,
$$

which is a contradiction.
In the following two theorems, we suppose that equation (4.5.1) satisfies
(C_{4}) $\sum_{n=i}^{j} p_{n}=0$ whenever $j \leq i-1$

Theorem 4.5.4: Assume that $\left(\mathrm{C}_{4}\right)$ holds and there exists a constant $p \in(0,1)$, such that

$$
\begin{equation*}
p \leq p_{n} \leq 1, \text { for large } n \tag{4.5.21}
\end{equation*}
$$

If there exists $\lambda>0$ such that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left[q_{n} \exp \left(-e^{2 n}\right)\right]>0 \tag{4.5.22}
\end{equation*}
$$

then all bounded solutions of equation (4.5.1) are oscillatory provided that $\delta=-1$ and $c_{n}=1$

Proof: Suppose that equation (4.5.1) has a bounded eventually solution $\left\{x_{n}\right\}$, let $z_{n}=x_{n}-p_{n} x_{n-m}$, then $\left\{z_{n}\right\}$ is bounded and $\Delta^{2} z_{n}=q_{n} x_{n-k}^{\beta} \geq 0$ for large n, thus Δz_{n} is monotone and does not change sign eventually, by theorem 1.4.1, we obtain that there exists an integer $n_{1}>n_{0}$, such that

$$
\begin{equation*}
z_{n}>0, \quad-\Delta z_{n}>0, \text { for } n \geq n_{1} \tag{4.5.23}
\end{equation*}
$$

Choosing N, such that

$$
\lambda>\frac{1}{k+N m} \ln \beta,
$$

then for $n \geq n_{1}+k+N m$

$$
\begin{aligned}
\Delta^{2} z_{n} & =q_{n} x_{n-k}^{\beta} \\
& \geq q_{n}\left(z_{n-k}+p z_{n-k-\tau}+\ldots+p^{N} z_{n-k-N m}\right)^{\beta} \\
& \geq p^{\beta N} q_{n} z_{n-k-N m}^{\beta}
\end{aligned}
$$

Thus

$$
\Delta^{2} z_{n} \geq p^{\beta N} q_{n} z_{n-k-N m}, \quad n \geq n_{1}+k+N m
$$

Summing the last inequality from n to $m-1$ we have

$$
\Delta z_{n}+\sum_{i=n}^{\infty} p^{\beta N} q_{i} z_{n-k-N m}^{\beta} \leq 0
$$

Thus

$$
\Delta z_{n}+p^{\beta N} q_{n} z_{n-k-N m}^{\beta} \leq 0, \quad n>n_{1}+k+N m
$$

Note that $\lambda>\frac{1}{(k+N m) \ln \beta}$ and condition (4.5.22), then by lemma 1.4.2 the last inequality has no eventually positive solution, which is a contradiction.

Theorem 4.5.5: Assume that $\left(\mathrm{C}_{4}\right)$ holds and there exists a $p^{*} \in(1, \infty)$, such that

$$
\begin{equation*}
1 \leq p_{n} \leq p^{*}, \text { for large } n \tag{4.5.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} n q_{n}=\infty, \tag{4.5.25}
\end{equation*}
$$

then all bounded solutions of equation (4.5.1) are oscillatory provided that $\delta=-1$ and $c_{n}=1$.

Proof: Let $\left\{x_{n}\right\}$ be an eventually bounded positive solution of equation (4.5.1), again set $z_{n}=x_{n}-p_{n} x_{n-m}$, proceeding as in the proof of theorem (4.5.4), we have

$$
\begin{equation*}
z_{n}>0, \quad-\Delta z_{n}>0 \text { eventually } \tag{4.5.26}
\end{equation*}
$$

Hence, $x_{n}>x_{n-m}$ eventually. Choosing $M>0$ and $n_{1}>n_{0}$, such that $x_{n}>M, n \geq n_{1}$, so

$$
\begin{equation*}
\Delta^{2} z_{n}>M^{\beta} q_{n}, n \geq n_{1} \tag{4.5.27}
\end{equation*}
$$

Summing (4.5.27) and using (4.5.26), we have

$$
z_{n}>M^{\beta} \sum_{i=n}^{\infty}(i-n+1) q_{i},
$$

hence

$$
\sum_{i=n}^{\infty}(i-n+1) q_{i}<\infty,
$$

and so

$$
\sum_{n=n_{0}}^{\infty} n q_{n}<\infty,
$$

which is a contradiction.

Example 4.5.1:

$$
\begin{equation*}
\Delta\left(2^{n} \Delta\left(x_{n}+\frac{1}{4} x_{n-2}\right)\right)+3\left(5^{n}\right) x_{n-4}=0, n \geq 4 \tag{4.5.28}
\end{equation*}
$$

To check the conditions of theorem 4.5.1

$$
\begin{aligned}
& \sum_{n=n_{0}}^{\infty} 3\left(5^{n}\right)\left(1-\frac{1}{4}\right)=\sum_{n=n_{0}}^{\infty} \frac{9}{4}\left(5^{n}\right)=\infty \\
& Q_{n}=\sum_{s=n}^{\infty} \frac{1}{2^{n}}=2^{-n+1}
\end{aligned}
$$

now

$$
\sum_{s=n}^{n+1} 3\left(5^{s}\right) 2^{-s+1}=6\left(\frac{5}{2}\right)^{n}\left[1+\frac{5}{2}\right]=21\left(\frac{5}{2}\right)^{n}>\frac{5}{4}
$$

It follows by theorem 4.5.1 that all solutions of the above equation are oscillatory.

Example 4.5.2:

$$
\begin{equation*}
\Delta\left(2^{n} \Delta\left(x_{n}+\frac{1}{4} x_{n-2}\right)\right)+2^{5} x_{n-5}^{3}=0, n \geq 5 \tag{4.5.29}
\end{equation*}
$$

To check the conditions of theorem 4.5.2

$$
\sum_{n=n_{0}}^{\infty} q_{n} Q_{n+1}^{\beta}=\sum_{n=n_{0}}^{\infty} 2^{5}\left(2^{-n}\right)^{3}=\sum_{n=n_{0}}^{\infty} 2^{5}\left(\frac{1}{8}\right)^{n}=\infty
$$

So by theorem 4.5.2 we found that equation (4.5.29) is oscillatory.
Remark 4.5.1: The results of this section are referred to [17] and [24].

References

1. Agarwal R. P. (1992): Difference equations and inequalities, Marcel Dekker, Inc., New York.
2. Agarwal R. P., Grace S. R. and Bohner E. A. (2003): On the oscillation of higher order neutral difference equations of mixed type, 1991 Mathematics Subject Classification, 39A10.
3. Agarwal R. P., Manual M. M. S. and Thandapani E. (1996): Oscillatory and nonoscillatory behavior of second order neutral delay difference equations, Math. Comput. Modeling Vol. 24, No. 1, pp. 5-11.
4. Agarwal R. P., Thandapani E. and Wong P. J. Y. (1997): Oscillations of higherorder neutral difference equations, Appl. Math. Lett. Vol. 10, No. 1, pp. 71-78.
5. Chen M. P., Lalli B. S. and Yu J. S. (1995): Oscillation in neutral delay difference equations with variable coefficients, Computer Math. Applic. Vol. 29, No. 3, pp. 511.
6. Gao Y. and Zhang G. (2001): Oscillation of nonlinear first order neutral difference equations, Applied Mathematics E- Notes, Vol. 1, 5-10 ©.
7. Goldberg S. (1958): Introduction to difference equations, Wiley, New York.
8. Grace S. R. (1998): Oscillation of certain neutral difference equation of mixed type, J. Math. Anal. Appl. 224, 241-254.
9. Grace S. R. and Hamedani G. G. (2000): On the oscillation of certain neutral difference equations, Mathematic Bohemica, Vol. 125, no. 3, 307-321.
10. Grace S. R. and Lalli B. S. (1994): Oscillation theorems for forced neutral difference equations, J. Math. Anal. Appl. 187, 91-106.
11. Gyori I. and Ladas J. (1991): Oscillation theory of delay difference equations, Clarendon Press, Oxford.
12. Lalli B. S. (1994): Oscillation theorems for neutral difference equations, Computer Math. Applic. Vol. 28, No. 1-3, pp. 191-202.
13. Lalli B. S. and Grace S. R. (1994): Oscillation theorems for second order neutral difference equations, Appl. Math. Comp. 62:47-60.
14. Lalli B. S. and Zhang B. G. (1992): Oscillation and comparison theorems for certain neutral difference equations, J. Austral. Math. Soc. Ser. B 34, 245-256.
15. Levy H. and Lessman F. (1959): Finite difference equations, Sir Isaac Pitman and Sons, Ltd., London.
16. Li W. T. (1997): Oscillation criteria for first-order neutral nonlinear difference equations with variable coefficients, Appl. Math. Lett. Vol. 10, No. 6, pp. 101-106.
17. Lin X. (2005): Oscillation for higher-order neutral superlinear delay difference equations with unstable type, Computers and Mathematics with Applications, Vol. 50 683-691.
18. Parhi N. and Tripathy A. K. (2003): Oscillation of forced nonlinear neutral delay difference equations of first order, Czech. Math. J. 53 (128), 83-101.
19. Parhi N. and Tripathy A. K. (2003): Oscillation of a class of nonlinear neutral difference equations of higher order, J. Math. Anal. Appl. Vol. 284 , 756-774.
20. Parhi N. and Tripathy A. K. (2003): Oscillation of a class of neutral difference equations of first-order, Journal of Difference equations and applications Vol. 9, No. 10, pp. 933-946.
21. Peng D. H., Han M. A. and Wang H. Y. (2003): Linearized oscillation of first-order nonlinear neutral delay difference equations, Computers and Mathematics with Applications Vol. 45, 1785-1796.
22. Tang X. H., Yu J. S. and Peng D. H. (2000): Oscillation and nonoscillation of neutral difference equations with positive and negative coefficients, Computers and Mathematics with applications Vol. 39, 169-181.
23. Thandapani E., Arul R. and Raja P. S. (2003): Oscillation of first order neutral delay difference equations, Applied Mathematics E- Notes, Vol. 3, 88-94®.
24. Thandapani E. and Mahalingam K. (2003): Oscillation and nonoscillation of second order neutral delay difference equations, Czech. Math. J. 53 (128), 935-947.
25. Thandapani E., Manuel M. S., Graef J. R. and Spikes P. W. (1999): Oscillation of a higher order neutral difference equation with a forcing term, J. Math. \& Math. Sci. Vol. 22, No. 1, 147-154.
26. Tian C. J. and Cheng S. S. (2003): Oscillation criteria for delay neutral difference equations with positive and negative coefficients, Bol. Soc. Paran Mat. (3s.) 1/2:112. © SPM.
27. Zafer A. (1995): Oscillatory and asymptotic behavior of higher order difference equations, Mathl. Comput. Modeling Vol. 21, No. 4, pp. 43-50.
28. Zafer A. (1998): Necessary and sufficient condition for oscillation of higher order nonlinear delay difference equations, Computers Math. Applic. Vol. 35, No. 10, pp. 125-130.
29. Zhang G. (2002): Oscillation for nonlinear neutral difference equations, Applied Mathematics E- Notes, Vol. 2, 22-24®.
30. Zhang G. and Cheng S. S. (1995): Oscillation criteria for a neutral difference equations with delay, Appl. Math. Lett. Vol. 8, No. 3, pp. 13-17.
