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Abstract 

 
This thesis is concerned with the oscillation criteria of solutions of certain types of neutral 

difference equations.  We study the conditions that control the oscillation of solutions of 

the first and second order linear and nonlinear neutral difference equations with and 

without forcing terms, we classify these neutral difference equations depending on the 

coefficients, whether they are constant values, constant and variable values or all the 

coefficients are variables, also we study special cases when the neutral difference 

equations include maximum and sign functions.  

 

The thesis presents main concepts and basic definitions of neutral difference equations and 

oscillations, also it contains several results in the oscillation theory of certain types of 

neutral difference equations, in addition to several examples given to illustrate the main 

theorems in this thesis. 

 

In fact we were interested to study this topic in difference equations because difference 

equations  have many applications in our real life and in the last few years there were 

many researches that considered studies of qualitative properties of different advanced 

types of difference equations like neutral difference equations, which arises in many 

applications in economics, delay reaction diffusion and electrical transmission lines in 

lossless transmission lines between circuits in high speed computers.  

 

The thesis contains some extensions to theorems, including generalization, deduction and 

modifications on some conditions so as to use them to prove the oscillation of certain 

neutral difference equations.                
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 ملخص
  

اهتمت هذه الرسالة بمعايير التذبذب لحمول فئة معينة من المعادلات الفرقية المتعادلة، حيث تعرضنا 
لمشروط التي تحكم التذبذب لحمول الدرجة الأولى و الثانية الخطية و غير الخطية من المعادلات 

الفرقية المتعادلة سواء احتوت أو كانت خالية من حدود القوة ، قمنا بتصنيف هذه المعادلات الفرقية 
المتعادلة اعتمادا عمى المعاملات سواء أكانت قيما ثابتة أو قيما ثابتة و متغيرة أو كل المعاملات 

أيضا درسنا حالات خاصة عندما تشمل المعادلات الفرقية المتعادلة اقترانات القيمة العظمى و . متغيرة
.  الاشارة

 
تعرض الرسالة المفاهيم الرئيسية و التعريفات الأساسية لممعادلات الفرقية المتعادلة و التذبذب ، أيضا 
تحتوي عمى العديد من النتائج التي تتعمق بنظريات التذبذب لتمك الفئة المعينة من المعادلات الفرقية 

.  بالاضافة لعدد من الأمثمة أدرجت لتوضيح النظريات الرئيسية في هذه الرسالة. المتعادلة
 

في الحقيقة توجهنا لدراسة هذا الموضوع في المعادلات الفرقية لأن لها العديد من التطبيقات في حياتنا 
العممية ، و في السنوات القميمة الماضية كان هناك العديد من الأبحاث التي اشتممت دراسات لمصفات 
النوعية لأشكال مختمفة و متقدمة من المعادلات الفرقية ، مثل المعادلات الفرقية المتعادلة التي تظهر 
في كثير من التطبيقات ، في الاقتصاد و الانتشار الحراري في التفاعلات و في النقل الكهربائي في 

. خطوط النقل غير الفاقدة لمطاقة بين الدوائر في أجهزة الحاسوب عالية السرعة
 

تحتوي الرسالة بعض الاضافات لنظريات تشمل التعميم ، الاستنتاج و التغير عمى بعض الشروط 
.           لاستعمالها في برهنة التذبذب لبعض المعادلات الفرقية المتعادلة
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Definitions 
  
Through the research we used 

 

. nx  to denote the forward difference operator  nnn xxx  1 . 

. NDE's to denote neutral difference equations. 

. NlX   to denote the space of all real bounded sequences  nxx   with sup norm    

        Nnxx n  :sup . 

. 
R  to denote positive real numbers. 

. 
R  to denote negative real numbers.  

.    RRR  0 . 

. Z  to denote the set of  integers.  

. 
Z to denote the set of positive integers. 

.   RR  yxyx ,:,2 . 

. W.L.O.G to denote the sentence "without loss of generality".  

. N  to denote the set of natural numbers  ,....2,1,0 . 

.  0nN  denote the set  ...,1, 00 nn . 

.    1...,,1,1, 000  bnnbnN  where  10 bn  and Nbn ,0 .  

      Any one of the last three sets will be denoted by N . 
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Introduction  
 

About 1960, the study of difference equations (DE's) appeared. Works at that time, did not 

exceed simple forms of linear DE's with constant coefficients and sometimes with variable 

coefficients. Mathematicians like Boole, Brand, Chorlton, Fort, Miller, Richardson, 

Spiegal and others, who introduced and presented many books that talk about finite 

differences and difference equations, so that one can not ignore that those works are quite 

important, for they are the foundation upon which the more advanced mathematical theory 

in DE's is built.        

 

The importance of DE's arises in some mathematical models, for example, in probability 

theory, statistical problems, number theory, electrical networks, economics, psychology 

and sociology. These mathematical models describe realistic situations, when the variables 

under study take or assumed to take only a discrete set of values. Moreover, in view of the 

close relation between the finite difference operator   and the differential operator D , it 

was possible to approximate a differential equation by a difference equation, where the 

solution of the differential equation is an appropriate limit of the solution of the 

corresponding DE. So we can say that the subject of DE's is gradually forcing its way out 

of the difference calculus to become one of the most important instruments in the hands of 

mathematical physicists when concerned with discontinuous processes.    

 

Since difference equations appeared as a discrete analog to differential equations, different 

types of DE's were treated and solved using techniques similar to those used in solving 

differential equations. for instance, the characteristic equation method was used to solve 

linear homogenous DE's with constant coefficients. While the method of undetermined 

coefficients was applied successfully to linear nonhomogenous DE's with constant 

coefficients under certain conditions, reduction of order was used for first order DE's with 

variable coefficients and also the variation of parameters was used successfully to solve 

DE's with variable coefficients, provided (in the last two methods) that the general 

solution of the corresponding homogenous DE is known. Here, we referred to [7] and [15], 

as they considered basic topics in finite differences and difference equations, also they 

contain methods that solve linear DE's with constant coefficients or with variable 

coefficients in addition to some applications of DE's.   

 

About 1980 and after and as a result of the important and useful applications of DE's in 

many fields of science, mathematicians were encouraged to spend more efforts in working 

and developing many studies and researches that involve new and more complicated forms 

of DE's, like delay difference equations (DDE's), advanced difference equations (ADE's), 

neutral difference equations (NDE's), neutral difference equations of mixed type, partial 

difference equations (PDE's) nonlinear and higher order DE's, we referred to [1], [4], [6], 

[8], and [11]. Also new features of DE's were considered, such as the periodicity of 

solutions, asymptotic behavior and stability of solutions, oscillation and nonoscillation of 

solutions, boundary value problems, eigenvalue problems, etc. we referred to [1], [21], 

[22], [24], and [27]. In fact the valuable book of Agarwal "Difference Equations and 

Inequalities" [1] which is full of advanced topics so that one can find answers to many 

questions about qualitative properties of solutions of both difference systems and higher 

order DE's, solutions of boundary value problems of linear, nonlinear systems and higher 

order DE's. 
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As we will see later the study of each new form or new feature of DE's concerned many 

authors, for example in NDE's and oscillations of its solutions one can find many works 

for Agarwal, Zhang, Cheng, Grace, Parhi, Tripathy, Lalli, Thandapani and others [2-6], 

[8], [10], [12], [13], [14], [18-20], [24-30], these works were devoted to study the 

oscillation of NDE's of different orders of NDE's, they also considered the forced and 

unforced NDE's the linear and nonlinear NDE's, under several conditions on the 

arguments, coefficients, forcing terms and the nonlinear terms. The importance of NDE's 

comes from the fact that NDE's arise in many applications, for example, delay reaction 

diffusion, also in "cobweb" models in economics where demand depends on current price 

but supply depends on the price at an earlier time, and in electrical transmission in lossless 

transmission lines between circuits in high speed computers.      

 

In this thesis we consider theorems that provide sufficient conditions for the oscillation of 

solutions of first and second order, linear and nonlinear NDE's, taking different forms 

depending on the coefficients and the forcing terms of those NDE's. the difference 

between the forms we considered mainly depends on the coefficients and forcing terms of 

NDE's. most works that concern the oscillation of NDE's was done in the last three 

decades. Again authors employed techniques similar to that used in differential equations 

to prove the oscillation of NDE's. All the articles were used in this thesis referred to one or 

more reference in differential equations especially in NDE's, most of the articles referred 

to [11] which includes a chapter that discusses the oscillation of delay difference equations 

(DDE's), as we will see later, the results in NDE's mainly depend on those of DDE's, of 

course with some improvements or needed extra conditions.  

  

This thesis consists of four chapters: 

 

Chapter one: contains basic definitions, notes, lemmas and theorems which are essential 

in the rest of our research. 

 

Chapter two: studies the oscillation theorems for the first order linear NDE's of the form  

                     0
 lnnknngnnmnnn

xqxpxdxcx    ,   0n  

where      nnn pdc ,,  and  nq  are sequences of real numbers, kgm ,,  and l  are integers 

and 1 . 

First we discussed the proof of the oscillation of the first order linear NDE with constant 

coefficients by contradiction and by means of the characteristic equation. Sufficient and 

necessary conditions and comparison theorems we considered to the same form but this 

time when the coefficients are both constants and variables. When the coefficients are all 

variable theorems involved just sufficient conditions and comparison statements were 

studied. Finally, we introduced oscillation results for the first order NDE's with positive 

and negative variable coefficients depending on the treatment of an ordinary difference 

equation.       

 

Chapter three: studies the oscillation theorems for the first order nonlinear NDE's of the 

form 

                       nknnmnnn fxGqxpx   21    ,  0n  

where    nn qp ,  and  
n

f  are sequences of real numbers, 11  , 12   and G  is a 

real valued function.  
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We considered theorems for the special case of the unforced NDE with both constant and 

variable coefficients when   
knkn xxG    where   is the quotient of odd positive 

integers,  then we discussed the general case of   knxG  . Next we presented theorems for 

the same NDE but when the coefficients are all variables, the oscillation theorems 

considered several ranges of  np , some of the proofs depend on a non-neutral difference 

inequality. After that we considered the forced form of  NDE's with both constant and 

variable coefficients, the method used here was defining an oscillatory sequence of real 

numbers  nh  with nn fh   in order to transform the NDE to an unforced form. Also the 

forced form of the NDE's with all coefficients are variables was discussed, two approaches 

to the proof were used, one by operators and the other by defining an oscillatory sequence 

 nh  with restricting conditions on  nh . Finally, we introduced some oscillation theorems 

for special cases when   knknkn xxxG   sgn


,   is a positive constant, when 

  


 
n

i

knknkn i

i

i
xxxG

1

sgn


 and    
  s

nkns
kn xxG

,
max


   

 

Chapter four: studies the oscillation criteria for the second order NDE's of the form  

                        nknnmnnnn fxGqxpxc    ,  0n  

where      nnn qpc ,,  and  nf  are sequences of real numbers , G  is a real valued 

function,  m  and k  are nonnegative integers. First we considered the case when 

ppn  (real number), 1nc  and 0nf , we got oscillation criteria under certain 

conditions involving coefficients and arguments, we depended on similar discussion 

applied to delay difference equations. Next we discussed the oscillation theorems for the 

forced form when ppn   constant, as in chapter three we defined a periodic oscillatory 

sequence  nh  with nn fh 2  in order to transform the forced NDE's to the unforced 

form. After that the second order NDE's with all coefficients are variables was studied 

considering various ranges of np  with 0nf , a new approach was applied in [3] 

depending on dividing the set of all nontrivial solutions into four sets, one of them is the 

oscillatory solutions set and trying to find when this set is nonempty. Next we studied the 

forced form with variable coefficients, once again we need a periodic oscillatory sequence 

 nh  with nn fh 2 and 0lim 


n
n

h  to achieve the oscillation. Finally, we considered the 

special case when    
knkn xxG   , where   is the ratio of odd positive integers, which 

includes the sublinear, linear and superlinear NDE's depending on  .         
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Chapter One  

 

Preliminaries 

 
1.0 Introduction 

 

This chapter mainly contains the basic definitions, results, notes, lemmas and theorems to 

be used later in this research. Section 1.1 introduces the definition of difference equations, 

the definition of NDE's and their classification. Section 1.2 defines the solutions of the 

NDE's and the oscillation of solutions. Section 1.3 contains basic definitions and notes on 

metric space, characteristic equation, Hölder inequality and Lipschitz condition. Section 

1.4 includes lemmas and theorems we need in the rest of this research.  

 

1.1 Difference equations and neutral difference equations (NDE's) 

 

A difference equation in one independent variable Nn  and one unknown nx  is a 

functional equation of the form 

                          0,...,,, 1  knnn xxxnf     ,                                                               (1.1.1) 

where f  is a given function of n  and the values of  nx  at Nn .  

  

If the equation  

                               












m

i

imm nf
i

m
nfInfE

0

  ,  I0  

is substituted in equation (1.1.1) the later equation takes the form  

                          0,...,,,  n

k

nn xxxng  

which is a difference equation.  

 

A neutral difference equation (NDE) is a difference equation in which the highest 

difference of the unknown function appears both with and without delays, NDE's are 

classified into three classes, delay, advanced and mixed type.  

 

If we consider the first order linear homogenous NDE 

                          0
1

 




m

i

kninmnnn i
xQxpx  ,  Nn                                             (1.1.2)  

where  
n

p  and  
in

Q  are sequences of real numbers.  

Let    mkkk ,...,,0max 1  

         mkkl  ,...,,1max 1  

Then equation (1.1.2) is a difference equation of order  lk  . 

 

If 0k  and 1l , then equation (1.1.2) is a delay NDE (i.e. it has nonnegative 

arguments) . 

 

If 0k  and 2l , then equation (1.1.2) is an advanced NDE (i.e. it has nonpositive 

arguments). 
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If 1k  and 2l , then equation (1.1.2) is a NDE of mixed type (i.e. negative and positive 

arguments).  

 

For the first order NDE  

                          n

m

i

kninmnnn fxQxpx
i
 





1

                                                         (1.1.3) 

 

If 1  , 0nf  then equation (1.1.3) is called linear forced NDE.  

 

If 10  , 0nf  then equation (1.1.3) is called sublinear forced NDE. 

 

If 1 , 0nf  then equation (1.1.3) is called superlinear forced NDE.  

 

Example 1.1.1:  

(1)     nlnnknnmnnn xcxqxpx 1   

   where nc , np  and nq  are sequences of real numbers. 

(2)  0
12

1
3

12
2 











  snmnn x

n

n
xx  

(3)        nkn

n

mnn

n fxGxx  

3
13  

 

Equation (1) is a first order forced linear NDE of mixed type. 

Equation (2) is a second order homogenous sublinear delay NDE. 

Equation (3) is an n-th order forced nonlinear advanced NDE.  

 

1.2 Solutions and oscillatory solutions of NDE's 

 

By a solution of equation (1.1.2) we mean a nontrivial sequence  nx  which is defined for 

n , where  skm i ',max  and satisfies equation (1.1.2) for 0n . 

If the initial condition nnx   for 0,1,...,  n  is given, then equation (1.1.2) has a 

unique solution satisfying the initial condition.  

 

A solution  nx  of equation (1.1.2) is said to be oscillatory if for every 00 n  there exists 

an 0nn   such that 01 nn xx , otherwise it is nonoscillatory. Equation (1.1.2) is said to be 

oscillatory if all its solutions are oscillatory. 

 

1.3 Basic definitions and results 

 

Characteristic equation 

Let rk ,  be positive integers and for each i , ki ,...,2,1  

Let ip  be an rr  matrix with real entries  

Consider the equation  

                        0...11   nkknkn xpxpx  

then the associated characteristic equation is  

                          0...det 11

1  



kk

kk pppI   
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where I is an rr  identity matrix  

 

Hölder inequality  

Let   ,1,qp  with 1
11


qp
. If plx  and 

q
ly  then   Njyx jj ,,  is in 1l  and 

                        
q

j
pjj yxyx






1

 

 

Lipschitz condition 

Let  yxf ,  be a function defined on 2
R , we say that  yxf ,  satisfies Lipschitz condition 

in 2
R , if there exists a constant k , such that the function f  satisfies the condition 

                            2121 ,, yykyxfyxf   

for every pair of points    21 ,and,, yxyx  in 2
R . The constant k  is called Lipschitz 

constant.  

 

Superlinear NDE: 

We said that a nonlinear NDE of the form  

                            nknnmnnn fxGqxpx     , 

where    nn qp ,  and  nf  are sequences of real numbers , 

is superlinear when G  is nondecreasing and for 0u             

                        





 
* )( 1ni i

i

uG

u
 , 

 where *n  is any positive integer.  

 

The following notes are from analysis: 

· A fixed point: a point Mx , M  is a subset of a Banach space is called a fixed point   

      if xTx  . 

 

· A metric space is a set X  together with a given distance. 

 

· Banach space is a complete normed vector space. That is, a Banach space is a vector  

      space X  with a norm in which every Cauchy sequence converges to a vector in X . 

 

· Let ),( dX  be a vector space and let XXT :  we say that T  is a contraction   

      mapping on X  if there exists a number  1,0r  such that 

                           yxrdTyTxd ,,    for every Xyx , . 

 

· We say that a Banach space X  is partially ordered if X  contains a cone K  with   

      nonempty interior. The ordering    in X  is defined as follows:  

      yx   if and only if Kxy  . 

 

1.4 Some basic lemmas and theorems  

 

Lemma 1.4.1: Suppose that There exists a positive integer N  such that  

                        1imNc  , for ,...2,1,0i  
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Let 0np  and is not identically zero for all large n , then for any eventually positive 

solution  nx of the difference inequality  

                          0  knnmnnn xpxcx    ,                                                             (1.4.1) 

the sequence  nz  defined by  

                        mnnnn xcxz     ,  0n                                                                     (1.4.2)  

will satisfy  0 nz  and 0nz   for all large n . 

 

Proof: Since  nx  satisfies (1.4.1) then 0 nz ,  we have that  nz  is a nonincreasing 

sequence, and we want to show that 0nz . 

On the contrary suppose that 0nz   for  1nn   and 0nx , so 0
1
 nn zz  for  1nn  . 

Choose *n  large enough so that 1

* nmnN   ,  from (1.4.2) and for  0j  we have  

                        
mjmnNjmmnNjmmnNjmmnN

xcxz
)1(**** 

  

                       

mjmnNn

mjmnNjmmnNjmmnNjmmnN

xz

xczx

)1(

)1(

*
1

****








 

                                     
0,)1(... *

11

***
1 )2()1()1(









jxzj

xczz

mnnn

mjmnNmjmnNmjmnNn

 

as  j  

                        
 mnnn xzj *

11
)1(  , 

which is a contradiction, so 0nz . □ 

 

Lemma 1.4.2: Assume that 1 . Suppose further that there exists  ln1 k  such that 

                        0)exp(inflim 


n

n
n

eq   , 

then every solution of the equation  

                        0




knnn
xqx   ,  ,...2,1,0n  

is oscillatory.  

 

Proof: See [17]. □ 

 

Lemma 1.4.3: If 

                        
1

11

)1(
inflim






 

 k

kn

kni

i
n k

k
q  ,      1k                                                      

then the inequality 0 knnn yqy  does not have a positive solution and hence the 

inequality 0 knnn yqy  does not have a negative solution. 

 

Proof: See [8] page 184.  □  
 

 Lemma 1.4.4: Let  nf ,  ng  and  np  be sequences of real numbers defined for 

00  nn  such that 

                        mnnnn gpgf   ,    mnn  0                                                          (1.4.3) 
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where 0m  is an integer , suppose that there exist real numbers 1b , 2b , 3b  and 4b such 

that np  is in one of the following ranges: 

(i) 01  npb  , 

(ii) 10 2  bpn  , or 

(iii)  431 bpb n . 

If 0ng  for  0nn  ,  0inflim 


n
n

g  and Lfn
n




lim  exists, then 0L  . 

 

Proof: we may write (1.4.3) as 

                          mnnnmnmnnmn gpgpgff   1  , mnn  0                        (1.4.4) 

Since 0inflim 


n
n

g , there exists a subsequence  
kng  of  ng  such that 0lim 


kn

k

g . 

Suppose that (i) holds. As the sequence  1mnk
p  is bounded, we have 

  01lim 
 kk nmn

k
gp and hence (1.4.4) yields that  

                          0lim  


mnnmn
k kkk

gpg  

Since 0mnk
g  for large k , we have 0lim 


mnn

k kk
gp . From (1.4.3) it follows that  

                          0limlim  


mnnn
k

n
k kkkk

gpgfL  

Next suppose that (ii) holds. Replacing n by mnk   in (1.4.4) and then taking limit as 

k , we obtain 

                           01lim 2  


mnmnmnn
k kkkk

gpgp  

Since 01 2 b , we have 

                   01infliminflim10 22  





mnmnmnn
k

mn
k kkkkk

gpgpgb  

and  

                   01suplimsuplim10 22  





mnmnmnn
k

mn
k

kkkkk
gpgpgb  

Hence 0lim 


mn
k k

g  

From (1.4.3) we get 

                          0limlim  


mnnn
k

n
k kkkk

gpgfL  

Finally, let (iii) hold. Putting mnk   in place of n in (1.4.4) and letting k , one 

obtains 

                           01lim 22  
 kkkkk nmnmnmnmn

k
gpgpg  

As the sequence  mnk
p   is bounded, we have 

                           01lim 22  


mnmnmn
k kkk

gpg  

Since 02  mnk
g  for large k  and  12  mnk

p  is a positive bounded sequence, we conclude 

that 0lim 


mn
k k

g . Thus from (1.4.3) we obtain 

                          0limlim  



 kkkk nmnmn

k
mn

k
gpgfL   

Hence the lemma is proved. □ 

 

Lemma 1.4.5: Let 11  km  and nx  be defined on  aN  . Then  
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(i)  0inflim 


n

m

n
x  implies 


n

i

n
xlim  , 10  mi  

(ii) 0suplim 


n

m

n
x  implies 


n

i

n
xlim  , 10  mi  

 

Proof: 

(i)  0inflim 


n

m

n
x  implies that there exists a large  an N1  such that 0 cxn

m  for  

     all  1nn N , since  

                        




 
1

11

1

1

n

nl

l

m

n

m

n

m xxx  

     It follows that  1

11

1
nncxx n

m

n

m    and hence  


n

m

n
x1lim . The rest of the   

     proof is by induction.  

(ii) Similar to case (i)  □ 

 

Theorem 1.4.1: (Discrete Kneser's Theorem) 

Let nx  be defined on  aN , and 0nx  with n

k x  of constant sign on  aN  and not 

identically zero. Then there exits an integer m , km 0  with mk   odd for 0 n

k x , 

or mk   even for 0 n

k x , and such that 

1 km  implies that   01 


n

iim
x  for all   an N , 1 kim  

1m  implies 0 n

i x  for all large  an N , 11  mi  

 

Proof: There are two cases to consider  

Case 1: 0 n

k x  on  aN   

Before that we prove that 01  

n

k x  on  aN . If  not, then there exists some an 1  in 

 aN  such that 0
1

1  

n

k x . Since n

k x1  is decreasing and not identically constant on 

 aN , there exists  12 nn N , such that 0
12

111  

n

k

n

k

n

k xxx  for all  2nn N . 

But from lemma 1.4.4 we find 


n
n

xlim  which is a contradiction to 0nx . 

Thus 01  

n

k x  on  aN  and there exists a smallest integer m , 10  km  with  mk   

odd and  

                          01 


n

iim
x  on  aN  ,  1 kim                                         (1.4.5) 

next let 1m  and  

                        01  

n

m x  on  aN  ,                                                                            (1.4.6) 

then again from lemma 1.4.5 it follows that  

                        02  

n

m x  on  aN  ,                                                                           (1.4.7) 

Inequalities (1.4.5) – (1.4.7) can be unified to  

                          01
)2(




n

iim
x  on  aN  ,  12  kim  

which is  a contradiction to the definition of m . 

so, inequality (1.4.6) fails and  

                        01  

n

m x  on  aN   . 

From inequality (1.4.5), n

m x1  is nondecreasing and hence  
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                        0lim 1  


n

m

m
x  

We found from lemma 1.4.5 that  

                        


n

i

n
xlim   ,  21  mi  

Thus  

                        0 n

i x  for all large  an N  ,  11  mi  

Case2: 0 n

k x  on  aN  

Let  23 nn N  be such that 0
3

1  

n

k x , then  since n

k x1  is nondecreasing and not 

identically constant, there exists some   34 nn N  such that  

                        01  

n

k x  for all large  4nn N    

Thus  

                        0lim 1  


n

k

n
x    

and from lemma 1.4.5  

                        


n

i

n
xlim  ,   21  ki   

and so  

                        0 n

i x  for all large  an N  , 11  ki  

This proves the theorem for km  . 

In case 01  

n

k x  for all  an N  , we find from lemma 1.4.4 that 02  

n

k x  for all 

 an N . And we continue as in the proof of case1.  □ 

 
Corollary 1.4.1: Let nx  be defined on  aN , and 0nx  with 0 n

k x  on  aN  and not 

identically zero. Then there exists a large n  in  aN  such that  

                        
 

  1

12

1
1

!1

1  


 

k

n

k

n nnx
k

x mk   ,   1nn N  

or  

                        
  n

k

k

n kx
k

n

x 22

1

1

!1

2


















   ,    12nn N  

 

Proof: See [1]. □ 

 

Theorem 1.4.2: (Knaster-Tarski fixed-point theorem) 

Let X  be a partially ordered Banach space with ordering   . Let M  be a subset of  X  

with the following properties: the infimum of  M  belongs to M  and every nonempty 

subset of M  has a supremum which belongs to M . Let MMT :  be an increasing 

mapping, that is yx   implies TyTx  . Then T  has a fixed point in M . 
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Chapter Two 

 

Oscillation Criteria of First-Order Linear Neutral Difference Equations  

 
2.0 Introduction 

 

In this chapter we will study the oscillation of the first-order linear NDE's of the form 

                          0  lnnknngnnmnnn xqxpxdxcx   ,                                (2.0.1) 

where       nnn pdc ,, and  nq  are sequences of real numbers,  kgm ,,  and l  are integers 

and 1   

 

Oscillation of NDE's with delays has received a great attention since 1980.  

 

Many valuable works for Agarwal [1] , [2], Grace [8], Lalli [5], [14], Zhang [30], Cheng 

[26], [30], … etc deal with different topics in oscillation and nonoscillation, these works 

can be considered as  good references in this field.  

 

This chapter contains four sections. In the first section we studied the sufficient conditions 

for the oscillation of equation (2.0.1) when the coefficients are all constants. Section two 

introduces sufficient and necessary conditions for the oscillation of equation (2.0.1)  

taking ccn  , 01  c  and 0 nn qd . Section three presents the oscillation             

of equation (2.0.1) with variable coefficients letting 0 nn qd . Finally, section four 

concerns with the oscillation theorems of equation (2.0.1) with positive and negative 

variable    coefficients.  

 

2.1 Oscillation criteria of first-order linear NDE's with constant coefficients 

 

Consider the NDE of the form 

                          0  lnkngnmnn qxpxdxcxx   ,                                        (2.1.1) 

with pdc ,, and q   0R ,  kgm ,,  and   0Zl  and 1 .   

 

In fact equations of the form (2.1.1) are called NDE's of mixed type, it is clear here that 

the sequences of coefficients are all constants. This section shows two different 

approaches to achieve the oscillation of equation (2.1.1); one by establishing sufficient 

conditions for oscillation and the other by means of the characteristic equation. 

 

Lemma 2.1.1: Assume that Rp  and Zg , then  

a. If  

                        
 

g

g

g

g
p

1
1




   ,  1g  

      then the difference inequality 

                        gnn pyy    ,  

      has no eventually positive solution  ny  which satisfies 0 n

j y  eventually,    

     1,0j . 
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b. If 

                        
  1

1





g

g

g

g
p     ,  1g  

        then the difference inequality   

                          gnn pyy 1  

        has no eventually positive solution  ny  which satisfies   01  n

jj
y    

        eventually, 1,0j . 

 

Proof: See [8]. □ 

 

Lemma 2.1.2: Consider the linear difference equation 

                        


 
s

j

jsnsn xjqx
1

0)(   ,                                                                  (2.1.2)  

for ,...2,1,0n  , where  0Zs  and R)( jq , sj ,...,2,1  , then the following 

statements are equivalent:  

   (I1) Every solution of (2.1.14) oscillates 

   (I2) The associated characteristic equation 

                        


 
s

j

jss jq
1

0)(    , 

          has no positive roots. 

 

Proof: See [11]. □  

 

Theorem 2.1.1: Let 0d , if  

                        
 

  mk

mk

mk

mk

c

p









 1
11

   , 1mk                                                      (2.1.3) 

and 

                        
 

  gl

gl

gl

gl

d

q









1
1

  ,   1 gl                                                            (2.1.4) 

Then equation (2.1.1) is oscillatory.  

 

(I) The proof by contradiction:  

Suppose to contrary that  nx  is an eventually positive solution of equation (2.1.1)  

(i.e. 0nx  for 0nn  ).  

Let 

                        gnmnnn dxcxxy     ,                                                                      (2.1.5) 

then 

                        0  lnknn qxpxy    ,  01 nnn                                               (2.1.6) 

so either 0ny  or 0ny  

Case 1: If  0ny ,  for 1nn   , set 

                        gnnmngnnn dxxcxdxyv  0  
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                         ngn xv
d



1
  ,  2nn                                                                       (2.1.7) 

Using (2.1.7) we have 

                        lnknn qxpxv     

                          lgnkgnn v
d

q
v

d

p
v      

                        lgnn v
d

q
v                                                                                   (2.1.8) 

Using lemma 2.1.1 (a) and inequality (2.1.4) then inequality (2.1.8) has no eventually 

positive solution  

Case2: If  0ny ,  for 1nn   , let 

                        gnmnnn dycyyw     ,                                                                  (2.1.9) 

then 

                        0  lnknn qypyw                                                                    (2.1.10) 

and 

                          0  lnkngnmnn qwpwdwcww                                      (2.1.11) 

Clearly that 0 nw  and 02  nw , for 11 nNn  , there are two cases to consider: 

either 

(i) 0nw  eventually ,     or      (ii) 0nw  eventually  

(i) If  0nw  for 1Nn   , let 

                        gnnmngnnn dyycydywW  0   ,                                   

then 

                        ngn yW
d



1
                                                                                      (2.1.12)  

Using inequality (2.1.12) in equation (2.1.10) to get 

                        glnn W
d

q
W                                                                                  (2.1.13) 

Using condition (2.1.4) and lemma 2.1.1(a), inequality (2.1.13) has no eventually 

positive solution, which is a contradiction  

(ii) If  0nw  for 1Nn     

We have that  nw  is decreasing together with equation (2.1.11) we have 

                  knmnlnkngnmnn pwwcqwpwdwcww   10  

or 

                          0
1




  mknn w
c

p
w  ,   1Nn                                                     (2.1.14) 

so using condition (2.1.3) and lemma 2.1.1 (b), inequality (2.1.14) has no eventually 

positive solution, which is a contradiction. 

So every solution of equation (2.1.1) is oscillatory. □ 

 

 

(II) The proof  by using characteristic equation: 
The associated characteristic equation with (2.1.1) is 

                           011)(   lkgm qpdcF   ,                            (2.1.15) 
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we want to show that equation (2.1.15) has no positive roots, two cases are to be 

discussed: 

Case (I): 1   

                        
 
 

 

 
  dc

qpF gmg
glgkg





















11
 

                                        
 

d
q gl







1


  , 

since the minimum of   
 



1


x

x
xf ,     and 1x  occurs at 






x  we see 

that 

                        
 
 

0

1

1

1

1

































d

gl

gl

gl

q
F

gl

g




   

Case (II): 10     

We have 

                        
 
 

    
 

 gmm
gmmkm

dc
qpF 










 









11
 

                                         
   

 
 gmm

gmmk

dc
qp 







 





1
 

                        

                                         
 

 
c

p m
mk












1
 

                                         
 

 
c

p km







1
1 


 

                                         

 

01

1

1

1






























c

mk

mk

mk
p

mk

 , 

since the minimum of the function   
 



x

x
xf






1
  occurs at 






x  , where   and 

  are positive.  

From cases (I) and (II) we got that 0)( F  on    ,11,0   and 0)1( F    0)( F  

for R , which is a contradiction. □ 

 

Example 2.1.1: Consider the linear NDE 

                          022 4433   nnnnn xxxxx                                             (2.1.16) 

It is clear that conditions (2.1.3) and (2.1.4) of theorem 2.1.1 are satisfied, so every 

solution of equation (2.1.16) is oscillatory. Indeed, one of the solutions is  n

nx 1 , 

which is an oscillatory solution.  

 

Remark 2.1.1: The results of this section are mainly referred to [2] and [8].   
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2.2 Oscillation  criteria  of  first-order  NDE's  with  both  constant  and  variable   

       coefficients 

 

Consider the NDE of the form  

                          0  knnmnn xpcxx    ,                                                             (2.2.1) 

with 0np ,  01  c  and 1 . 

The main results of this section are included in theorem 2.2.1 and theorem 2.2.3. 

 

Theorem 2.2.1: Assume that 0np  and 01  c .Then every solution of equation 

(2.2.1) is oscillatory if and only if  the following difference inequality  

                          0  knnmnn xpcxx   ,                                                                (2.2.2) 

has no eventually positive solution. 

 

Proof: On the contrary, suppose W.L.O.G that  nx  is a nonoscillatory solution of 

inequality (2.2.2), say 0nx  eventually, we want to show that equation (2.2.1) has also 

an eventually positive solution. 

Let                              

                        mnnn cxxz    ,                                                                                  (2.2.3) 

then  0nz  and 0 nz  eventually by lemma 1.4.1. 

Define  

                        0



n

n

n
z

z
w  ,  Nn                                                                        (2.2.4) 

we have  1nw  for Nn    , using (2.2.2) we have 

                          0  knnmnn xpcxx  

                                        0 knnn xpz  

                          0  kmnnkmnnknnn xcpxcpxpz  

                          0  kmnnkmnknnn xcpcxxpz  

                        0 



 kmnmn

mn

n

knnn xp
p

cp
zpz  ,                                                  (2.2.5) 

dividing (2.2.5) by  nz   to get 

                        0








kmn

nmn

mnn

n

knn

n

n x
zp

ppc

z

zp

z

z
 

                        0)1()1(
1

1
1

1  















n

mni

imn

mn

n
n

kni

inn ww
p

pc
wpw                   (2.2.6) 

Taking in consideration that  

                        




 
1

1)1(
n

kni

i

n

kn w
z

z
  

Equation (2.2.6) becomes  

 .                      n

n

mni

imn

mn

n
n

kni

in www
p

pc
wp  
















1

1
1

1 )1()1(                             (2.2.7) 

Define  
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                         0)0( n  ,  1,...,1,  MNNNn  ,   where  kmM ,max    

  








  















1 1

1)1()1(1)1()( )1()1(
n

knj

n

mnj

r

j

r

mn

mn

nr

jn

r

n
p

cp
p   , for MNn      (2.2.8) 

We have that 

                             
n

r

nnn w ......10   ,  0r , Nn   

and so 

                         
n

r

n
r

 


lim   , for each fixed Nn                                                      (2.2.9) 

taking the limit in (2.2.8), to obtain  

                       0n  ,   1,...,1,  MNNNn   

              














 
1

1
1

1 )1()1(
n

mnj

jmn

mn

n
n

knj

jnn
p

cp
p   ,  MNn                (2.2.10) 

Define the recurrence relation  

                        1nz  ,   Nn   

                         nnn zz  11   ,   Nn   

so        

                        0)1(
1






n

Ni

inz    , Nn                                                              (2.2.11) 

and 

                        0



n

n

n
z

z
                                                                                    (2.2.12) 

Using (2.2.11) and (2.2.12) in (2.2.10) we get  

              
n

mn

mn

mn

mn

n

n

knn

n

n

z

z

z

z

p

cp

z

zp

z

z 






















 11   ,  for MNn   

so  

                        mn

mn

kn

n

n z
p

c
z

p

z




 


  ,  for MNn                                   (2.2.13)  

since  0



n

n

p

z
, so define  

                        
kn

kn

n
p

z
y




  ,   kMNn                                                          (2.2.14)                         

 

and substitute ny  in (2.2.13) to get  

                        kmnknkn cyzy    ,   for  MNn                                              (2.2.15) 

combining (2.2.15) with (2.2.14) , we get  

                          0  knnmnn ypcyy  , MNn   

which is a contradiction. 

Suppose there exists a nonoscillatory solution  nx  for equation (2.2.1) , such that 0nx , 

then  nx  will be a solution of (2.2.2) which is a contradiction. □ 

 

Remarks 2.2.1 ([14]) 

(1)  The oscillation of (2.2.1) implies the oscillation of equation  
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                            0,...,,
1

  lhnhnknnmnn xxnfxpcxx   , 

provided that the assumption of theorem 2.2.1 and    0,...,, 11  lnf  whenever  

01 j  , lj ,...,2,1  hold. 

(2)  The oscillation of (2.2.1) implies the oscillation of equation  

                          0  hnnknnmnn xqxpcxx   ,      

provided that  01  c , 0np , 0nq , 0, hk  

 

The following theorem provides us with a comparison condition for the oscillation, when 

there is a relation between the sequences of coefficients.  

 

Theorem 2.2.2: Assume that  

                          0  knnmnn xqxcx  ,                                                               (2.2.16) 

and  0,1, cc , so that 

                        0 nn pq                                                                                         (2.2.17)  

and        

                        





















 mn

n

mn

n

p

pc

q

qc
                                                                              (2.2.18)                                     

hold, then the oscillation of (2.2.1) implies the oscillation of (2.2.16) 

 

Proof: Let  nx  be a positive solution of equation (2.2.16), 0nx  for Nn  , proceeding 

as in the proof of theorem 2.2.1, there exists a sequence  nw ,  1,0nw  such that 

                        














 
1

1
1

1 )1()1(
n

mni

imn

mn

n
n

kni

inn ww
q

qc
wqw  , 

using  conditions (2.2.17) and (2.2.18) it follows from the above equation that  

                        














 
1

1
1

1 )1()1(
n

mni

imn

mn

n
n

kni

inn ww
p

pc
wpw  

Thus we get inequality (2.2.7), again proceeding as in proof of theorem 2.2.1 to get a 

contradiction.  □   

 

Theorem 2.2.3: If 

                        0 ii pq  ,                                                                                       (2.2.19) 

and 

                        





Ni

i ccq 01,                                                               (2.2.20)                                                                                               

then the oscillation of (2.2.1) implies the oscillation of (2.2.16) . 

 

Proof:  Suppose that  nx  is a positive solution of equation (2.2.16), let 

                        mnnn xcxz                                                                                     (2.2.21) 

then  

                        0 knnn xqz  

It follows that  0nz  as n , and  
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n

kiin xqz  ,                                                                                  (2.2.22)         

now from (2.2.21) and (2.2.22) 

                        


 
n

kiimnn xqxcx  , 

by (2.2.19) 

                        


 
n

kiimnn xpcxx   

                               Lmn

L

mn xccx   ...     

                              
 

0

0

n
m

nn

xc


  

                              m

n

c    

where  
0

0

n
m

n

xc


  and 
m

nn
L 0
  

Define 

                           nn x)0(    ,    0nn   

                           








 
n

r

kii

r

mn

r

n pc 11)(   ,    kmnn ,max0   

                         0)(

n

r

n    ,     kmnnn ,max00   , ,...3,2,1r                           (2.2.23) 

we have 

                        m

n

r

n c )()(     , 

and  

                        )()1( r

n

r

n    , 0nn  , ,...2,1,0r  

hence, for each 0nn   we have 

                        (*))(

n

r

n     as r  

so 

                        




 
ni

kiimnn pc **(*)    

hence,  

                        0)( ***   knnmnn pc   ,  Mnn  0  

which is a contradiction, so equation (2.2.1) is oscillatory.  □ 
 

Remarks  2.2.2 

(1) As a special case of theorem 2.2.3 , when  0 cc , then for the equations  

                        0 knnn ypy                                                                                 (2.2.24) 

                        0 knnn xqx                                                                                  (2.2.25)   

      with  nn pq  , then  

      the oscillation of (2.2.24) implies that of (2.2.25) . 

(2) One can extend the results in theorem 2.2.3 to the equation  

                        0)(
1

 




l

j

knnjmnn j
xpxcx                                                         (2.2.26)                                              
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Theorem 2.2.4: If 

                        0 jiji pq  ,    lj ,...,2,1                                                                (2.2.27) 

and 

                        





Ni

ijq  , for lj ,...,2,1                                                              (2.2.28) 

with 01  cc , then the oscillation of equation (2.2.26) implies the oscillation of   

                        0)(
1

 




l

j

knnjmnn j
xqxcx                                                      (2.2.29) 

        

Proof: Suppose that nx  is a positive solution of equation (2.2.29), let  nz  as in (2.2.21), 

then                      

                        0
1

 




l

j

knnjn j
xqz                                                                          (2.2.30)                                            

We have  0nz  as  n ,  let 

                         


 

 














ni

l

j

kiijn j
xqz

1

                                                                        (2.2.31)                                                  

so, 

              )...(
21 21





 
ni

kilikiikiimnn l
xqxqxqxcx  , 

by (2.2.27) 

              


 
n

kilikiikiimnn l
xpxpxpxcx )...(

21 21  

                   smn

s

mn xcxc   )(...  

                    
0

0 )(

n
m

nn

xc


   ,   smnn 0  

Let 
0

0

)( n
m

n

xc



  , then  

                        m

n

n cx )(   

Define 

                           nn x)0(  

  

                         












 
n

r

kiil

r

kii

r

mn

r

n l
ppc )1()1(

1

)1()( ...
1

  

                        )0()(

n

r

n    , 

we have  

                        r

n

r

n  1   (i.e. )(r

n  is decreasing) 

Since m

n

r

n c )()(    ,  ,...2,1,0r  

then for each 0nn   we have 

                        *)(

n

r

n      as r  

so  
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n

kiiLkiimnn l
ppc **

1

** ...
1

   

Hence,  

                          0... **

1

**

1
  lknnlknnmnn ppc   ,   Mnn  0  

This means that *

n  is a positive solution of equation (2.2.21), which is a contradiction.   □  

 

Example 2.2.1: Consider the NDE's 

                        02
2

1
31 








  n

n

nn xxx   ,                                                            (2.2.32) 

and 

                        03
2

1
31 








  n

n

nn xxx   ,                                                            (2.2.33)  

using theorem 2.2.2 we conclude that the oscillation of (2.2.32) implies the oscillation 

(2.2.33) since conditions (2.2.17) and (2.2.18) are satisfied. 

Note also that example 2.2.1 satisfies the conditions of theorem 2.2.3. 

 

Remark 2.2.3: The results of this section are mainly referred to [14]. 

  

2.3 Oscillation criteria of first-order linear NDE's with variable coefficients 

 

Consider the first-order linear NDE of the form  

                            0  knnmnnn xpxcx    ,  0n                                               (2.3.1) 

where  nc  and  np  are nonnegative sequences of real numbers,  m   and  k   are 

nonnegative integers and 1 . 

  

Equation (2.3.1) has been extensively investigated in literature. Authors like Tang, Yu and 

Ladas discussed the boundedness and the asymptotic behavior of the solutions of equation 

(2.3.1) with and without the condition 


0n

np , also Zhang, Cheng, Chen, Lalli and Yu 

as in  [5]  and  [30]  studied the oscillation property of equation (2.3.1) under several 

conditions. 

 

In fact in this section we will consider some of those theorems in [5] and [30], but before 

that, we need the following assumptions: 

    (H1) There exists a positive integer N  such that  

                        1imNc  , for ,...2,1,0i  

    (H2) For  0n  

                        






 nj

j

n

n pnp
0

 

 

Lemma 2.3.1: Assume that (H2) holds, and 1nc , 0np  , for ,...2,1,0n  , then for any 

eventually positive solution  nx   of  the inequality  

                          0  knnmnnn xpxcx                                                                  (2.3.2)  

the sequence  nz  defined by  
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                        mnnnn xcxz     ,  0n                                                                     (2.3.3)  

satisfies that 0 nz  and 0nz . 

   

Proof: see [5]. □  

 

Theorem 2.3.1: Suppose that 1nc  and 0np  , for ,...2,1,0n  ,   and  (H2)  holds then 

every solution of equation (2.3.1) is oscillatory. 

 

Proof: From lemma 1.4.1, the sequence nz  defined by (2.3.3) would be positive, and 

from lemma 2.3.1, the sequence  nz  would be negative for all large n . (i.e. positive and 

negative at the same time ) , hence every solution of equation (2.3.1) is oscillatory. □  

   

Theorem 2.3.2: Suppose that (H1) and (H2) hold, then every solution of equation (2.3.1) 

oscillates provided that for all large  n . 

                        nknmn pcp                                                                                          (2.3.4) 

 

Proof: On the contrary, suppose that equation (2.3.1) has an eventually positive solution 

 nx  , let  nz  as in (2.3.3), then from (2.3.1) 

                        0 knnn xpz                                                                                   (2.3.5) 

                        knnn xpz   

                                mknknknn xczp    

                               mknknnknn xcpzp     

                               mknmnknn xpzp        ,                        by using (2.3.4) 

                               mnknn zzp    ,   mknn  0 ,        by using (2.3.5) 

i.e.  

                          0  knnmnn zpzz  ,  mknn  0                                          (2.3.6)

   

using (H2)  and by lemma  1.4.1  and lemma  2.3.1 , then the sequence  mnn zz   is 

eventually negative and positive at the same time, which is a contradiction, so every 

solution of equation (2.3.1) is oscillatory.  □   

 

Theorem 2.3.3: Suppose that  (H1)  holds, 0np  and there is some number  1,0 such 

that  

                        knnmn cpp    ,  for all large  n                                                           (2.3.7) 

then every solution of equation (2.3.1) is oscillatory provided that the recurrence relation 

                          0
1




  mkn
n

n w
p

w


  ,  0n                                                          (2.3.8) 

has no eventually positive solution. 

 

Proof: Suppose that (2.3.1) has an eventually positive solution  nx , define nz  as in 

(2.3.3) , then  

                        0 knnn xpz                                                                                   (2.3.9) 

                          0  kmnmnmn xpz  
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                         kmnmnmn xpz      , 

using (2.3.7)      

                         kmnmnnmn xpcz     , 

or   

                          0  kmnknnmn xpcz   ,                                                       (2.3.10) 

adding (2.3.9) with (2.3.10) we get  

                          0  kmnknnknnmnn xcpxpzz   

using (2.3.3) we get  

                          0  knnmnn zpzz    

Define  

                        mnnn zzw    ,  0n  

satisfies 0nw  for all large  n , we have 

                        



1

n

mn

w
z    , 

and     

                        
 







1

mkn

kn

w
z   ,    0n                                         

and hence  nw  is an eventually positive solution of (2.3.8), which is a contradiction. □   

 

Remarks 2.3.1: 

(1) In theorem 2.3.2, if we replace (H1) by 1nc  , for ,...2,1,0n , and replace (2.3.4) by    

      mnnkn ppc    , then every solution of (2.3.1) is oscillatory. 

(2) In theorem 2.3.3, if we replace  (H1)  by 0nc , for ,...2,1,0n  , and replace (2.3.7) by   

      mnnkn ppc    , we will have another criteria for the oscillation of equation (2.3.1)  

      provided that  

                          0
1




  mkn
n

n w
p

w


  ,  0n                                                           

      has no eventually positive solution. 

 

Remark 2.3.2:  The results of this section are mainly referred to [5]  and  [30] .   

 

2.4 Oscillation  criteria of  first-order  linear  NDE  with  positive  and  negative   

      variable coefficients  

 

Consider the NDE of the form  

                          0  lnnknnmnnn xqxpxcx    ,                                             (2.4.1) 

where m , k  and l  are integers such that kl 0 , 0m  , nc ,  np  and  nq  are 

nonnegative sequences of real numbers, the sequence lknnn qph  , lkn   is 

nonnegative and has a positive subsequence and 1 . 

 

Authors, since 1990 studied equation (2.4.1), they discussed several cases, when 0nq , 

0nc  or when  ccn   and 10  c . 
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In [22] Tang, Yu and Peng investigated the oscillation of equation (2.4.1) depending on 

the treatment of an ordinary difference equation, while in [26] Tian and Cheng did some 

modifications on the results of [22], we will see later that the results in [22] are taken to be 

the special case of those in [26].  

 

Before starting we have to consider the following definitions: 

              









11

)(
lktn

ns

s

n

tns

snn pqctR    , where  lkt  ,...,1,0                               (2.4.2) 

              
 


 


otherwisekm

lktandqifm
tM

n

,,max

0,
)(*                                             (2.4.3) 

 

              
 









otherwiselm

lktandqifm
tm

n

,1,min

0,
)(*                                           (2.4.4) 

 

Lemma 2.4.1: Suppose that  nx  is an eventually positive solution of the functional 

difference inequality 

                          0  lnnknnmnnn xqxpxcx   ,                                                 (2.4.5) 

and there exists an integer  lkt  ,...,1,0 , such that  1)( tRn , for all large n , then the 

sequence  nz  defined by  

                        










 
11 tlkn

ns

kss

n

tns

lssmnnnn xpxqxcxz    ,                                      (2.4.6) 

for all large n , will satisfy 0nz  and 0 nz  eventually.   

 

Proof: Let Z1N , such that for 1Nn  , 0nx . By inequality (2.4.5) and equation 

(2.4.6), it is clear that 0 nz , which means that nz  is nonincreasing for 1Nn  . 

To prove that 0nz , suppose not that is 0nz  for all large n . Thus there exists a 

constant 0  such that nz  for  12 NNn  , so from equation (2.4.6) 

                        










 
11 tlkn

ns

kss

n

tns

lssmnnnn xpxqxcxz   

                                 










 
11 tlkn

ns

kss

n

tns

lssmnnn xpxqxcx                                 (2.4.7) 

The question appears here whether  nx  is bounded or not ?  

If   nx  is bounded: This means that 


n
n

xsuplim , we can choose a sequence of 

integers  
1

*

iin  such that 


*lim i
i

n  and 
 in

i
xlim . 

Let  i  be a sequence of integers such that  

                           tmntMn iii

****      , 

and  

                            tmnntMnxx iin

****:max    , 

with  


i
i

lim   and     


x
n

suplim .     

From equation (2.4.2) and inequality (2.4.7) we have 
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11 tlkn

ns

kss

n

tns

lssmnnn xpxqxcx     

                              x   

then  

                            


xx
i

n
n

suplimsuplim   

                                     

which is a contradiction. 

If   nx  is unbounded: This means that 


n
n

xsuplim , so there exists a sequence of 

integers  
1

*

iin  such that for   **

2 intMN  , we have  

    


*lim i
i

n   ,    


*lim
ini

x  ,     and   ,...2,1,:max *

2  innNxx inn
. 

From equation (2.4.2) and inequality (2.4.7), we get 

                        










 
11 tlkn

ns

kss

n

tns

lssmnnn xpxqxcx   

                             nx   

                             nx  

which is a contradiction. So nz must be positive. □  

 

Lemma 2.4.2: Suppose that the second-order difference inequality 

                        
 

0
1
*

2   nlktnn yh
tM

y  ,                                                                (2.4.8) 

does not have any eventually positive solution, and there exists an integer  lkt  ,...,1,0  

such that 1)( tRn , for all large n , then for any eventually positive solution  nx  of 

inequality (2.4.5), the sequence  nz  defined by equation (2.4.6) satisfies 0nz  and 

0 nz  for all large n . 

 

Proof: See [26]. □ 

Lemma 2.4.3: The difference inequality 

                        02  nnn ydy   ,   0n  

has no eventually positive solutions if  

                        
4

1
inflim 






ns

s
n

dn   , 

where  nd  is a sequence of nonnegative real numbers.  

 

Proof: See [22]. □  

 

Theorem 2.4.1: Suppose there exist two integers  lktt  ,...,1,0, 1  such that  

                        1)(
11

1

1

1

 








lktn

ns

s

n

tns

snn pqctR   ,                                                     (2.4.9) 

                        1)(
11

 








lktn

ns

s

n

tns

snn pqctR   ,                                                     (2.4.10) 
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for all large n . Further suppose that the functional inequality (2.4.8) does not have any 

eventually positive solution. Then every solution of equation (2.4.1) oscillates.  

 

Proof: Using lemma 2.4.1, then we have that 0nz  and 0 nz  eventually. However, 

using lemma 2.4.2 gives that 0nz  eventually, so we obtain a contradiction, thus 

equation (2.4.1) can not have any eventually positive, nor eventually negative solution. □ 

 

Corollary 2.4.1: Suppose that (2.4.10) holds for 0t , and all large n  and 

                         
 










ns

slks
n

km
qpn

4

,max
inflim   ,                                             (2.4.11) 

holds. Further suppose 








  lknn

n

qp

p
 is nondecreasing and there exist two nonnegative 

constants 1  and 2  such that  lknn qp 2  eventually and for all large n , 

                           mlknmnlknnkn qpqpc   1   ,                                            (2.4.12) 

                           lknnlknlnn qpqpp   22        ,                                             (2.4.13) 

and  

                        121   lk ,  and 2nh  eventually. 

Then every solution of equation (2.4.1) oscillates.   

 

Proof: Suppose that equation (2.4.1) has an eventually positive solution nx , and let nz  

be defined by (2.4.6). 

Applying lemma 2.4.2 and lemma 2.4.3 to get that 0nz  and 0 nz  eventually. 

In view of inequalities (2.4.12) and (2.4.13) we have 

                        ltnlktnn xhz    , 

for simplicity let  lktnhh * , so  

                        ltnn xhz  *  

                                 







 













1221

2

**
lktn

ltns

kss

ltn

ltns

lssmltnltnltn xpxqhxczh  

                               










 
1

2

*

1

*
ltn

ltns

ls

lks

lkss

mltnmlktnltn x
h

hq
hxhzh   

                                            





122

*
lktn

ltns

ks

s

ss x
h

hp
h  

                                










 
1

22

*

1

*
ltn

ltns

ts

lktn

ltn

mnltn z
h

hq
zzh   

                                             








 
122

22

*

22
lktn

ltns

lkts

lktn

lktn z
h

hp
 

 

                                knlnmnln zzzzh   21

*   

Thus  

                            0221   knlnlktnmnn zzhzz   

Hence  nz  is an eventually positive solution of inequality  
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                            0221   lnlknknmnn xhxxx    

Comparing the last inequality with equation (2.4.1) and using lemmas 2.4.1, 2.4.2 and 

2.4.3,    we have that nz  is simultaneously positive and negative eventually , which is a 

contradiction. □ 

Remark 2.4.2:  Similar results can be obtained for  lkt  , where 








 nlkn

n

qp

q
 is 

nondecreasing and for  0, 21 Z  

                           knlnlknnkn qpqpq   2   , 

holds together with (2.4.12) and   121   lk . 

 

Theorem 2.4.2: Suppose there exists an integer  lkt  ,...,1,0  such that 

                        1
1

 




n

lkns

sn qc   ,                                                                                (2.4.14) 

holds eventually, further suppose that there exists a constant  1,0 such that 

                           mlknmnlknnkn qpqpc      ,                                             (2.4.15) 

then every solution of equation (2.4.1) is oscillatory. Provided that there exists a constant 

  ,0  such that the following recurrence relation 

                        0
1




  mltnlktnn uhu



  ,  ,...2,1,0n                                    (2.4.16) 

does not have an eventually positive solution.  

 

Proof: Suppose to contrary that  nx  is an eventually positive solution of equation (2.4.1), 

from lemma 2.4.1 we have 0nz  and 0 nz  for all large n .  

              ltnlktnn xhz   

                        



















1221

2

lktn

ltns
kss

ltn

ltns
Lsslktnmltnltnltnlktn xpxqhxczh  , 

hence, 

              0  mltnlktnltnltnlktnn xhczhz   ,                                            (2.4.17)  

for all large n , by inequality (2.4.15) and inequality (2.4.17) becomes 

                        0  mltnmlktnltnlktnn xhzhz    ,                                    (2.4.18) 

Inequality (2.4.18) together with 

                        0  mltnlmktnmn xhz   , 

we get 

                          0  ltnlktnmnn zhzz    ,                                                    (2.4.19) 

for all large n .   

Let mnnn zzu   , similar to the proof of lemma 2.4.1, we have 0nu  and 0 nu  

for all large n . Hence, there exists an integer 0N  such that  0nz  and 0 nz , and 

0nu  and 0 nu , for Nn  . Thus  

                        mnnn zuz       

                              mnmnn zuu 2     
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                              minimn

i

mnn zuuu 1...     

                               mn

i u   ...2  

                             
 

mn

i

u 












1

1 1

 

for   Nmin  1 , for all large n , which is a contradiction.  □ 

 

Example 2.4.1: Consider the NDE 

                  03
4

1
1

4

1

2

1
1

2

3

2

1 

























 







 nnnn xnxnxx   ,                  (2.4.20) 

using theorem 2.4.1 we have for 
2

1
nc  and 2,0 1  tt , 

                            121
2

1
2   nnnn qqRtR  

                                                    1211
22



nn  

and  

                            1
2

1
0  nnnn ppRtR      

                                                  1211
22



nn  , for all large n   

but    2

2 12


  nqph nnn  and  

              
 
4

,max

4

3
2inflim2inflim

3

2 km
snhn

ns
n

ns

lks
n


































 

So we can conclude that every solution of equation (2.4.20) is oscillatory.  

 

Remark 2.4.3: The results of this section are mainly referred to [22], and [26]. 
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Chapter Three 

 

Oscillation Criteria of First-Order Nonlinear Neutral Difference 

Equations 

 
3.0 Introduction 

 
This chapter mainly concerns with the oscillation of nonlinear NDE's of the form  

                        nknnmnnn fxGqxpx   )()( 21    ,    0n                                 (3.0.1) 

where  np ,  nq  and  nf  are sequences of real numbers,G  is a real valued function and  

11  , 12  . 

We studied oscillation of equation (3.0.1) under several conditions depending on the form 

we consider. 

 

Authors like Zhang [29], Lalli [12] studied nonlinear NDE's with both constant and 

variable coefficients. However, as in [23] and [20] authors considered the case when all 

the coefficients are variables, also homogenous and nonhomogenous (forced) cases are 

discussed as in [18] and [10].  

 

In this chapter, the first section concerns with the oscillation of equation (3.0.1) when 

ppn  , 0nf  and    
knkn xxG  )( , where   is the quotient of odd positive integers. In 

section two we discuss the oscillation of equation (3.0.1) with several conditions on 

 knxG  . Section three considered the forced form of (3.0.1) with both constant and 

variable coefficients. While in section four the coefficients are all variables. Finally, 

section five studies oscillation theorems when knknkn xxxG   sgn)(  and when  

  s
nkns

kn xxG
,

max)(


  . 

                                              

3.1 Oscillation  criteria  of  first - order  nonlinear  NDE's  with  both  constant  and   

       variable coefficients 

 

Consider the first-order nonlinear NDE's of the form  

                        0)()( 21   knnmnn xGqpxx   ,  0n                                        (3.1.1) 

where  nq  is a sequence of nonnegative real numbers, m  and k  are positive integers , 

11  , 12   and 0nq .  

 

We start this chapter by taking the special case where 
knkn xxG  )( , where   ,0  is 

a quotient of odd positive integers and 10  p , the oscillation here is discussed for two 

cases , (i) 1  , (ii) 1  

 

Theorem 3.1.1: Assume that 10  p  and 10  . Then every solution of the equation  

                        0)(  


knnmnn xqpxx  ,                                                                (3.1.2) 

Oscillates if and only if 





0n

nq  . 
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Proof: Assume that  1,0  and  nx  is an eventually positive solution of equation 

(3.1.2). If we let  

                        mnnn pxxz    , assuming that 10  p   

Using lemma 1.4.1 we have that 0nz  eventually   

Now,  

                        kmnknkn pxzx    

                                kmnkn pzz    

                                 nzp)1(    , 

so equation (3.1.2) becomes 

                        0)1(  
nnn zpqz   , 

multiplying  the last inequality by 
nz   

                        0)1(   pqzz nnn   .                                                                    (3.1.3) 

Define  

                        LL zLtztr  )()(   ,   1 LtL  , 

so   LL ztrz  )(1   ,  since 0 Lz  , 

 

but 

                      Lztr  )(  

                      
LLL zzLtztr  ))(()(   , 

so  

                     

L

L

z

z

tr

tr 




)(

)(
    ,                                                                                        (3.1.4) 

using (3.1.3) , (3.1.4) and the condition 





0n

nq  , we get 

                        




)(

)(

r

Nr
r

dr


 , 

which  contradicts the fact that  1,0 .  □ 

 

Note that to prove the other case we assume that 1  there exists  ln1 k  such that 

0)exp(inflim 


n

n
n

eq 
. Then if  nx  is an eventually positive solution of equation 

(3.1.2).  we have  

                        kmnknkn pxzx     

                                kmnkmnkn xppzz 2

2

    

                                       

                                kLmn

L

Lkmn

L

kmnkn xpzppzz )1(

1.... 



   

                                Lkmn

Lzp   . 

 

Back to (3.1.2) it becomes 

                        0 


Lkmn

L

nn zpqz   , 

for any 0L  and where 0p  
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                   0)exp(inflim 


n

n
n

eq     iff    0)exp(inflim 


n

n

L

n
eqp   . 

Then by lemma 1.4.2, we get a contradiction, so   nx  is an oscillatory solution of 

equation (3.1.2). For other direction of the proof see [10].  □  
 

Remark 3.1.1: In [17] Lin obtained a bounded oscillation for the higher order form of 

equation (3.1.1) if and only if 





0nn

n

sqn where s  is the order of the NDE.   

Theorem 3.1.2: Suppose that 1p ,  0nq  and 





Nn

nq  where N  is a positive 

integer. Suppose further that for G  is nondecreasing,  0)( xxG  for 0x , 

and 

                        


0
)(uG

du
   for all 0  , 

then every solution of equation (3.1.1) is oscillatory.     

 

Proof: Let  nx  be an eventually positive solution of equation (3.1.1), and define nz  again 

as in theorem 3.1.1, from equation (3.1.1) we have 

                        0)(  knnn xGqz ,  0n  

(i.e. 0 nz eventually). Since nq  is not identically zero, nz  can not be eventually 

identically zero. Thus either nz is eventually negative or eventually positive. 

If  0nz  eventually, then 

                        Nn zz    for    Nn    , 

now  

                       mnnn pxxz    ,      1p  

                       mnnn xzx   

                  mmnNmnNmnN xzx    

                            mnNN xz )1(   

                            mnNmnNN xzz )2()1(    

                                   

                            NN xnz   

       (i.e. NNmnN xnzx   , Nn   ) 

As n  then 0mnNx  eventually, which is a contradiction, so nz must be eventually 

positive. ( 0nz  eventually). 

Now  

                        0)(  knnn zGqz  , 

dividing by  )( knzG   we get 

                        0
)(






n

kn

n q
zG

z
  ,   Nn                                                                   (3.1.5) 

but we have that  

                        )()( knzGtG   ,    knn zzt  ,1   , 

this implies 
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n

n

z

z kn

n

zG

z

tG

dt

1
)()(

  ,                                                                         (3.1.6) 

using (3.1.5) and (3.1.6) we get 

                         

                        



n

n

z

z

nq
tG

dt

1

0
)(

 

                             

                        





N

n

z

z

n

Ni

iq
tG

dt

1

0
)(

  . 

Which is a contradiction, so   nx  is an oscillatory solution of equation (3.1.1).   □ 
 

Remark 3.1.2: The authors in [21] studied the Linearized oscillation of the first-order 

nonlinear NDE of the form  

                        0)()(
1

 




L

i

kniimnn i
xGqpxx , 0nn                      (3.1.7) 

where ,  0,1p ,  RR,CGi  ,   ,0iq , ,...}2,1,0{, ikm  and Li ,...,1   

 

The theorems show that the oscillation of equation (3.1.7) is related to that of the linear 

case of equation (3.1.7). i.e. the equation of the form  

                        0)(
1

 




L

i

knimnn i
xqpxx                                                              (3.1.8) 

 

Remark 3.1.3: The results included in this section all mainly referred to [12], [21] and 

[29].   

  

3.2 Oscillation criteria of first-order nonlinear NDE's with variable coefficients 
 

Consider the first-order nonlinear NDE's of the form 

                        0)()( 21   knnmnnn xGqxpx    ,    0n                                    (3.2.1)   

 np  and  nq  are sequences of real numbers, k   and m  are integers and 1 12  . 

 

In this section we discussed theorems which give sufficient conditions for the oscillation 

of all bounded solutions of equation (3.2.1) when 0nq  , 0m  and 0k  in theorem 

3.2.3 and when 0np  , 0nq , 0m  and  k  is any integer in theorem 3.2.4. 

 

Theorem 3.2.1: Suppose that  01 1  npb  , where 1b  is a constant.   

Let    

                        0
)(

inflim
0





u

uG

u
 ,                                                                          (3.2.2) 

and  

                        
1

11

)1(

1
inflim






 

 k

kn

kni

i
n k

k
q


  ,                                                               (3.2.3)  

then every solution of the equation                                          
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                        0)()(   knnnmnnn xGqxpx  ,                                                        (3.2.4) 

where,  np  and  nq  are sequences of real numbers with  0nq , ),( RRCG  is 

nondecreasing and 0)( uuG  for 0u  and 0m , 0k  are integers, also the value     

of   is limited by inequality  (3.2.3).  

 

Proof: Let  nx  be an eventually positive solution of equation (3.2.4) ( 0nx  for 

0 Nn ), let  kmr ,max  and define  

                        mnnnn xpxz   ,                                                                                 (3.2.5) 

then 0 nz  for rNn  . Then either   

                        0nz   or  0nz   for  rNNn  1   

Let 0nz  for 1Nn  . If  


n
n

zlim , then 0 . Suppose that  0 , then 

0 nz  for  12 NNn  . As nn xz   for 1Nn  , then for rNNn  23  

                    
3

3333

1111
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n

j

Nn

knn

j

Nn

knn

j

Nn

n zzxGqzGqqG  




















                        (3.2.6) 

From (3.2.6) we get a contradiction. Hence 0lim 


n
n

z . 

From inequality (3.2.2) we have for 14 NNn  , 

                          nn zzG    , 

So we get from equation (3.2.1) that for rNn  4  

                  0  knnnknnnknnn xGqzzGqzzqz    ,                            (3.2.7) 

inequality (3.2.7) with lemma 1.4.3 leads to a contradiction. Hence 0nz   for  1Nn   

Thus mnn xx   for 1Nn   consequently,  nz  is bounded, since n
n

z


lim  exists, then 

0nz  for 12 NNn  . 

Hence for rNNn  23 , 

                        mnmnnnn xbxpxz   1   , 

that is  

                        
















 

11

1

b
z

b
x kmnkn


  , 

from equation (3.2.1) we obtain 

                          j

j

Nn

n

j

Nn

knn

j

Nn

n zzxGqq
b

G 






















111

1 333


 

Thus 


 3Nn

nq , which is a contradiction, that completes the proof.  □ 

 

In fact we will make use of theorem 3.2.1 to determine the sufficient conditions for which 

the nonlinear NDE 

                        0)sgn()(   knknnmnnn xxqxpx


 ,                                             (3.2.8) 

oscillates.  
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Remark 3.2.1: Suppose that 01 1  npb , where 1b  is a constant, and the relations 

(3.2.2) and (3.2.3) hold. Then every solution of equation (3.2.8) is oscillatory, provided 

that 10  . 

 

Proof: Let  nx  be an eventually positive solution of equation (3.2.7) for 0 Nn , let 

nz  as in (3.2.5) and  kmr ,max  

then  0 nz , for rNn  , two possible choices for  nz  arise: 

If  0nz  for  1Nn  , then mnn xx   for  1Nn  , but  n
n

z


lim  exists, this means that  nz  

is bounded , then 01  nz ,   for   12 NNn  . 

Now        

                          mnmnnnn xbxpxz   1  , 

so  

                        knkmn xbz   1  , 

or  

                        
1

1

1

1

b
z

b
x kmnkn


  ,    rNNn  23                                            (3.2.9) 

Using equation (3.2.8) and taking the summation for (3.2.9) we have for 10   
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1

1

33

)sgn(sgn
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Nn

knknn

j

Nn

n xxqq
bb






 

                                                        j

j

Nn

n zz  




1

3

,   

let j  , then 


 3Nn

nq , which contradicts inequality (3.2.3). 

If  0nz  for  1Nn  , then,  

if  2lim 


n
n

z  then   20   

Suppose to contrary that  20  , then 0 nz  for  12 NNn  , similarity using 

(3.2.8) and taking the summation from 3N  to )1( j ,we get for 10   
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knknn

j

Nn

n zzqq


  

                                                    





1

3

)sgn(
j

Nn

knknn xxq


 

                                                    
3

3

1

N

j

Nn

n zz  




 ,     rNNn  23  

which also a contradiction, hence 

                        0lim 


n
n

z  

now, from (3.2.2) we have 

                         nnn zzz 


sgn  ,    for   14 NNn   

so 

                        )sgn( knknnnknnn zzqzzqz  
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                                               0)sgn(   knknnn xxqz


,   10   

which contradicts lemma 1.4.3, so every solution of equation (3.2.8) is oscillatory. □ 

 

Remark 3.2.2: When 1  we can apply theorem 3.2.2 fails to hold. 

 

Remark 3.2.3: We will see later (in section 3.5) some oscillation theorems for equation 

(3.2.8) when 1np , for 0  which includes the sublinear, the linear and the super 

linear cases. 

 

Remark 3.2.4: In theorem 3.2.1 if we replace the condition  01 1  npb  by 

11  npa  where 1b , 1a  are constants then the conclusion we get, that every 

solution of equation (3.2.4) oscillates or tends to   as n .  

 

Theorem 3.2.2: Let 10  np and there exist 0,   such that for 0, uv  

                        )]()([)( vGuGvuG     ,                                                              (3.2.10) 

and for 0, uv  

                        )]()([)( vGuGvuG     ,                                                              (3.2.11) 

and suppose that G  satisfies the condition 

                        






0
)(uG

du
  ,   for all 0                                                              (3.2.12) 

If km   and 


kn

nq* , then every solution of equation (3.2.4) oscillates, where 

},min{*

mnnn qqq  , mn  . 

 

Proof: Let  nx  be an eventually positive solution of equation (3.2.4), 0nx  for Nn  . 

Setting },max{ kmr   and nz  as in (3.2.5) we get that 0nz  and 0 nz  for rNn  . 

Hence n
n

z


lim  exists.  

Using (3.2.10), there exists 0  such that  

       )]()([)( kmnknkmnkn xGxGxxG    ,      rNNn 21   

but  mnnn xxz   for  1Nn  , then from equation (3.2.4) we get: 

                        )()(0 kmnmnmnknnn xGqzxGqz     

                           )]()([*

kmnknnmnn xGxGqzz     

                           )(*

kmnknnmnn xxGqzz     

                           )(*

knnmnn zGqzz      

Dividing by )( knzG   we get 

                         0
)()(

* 










 kn

mn

kn

n

n
zG

z

zG

z
q


 ,                                                            (3.2.13) 

also  

                        0
)()(

* 










kn

mn

n

n

n
zG

z

zG

z
q


 ,   1Nn                                                    (3.2.14) 

for  nn zxz 1  and  mnmn zyz  1  , we have 
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From equation (3.2.14) we get 
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xG

dx

1 1

)()(
 

Hence, 


 1

*

Nn

nq , which is a contradiction.  □ 

Remark 3.2.5: In theorem 3.2.3 if we take the sequence  np  to be  21 apn  

where 2a is a constant and conditions (3.2.10) and (3.2.12) hold then every solution of 

equation (3.2.4) oscillates provided that 


kn

nQ  , }
)(

,min{
2aG

q
qQ mn

nn

 , and for 

     vGuGuvGvu  have we, R  

 

The following theorem will prove the oscillatory behavior of equation (3.2.4) without the 

asymptotic condition on  nq , here the oscillation is related by a non-neutral difference 

inequality. But before that we need the following conditions: 

(C1)  RR,CG  is nondecreasing and   0)( uuG  for 0u . 

(C2) There exists a continuous function  RR :  such that )(u  is nondecreasing in   

         Ru ,   0)( uu  for  0u  and  

                        )()()( vGuGvu   ,   for 0uv  

(C3) There exists a continuous function  RR:w  such that 

                        )()()( vGuwuvG   ,  for  0u  and Rv    

 

Theorem 3.2.3: Suppose that 0np  and 0nq  real sequences, 0m ,  k  is any 

integer, suppose further that (C1)-(C3) hold. Then every solution of equation (3.2.4) is 

oscillatory if there exists a positive real sequence  n  such that 10  n  for 0nn   , 

and the difference inequality 

                          0sgn}{   nkmnnn yyQy   , 

does not have any nonoscillatory solution, where 

                        






 






)(

]1[
,min

kn

mnmn
nnn

pw

q
qQ


   

 

Proof:  Suppose that nx  is an eventually positive solution of equation (3.2.4). letting 

mnnnn xpxz  . Then 0nz  and nz  is decreasing for all large 0nn  . Summing 

equation (3.2.4) from n  to  , we have 
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for all large 0nn  , we see that 
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mns

mkskskss xpGxGQ )()(  

                               




 
mns

mkskskss xpxQ )(   

                              





mns

kss zQ )(  ,  for all 0nn   , 

now let 

                        




 
ns

kssn zQy 0)(  , 

then mnn yz   eventually. But 

                        )()( mknnknnn yQzQy    ,  for all   0nn   

this means that the last inequality has an eventually positive solution, which is a 

contradiction, so every solution of equation (3.2.4) is oscillatory.  □  

 

Corollary 3.2.1: Every solution of the equation  

                        0)(  


knnmnnn xqxpx  ,                                                              (3.2.15) 

where   is  ratio of odd positive integers ,  np  is a positive real sequence and 0m , 

 nq  is a positive real sequence and k  is any integer,  

is oscillatory if the difference inequality 

                        0 


mknnn yQy  , 

does not have any eventually positive solution, where 
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mkn
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Q

1
,

1
min2,1min 1

   

 

Proof: Suppose that nx  is an eventually positive solution of equation (3.2.15). Let 

mnnnn xpxz  , it is clear that 0nz  and nz  is decreasing for all large 0nn  . Summing 

equation (3.2.15) from n  to  , to get 

                        








ns

kssn
n

n xqzz lim   
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kss xq   ,  for all large 0nn  . 

But we have 
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kmskss
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kss xpQxQ     

                               




 
mns

kmskskss xpxQ   

                              




 
mns

kmskskss xpxQ   

                             





mns

kss zQ )(  ,  for all 0nn   , 

let 

                        




 
ns

kssn zQy 0)(  , 

hence, mnn yz   eventually. We see that 

                        )()( mknnknnn yQzQy    ,  

i.e.     0 


mknnn yQy  ,   for all   0nn   

so ny  is an eventually positive solution of the above inequality which is a contradiction.  

□  

 

Note: in the last corollary it is clear that 

                        



mkn

n
p 


1

1
  , uuw )(  

                         uu )(  

 

Example 3.2.1: Consider the NDE 

                           0
3

5
11

8

1
3

1

21

1









 



nn

n

n xxx  ,  0n                                 (3.2.16) 

using theorem 3.2.1, we have 

                        











 27

81

3

101

2 

n

ni

iq   if and only if  
90

8
 .  

As a consequence, every solution of the equation (3.2.16) is oscillatory.    

 

Example 3.2.2: Consider the NDE 

                           0
3

4
11

3

1
3

1

21 







  nn

n

n xxx  ,  0n                                     (3.2.17) 
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Applying theorem (3.2.3), it is clear that the sequence  np  satisfies 10  np  since 

   111
3

1
0 

n
 . 

To check conditions (3.2.10) and (3.2.11)  

                         













 3

1

3

1

3

1

vuvu    for 0, vu  and 0  

                         













 3

1

3

1

3

1

vuvu    for 0, vu  and 0  

also  

                        

















0

3

2

0 3

1 2

3
u

u

du
 , for all 0  

and finally, 

                         






 2

*

3

4

nkn

nq   is satisfied.   

Then every solution of equation (3.2.17) is oscillatory. In particular   n

nx
3

1  is an 

oscillatory solution of equation (3.2.17).  

 

Remark 3.2.6: The results of this section are mainly referred to [20] and [23]. 

 

3.3 Oscillation criteria of first-order forced nonlinear NDE's with both constant and  

       variable coefficients 
 

Consider the first-order forced nonlinear NDE of the form 

                        nknmnn fxGqpxx
n
  )()( 21   ,                                                  (3.3.1) 

where, 1,1 21   , p is nonnegative real number,  nk  is a sequence of nonnegative 

integers with 


n
n

klim ,  nf  and  nq  are also sequences of real numbers with 0nq  

eventually, the function G  is a real valued function satisfying 0)( xxG  for 0x  and 

 1Nm . 

 

In this section we discuss theorems that establish sufficient conditions of the oscillation of 

equation (3.3.1) under certain assumptions on the forcing term. 

 

Theorem 3.3.1: Suppose that there exists a sequence  nh  of real numbers such that  

                        nn fh     and  nh  is oscillatory  ,                                                     (3.3.2) 

also  nh  satisfies 

                        


n
n

hsuplim     and      


n
n

hinflim   ,                                         (3.3.3) 

then every bounded solution of equation (3.3.1) is oscillatory.  

 

Proof: Suppose to contrary that  nx  is an eventually positive bounded solution of (3.3.1), 

so there exists a positive integer 0n  such that  0nx  ,  0mnx   and  0
nkx    for 

0nn  . 
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Define 

                        mnnn pxxy    and   nnn hyz     ,                                                 (3.3.4) 

equation (3.3.1) becomes  

                          nknn fxGqy
n
 , 

hence  

                         0
nknn xGqz  for 0nn    , 

also 0nz  for 0nn   because if not, then  0nz  for  01 nnn   and 0 nn hy    

nn hy 0  for 1nn   , which is a contradiction because  nh  is oscillatory. 

Thus 0nz  for 0nn   holds and  

                          0 nn hy   and   0 nn hy  for 0nn    , 

then 

                          


nn
n

hylim  ,  such that   ,0  

but  

                        


n
n

hsuplim     and      


n
n

hinflim   

So there exists a sequence  Ln  such that  


Ln
L

hlim , but we have   
 LL nn

L
hylim , 

then  
Lny  is unbounded, which is a contradiction, then every bounded solution of (3.3.1) 

is oscillatory. □  

 

Theorem 3.3.2: Assume that 0nq  eventually, then every solution of equation (3.3.1) is 

oscillatory provided that the conditions (3.3.2) and (3.3.3) hold. 

 

Proof: Suppose that  nx  is an eventually positive solution of equation  (3.3.1), also we 

choose 0n  such that 0nx  ,  0mnx   and  0
nkx    for 00  nn . 

With ny  and nz  as in theorem (3.3.1) we have 

                           0
nknn xGqz  ,   for 0nn    

again  with 0nz  for 0nn   , so 

                          0 nn hy    and   0 nn hy  for 0nn     , 

then    *lim 


nn
n

hy , but from (3.3.3) it follows that there exists a sequence   Ln  such 

that  

                        


Ln
L

hlim   , 

but we have  

                         *lim 
 LL nn

L
hy   , 

then the sequence  
Lny  can not be positive, which is a contradiction, then every solution 

of (3.3.1) must be oscillatory. □  

 

Theorem 3.3.3: Suppose that equation (3.3.1) is superlinear. Suppose further that the 

sequence  nh  is periodic of period   and satisfies (3.3.2) and (3.3.3). If  

                        
An

nq   

where  1:  nkNnA n , then equation (3.3.1) is oscillatory provided that 10  p  
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Proof: Suppose that  nx  is an eventually positive solution of equation (3.3.1), again we 

choose a positive integer 0n  such that nx  , mnx   and 
nkx  are all positive for 00  nn . 

We define ny  and nz  as in theorem (3.3.1) , 

                          nknn fxGqy
n
                                                                               (3.3.5)       

                          0
nknn xGqz                                                                                (3.3.6) 

with 0nz  for 0nn   , now 

                        nnmnn hzpxx    

                                     mnnnn pxhzx     

                                           mnmnmnnn pxhzphz 2   

                                          mnmnmnmnmnnn pxhzpphpzhz 322

2

     

We proceed so that we can choose a sufficient large integer 1n  such that 

                          nnn hzpx  1    for 1nn    , 

also there exists an integer 12 nn   such that 

                           nnnn hzpx 
2

1    for 2nn     ,                                             (3.3.7) 

but we have 

                           11 2
1   nnn hzp                                                                          (3.3.8) 

                           nnn hzp 
2

1   .                                                                          (3.3.9) 

Subtracting (3.3.9) from (3.3.8) to get 

                        nn
p

z 



1

1
  for  2nn   

and  

                          
2

1 nnn hzp    

                           01
22
 nnn hzp    for  2nn    .   

It follows, from (3.3.6) and (3.3.7) that 

                          )(1
nknn Gqp      for 2nn    ,                                                 (3.3.10) 

dividing (3.3.10) by )( 1nG   and summing from 2n  to n , we get 

                        
 

 
 




Di

i

n

ni i

i qp
G

1
2 1


 , 

where  nnAD ,2 , taking in consideration that 
nkn  1  on D  

and hence  

                        
 





 

n

ni i

i

Di

i
G

q
2 1


 

Which is a contradiction, and hence every solution of equation (3.3.1) is oscillatory.  □ 

 

The following theorem is for the case when  

                        M
x

xG


)(
  for 0x  , M  is a positive constant ,                            (3.3.11) 
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Theorem 3.3.4: there exists an integer 2l  such that lnkn  ,  1Nn , also  nh  is 

periodic of period   and satisfies condition (3.3.2), then equation (3.3.1) is oscillatory 

provided that 10  p , and 

                        

1

*
1

1 1
inflim

















ln

lni

i
n l

l
q   

where, 
 pM 


1

1* .  

 

Proof: Suppose that equation (3.3.1) has an eventually positive solution, then we proceed 

as in the proof of theorem 3.3.3 to have 

                         
nknn xGqz   ,    using condition (3.3.11) for 0nn   

                               
nkn xMq   , 

 

 

also  

                           nnnn hzpx 
2

1    for 12 nnn    

                          nn zp  1      

                        
 

 
nkn

n xGq
p






1


 

                                    
nkn xMq  

                                    lnnkn MqMq
n     

                              lnnn qpM   1   ,   for   *Nn   (sufficiently large)  

in view of lemma 1.4.3 the last inequality has no eventually positive solution which is a 

contradiction, so every solution of equation (3.3.1) is oscillatory.  □     

 

Theorem 3.3.5: Suppose that  nh  is periodic of period   and satisfies condition (3.3.2), 

suppose that 0)(  xG  for  0x . If  

                        
 0nn

nq    ,  00 n    

Then every bounded solution of equation (3.3.1) is oscillatory provided that 10  p . 

 

Proof: Suppose that  nx  is an eventually bounded positive solution, and we proceed as in 

the proof of theorem 3.3.3 until we reach to  

                           
nknn Gqp   1  ,    2nn   

but we know that  n  is bounded and increasing sequence, so there exists 0, 21 cc  such 

that  

                        210 cc n    ,       for  23 nnn   

then  

                          )(1 1cGqp nn  ,     for    3nn    

summing both sides of the above inequality, we get 

                           



Di

i

n

ni

i qcGp 11
3

   , 
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then  

                        
3

3

1 nn

n

ni

i

Di

iq   



   , 

where  nnAD ,3 , }1:{  nkNnA n  

which is a contradiction, so every bounded solution of  equation (3.3.1) is oscillatory. □ 

 

Example 3.3.1: Consider the NDE 

                   321sgn21
1

1

5

12 


 nxxnxx
n

n

n

nnn  ,  Nn                     (3.3.12) 

it is clear that     11  nh
n

n ,  and      n

n

n Fnh 


321
1

 ,  also  nh  is oscillatory 

and satisfies that  

                            


11suplim n
n

n

,    and          


11inflim n
n

n

 , 

then by theorem 3.3.1 every bounded solution of equation (3.3.12) is oscillatory. 

 

Example 3.3.2: Consider the NDE 

                   
 

  23

12 14
9

729

2

1 

 














n

nnn x
n

n
xx  ,  Nn                             (3.3.13) 

taking   1
12




n

nh  an oscillatory periodic sequence of period 2, applying theorem 3.3.3 

to equation (3.3.13), it is clear that  

                        
 









Dn n

n

9

729
 , 

so every solution of equation (3.3.13) is oscillatory.  

 

Remark 3.3.1: Theorem 3.3.1 and theorem 3.3.2 are also true for the equation  

                        nknmnn fxGqpxx
n
  )()(                                                            (3.3.14) 

(i.e. 12  ), but the same thing is not true with the remaining theorems in this section. 

 

Remark 3.3.2: The results of this section are mainly referred to [10]. 

 

3.4 Oscillation criteria of first-order forced nonlinear NDE's with variable 

coefficients 

 

Consider the first-order NDE of the form 

                        nknnmnnn fxGqxpx   )()( 21   ,        0n                               (3.4.1) 

where  np ,  nq  and  nf  are sequences of real numbers with 0nq ,  RR,CG  is 

nondecreasing and   0xxG  for 0x , 0m  and 0k  are integers and 121   . 

 

In fact this section takes its importance from its main equation (equation (3.4.1)), since we 

can extract many special cases from this equation, for instance, the linear homogenous 

case, the linear forced case and the nonlinear homogenous case. However, sometimes the 

results of this section are applicable to some special cases of equation (3.4.1) with some 

modifications.   

 

Two approaches are used here to prove the oscillation of equation (3.4.1) by operators and 

by sufficient conditions while the characteristic equation here does not work.  
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Theorem 3.4.1: Let  01 1  npb , )(xG  is nondecreasing and 

                        


0n

nf   ,                                                                                         (3.4.2) 

every solution of equation (3.4.1) oscillates or tends to zero as n  if and only if  

                        





0n

nq                                                                                              (3.4.3) 

 

Proof: Suppose that  nx  is an eventually negative solution of equation (3.4.1), then 

0nx  for 1Nn  , we want to show that 0lim 


n
n

x . Let 

                        mnnnn xpxz    ,                                                                                (3.4.4) 

and  

                        





1

0

n

i

inn fzw   ,   for  mNn  1    ,                                                 (3.4.5)  

we get  

                        0)(  knnn xGqw  ,  for  kmNn  1     ,                                 (3.4.6) 

either  0nw  or 0nw , let  0nw  for  2Nn  , where kmNN  12  . 

Claim:  nx  is bounded. If not, then there exists a subsequence  
jnx  of   nx  such that 

                        
jnx   as  jn  and j  

and 

                         jnn nnNxx
j

 2:min   , 

We may choose  jn  sufficiently large so that 2Nmn j  , and hence 

                        




 

1

0

j

jjjj

n

i

imnnnn fxpxw   

                                   011

1

0

1

1

0

 








j

j

j

jj

n

i

in

n

i

inn fxbfxp                                (3.4.7) 

Thus 0
jnw  for large jn , which is a contradiction, so  nx  is bounded, as a consequence 

 nw is bounded and so  n
n

w


lim  exists.  

If  

                        


n
n

xsuplim ,   0    , 

then there exists 0  such that  

                        nx  ,  for  23 NNn    

but by (3.4.6) we get 
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33

r

kNn

n

r

kNn

knn wxGq rkNr www  3
   , 

hence 

                         

                          r

r

kNn

knn wxGq 






1

3

 ,   as  r  
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kNn

knn xGq
3

  .                                                                          (3.4.8) 

However, using equation (3.4.3) we get 

                             










kNn

n

kNn

knn qGxGq
33

                                                       (3.4.9) 

We get a contradiction, hence  0suplim 


n
n

x .  

As n
n

z


lim  exists, using lemma 1.4.4 we get that  0lim 


n
n

z . 

Similarly, when 0nw  we have 0suplim 


n
n

x  and 0lim 


n
n

z .  

We know that mnnn xbxz  1  for 2Nn   , we infer that 

                         mnn
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 1infliminflim0  

                            mn
n

n
n

xbx 


 1supliminflim  

                            mn
n

n
n

xbx 


 infliminflim 1  
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Then 0inflim 


n
n

x . Hence 0lim 


n
n

x , so the sufficiency part of the theorem is proved. 

Now for the necessity part we assume that 

                        





0n

nq  . 

We want to show that equation (3.4.1) has a positive solution  nx  such that  

0inflim 


n
n

x , since we have that  0lim
0






n

i

i
n

f , we choose an integer 0N , such that  
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 ,  and                                                                          (3.4.10) 
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  ,                                                                           (3.4.11) 

let  Nl  is a Banach space , let  Nnforxx n  0:  ,  and 












 Nnx
b

xW n ,1
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1
: 1 , with   is partially ordered Banach space.  

If  00

nxx  , where 
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)1( 10 b
xn


  for Nn  , then Wx inf0   and Wx 0 . Let *W  be a 

nonempty subset of W , the supremum of  *W  is the sequence  Nnxx n  :**  and 

  ** ::sup WNixxxx inn  , clearly that Wx * .  

Now, for Wx , we define 
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1
     ,     

where   kmr ,max . 

Using (3.4.10) and (3.4.11), we get 
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Thus WWT :   for Wyx , , yx   implies yx TT  . Hence T  has a fixed point in W  

by Knaster-Tarski fixed point theorem (theorem 1.4.2). 

If   Wxx n   is the fixed point of  T , then                    
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Hence, nx  is a positive solution of equation (3.4.1) with 0
10

1
inflim 1 






b
xn

n

. □ 

 

Theorem 3.4.2: Let 10 2  bpn  and let )(xG  is nondecreasing and nf  satisfies 

inequality (3.4.2): 

i. If equation (3.4.3) holds, then every solution of equation (3.4.1) oscillates or tends 

to zero as n . 

ii. Suppose that G  satisfies the Lipschitz condition on intervals of the form  ba, , 

 ba0 , If every solution of equation (3.4.1) oscillates or tends to zero as 

n , then equation (3.4.3) holds. 

 

Proof:  

The proof of part (i): is the same as the proof of the sufficiency condition of theorem 

(3.4.1)  

The proof of part (ii): Suppose that   





0n

nq ,  

choosing 0N  sufficiently large such that 
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where,  )1(,max 1 GLL   and 1L  is the Lipschitz constant of G  on 
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let  Nl  and 
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Clearly that S  is a complete metric space, where the metric is induced by the norm on  . 

For  Sx  define 
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and 
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  . 

This implies that SST : . Further, for Svu , , and rNn  , 

                            vu
b

vubTvTu nn 






 


5

1 2
2  

                                               vu    

which implies that  

                        vuTvTu    , for 0  

where    141
5

1
2  b  .  

Thus T  is a contraction, hence it has a unique fixed point  nxx   in S , clearly that  nx  

is a positive solution of equation (3.4.1) with   0inflim 


n
n

x . □   

 

Corollary 3.4.1: Let 10 2  bpn  and let )(xG  is nondecreasing and (3.4.2) hold. 

Suppose that G  satisfies the Lipschitz condition on interval of the form  ba, , 

 ba0 , Then every solution of equation (3.4.1) oscillates or tends to zero as 

n  if and only if equation (3.4.3) holds.  

 

Proof: The proof is an immediate consequence of theorem 3.4.2 .  □   

 

Theorem 3.4.3:  

i. If  431 bpb n ,  )(xG  is nondecreasing, and equations (3.4.2), (3.4.3) hold, 

then every solution of equation (3.4.1) oscillates or tends to zero as n . 

ii. If  2

343
2

1
1 bbpb n  , equation (3.4.2) holds, G  is nondecreasing and satisfies 

Lipschitz condition on  interval of the form  ba, ,  ba0  and every solution 

of equation (3.4.1) oscillates or tends to zero as n , then equation (3.4.3) holds. 

 

Proof: The proof is similar to that of theorem 3.4.2, for details see [16]. □   

 

Remark 3.4.1: for the case when 165  bpb n , the authors in [18] obtained 

sufficient conditions for oscillation and asymptotic behavior of equation (3.4.3).  

 

In the previous theorems the conditions guarantee the oscillation for equation (3.4.1) when 

1np . The question here is whether equation (3.4.1) is oscillatory when 1np  ?  The 

answer is yes, but with different sufficient conditions when 0m . For that we need the 

following conditions: 

          

(C1)          There exists  a sequence  nh  that changes sign with  

                


n
n

hinflim    and    


n
n

hsuplim                                                        
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                where  0  ,   0   and  nn fh    

 

(C2 )         
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kmnn hGq                                             

                where }0,max{ nn hh  and }0,max{ nn hh       

 

(C3 )       
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kmnn hGq   and    






 
kn

knn hGq                                     

                      

(C4)          For 0u  and 0v , there exists 0  such that 

                 )()()( vGuGvuG                                                                             

                      

(C5)          For 0u  and 0v , there exists 0  such that 

                 )()()( vGuGvuG                                                                             

                       

(C6)          






 
rn

knn hGq*   and    






 
rn

knn hGq* ,                                            

                where },min{*

mnnn qqq  , mn   and },max{ mkr    

 

Theorem 3.4.4: Let 01  np . Let conditions (C1)-(C3) hold. Then all solutions of 

equation (3.4.1) oscillate. 

 

Proof: Suppose on the contrary that nx  is an eventually positive solution of equation 

(3.4.1), ( 0nx  for 1Nn  ). 

Setting 

                        mnnnn xpxz     and   nnn hzw                                                  (3.4.12)  

Then  

                        0)(  knnn xGqw ,    for  rNn  1  ,                                        (3.4.13) 

then either 0nw  or 0nw , for rNn  1 . Let 0nw , 2Nn  , then  nn hx  and 

equation (3.4.13) yields 
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knn wxGqhGq  , 

where 13  Nj  and rNN  23 , which contradicts (C2), so 0nw  for 2Nn  . Then 


 mnn hx  and  lwn
n




lim ,  0 l   

Suppose that l .  Let 0  . For  0 , there exists 23 NN   such that 

                         nh  ,    3Nn     

Further, we have    

                        nw  ,   34 NNn   

that is 

                          nmnnn hxpx  

                               mnx    

So for jmNn  4  
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                            jxx jmnn  

In particular  

                          0
44

 jxx NjmN   for large j , 

which is a contradiction. So 0 l , now from equation (3.4.13) we get 
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j

Nn

kmnn wxGqhGq   , 

which is also a contradiction, so  nx  is an oscillatory solution of equation (3.4.1).  □ 

 

Theorem 3.4.5: Let 10  np . If conditions (C1), (C4), (C5) and (C6) hold then all 

solutions of equation (3.4.1) oscillate. 

 

Proof: Let  nx  satisfies 0nx  for 1Nn  . Setting nz  and nw  as in equation (3.4.12) to 

get equation (3.4.13). Using (C1) we have 0nw , for 12 NNn     

hence  

                        

  nmnn hxx  ,   for  2Nn   

Using (C4) we have 

                   mknmnknnmnnmnn xGqxGqzzff     

                                       mknknnmnn xxGqzz   *  

                                       

  knnmnn hGqzz *   

That is 

                             mnnmnnknn zzhhhGq 



  *    , 

taking the summation from 2N  to 1j  to the last inequality to get 
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Consequently 
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Which contradicts (C6). So  nx  must be an oscillatory solution of equation (3.4.1). □ 

 

Example 3.4.1: Consider the NDE 
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equation (3.4.14) satisfies the conditions of theorem 3.4.2(i) ,where 3

1

)( xxG   is 

nondecreasing and  
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nf  satisfies inequality (3.4.2) , also              
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so every solution of equation (3.4.15) oscillates or tends to zero as n .   
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Example 3.4.2: Consider the NDE 

              
 

  13

21 1
4

1

5

1 

 
































n

n

n

n

n

n xexx   ,  0n                                   (3.4.15) 

it is clear that equation (3.4.15) satisfies the conditions of theorem 3.4.4 since 
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hence, all solutions of equation (3.4.15) oscillate.  

 

Remark 3.4.2: The results of this section are mainly referred to [18] and [20].  

 

3.5 Oscillation criteria of certain nonlinear NDE's 

 

In this section we introduce some oscillation theorems for nonlinear NDE's with )(xG  

replaced by special functions, such  as the maximum function and the product function 

multiplied by the sign function, the theorems in [9] and [16] discuss the special case when 

1np  and 0nf . All the theorems of this section considered special cases of the form 

                          0)( 21   knnmnnn xGqxpx   , 

with  11   and 12  .  

 

Consider the nonlinear NDE of the form 

                        0sgn)(   knknnmnnn xxqxpx


 ,                                             (3.5.1) 

where  nq  is a sequence of nonnegative real numbers,   is a positive constant and m  

and k  are positive integers and 11   , 12  .  

 

 

 

Theorem 3.5.1: If 

                        












 












0nn nj

jn qqn   ,   00  nn  

Then equation (3.5.1) is oscillatory, provided that 
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nj

jq  

1np  and 0  

 

Proof: Let  nx  be a nonoscillatory solution of equation (3.5.1), W.L.O.G let 0rnx  for  

01 nnn  , where  kmr ,max ,  

let  

                        mnnn xxz   

then  

                        0 


knnn xqz    for 1nn   

Two cases to be considered here: either 0nz  or 0nz  

Case1: 0nz  and 0 nz  eventually: 

nz  is nonincreasing, so there exists a constant 01 c  such that 

                        1czn   , for  1nNn     

thus  

                        mNmNNN xcxzx   1   , 

or  

                        mNNNmNmN xcxcxzx   11 2  , 

hence, for any integer 1h   

                              mNhmN xchx 11  ,   as  h                                                                   

which is a contradiction.   

Case 2: 0nz  and 0 nz  eventually: 

We have mnn xx  , for 1nn   , so there exists a constant 02 c  such that 

                        2cx kn   ,  for  knNn  11  

then  

                          nn qcz


2  ,  for 1Nn   

hence 
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jns qczz


  ,   1Nn   

now, letting s  , we have 

                          





nj

jn qcz


2  ,    1Nn        

and hence  

                          nn qcz


2   , 

but since  02 c  and  is a positive constant, then 0 nz , which is a contradiction , so 

equation (3.5.1) is oscillatory. □ 

 

Theorem 3.5.2: If  

                        


nj

jq  ,   00  nn  

then equation (3.5.1) with 1np  is oscillatory.  



 51 

 

Proof: Suppose that  nx  is an eventually positive solution of equation (3.5.1), and let nz  

be defined as in theorem 3.5.1, the case 0nz  and 0 nz  is as that in theorem 3.5.1.  

* If  0nz  and 0 nz , 

 so 

                        mnn xx  ,    1nn   

and there exists a constant number 02 c such that  

                        2cx kn    , for  12 nnn   

then  

                        0 


knnn xqz   , 

so  

                          nn qcz


2  

Taking the summation to the last inequality from 2n  to 21 nh  , to get 
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2
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nnh qczz   , as  h  

which is a contradiction, so equation (3.5.1) is oscillatory. □ 

 

Now we will discuss the oscillation for solutions of a more general equation. Several 

criteria for the oscillation are to be discussed for the first-order nonlinear NDE of the form 

                        0sgn)(
1
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i

i kn

h

i

knnmnnn xxqxpx


 ,  0n                            (3.5.2) 

where m  is a positive integer, ik 's are nonnegative integers, 0np , 0nq  such that nq  

is not identically zero for all large n  and 0i  with 1
1




h

i

i . 

 

Lemma 3.5.1: Suppose there is an integer 0N  such that 1imNp  for 0i  holds. 

Suppose further that  

    (H1)   0,...,,min 21  hnn kkkqp      or 

    (H2)   0,...,,min 21 hkkk   

and nq  doesn't vanish identically over sets of consecutive integers of the form 

   hh kkkaaa ,...,min,...,1, 1 . Then every solution of equation (3.5.2) is oscillatory if 

and only if 

                        0sgn)(
1
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i kn
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knnmnnn xxqxpx


 ,   ,...2,1,0n                  (3.5.3) 

has no eventually positive solution.  

 

Proof: See [16]. □ 

 

Lemma 3.5.2: Suppose 1np  , 0nq , for 0n  and 
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1
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q                                                                          (3.5.4)  
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Then for every eventually positive solution  nx  of inequality (3.5.3), the sequence nz  

defined by  mnnnn xpxz   will satisfy  0nz  and  0 nz  for all large n . 

 

Proof: It is clear that 0 nz , and is not identically zero for all large n . Suppose to the 

contrary that 0nx , 0 nz  and 0nz  for Tn  , then 

                        0  mnmnnn xxpx  ,       mTn   

thus  

                          0,...,,min 11   Mxxxx TmTmTn ,    12 TmTn                   (3.5.5) 

let   
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nN 1)(   , 
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Tn 1  is the integer part of  






 

m

Tn 1 , then  

                        mnnn xzx   

                               mnNnmnNnmnn xzzz )(1)(...    ,  1Tn                                (3.5.6) 

     

 since nz  is nonincreasing then 

                        MznNx nn  )( ,  1Tn                                                                      (3.5.7) 

substituting (3.5.7) into (3.5.3) to get 
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by Hölder inequality we have 
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Taking the summation to inequality (3.5.9)  from 2T  to  2Tn  , to get 
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we assume that  
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We have that  
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also    
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By condition (3.5.4), we get 
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letting n  in inequality (3.5.10), to get a contradiction, hence 0nz . □ 

 

Theorem 3.5.3: Suppose that 1np , 0nq  for 0n  and equation (3.5.4) holds. 

Then every solution of equation (3.5.2) is oscillatory.  

 

Proof: Using lemma 1.4.1 and lemma 3.5.2 then nz  is simultaneously positive and 

negative for large n , which is a contradiction, so equation (3.5.2) is oscillatory. □ 

 

Remark 3.5.1: Theorem 3.5.3 is an extension and improvement to theorem 2.3.1.  

 

Theorem 3.5.4: Suppose there is an integer 0N  such that 1imNp , 0i  holds 

suppose also that 0, nn qp  for 0n  and equation (3.5.4) holds. Suppose further that 

                        mn
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i

knn qpq i
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1


 ,  for all large n . 

Then every solution of equation (3.5.2) is oscillatory.  

 

Proof: Suppose to the contrary that  nx  is an eventually positive solution of equation 

(3.5.2). Then by lemma 1.4.1,  0nz  for all large n , but mnnnn xpxz  , so 
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By Hölder inequality we have 
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  , for all large n                (3.5.11) 

but we have 
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subtracting equation (3.3.10) from inequality (3.5.9) to get 
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by the hypothesis of this theorem  
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                          0
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   , 

which is a contradiction to theorem 3.5.3, so every solution of equation (3.5.2) is 

oscillatory. □ 

 

Remark 3.5.2: Theorem 3.5.4 is an extension and improvement to theorem 2.3.2. 

  

In a similar manner used in the proof of theorem 3.5.4 and using theorem 2.3.3 and 

theorem 4 in [30] we deduced the following result. 

 

Theorem 3.5.5: Suppose that 0, nn qp  for 0n  such that 1imNp  for some 

0,0  iN and equation (3.5.4) hold, suppose further that there is some number  1,0r  

such that 
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 ,    for all large n                                              (3.5.13) 

Then equation (3.5.2) is oscillatory provided that the following difference inequality  
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has no eventually positive solution.  
 
Proof: Suppose to the contrary that  nx  is an eventually positive solution of equation 

(3.5.2), by lemma 1.4.1 then mnnnn xpxz   satisfies  0nz  and  0 nz  for all large 

n .  

From equation (3.5.2) we get 
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but we have  
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adding inequality (3.5.14) to equation (3.5.15) to get 
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however, by Hölder inequality we have   
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so inequality (3.5.16) becomes  

                          0  knnmnn zqrzz  ,   for all large n  

where   hkkk ,...,min 1  , 

so the sequence nw  defined by 

                        0 mnnn zrzw  ,   0n  

and 

                          mnn zrw  1  

thus   
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for all large n , so  nw  is an eventually positive solution of inequality  
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which is a contradiction. □  

 

the following theorem concerns with another special case of the nonlinear NDE of the 

form 
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where m  and k  are positive integers ,  np  and  nq  are nonnegative real sequences and  

 nq  has a positive subsequence. 

 

Theorem 3.5.6: Assume that there exists a nonnegative integer 0N  such that 1imNp   

for ,...2,1,0i  Suppose further that there exists some positive integer T  such that the 

difference inequality 
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has no eventually positive solution. Then all solution of equation (3.5.17) are oscillatory.  

   

Proof: Let nx  be an eventually positive solution of (3.5.17) then 0 nz  and 
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Substituting the last inequality into (3.5.17), we have 
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nn zpqz   , 

which is a contradiction, that complete the proof.  □              

                   

Example 3.5.1: Consider the NDE  
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 n

n

nn xeeexx                                          (3.5.18) 
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It is clear  

                        
  











nj
je

ee
215 11

  

So every solution of equation (3.5.18) is oscillatory by theorem 3.5.2. 

 

Example 3.5.2: Consider the NDE  
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so by theorem 3.5.1 equation (3.5.19) is oscillatory. 

 

Example 3.5.3: Consider the NDE 
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It is clear that 0, nn qp , and that there exists 0N such that 1imNp , and 
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Then by theorem 3.5.5 every solution of equation (3.5.20) is oscillatory.   

 

Remark 3.5.3: the results of this section are mainly referred to [6], [9] and [16].  
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Chapter Four 

 

Oscillation Criteria of Second-Order Neutral Difference Equations  

 
4.0 Introduction 

 

In this chapter we discuss the oscillatory behavior of the second-order NDE's of the form 

                             nknnmnnnn fxGqxpxc          ,                                         (4.0.1) 

where      nnn qpc ,,  and  nf  are sequences of real numbers ,  RR,CG  with 

  0uuG  for 0u  and m  and k  are nonnegative integers.  

 

In fact the problem of oscillation for second-order NDE's has received a great deal of 

attention during the last few years, most of the researches to the best we know do not 

separate the linear and nonlinear second-order NDE's , they studied the nonlinear case as a 

general case, so they did not use the expression "nonlinear" in the titles of the researches. 

However, they used this expression when the brackets containing the difference operator is 

of degree more than one. 

 

This chapter mainly includes five sections. The first section deals with the unforced form 

of equation (4.0.1) when 1nc , ppn  . Section two concerns with the forced form of the 

equation studied in section one. Section three studies the unforced form of equation (4.0.1) 

with the coefficients are all variables. Section four discusses the oscillation theorems for 

equation (4.0.1) and finally section five studies the nonlinear form  

                            0 


knnmnnnn xqxpxc  ,    0n    

where   is the ratio of odd positive integers.  

 

4.1 Oscillation theorems for second-order  NDE's  with  both  constant and variable   

       coefficients 

 

Consider the second-order NDE of the form 

                            02   knnmnn xGqpxx  ,   0n                                              (4.1.1) 

where p is a positive real number, m  and k  are nonnegative integers with mk  ,  nq  is 

a sequence of nonnegative real numbers and   RR,CG  is a nonincreasing function.    

 

Theorem 4.1.1: Suppose that for a nonnegative constant M  the condition  

                        0)( xxG  and 


xMxxG sgn)(  for 0x     , for 1                  (4.1.2) 

suppose further that there exists a positive sequence  n  such that  

                        
 












 




1

2

4n n

n

nnqM



                                                                    (4.1.3) 

Then every solution of equation (4.1.1) is oscillatory. 

 

Proof: Suppose to contrary that  nx  is a positive solution of equation (4.1.1), there exists 

a positive integer 0n  such that 

                        0knx  ,   for 0nn   
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let 

                        mnnn pxxz    , 

then 0nz  and 

                          02  knnn xGqz  ,  for 0nn                                                       (4.1.4) 

hence  nz  is an eventually nonincreasing sequence, either 0 nz  or 0 nz  for 

0nn  . 

Suppose that 0 nz , then there exists an integer 01 nn   such that 0 nz  for all 1nn  . 

using inequality (4.1.4) we get 

                        0
1
 nn zz  , for 1nn    

but nq  is not eventually identically zero, so there exists an integer 12 nn   such that 

                        02  nz   , for 2nn   

so  

                        0
122 1   nnnn zzzz   , for  12  nn                                   (4.1.5) 

Taking the summation to the first two terms of inequality (4.1.5) we have 
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n

n

n zz
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  ,  12  nn  

so 

                            1211 22 nnn znnzz   as n  

which contradicts the fact that 0nz  for 0nn  , so 0 nz  and so we have 

                        0knz  , 0 nz  , 02  nz  for 0nn                                               (4.1.6) 

Set 
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    ,   0nn   
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1     ,                                                            (4.1.7) 

adding and subtracting the terms 
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z 1  to equation (4.1.7) we get 
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using equation (4.1.1), the last equation becomes 
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1                     (4.1.8) 

since 0 nz  and nonincreasing , there exists an integer  01 nn   such that nkn zz    

for 1nn  . Thus 
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Now we have  

                        12
 nn zz   , for 12  nn  

so 

                          11

1

1

1 





  n

n

ni

inn znnzzz  , 

and so  

                        nn z
n

z 









2
,  for 12 12  nnn                                                   (4.1.10) 

There exists an integer knn  23  such that 

                        nknkn z
kn

z
kn

z 





 
22

  ,  3nn                                              (4.1.11) 

and 

                        0
2

0 






 knz

z

kn

n   as n . 

Thus letting  
kn

n

n
z

z
h




  , 0nh  and nonincreasing (i.e. nn hh 1  , 3nn  ) substituting the 

value of nh  in inequality (4.1.9) it becomes 

                        2

11   nnnnnnn hhqMw    ,  3nn   
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   ,  3nn   

summing both  sides of the above inequality from 3n  to 3nm  , we have 

                        
 














 
 





m

nn n

n

nnnm qMww
3

3 4

2

1



   as m   

using equation (4.1.3).This contradicts the fact that 0mw  for 3nm  , so every solution 

of equation (4.1.1) is oscillatory and the proof is complete.  □ 

 

Theorem 4.1.2: Suppose that condition (4.1.2) holds with 1  and 1k . If 

                         
11

1

2
inflim


















kn

kni

i
n k

k

M
qki                                                     (4.1.12) 

Then every solution of equation (4.1.1) is oscillatory.  

 

Proof: Suppose to the contrary that  nx  is an eventually positive solution of equation 

(4.1.1). Proceeding as in the proof of theorem 4.1.1, we have that the inequalities in (4.1.6) 

holds for  00  nn . From equation (4.1.1) and condition (4.1.2) we have 
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                                knn zMq   ,  for 0nn                                                              (4.1.13) 

using inequality (4.1.11) we get 

                         knnn z
kn

Mqz 






 


2

2   ,  01 nnn    

where 1n  is sufficiently large. 

Set  

                        nnz 0   ,  1nn   

                          0
2








 
 knnn

kn
Mq    , for 1nn                                            (4.1.14)  

by lemma 1.4.3 inequality (4.1.14) has no eventually positive solution, which is a 

contradiction. □ 

 

Remark 4.1.1: The oscillation of all solutions of equation (4.1.1) with condition (4.1.2) 

was proved in [13] for   

    (i)  10   , provided that 





1n

nqn  

    (ii)  1 , provided that there exists a sequence  n  such that 0n , 0 n ,   

           02  n  and 





1n

nnq  

 

Theorem 4.1.3: Suppose that G  is monotone nondecreasing with   0xxG  for 0x , if 

inequalities in (4.1.6) hold and  

                        





1n

nq  , 

Then every solution of equation (4.1.1) is oscillatory. 

 

Proof: Let  nx  be an eventually positive solution of equation (4.1.1). There exists a 

sufficiently large positive integer 0n  such that the inequalities in (4.1.6) are satisfied for 

0nn  , so we can find an integer 01 nn   and a constant 0c  such that 

                        cx kn   ,  for 1nn   

then equation (4.1.12) becomes  

                        0)(2  cGqz nn  ,  for 1nn   

and then 

                        



L

nn

n

L

nn

n qcGz
11

)(2
 ,  1nL   

hence 

                        


 
L

nn

nnL qcGzz
1

1
)(1  , 

as  L  then  


1lim L
L

z  , which is a contradiction. □ 

 

Remark 4.1.2: The result in theorems 4.1.1 - 4.1.3 can be found in [13] but for the delay 

difference equations, we make some modifications on the conditions, and the proof so as 

to apply these theorems on the neutral delay difference equation (4.1.1). 



 61 

Example 4.1.1: Consider the NDE 

                          0
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2   knmnn x
n

m
pxx   ,                                                           (4.1.15)  

with  0 Nnn  , Nk   

It is clear that   02  xxxG  and 

                          xMxxxxG  sgnsgn  ,   0x  

taking 1M , we have 
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1
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Hence using theorem 4.1.1 we have that every solution of equation (4.1.15) is oscillatory 

provided that 
4

1
m . 

Example 4.1.2: Consider the NDE  
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taking nn    

condition (4.1.2) is already satisfied for 1M . Now 
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so using remark  4.1.1(ii) equation (4.1.16) is oscillatory.  

 

Example 4.1.3: Consider the NDE  
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clearly that condition (4.1.2) is satisfied with 10    . Now 
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nnn
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Then every solution of equation (4.1.17) is oscillatory by remark 4.1.1(i). 

 

Remark 4.1.3: The results of this section are mainly referred to [13].  

 

4.2 Oscillation  criteria of  second-order forced  NDE's  with  both  constant  and   

       variable coefficients  

 

Consider the second-order NDE of the form 

                            nknnmnn fxGqpxx  

2
 ,   0n                                             (4.2.1) 
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where p is a positive real number,  nq  and  nf  are sequences of real numbers with 

0nq  for all Nn  and  RR,CG  with   0uuG  for 0u , km ,  are nonnegative 

integers and  kmr ,max .  

 

Authors in [25] established sufficient conditions for the oscillation of equation (4.2.1) for 

the special case when p  is identically one and other cases. However, more general case 

was studied by Zafer in [28] when 10  np with different sufficient conditions. Also in 

[10] Grace and Lalli treated equation (4.2.1) but for the case when p is nonnegative real 

number.  

 

We need the following conditions: 

(C1) G  is nondecreasing and there exists 0K  such that  

                          )()( vGuGKuvG   ,  for all Rvu,  

        and  

                        
 


c

sG

ds

0

 , for all 0c      

(C2) There exists a real sequence  nh  such that 

                        nn fh 2   with nh  is m  periodic  

(C3) There exists 0  such that 0
)(

 
u

uG
 for 0u . 

(C4) 





0nn

nq  

 

Theorem 4.2.1: If 1 ppn  and the conditions (C1)-(C4) hold then all the solutions of 

equation (4.2.1) are oscillatory.  

 

Proof: Let  nx  be an eventually positive solution of equation (4.2.1) with 0nx , 

0mnx  and 0knx  for all 01 nnn  . Since  nh  is periodic, there is a real number w  

such that the sequence  whn   is oscillatory. For 1nn   let )( whxxz nmnnn   . 

Then 

                          02  knnn xGqz    ,                                                                     (4.2.2) 

and so  nz  is monotonic, so either 0nz  eventually or 0nz  eventually. 

If 0nz  eventually then  whx nn 0  for large n , which is impossible. Thus 0nz  

for 2nn   for some 12 nn  , by lemma 1.4.1, we have 0 nz  for 2nn  . Taking the 

summation to equation (4.2.2) and applying (C3), we obtain 

                          n

n

ns

kssn zxGqz  
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11

22

n
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n

ns

kss xqxGq                                                          (4.2.3) 

hence 
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2ns

kss xq   ,                                                                                    (4.2.4) 

Now, from theorem 1.4.1 0 nz  for 2nn  . This means that for 2nn   

                         mnnmnnmnn hhxxzz   2   ,                                                   (4.2.5) 

but nh  is m  periodic, this yields    

                        02   mnnmnn xxzz                                                                     (4.2.6) 

or mnn xx 2  for 2nn  . Therefore 

                        0inflim 


n
n

x   and so 


 2ns

sq  

Which contradicts (C4).  □   

 

Consider the second-order NDE 

                            nnnn fxxnGqpxx
nn
  ,,2   ,  0n                                        (4.2.7) 

where ,:, NN   nn nn   ,  and  


n
n

n
n

 limlim , RN :f . 

RRRN :G  such that   0,, yxnyG  for 0xy  and  sn N , 1nq  and 

10  p . 

 

Theorem 4.2.2:  
Suppose that :  

I. n  is nonnegative  function on   and 0)( xw  for 0x  is continuous and   

        nondecreasing on R  such that  

                         















n

n

y
wyxnG


,,  , 

         and  

                        




a

xw

dx

0
)(

  ,  for any 0a  

II. nh  is an oscillatory function such that nn fh 2  and 0lim 


n
n

h  

III.  


0n

n  , 

Then every solution of equation (4.2.7) is oscillatory. 

 

Proof: Let nx  be an eventually positive solution of equation (4.2.7), define 
n

pxxz nn   

and nnn hzy  . It follows that nn yz , and ny2  are eventually positive, by Theorem 

1.4.1 , we have that ny  is eventually positive and , since 


n
n

lim , it is clear that we 

can find a natural number 0n  such that 0
n

x  on  0nN , substituting ny  in equation 

(4.2.7) we have 

                          0,,2 
n

xxnGy nn   ,                                                                   (4.2.8) 

for  0nn N , let  kn be an increasing sequence in N  so that 


k
k

nlim  and 

 0n
kn N  for 1k . In view of  corollary 1.4.1  
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knkkn

ycy n    1  ,                                                                               (4.2.9) 

where 1c  is an appropriate constant, since  nn  and ny  is decreasing , it follows from 

inequality (4.2.9) that 

                        
kkkn nn ycy   1   ,                                                                           (4.2.10) 

on the other hand, since nh  is oscillatory function, then nz  must be eventually positive. 

In view of the fact that nn zx   and nn  using the increasing nature of nz  it follows 

that 

                        nnnn pzxpxxz
n

    , 

from  which we obtain 

                          nn zpx  1                                                                                       (4.2.11)  

Since  0lim 


n
n

h , there exists a  1,02 c  such that for n  sufficiently large 

                        nn ycz 2                                                                                             (4.2.12)   

by inequality (4.2.11) we get 

                         
nn

ypcx   12                                                                                (4.2.13) 

combining  inequalities (4.2.10) and (4.2.13), we obtain  

                          
kkkn nn ypccx   121      

let   cpcc 121  by condition ( I ) of this theorem we get  

                           
kkknk nnnk ycwxxnG ,,                                                              (4.2.14) 

If we set nn ycv   it follows from inequalities (4.2.8) and (4.2.14) that 
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                                                                                 (4.2.15) 

note that 0nv  is decreasing and by using the nondecreasing nature of  xw , then 

                           
knvwsw    for  

kk nn vsv 
1

 

In view of the last observation, we find 
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1

                                      (4.2.16) 

Using (4.2.16) and (4.2.15) and summing both sides of the resulting inequality from 1k  

to Kk   we have 
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n
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Kn

n

c
sw

ds
                                                                      (4.2.17) 

let Lvn
n




lim . It is clear that the limit L  exists and is nonnegative. If 0L  then 

inequality (4.2.17) implies  

                        


1k

nk
    

We get a contradiction with condition ( III ) , when 0L  making use of the condition that  






a

xw

dx

0
)(

 for any 0a , we again get a contradiction with condition ( III ) , the proof is 

complete. □ 
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Consider the second-order NDE of the form 

                            nknmnn fxGqpxx
n
 

2   ,                                                       (4.2.18)  

where p  is a nonnegative real number, 1k , the sequence  nk  is a sequence of 

nonnegative integers with 


n
n

klim  and  nf  and  nq  are also sequences of real 

numbers with 0nq  eventually, the function G  is a real valued function satisfying  

  0xxG  for 0x . 

 

We need the following assumptions: 

(A1)   MxxG   ,  0x  M  is a positive number  

(A2) There exists a sequence  nh  of real numbers such that 

                        nn fh 2    and  nh  is oscillatory  

(A3) The sequence  nh  is periodic of period m   

 

Theorem 4.2.3: In addition to the assumptions (A1)-(A3), assume that there exists a 

sequence  nl  of positive integers such that  nln   is increasing,   


n
n

lnlim  and 

nn lnk   for Nn . If 
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l
qli

l
    ,                                (4.2.19)  

then equation (4.2.18) is oscillatory provided that 10  p  , 
 pM 


1

2* . 

 

Proof:  Assume that equation (4.2.18) has an eventually positive bounded solution nx , 

then there exists a positive integer 0n  such that  

                        0nx  , 0mnx  and 0
nkx  for 0nn                                            (4.2.20) 

define   

                        mnnn pxxy   and nnn hyz                                                        (4.2.21) 

Then  

                          02 
nknn xGqz  ,  for 0nn                                                       (4.2.22)  

Which implies that   nz  is an eventually nonincreasing sequences, also 0nz  for 

0nn  , we claim that  0 nz  for  1nn   for some 01 nn  . If not, then there exists an 

integer 12 nn   such that  0 nz  for  2nn  . Since nq  is not eventually zero there exists 

an integer  23 nn   such that   02  nz  for 3nn  . It follows that  

                        0
233 1   nnn zzz    

Hence  

                        013
 nn zz   

Summing both sides of the above inequality from 13 n  to  13  nn , we have 

                            1311 33 nnn znnzz   as n , 

which is a contradiction. Thus 

                        02  nz  ,  0 nz  ,   0nz  and  0
nkx   ,   for 3nn                  (4.2.23) 

now using  (A1) in (4.2.22) we get 
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nknn xMqz 2  , for 1nn                                                                (4.2.24)   

in view of inequality (4.2.23) there exists an integer 10 nN   such that 

                        nnmnn hzpxx    

                                     mnnnn pxhzx   

                                           mnmnmnnn pxhzphz 2    

so  

                          nnn hzpx  1   , for 1nn   

and  

                           nNnn hzpx 
0

1   , for 20 nN   

It is clear that  

                        nn
p

z 



1

1
  , for 2nn   

and  

                          
0

1 Nnn hzp   

                               
00

1 NN hzp    , for  20 nN   

by inequality (4.2.24) we obtain 

                         
nknn qpM   12  , for 0Nn                                                    (4.2.25) 

clearly that n  satisfies (4.2.23) with z  replaced by  . Hence there exists an integer 

01 NN   such that 

                         
nlnnn qpM   12  ,  for 1Nn                                                 (4.2.26) 

by corollary 1.4.1  there exists an integer 12 NN   such that 

                        nn

n
 

2
 ,  for 2Nn                                                                      (4.2.27) 

and 

                        
nn ln

n

ln

ln
 







 
 

2
  ,  for  2Nn                                                   (4.2.28)  

set   nn    we get  

                         
nlnn

n

n q
ln

pM 






 
 

2
1  ,  for  2Nn                                   (4.2.29) 

By lemma 1.4.3 , condition (4.2.19) implies that inequality (4.2.29) has no eventually 

positive solution which is a contradiction.  □ 

 

The following discussion is for equation (4.2.18) when G  is superlinear. 

 

Theorem 4.2.4: Let conditions (A2) and (A3) hold, and suppose that  nn kn,min  such 

that 

                        0 n   and  02  n  for Nn                                                    (4.2.30) 

If  

                        





0nn

nnq    ,                                                                                   (4.2.31)  

then  equation (4.2.18) is oscillatory provided that  10  p . 
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Proof: Proceeding as in the proof of theorem 4.2.3 we get (4.2.20), also we get (4.2.22) 

and (4.2.23) hold for 0Nn  , and that n  satisfies (4.2.23) with z  replaced by  , so  

                           
nknn GqpM   12  , for  0Nn   

since G  is superlinear and using conditions (4.2.30) and (4.2.23) in the above inequality 

we get 

                            012 
n

GqpM nn   , for  01 NNn                                 (4.2.32)  
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Using (4.2.23) and (4.2.30) along with the fact that the sequences  n  and   n  are 

increasing, we get 
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    , for  12 NNn                             (4.2.33) 

Summing both sides of inequality from 2N  to  2Ns   , we have  
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    , 

 by  condition (4.2.31) , we have 

                        1sw   as  s  , 

which is a contradiction.  □   

 

Theorem 4.2.5: Suppose that the function G  is nondecreasing and that conditions (A2) 

and (A3) hold. If 

                        


 0nn

nq  ,                                                                                         (4.2.34) 

holds, then equation (4.2.18) is oscillatory provided that 10  p . 

 

Proof: We proceed as in the proof of theorem 4.2.3 to get (4.2.20), following the proof of 

theorem 4.2.4 to arrive at inequality (4.2.23). Choose an integer  21 NN   and a positive 

number c  such that 

                        c
nk   , for 1Nn                                                                              (4.2.35) 

using inequality (4.2.35) in inequality (4.2.32) to get 

                            012  cGqpM nn  , for 1Nn   

summing both sides of the above inequality from 1N  to  1Ns   and using condition 

(4.2.34) we have  

                         10 s   as  s  
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which is a contradiction. □  

 

Remark 4.2.1: The case when ( )1p  are considered to NDE 

                            nknmnn fxGqpxx
n
 

2   , 

in [10] using similar arguments used in the proof of theorems 4.2.3 , 4.2.4 and 4.2.5.  

 

Example 4.2.1: Consider the NDE 

                           nnnn xxx 1168 42

2    ,                                                        (4.2.36) 

for  n

nh 14   which is periodic, 


 0Nn

nq  , and there exists 01  such that 

                        01
)(

 
x

x

x

xG
  , for 0x   

by theorem 4.2.1 every solution of equation (4.2.36) is oscillatory.  

 

Example 4.2.2: Consider the NDE 

                           
 2

12
sgn

2

12















nn
xxqxx

n

nn nnn 



  ,                                   (4.2.37) 

10  , nq  is nonnegative and not identically zero  

we have     

                           yyqyxnG n sgn,,


  , 

                            nnn qp


  1   with 
2

1
p   

                        xxw )(  , 
 

n
h

n

n

1
      

Using theorem 4.2.2 every solution of equation (4.2.37) is oscillatory.  

 

Example 4.2.3: Consider the NDE  
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nnnn xx
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    ,                     (4.2.38) 

where 3n , 2m , 3 nkn   

hence   n

nf 14   and  n

nh 1  which is periodic of period 2 , let 3nl  ,  

then by theorem 4.2.3 or theorem 4.2.4 every solution of equation (4.2.38) is oscillatory. 

It is clear that (A1)-(A3) are satisfied with 1M , with  
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Remark 4.2.2: The results of this section are mainly referred to [10], [25] and [28]. 

 

4.3 Oscillation criteria of second-order NDE's with variable coefficients  
 

Consider the second-order NDE of the form                                

                            02   knnmnnn xGqxpx  ,  0n                                              (4.3.1) 
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where np , nq  are sequences of real numbers with 0nq ,  RR,CG  is nondecreasing 

and satisfies 0)( uuG  for 0u , 0m  and 0k  are integers. 

 

Many authors studied the oscillation of solutions of equation (4.3.1) considering various 

ranges of np . For example, in [19] Parhi and Tripathy established many sufficient 

conditions for the oscillation of equation (4.3.1). However, a different approach was 

achieved by Agarwal, Manuel and Thandapani depending on dividing the set S  of all 

nontrivial solutions into four classes and trying to find under what conditions those classes 

are empty, as we will see later.  

 

Lemma 4.3.1: Let nx  be a real-valued function on  0nN  such that 0nx  and 0 n

m x  

on  0nN  and 0 n

m x , where 2m . If  0 nx  and 01  

n

m x , then there exists 

12 2nn  , where 1n  is a large number in  0nN , such that 
 !1

1








m

x
x n

m

n  for 3nn  , where 

 Nnn m ,2max 2

1

3

  and 0N  is a large integer such that   
12

11 
 mm n  for Nn  . 

 

Proof: From corollary 1.4.1  
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for  12nn  , where 1n  is a large number in  0nN . Since nx  is increasing, then, for 

1

12 nn m  
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Hence, for 3nn    
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Thus the lemma is proved.  □  

 

We need the following conditions: 

(C1) For 0u  there exists 0  such that   uuG  .  

        For 0u , there exists 0 such that    uuG   

(C2) For 0u  and 0v , there exists 0  such that    )()( vGuGvuG      

(C3) For 0u  and 0v , there exists 0  such that    )()( vGuGvuG     

(C4)  




c

uG

du

0
)(

 for every 0c  

(C5) 





mn

nq*  , where  mnnn qqq  ,min*  

(C6) For 0u  and 0v , )()()( vGuGuvG   

(C7) )()( uGuG  , Ru  

(C8) For Rvu, , )()()( vGuGuvG   

 

Theorem 4.3.1: Let 01  npp  and mk  . If (C1) holds and if 
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then every solution of equation (4.3.1) is oscillatory.  

 

Proof: Let nx be an eventually positive solution of equation (4.3.1), 0nx  for 0nn  . 

Setting  

                        mnnnn xpxz                                                                                     (4.3.2)  

we get 

                          02  knnn xGqz                                                                             (4.3.3) 

let  kmr ,max , nn xz   and  02  nz  for rnn  0 ,  either 0nz  or 0nz .  

If 0nz , the inequalities in theorem 1.4.1 hold. Then nn zz   for 12 nnn   by lemma 

4.3.1. Hence, using (C1) equation (4.3.3) gives 

                        02  knnn zqz   , 

that is the last inequality admits a positive solution  nz , a contradiction in view of 

lemma 1.4.3. Hence 0nz  for  1nn  , setting nn zy   for  1nn   , we have 0ny , 

mnn xpy  1  , and  

                          02  knnn xGqy                                                                            (4.3.4) 

Hence 02  ny  for 1nn  . 

By theorem 1.4.1  

                        0 ny      

so equation (4.3.4) yields that ny  is a positive solution of  

                        0
1

  kmnnn yq
p

y


  , 

which is a contradiction by lemma 1.4.3, so every solution of equation (4.3.1) is 

oscillatory.  □ 

 

Theorem 4.3.2: Let 11  npp . If  

                        


0n

nq   ,                                                                                          (4.3.5) 

then every solution of equation (4.3.1) is oscillatory.  

 

Proof: Let nx  be an eventually positive solution of equation (4.3.1), 0nx  for 

00  nn , let  nz  as in (4.3.2) we get (4.3.3), for  kmr ,max  we have  

                        nn xz   and  02  nz  for rnn  0  , 

let  0nz  for rnnn  01 , then theorem 1.4.1, 0 nz  for 12 nnn  . Since nz  is 

increasing, 0 Mzn  for 2nn  , from equation (4.3.3) we obtain 

                          02  MGqz nn   , for rnnn  23  

hence  


 3nn

nq , because 0 nz , which is a contradiction. 
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Let 0nz  for 1nn   .Set nn zy   we get 0ny , mnn xpy  1  , and 

  02  knnn xGqy  for  1nn  , by lemma 1.4.1 we have 0 ny  for 12 nnn  . As 

in the proof of theorem 4.3.1 we proceed until we reach to  

                          0 knnn xGqy     

Thus  

                        0inflim 


n
n

x    , 

Which is a contradiction, so equation (4.3.1) must have an oscillating solution.  □    

 

Theorem 4.3.3: Let  131  ppp n . If condition (4.3.5) holds, then every 

solution of equation (4.3.1) is oscillatory. 

 

Proof: Let nx  be an eventually positive solution of equation (4.3.1) then 0nx  for 

00  nn . Proceeding as in the proof of theorem 4.3.2 we obtain 0inflim 


n
n

x . 

We consider the case 0ny , and 0 ny , hence 


n
n

ylim , 0 . If 0  then 

0 ny  for 34 nnn  .  

Then  

                          0 knnn xGqy  and 
1p

y
x kmn

kn



   , 

this yields 


 4nn

nq , a contradiction, hence 0  and 0lim 


n
n

z  

but  

                        nnmnnmn xzxpxp  3  , 

then 

                            n
n

n
n

nn
n

mn
n

xzxzxp suplimliminfliminflim 3





  , 

that is 

                          0suplim1 3 


n
n

xp  , 

that is      

                        0suplim 


n
n

x  , 

hence  

                        0lim 


n
n

x   , 

which is a contradiction, equation (4.3.1) is oscillatory.  □   

 

Theorem 4.3.4: Let  10  np  and mk  . If (C2)-(C5) hold, then every solution of 

equation (4.3.1) oscillates. 

 

Proof: Let nx  be an eventually positive solution of equation (4.3.1), then 0nx  for 

00  nn , setting nz  as in equation (4.3.2) we get equation (4.3.3) and  

mnnn xxz 0  for  rnn  0  (  kmr ,max ). Hence 02  nz  for  rnn  0 , using 

theorem 1.4.1 we have 0 nz  for  rnnn  01 . Hence nn zz   for 12 nnn   by 

lemma 4.3.1. From equation (4.3.3) and using (C2) we have, for rnnn  23  
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                           kmnmnmnknnn xGqzxGqz   220      

                               kmnknnmnn xGxGqzz   *22    

                            kmnknnmnn xxGqzz 



  *122    

                            knnmnn zGqzz 



  *122   

                            knnmnn zGqzz 
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As 0 nz , then the above inequality yields 
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Since nz  is decreasing and mk  , then 
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that is 




1
*

3

t

nj

jq , since t
t

z


lim  exists and greater or equals zero. This contradicts (C5), so 

every solution of equation (4.3.1) is oscillatory.  □ 

 

Theorem 4.3.5: Let  20 ppn  and mk  . If (C2), (C4), (C6) and (C7) hold, and if             

                        


mn

nQ ,                                                                                           (4.3.6) 

where 








 

)(
,min

2pG

q
qQ mn

nn , 

then every solution of equation (4.3.1) oscillates. 

 

Proof: The proof is similar to that of theorem (4.3.4), using (C2) and (C6) we get 

                         knnmnn zGQzz 



  1220    

using (C4) and proceeding as in theorem 4.3.4 yields 


 3nn

nQ , a contradiction, and the 

proof is complete. □ 

 

Theorem 4.3.6: Let  01  npp , and mk  . If (C4) and (C5) hold, then every 

solution of equation (4.3.1) oscillates.   

 

Proof: Let nx  be an eventually positive solution of equation (4.3.1), then 0nx  for 

0nn  . Setting nz  as in equation (4.3.2) we get equation (4.3.3) and  nn xz   for  

rnn  0  (  kmr ,max ), either 0nz  or 0nz  for rnnn  01 . 
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Let 0nz  for 1nn  , then by theorem 1.4.1 0 nz , for 12 nnn  , hence nn zz   for 

23 nnn  , and we get 

                          02  knnn zGqz   , 

since  0 nz  and decreasing, then 

                        
  












n

n

z

zkn
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n
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du
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This leads to a contradiction due to (C4) and (C5) so 0nz  for 1nn  . Set  nn zy  , we 

have 0ny ,  mnn xpy  1 , we get also equation (4.3.4), by theorem 1.4.1 0 ny  and 

equation (4.3.4) yields 

                          0 knnn xGqy   , 

that is 

                        0
1











p

y
Gqy n

nn   , 

using (C4) and (C5) we get a contradiction which completes the proof.  □   

 

Theorem 4.3.7: Let np  be allowed to change sign with  21 ppp n , where 

02 p  and 01 p  are constants. Let  mk   and (C2), (C4), (C6) and (C7) hold. Suppose 

that equation (4.3.6) holds if 1)( 2 pG  or (C5) holds if 1)( 2 pG . Then every solution of 

equation (4.3.1) oscillates.  

 

Proof: Let 0nx  for 0nn   an eventually positive solution of equation (4.3.1), setting 

nz  as in equation (4.3.2) to get equation (4.3.3).  

Let 1)( 2 pG , then equation (4.3.6) holds and hence (C5) holds because *

nn qQ   , since 

0 nz  for rnn  0 , then 0nz  or 0nz  for rnn  0 . Let 0nz  for 1nn  , we 

have  

                        mnnn xpxz  2  

Proceeding as in the proof of theorem 4.3.5 we obtain a contradiction.  Hence  0nz  for 

1nn  . Putting  nn zy   we obtain  0ny ,  mnn xpy  1  and equation (4.3.4) holds, 

and we obtain a contradiction as in the proof of the second half of theorem 4.3.6 . 

 Let 1)( 2 pG , then (C5) holds and hence equation (4.3.6) holds because *

nn qQ  . If 

0nz  for 1nn   then continue as in the proof of theorem 4.3.5 to get a contradiction. If 

0nz  for 1nn   then continue as in the proof of the second half of theorem 4.3.6 to 

arrive a contradiction and the proof is complete. □ 

Remark 4.3.1: Results for the oscillation when 10  np  and 0np  positive real 

numbers was achieved by Zafer in [27], those results were applicable to the form  

                            0,2 
nn

xnGxpx nn    , 
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provided that  

                            0,1,
0






ccpnG
n

n .  

 

Consider the second order NDE  

                             011   knnmnnnn xGqxpxc   ,  0n                                 (4.3.7) 

where km ,  are fixed nonnegative integers,  nc ,  np  and  nq  are sequences of real 

numbers, and the following three conditions hold: 

(i) 0nc , for all Zn  and nq is not identically zero for large n  

(ii)  RR,G  with   0uuG  for 0u  

(iii) there exists a nonnegative function g  such that  

                              vuvugvGuG  ,  ,   for all vu   

 

Let S  denote the set of all nontrivial solutions of  equation (4.3.7) , S  can be divided into:                  

      NnxxNSxM nnn   allfor 0such that  integer an  exists there: Z  

 

        nn xSxM :  is nonoscillatory and there exists an integer ZN  such that  

                               Nnxx nn   allfor 0  

 

      :SxOS n   for every integer ZN ,  there exists 0such that 1  nn xxNn              

                           Nn  allfor   

      :SxWOS n   nx  is nonoscillatory and for every ZN  there exists Nn  , such   

                                    that  0 1  nn xx  

 

Theorem 4.3.8: Assume that with respect to equation (4.3.7) the following conditions 

hold: 

(1) 1m  and 01  np  , 

(2) 0nq  for all Z 0nn   , 

(3) 







1

1

0

lim
n

ns

s
n

q  , 

(4) 















0

1

nn nc
 , then M  

 

Proof : Let equation (4.3.7) has a solution   Mxn , such that 0nx ,  0 nx  , 

0rnx  , 0 rnx  for all rnnn  01 ,  mkr ,max , let mnnnn xpxz  , then by 

condition (3) and the fact that   Mxn , we have  

                        0  mnnmnn xpxz  , for all 1nn    

but equation (4.3.7) becomes  

                           knnnn xGqzc  11   , 1nn   

the  nn zc   is nonincreasing for all 1nn  ,  to prove that 0 nn zc , suppose it is not, that 

is,  0 nn zc  for all 1nn  , then there exists an integer 12 nn   such that 
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                        0
22
 nnnn zczc  ,  for all 2nn   

taking the summation from 2n  to 21 nn   we have  
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which implies that that nz  as n , contradiction, thus 0 nn zc , now by 

equation (4.3.7)  
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using condition (3), we find  

                        
 







kn

nn

n xG

zc
lim   , 

which is a contradiction to the assumption that 0 nn zc .  □ 
 

Theorem 4.3.9: With respect to equation (4.3.7), suppose in addition  to condition (3) and 

(4) of theorem 4.3.8, suppose that  

                        0nq  ,  for all large values of n                                                          (4.3.8) 

and  

                        01 1  npp  for all  0nn  Z                                                    (4.3.9)  

then  M  

 

Proof: Suppose that equation (4.3.7) has a solution   Mxn  so there exists an integer 

Z 0nn  such that 0nx ,  0 nx  , 0rnx  and 0 rnx  for all 1nn  , 

 let mnnnn xpxz  , since we have that 0nz , (otherwise nx  vanishes as n ) then 

equation (4.3.7) becomes  

                           knnnn xGqzc  11   , 1nn   

with  nn zc   is decreasing for 1nn   as in theorem 4.3.8 we can prove that 0 nn zc  for 

1nn    

Define  

                        
 n

nn

n
zG

zc
w


  ,   1nn   

we obtain  
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zG

xGq
w   ,   1nn                                                          (4.3.10) 

using inequality (4.3.9) we have that 11   nn xz  , since    Mxn , then  

                        knnn xxz   111   , 

and  
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                           knn xGzG   11  , for 1nn   

using this inequality in inequality (4.3.10) and taking the summation from 1n  to 11 nn  , 

to the resulting inequality we get 

                        





1

1

1

1

n

ns

snn qww  , 

and hence  nw  as n , which is a contradiction so M .  □ 

 

Theorem 4.3.10: With respect to equation (4.3.7), assume in addition to condition (2) of 

theorem 4.3.8 that 

                        m  is odd positive integer ,                                                                  (4.3.11) 

and  

                        0 ppn  ,  for all Z 0nn                                                          (4.3.12) 

then WOS  

 

Proof: Let   WOSxn  , suppose that there exists an integer  Z 01 nn  such that 

0nx , 0rnx  for all 1nn  , let mnnnn xpxz  , then  

                mnmnmnnmnnnnnn xxpxxxxpxxzz   1

2

1111  

Using condition (4.3.11) and (4.3.12), we find that  

                        01  nn zz  , 

hence  nz  is oscillatory  

Define  

                        nnn zcw    , 

then nw  is oscillatory , but 

                         knnn xGqw  11  ,  1nn   

using condition (2) of theorem 4.3.8   

                        0 nw  , 

and so nw  is nonincreasing which is a contradiction.  □ 

 

Theorem 4.3.11: Assume in addition to the hypothesis of theorem 4.3.9 that 1m , then 

every solution of equation (4.3.7) is either oscillatory or weakly oscillatory.  

 

Proof: It is an immediate consequence of theorems 4.3.8 and 4.3.9.   □ 

 

Theorem 4.3.12: Assume that conditions (2), (3) and (4) of theorem 4.3.8 hold, and 

condition (4.3.11) holds, also the inequality 01  ppn  holds. Then every solution 

of equation (4.3.7) is oscillatory.   

 

Proof: It follows from theorems 4.3.8, 4.3.9 and 4.3.10 immediately.  □ 

 

 

Example 4.3.1: Consider the NDE  

                            0214 3

31

2   nn

n

n xxx  ,  0n                                        (4.3.13) 
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it clear that    114 31  ppp
n

n  and 


0n

nq , 3

3 nxG  is 

continuous on R  and nondecreasing satisfies 0)( uuG  for 0u , 

so by theorem 4.3.3 every solution of equation (4.3.13) is oscillatory. 

 

Example 4.3.2: Consider the NDE  

                           0415 3

1

43

2   nn

n

n xxx  ,  0n                                             (4.3.14) 

using theorem 4.3.7 , equation (4.3.14) is oscillatory since 
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Q  is satisfied in addition to  

0)( uuG  for 0u  

 

Example 4.3.3: Consider the NDE  
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 ,  0n                                     (4.3.15) 

applying theorem 4.3.12 it is clear that  

                05.01 3

1

 ppn ,  0
1


n
qn       for all Z 0nn  

              
 









n

s
n s0 1

1
lim   and  



0n

n  

so every solution of equation (4.3.15) is oscillatory.   

 

Remark 4.3.2: The results of this section are mainly referred to [3] and [19].  

 

4.4 Oscillation criteria of second-order forced NDE's with variable coefficients  

 

Consider the second order forced NDE  

                            nknnmnnn fxGqxpx  

2  ,                                                      (4.4.1) 

where  np ,  nq  and  nf  are sequences of real numbers with  0nq ,  RR,CG  is 

nondecreasing and 0)( uuG  for 0u , 0m  and 0k  are integers. 

 

This section studies theorems that establish sufficient conditions for the oscillation of 

equation (4.4.1).  In [19] Parhi and Tripathy proved the oscillation using sufficient 

conditions used in section 4.3 in addition to conditions concerning the forced term. 

However, in [25] the authors proved the oscillation of equation (4.4.1) depending on the 

technique used in the proof of the unforced related equations.  

 

Assuming in the first three theorems that G  satisfies the following two conditions 

(i) There exists 0K  such that 

         vGuGKuvG   for all Rvu,   

(ii) 
c

sG

ds

0
)(

 for all 0c  
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We need the following conditions: 

(H1) 10 1  ppn , where 1p  is a constant.  

(H2) there exists a real sequence  nh  such that nn fh 2 .  

(H3) 






 



 0
2Nn

n

kn
Gq . 

(H4)  nh  is oscillatory and 0lim 


n
n

h . 

(H5)  nh  is m periodic . 

(H6) 


 0Nn

nq . 

(H7) there exists 0  such 0
)(

 
u

uG
 for 0u . 

The following result that concerns with the oscillation if all solution of equation (4.4.1) 

with 0nf  is needed to establish the oscillation of all solutions of equation (4.4.1). 

 

Theorem 4.4.1: Let 0nf  for all Nn , and let (H1) and (H3) hold. Then all solutions of 

equation (4.4.1) are oscillatory. 

 

Proof: Let  nx  be an eventually  positive  solution  of  equation (4.4.1) , then   0nx  ,  

0mnx  and  0knx  for 01 NNn   . Setting  

                        mnnnn xpxz                                                                                     (4.4.2) 

we obtain that 0 nn xz  and  

                          02  knnn xGqz   , for 1Nn                                                      (4.4.3) 

by theorem 1.4.1 then 0 nz  for 2Nn  , from equation (4.4.2) we have 

                        mnnnn xpzx                                                                                     (4.4.4) 

so nn xz  and  nz  is increasing, so 

                            nnnn xzpzp  110 1                                                             (4.4.5) 

by corollary 1.4.1 there exists 23 NN   

             
 

nnn z
np

zpx 



2

1
1 1

1   ,  for 32Nn                                                   (4.4.6) 

applying (i) and (ii) to inequality (4.4.6) gives  

                             knkn zG
kn

GpGKxG  






 


2
1 1

2                                             (4.4.7) 

                                      nzG
kn

GK 






 


2
1   , for 34 2NNn   

where   01 1

2

1  pGKK . Combining equation (4.4.3) and inequality (4.4.7), we get 

                          0
2

1

2 






 
 nnn zG

kn
GqKz  , for 4Nn                                      (4.4.8) 

Summing the last inequality, we get 
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  4

44

1 21

1
2

N

n

z

z

n

Ns s

s
n

Ns

s
uG

du

zG

zks
GqK                                        (4.4.9) 

letting n  and using (i) and (ii), we get 

                        






 



 4
2Nn

n

kn
Gq                                                                            (4.4.10) 

which contradicts (H3).  □ 

 

Theorem 4.4.2: If (H1) and (H2)-(H4) hold, then all solutions of equation (4.4.1) are 

oscillatory.  

 

Proof: Let nx  be an eventually positive solution of equation (4.4.1) then 0nx  ,  

0mnx  and  0knx  for all 01 NNn  . Let  

                        nmnnnn hxpxy                                                                            (4.4.11) 

from equation (4.4.11) and (C2), we have  

                          02  knnn xGqy                                                                        (4.4.12) 

It is clear that ny  must be greater than zero, thus 0ny  for 12 NNn  , by theorem 

1.4.1 we have  

                        0 ny   for 23 NNn   , 

now for   nyp110   , (H4) implies that there exists an integer 34 NN   such that 

                        
2


nh   .  for 4Nn   

From equation (4.4.11), we have nnn hyx  . So  

                        mnnnnmnnn hphxypy     

                                            nn px
22


                                                               (4.4.13) 

Hence 

                            nnN xypyp   11 110
3

  ,  for  4Nn                       (4.4.14) 

Set    nn ypr 11  for 4Nn  , we get 

                        nn xr 0  , 0 nr  

and 

                            01 1

2  knnn xGqpr   

We see that this step is similar to equation (4.4.3) in theorem 4.4.1, so we proceed as in the 

proof of theorem 4.4.1 to get a contradiction which completes the proof.   □ 

 

Remark 4.4.1: The conclusion of theorem 4.4.2 will be that the solution either oscillate or 

converge to zero if (H4) is replaced by 0lim 


n
n

h   

 

Theorem 4.4.3: If (H1)-(H3) and (H5) hold, then every solution of equation (4.4.1) is 

oscillatory. 
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Proof:  Let  nx  be an eventually  positive  solution  of  equation (4.4.1) , then   0nx  ,  

0mnx  and  0knx  for 01 NNn   . Define ny  as in equation (4.4.11) , we have that 

equation (4.4.12) holds and so either 0ny or 0ny  for 2Nn   for some 12 NN  . 

We claim that  nx  is bounded. If not, then  nx  is unbounded and since nnn hyx   and 

 nh  bounded,  ny  must be unbounded and eventually positive. Clearly that 0 ny  for 

large n  since 0 ny  implies that  ny  is bounded. From equation (4.4.11) we have 

                        mnnmnmnnnnmnnn hpxpphxypy   2  ,    for  3Nn           (4.4.15) 

for some 23 NN  . That is  

                            nnnnn hpxyp  11    ,                                                            (4.4.16)  

or  

                           nnn xhyp  110                                                                     (4.4.17) 

since  nh  is periodic, there exist real numbers 1a  and 2a  and two increasing sequences 

 in  and  in  of natural numbers such that  

                        


i
i

i
i

nn limlim  ,  

and  

                        1ah
in   , 2ah

in  ,  21 aha n    for all  0Nn   

hence  

                        011   iiii nnnnn xhyayay   , for 1,  inn i                 (4.4.18) 

Thus  

                              nnnn xhypayp  111 110   ,  for inn                  (4.4.19) 

Setting  

                          111 aypr nn    , for inn   and 1i   

 

We obtain  

                        nn xr 0   and 0 nr   

and  

                            01 1

2  knnn xGqpr                                                             (4.4.20) 

Proceeding as in the proof of theorem 4.4.1 to arrive a contradiction, thus nx  is bounded 

as we claim  nx  is bounded 

 

The boundedness of   nx  implies that  ny  is bounded and 0 ny  for 2Nn   using 

theorem 1.4.1. Again we proceed as the proof of theorem 4.4.1 we arrive a contradiction. 

Hence  nx  oscillates.  □ 

 

In fact, more general ranges of np  are considered in [19], we need some conditions used 

in section 4.3, so we will mention those conditions as they were in section 4.3 in addition 

to new conditions (C9)-(C13)  

 

(C2) For 0u  and 0v , there exists 0  such that    )()( vGuGvuG      

(C3) For 0u  and 0v , there exists 0  such that    )()( vGuGvuG     

(C6) For 0u  and 0v , )()()( vGuGuvG   
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(C7) )()( uGuG  , Ru  

(C8) For Rvu, , )()()( vGuGuvG   

(C9) There exists a real valued function  nh  defined on N  which changes sign and   

        satisfies that nn fh 2  

(C10)   








rn

knn hGq*   and    








rn

knn hGq*  

          where  0,max nn hh         ,       kmr ,max  

                     0,max nn hh      ,      mnnn qqq  ,min*  

( 1

10C )   








rn

knn hGq*   and    








rn

knn hGq*  

(C11)   








kn

knn hGq  and    








kn

kmnn hGq  

(C12)   








kn

knn hGq  and    








kn

kmnn hGq  

(C13)   








kn

kmnn hGq  and    








kn

kmnn hGq  

 

Theorem 4.4.4: Let 10  np . If (C2) , (C3),  (C9) and (C10) hold, then every solution of 

equation (4.4.1) is oscillatory. 

 

Proof:: Let  nx  be an eventually  positive  solution  of  equation (4.4.1) , then   0nx  

for 00  nn . Setting  

                        mnnnn xpxz    ,                                                                              (4.4.21) 

and 

                        nnn hzw    ,                                                                                     (4.4.22) 

we obtain for rnn  0  

                          02  knnn xGqw   ,                                                                      (4.4.23) 

now   

                        mnnn xxz 0   , 

and  02  nw . Hence either 0nw or 0nw . It is clear that 0nw , otherwise we have 

a contradiction with (C9). Hence 0nw  for 1nn  .  

By theorem 1.4.1 , 0 nw  , for 12 nnn  . We have  

                        

  nmnn hxx  

using (C2)  from (4.4.23) we get 

                           kmnmnmnknnn xGqwxGqw   220  

                               kmnknnmnn xGxGqww   *22  

                            kmnknnmnn xxGqww 



  *122    

                            





  knnmnn hGqww *122      ,  for rnnn  23  

Hence  
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3

*

nn

knn hGq   , 

which is a contradiction to (C10), then  nx  is oscillatory.  □ 

 

Theorem 4.4.5: Let   20 ppn . If (C2) , (C6), (C7), (C9) and (C10) hold, then every 

solution of equation (4.4.1) is oscillatory.  

 

Proof: Proceeding as in the proof of theorem (4.4.4) we reach to   

                        mnnn xpxz  20  

to conclude that 0nw  and 

  nmnn hxpx 2  

Using (C2) and (C6) yield  

                               kmnmnmnknnn xGqpGwpGxGqw   2

2

2

20  

                              





  knnmnn hGqwpGw *12

2

2   

Hence  

                          








3

*

nn

knn hGq   , 

which contradicts  ( 1

10C ), hence  nx   oscillates.  □ 

 

Theorem 4.4.6: Let 01  npp . If (C8), (C9), (C11) and (C12) hold, then every 

solution of equation (4.4.1) is oscillatory.  

 

Proof: Let  nx  be an eventually  positive  solution  of  equation (4.4.1), let nw  as in 

(4.4.22) we obtain equation (4.4.23) since 02  nw  for rnn  0 , either 0nw  or 

0nw  for rnnn  01   

If 0nw  for 1nn  , then  nn hx  and 0 nw , by theorem 1.4.1 from equation (4.4.23) 

we obtain 

                          








2nn

knn hGq   ,  rnn  12   

which contradicts (C11). 

If 0nw  for 1nn  , then 



 mnn hpx 1

1  , set nn wy  , then 0ny  and 

                          02  knnn xGqy   , 

since 02  ny , then 0 ny  for 23 nnn   by theorem 1.4.1 , using (C8) we obtain  

                          








2nn

kmnn hGq   , 

which again contradicts (C11). Thus  nx  is oscillatory.  □ 

 

Theorem 4.4.7: Let np  changes sign such that  21 ppp n , where 01 p  

and 02 p  are constants. If (C2), (C8), (C9), (
1

10C ) and (C13) hold, then every solution of 

equation (4.4.1) is oscillatory. 
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Proof: Let nx  be an eventually positive solution of equation (4.4.1) then 0nx  for 

00  nn . Set nw  as in (4.4.22), we get (4.4.23). For  rnn  0 ,  02  nw  and hence 

either 0nw  or 0nw  for 1nn   . 

If 0nw for 1nn   we proceed as in the proof of theorem 4.4.5 we get a contradiction. 

If 0nw  for 1nn   we proceed as in the proof of theorem 4.4.6 to arrive a contradiction. 

Thus nx  is oscillatory.  □   

 

Theorem 4.4.8: Let 0np . If  

                        


n

n
hn 1inflim   and  


n

n
hn 1suplim  ,  

then every solution of equation (4.4.1) is oscillatory.  

 

Proof: Let  nx  be an eventually positive solution of equation (4.4.1), then 0nx  for 

00  nn . Setting nz  as in (4.4.21) and nw  as in (4.4.22), we obtain 0nz  for 

rnn  0  and 02  nw  for rnn  0  from equation (4.4.23). Hence for 

rnnn  01 , we have 

                        
1nn ww    , 

and  

                         
11 1 nnn wnnww    , 

hence  

                        
 

1

1 10 n

nnn w
n

nn

n

w

n

h

n

z



   

Thus  

                        
 














 1

1infliminflim0 n

nn

n

n

n
w

n

nn

n

w

n

h

n

z
               

                           
 














 1

1supliminflim n

n

n

n

n
w

n

nn

n

w

n

h
 

                           
 














 1

1liminflim n

n

n

n

n
w

n

nn

n

w

n

h
 

                           
 1

inflim n
n

n
w

n

h
  , 

which is a contradiction so  nx  is oscillatory.  □ 

 

Example 4.4.1:   

                        
 

2

5

3

52

2

2

19

2

3
23

3

1























n

n

nnnn xxx                                         (4.4.24)  

It is clear that the condition of theorem 4.4.2 are satisfied since  

(H1) 1
3

1
0 1  ppn  

(H2) Take 
 

n

n

nh
2

1
  with 

 
1

1

2

13






n

n

nh  and 
 

2

2

2

19





n

n

nh  
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(H3) 






 












 0

5

3

2

5

2

3
23

Nn
n

n
 

(H4)  nh  is oscillatory  
 

0
2

1
lim 



 n

n

n
 

Then by theorem 4.4.2 every solution of equation (4.4.24) is oscillatory.  

 

Example 4.4.2:   

                         n

nnn xxx 163
8

1
3

1

62

2 







                                                         (4.4.25)  

It is clear that equation (4.4.25) satisfies the conditions of theorem 4.4.3 since 

(C1) 1
8

1
0 1  ppn  , where 1p  is a constant  

(C2) Taking   n

nh


 1
2

3
 with   1

13



n

nh  and    nn

nh 16162 


 

(C3) 






 



 0

3

1

2

6
3

Nn

n
 

(C4)  nh  is periodic of period 2  

By theorem 4.4.3 every solution of equation (4.4.25) is oscillatory.  

 

Example 4.4.3:   

                            nnn

n

n xxx 121 5

12

2                                                         (4.4.26)  

we have   n

nh 1
4

1
  , so 

              










oddn

evenn
hn

0

4

1

     ,    and   










oddn

evenn

hn

4

1

0

   

also we have  

( 1

10C )      
















2

5

1

2

1

* 2
n

n

n

nn hhGq    

(C8) is satisfied  

 (C13)      
















1

2

1

1

1 2
n

n

n

nn hhGq   

So by theorem 4.4.7 every solution of equation (4.4.26) is oscillatory.   

 

Example 4.4.4:   

                          6841215 25

21

2   nnxxx
n

nn

n

n   , 0n                 (4.4.27)  

we have   n

n nh 12 2   which changes sign with  

                      12212 2  nnh
n

n  

                      68412 22  nnh
n

n   

and  
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 n

hn

n
inflim   

                   
 n

hn

n
suplim   

By theorem 4.4.8 we have that every solution of equation (4.4.27) is oscillatory. 

 

Remark 4.4.2: The results of this section are mainly referred to [19] and [25].   

 

4.5 Oscillation criteria of sublinear, linear and superlinear NDE's   

 

Consider the second-order NDE  

                        01  

 knnmnnnn xqxpxc   , 0n                                       (4.5.1) 

 

Of course the value of   determines the type of the NDE whether it is sublinear or 

superlinear. In [24] the authors studied the oscillation of equation (4.5.1) where   is in 

general the ratio of odd positive integers,  10  ppn . However in [17] Lin studied the 

superlinear NDE, but this time the results were for bounded oscillation.  

 

The following conditions are needed in our discussion  

 (C1)  np  is nondecreasing such that 10  ppn  and 0nq  and  nq  is not   

         identically zero for infinitely many values of n  

 (C2) 0nc  and 


 0

1

nn nc
, 

Let  kmr ,max , 





ns s

n
c

Q
1

 , 1  

We need the following lemmas 

 

Lemma 4.5.1: Let  nx  be an eventually positive solution of equation (4.5.1), then for  

mnnnn xpxz  , one of the following two cases holds for all sufficiently large n  

( I )  0nz  , 0 nn zc , 

( II ) 0nz , 0 nn zc  

 

Proof: Assume that 0 mknx  for  00 nNn N . Then by the condition (C1), we have 

0nz and    0 nn zc  for 0Nn  . Hence  nn zc   is eventually of one sign.  □ 

 

Lemma 4.5.2: Let  nx  be an eventually positive solution of equation (4.5.1) and suppose 

case ( I ) of lemma 4.5.1 holds. Then there exists an integer  0nN N  such that 

                          nnn zxzp 1                                                                                 (4.5.3) 

  

Proof: Cleary that (C1) implies that nn xz  . Moreover we have  

                         pzzpzxpzx nknnnknnnn   1  

Since  nz  is nondecreasing. This completes the proof.  □ 
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Lemma 4.5.3: Let  nx  be an eventually positive solution of equation (4.5.1) and suppose 

case ( II ) of lemma 4.5.1 holds. Then there exists an integer  0nN N  such that 

                          n

n

kn zp
p

z
x 


 1

1
 ,  for Nn     

 

Proof: Since  nz  is nonincreasing we may assume that  nx  is also nonincreasing. Hence  

                          knknknn xppxxz   1                                                              (4.5.4) 

Since 211 p , we have p
p




1
1

1
, therefore 

                          n
n zp
p

z



1

1
 .    □    

 

Lemma 4.5.4:  Let  nx  be an eventually positive solution of equation (4.5.1). Then  nz  

is bounded above and satisfies  

                        nnnn zcQz   ,                                                                                   (4.5.5)                                                       

for all sufficiently large n . 

 

Proof: Proceeding as in the proof of lemma 4.5.1 we obtain   0 nn zc  for 

 0nNn N . Then NNnn zczc   for Nn  . Dividing the last inequality by nc and 

summing we obtain  

                         




1 1n

Ns s

NNNn
c

zczz  

Hence  nz  is bounded above. Letting n , we obtain  NNNN Qzcz   for 

sufficiently large n .  

 

Theorem 4.5.1: Assume that (C1) and (C2) hold and 1  and mk   in equation (4.5.1). 

If   

                         




 
0

11
nn

knn pq  ,                                                                          (4.5.6) 

and  

                        





1

1
mkn

ns

ss pQq   ,                                                                               (4.5.7)  

are satisfied, then all solutions of equation (4.5.1) are oscillatory.  

 

Proof: Let  nx  be an eventually  positive  solution  of  equation (4.5.1) , then   0rnx  

for  0nNn N , using lemma (4.5.1) we have two cases: 

 ( I ) 0nz  , 0 nn zc ,  

        by lemma 4.5.2 we have 

                            01 11   knknnnn zpqzc  ,  Nn                                          (4.5.8)  

        Let  
kn

nn

n
z

zc
w




  ,  for knNn  0    

        then we have  
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                           knn

knmn

knnn

knnn pq
zz

zzc
pqw 





 


 1

1

1 11  

        Summing the last inequality, we get 

                         


 
n

Ns

Nkss wpq 11   , 

        as n  we have  

                         




 
Ns

kss pq 11   , 

        which is a contradiction.   

( II ) 0nz , 0 nn zc  

        Taking the summation to equation (4.5.1) from N  to 1n , we obtain 

                        0
1

1  






n

Ns

kssNNnn xqzczc    

        or  

                        0
1 1

1  






n

Ns

kss

s

n xq
c

z    

        Summing again from n  to 1j  and rearranging, we obtain 

                        n

ns

ksss zxQq 




1  ,                                                                               (4.5.9) 

        using inequality (4.5.4) in (4.5.9), and using the fact that  nz  is nonincreasing, we       

        obtain 

                         pQq
mkn

ns

ss 




1
1

 , 

        which contradicts condition (4.5.7),  nx  must be oscillatory.   □  

  

Theorem 4.5.2: Assume that (C1) and (C2) hold and 1  and mk   in equation (4.5.1). 

If  

                        




 
0

1

nn

nnQq    ,                                                                                 (4.5.10) 

then all solutions of equation (4.5.1) are oscillatory. 

 

Proof: Proceeding as in the proof of theorem 4.5.1 we see that lemma 4.5.1 holds for 

 0nNn N   

( I )  0nz  , 0 nn zc  

        Summing equation (4.5.1) from  0nN N  to  1n , yields 

                        0
1

1  






n

Ns

kssNNnn xqzczc    ,   Nn                                         (4.5.11) 

        then  

                        NN

n

Ns

kss zcxq 






1

1

   

        letting n , we obtain  
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Ns

kss xq 
1                                                                                    (4.5.12) 

        but  nz  is increasing, so there exists a positive constant a  such that azn   for   

        Nn  , together with equation (4.5.2) yields 

                         paxn  1  ,  for Nn   

        Thus there exists an integer NN 1  such that  

                          nn Qpax  1  ,  1Nn   

        since 0nQ  as n . Because  nQ  is decreasing the last inequality implies that 

                            111 11   nknkn QpaQpax                                                  (4.5.13)  

        Combining (4.5.12) and (4.5.13) we get 

                        






1

1

Ns

ssQq                                                                                       (4.5.14) 

        which contradicts (4.5.10) 

( II ) 0nz , 0 nn zc   

        From equation (4.5.4) and (4.5.5), the facts that mk   and nz  is decreasing we have  

                        mmknkn xx   11     

                                    mknzp  11   

                                    11  nzp   

                                    1111   nnn Qzcp   ,  Nn                                                (4.5.15)  

        Consider the difference  

                              nnnn zctzc   
 1

1
    

                                                    

 txq knn 11                                                   (4.5.16) 

        where   nnnn zctzc   11  

        using (4.5.15), equation (4.5.16) becomes 

                               







 111

1
1 nnknnnn zcxqzc  

                                                      





 11111

11 nnnnnn zczcQpq      

        Hence  

                              
 1

1
11 


 nnnn Qqpzc   ,  Nn                                 (4.5.17)    

        Summing (4.5.17) from N  to n , we have 

                               






 
n

Ns

ssNNnn Qqpzczc 
 1

11

11 11    

        and so letting n , we obtain  

                        




n

Ns

ssQq 
1   

        which contradicts (4.5.10).   □  

 

Theorem 4.5.3: Assume that (C1) and (C2) hold and 10    and mk   in equation 

(4.5.1). If  

                        




 
0

1

nn

nnQq   ,                                                                                 (4.5.18)  

Then all solutions of equation (4.5.1) are oscillatory.  
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Proof: Again proceeding as in the proof of theorem 4.5.1, we see that lemma 4.5.1 holds 

so     

( I )  0nz  , 0 nn zc    

        then (4.5.13) and (4.5.14) hold, we have  

                        1nQ   and  Nn QQ     for large n  

        from (4.5.14) we get 

                        










 
Nn

knn

Nn

nn QqQq 
11  

        a contradiction to (4.5.18) 

( II ) 0nz , 0 nn zc  

        from (4.5.11) we have 

                        








 











ns

kss

n

n xq
c

z 
1

1

1

1
  ,  for Nn   

        If we consider the difference   0,2  
nz  is such that  12  and 

                          1

122

1 2 



  nn ztz    

                                       






















Ns

kss

n

xq
c

t  1

1

12 1
2  

                                       










 











Ns

kss

n

n xq
c

z  1

1

12

1

1
2   ,   12 ,  nn zzt  

        and  nz  is decreasing, then  

                          










 
Ns

skss

n

n zxq
c

z 12

11

1

2

1

2  
  ,                                                      (4.5.19) 

        since 0 nza  and 0 nxa , where a is a constant , from (4.5.4),we obtain 

                          11 1   nkn zpx   , Nn                                                                  (4.5.20) 

        From (4.5.19) and (4.5.20) we obtain  

                           














n

Ns

ss

n

n zq
c

p
z 12

1

1

2

1

12 



 
 

                                        



n

Ns

s

n

q
c

K

1

 

        where    1212   
apK  

        Summing the last inequality we get 

                        
 

 
n

is s

n

Ni

inN
c

qKzz
1

2

2

2

1

1  

        as n  , we obtain  

                        


 
n

Ni

iiQq 1   , 

        which is a contradiction.   □  

 

In the following two theorems, we suppose that equation (4.5.1) satisfies 

(C4) 0


j

in

np   whenever 1 ij  
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Theorem 4.5.4: Assume that (C4) holds and there exists a constant  1,0p , such that  

                        1 npp  , for large n                                                                      (4.5.21) 

If there exists 0  such that  

                           0expinflim 


n

n
n

eq     ,                                                                (4.5.22) 

then all bounded solutions of equation (4.5.1) are oscillatory provided that 1  and 

1nc    

 

Proof: Suppose that equation (4.5.1) has a bounded eventually solution  nx , let 

mnnnn xpxz  , then  nz  is bounded and 02  


knnn xqz  for large n  , thus nz  is 

monotone and does not change sign eventually, by theorem 1.4.1, we obtain that there 

exists an integer 01 nn  , such that  

                        0nz  ,    0 nz  , for 1nn                                                          (4.5.23)  

Choosing N , such that 

                         ln
1

Nmk 
     , 

then for Nmknn  1   

                        
knnn xqz 2  

                                   Nmkn

N

knknn zppzzq   ...      

                                 
Nmknn

N zqp     

Thus  

                        Nmknn

N

n zqpz  2   ,   Nmknn  1  

Summing the last inequality from n  to 1m  we have 

                        0 






ni

Nmkni

N

n zqpz   

Thus  

                        0 


Nmknn

N

n zqpz   ,   Nmknn  1  

Note that 
  


ln

1

Nmk 
  and condition (4.5.22), then by lemma 1.4.2 the last 

inequality has no eventually positive solution, which is a contradiction.   □ 
 

Theorem 4.5.5: Assume that (C4) holds and there exists a   ,1*p , such that 

                        *1 ppn   ,  for large n                                                                    (4.5.24)  

and  

                                                                      

                        


 0nn

nnq  ,                                                                                       (4.5.25) 

then all bounded solutions of equation (4.5.1) are oscillatory provided that 1  and 

1nc . 

 

Proof: Let  nx  be an eventually bounded positive solution of equation (4.5.1), again set  

mnnnn xpxz  , proceeding as in the proof of theorem (4.5.4), we have  
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                          0nz  ,    0 nz   eventually                                                      (4.5.26) 

Hence, mnn xx   eventually. Choosing 0M  and 01 nn  , such that Mxn  , 1nn  , so  

                        nn qMz 2   , 1nn                                                                         (4.5.27) 

Summing (4.5.27) and using (4.5.26), we have  

                         





ni

in qniMz 1  , 

hence  

                          


ni

iqni 1  , 

and so  

                        


 0nn

nnq  , 

which is a contradiction.   □ 
 

Example 4.5.1:  
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To check the conditions of theorem 4.5.1 
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It follows by theorem 4.5.1 that all solutions of the above equation are oscillatory.  

 

Example 4.5.2:  
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  nnn

n xxx  ,  5n                                         (4.5.29) 

To check the conditions of theorem 4.5.2 
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So by theorem 4.5.2 we found that equation (4.5.29) is oscillatory.  

 

Remark 4.5.1: The results of this section are referred to [17] and [24].   
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