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ABSTRACT 
 

The fourth-Generation (4G) of mobile systems aim at providing high data rates interactive 

multimedia and wireless internet services. However, due to the presence of noise, Inter-

Symbol-Interference (ISI) and Multiple Access Interferences (MAI) that contaminate and 

attenuate the original transmitted signal, these demands give rise to computational complexity 

in order to retrieve a replica of this signal with the least error. 

 

The conventional correlator based receiver that was first used could not suppress the MAI and 

the multi-path fading of the mobile channels. An alternative approach used an optimal 

Minimum Mean Square Error (MMSE) receiver succeeded in reducing MAI and ISI but was 

considered highly computational. 

 

Later, an adaptive MMSE receiver for asynchronous Multi-Carrier (MC) Direct sequence 

(DS) Code Division Multiple Access (CDMA) mobile communication systems over 

frequency selective Rayleigh fading channels was introduced. Two adaptive MMSE design 

structures were proposed. The Separate Detection (SD) that consists in using a particular filter 

structure for each carrier and the Joint Detection (JD) defined by the concatenation of the 

filter weights dedicated to each carrier. Both structures were implemented adaptively using 

the three traditional well-known adaptive algorithms, mainly, the Recursive Least Square 

(RLS), the Normalized Least Mean Square (NLMS) and the Affine Projection Algorithm 

(APA). However, NLMS and APA algorithms have fixed step-sizes. The step-size in these 

adaptive algorithms should be controlled to meet the conflicting requirements of fast 

convergence and low steady state excess mean square error. 

 

In this thesis, we propose variable step-size adaptive filter based Minimum Mean Square 

Error (MMSE) receivers for MC-DS-CDMA mobile systems that tend to reduce the receiver’s 

computational cost while maintaining good performance in term of fast convergence speed 

and low mis-adjustment error. Therefore, we investigate the relevance of Variable Step Size 

(VSS) NLMS and APA adaptive filters.  

 

Finally, varying the step-sizes of the NLMS and the APA algorithms in both the SD and the 

JD MMSE receivers showed the best Bit Error Rate (BER) and convergence performance, 

compared to the conventional and the fixed step-size MMSE receivers. In particular, results 

ensured that the variable step-size joint detection (VSS-JD) MMSE based receiver outer-

performed the variable step-size separate detection (VSS-SD) MMSE based receiver and the 

conventional correlator based receiver by showing the least BER and the fastest convergence 

speed during the given iterations. 

 

The performances of the proposed receivers are evaluated and compared with other existing 

receivers by means of Monte Carlo simulations using Matlab. 



 v 

 

 

ٍِخص 

 
٠ٙذف اٌج١ً اٌشابغ لأجٙضة الاحصبلاث اٌجٛاٌت اٌٝ حض٠ٚذ اٌّسخخذَ ببحصبلاث لاسٍى١ت راث جٛدة ػب١ٌت لذس 

ِٓ  ،(the channel) ٌٚىٓ ٔظشا ٌٛجٛد اٌضٛضبء ٚاٌخذاخلاث بأٔٛاػٙب ػبش لٕبة الاحصبي .الاِىبْ

حخٍٛد ٚحضّذً ِّب ٠ؤدٞ اٌٝ حؼم١ذ  (صٛث ٚصٛسة)اٌّشسً اٌٝ اٌّسخمبً، فبْ الاشبسة الأص١ٍت اٌّشسٍت 

. اٌذسبببث ٚاٌّؼبدلاث اٌلاصِت لاسخشجبػٙب أٚ اسخشجبع ألشة  صٛسة ٌٙب  بألً ٔسبت خطأ ِّىٕت

 

اٌخم١ٍذٞ،ٌىٕٗ فشً فٟ اٌخخٍص ِٓ اٌخذاخلاث  فٟ اٌبذا٠ت حُ حٛظ١ف اٌّسخمبً اٌزٞ ٠سخخذَ جٙبص اٌخٕم١ت

،فمذ MMSE))ألً ِؼذي ِشبغ خطأ"أِب اسخخذاَ ِسخمبً ِٓ ٔٛع .إٌبشئت ػبش لٕٛاث الاحصبي اٌجٛاٌت

.  اٌؼ١ٍّبث اٌذسبب١تفٟ  ٔجخ فٟ حم١ًٍ اٌخذاخلاث،ٌىٕٗ اػخبش ِؼمذ

 

الخشح ٔٛػبْ ِٓ ٘زٖ  . ِخألٍُ فٟ أجٙضة الاحصبلاث اٌجٛاٌتMMSEلادمب،حُ اسخخذاَ ِسخمبً 

ٝ :اٌّسخمبلاث َّ ٠ٚىْٛ اٌخذمك ف١ٗ ِٓ الإشبسة اٌّسخمبٍت وً ػٍٝ دذة  ((separate detectorالأٚي ٠س

 ٠ىْٛ حذل١ك الاشبسة ف١ٗ إجّب١ٌب ،أٞ بؼذ حج١ّغ وً الإشبساث ((joint detectorأِب إٌٛع اٌزبٟٔ

 ، (NLMS)ِؼذي ِشبغ ألً: ٠خُ فٟ اٌبذا٠ت اسخخذاَ اٌخٛاسصِببث اٌزلارت اٌّؼشٚفت ٟٚ٘.اٌّسخمبٍت

((RLS َٚألً ِؼذي ِشبغ اٌؼبAPA or GNLMS)) ٖ٠ٚىْٛ دجُ اٌخطٛة اٌّسخخذَ داخً ٘ز

فبْ حصشف اٌّسخمبً س١خذسٓ ٔخ١جت حخف١ض ٔسبت اٌخطأ  ارا حُ اٌخذىُ بذجُ اٌخطٛة، .الأٌغٛس٠زّبث رببج

. ٚاٌسشػت فٟ اٌٛصٛي ا١ٌٗ

 

 را جٙبص حٕم١ت ٠ٛظف اٌغٛس٠زُ ِخغ١ش ِٚخلائُ ٌخخف١ض MMSEفٟ ٘زا اٌبذذ ألخشح اسخخذاَ اٌّسخمبً

. اٌج١ذ ِغ اٌّذبفظت ػٍٝ الاداءٚاٌسشػت اٌخٟ ٠ّىٓ حذم١مٙب فٟ اٌٛصٛي ا١ٌٗ ألً ٔسبت خطأ 

 

فٟ اٌخطٛة اٌخب١ٌت حخُ اٌّفبضٍت ب١ٓ وً ِب روش ِٓ خلاي ٔخبئج اٌبشِجت فٟ حٛض١خ ِٓ خلاي دساست ألً 

 ".صفش اٌخطأ"ٔسبت خطب ٚاٌسشػت فٟ اٌٛصٛي إٌٝ 

 

حذذ٠ذا ٠خُ حس١ٍط اٌذساست ٚاٌبذذ ػٍٝ حص١ُّ أجٙضة لاسٍى١ت راث ِسخمبً ف١ٗ جٙبص حصف١ت ٠ٚخى١ف ِغ 

 .((variable step-size،بذجُ خطٛة ِخغ١ش ((Adaptive filterاٌّخغ١شاث 

 

أِب فٟ اٌّشدٍت الاخ١شة ٟٚ٘ ِٛضٛع اٌشسبٌت د١ذ ٠خُ .:اٌّفبضٍت ب١ٓ ٔٛػ١ٓ ِٓ اٌّسخمبلاث حأحٟ حب١ٌب 

    NLMS- VSS ٚ  .VSS-APAفٟ اٌّسخمب١ٍٓ الار١ٕٓ فٟ اٌخٛاسصِبخبٓ  " دجُ اٌخطٛة"حغ١١ش 

 ص٠بدة ػٍٝ رٌه .ٔخ١جت اٌبذذ وبٔج إ٠جبب١ت بذ١ذ لً اٌخطأ ٚصادث اٌسشػت فٟ اٌٛصٛي إ١ٌٗ بشىً ٚاضخ

 بخذم١ك ألصٝ سشػت فٟ اٌٛصٛي اٌٝ VSS-SD فبق اٌّسخمبً VSS-JDأربج اٌبذذ ػٍٝ أْ اٌّسخمبً 

. ألً ٔسبت خطأ

 فٟ بٕبء جٙبص اسخمببي ػبي ااٌجٛدة حُ فٟ اٌجضء الأخ١ش ِٓ VSS-APA-JDٌٚب١بْ ِذٜ حفٛق اٌّسخمبً 

ِٓ د١ذ اٌض٠بدة VSS-APA-SDٚاي(correlator) اٌبذذ اٌّفبضٍت ب١ٕٗ ٚب١ٓ وً ِٓ اٌّسخمبً اٌخم١ٍذٞ

ٚدٌج إٌخبئج ِشة أخشٜ .فٟ ػذد اٌّسخخذ١ِٓ اٌفؼ١١ٍٓ ٌٍشبىت ٚاٌض٠بدة فٟ ٔسبت اٌخذاخلاث ػٍٝ الاشبسة

 اٌخٟ حُ اسخخذاِٙب فٟ ٘زا اٌخٛاسصِببث.VSS-APA-JDػٍٝ حذم١ك ألً ٔسبت خطأ ٌذٜ اٌّسخمبً  

ٚأ١ّ٘ت ٚسٍٛن اٌطشق اٌّزوٛسة أػلاٖ ٚاٌخصبئص اٌّخخٍفت حُ Matlab اٌبذذ ب١ٕج ببسخخذاَ بشٔبِج 

 . Monte Carlo Simulation ِٓ خلاي ِب ٠سّٝ  اسخؼشاضٙب

فٟ اٌّسخمبلاث فٟ أجٙضة الاحصبلاث VSS-APA-JD فٟ اٌخخبَ، ٚٔخ١جت ٌّب سبك فبٔٗ ٠ٛصٝ ببسخخذاَ 

. اٌلاسٍى١ت اٌجٛاٌت
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INTRODUCTION 

 

Several approaches that combine Direct-Sequence Code Division Multiple Access (DS-

CDMA) with Multi-Carrier (MC) transmission have been proposed for the last decade [1] . 

Indeed, they make it possible to achieve high bandwidth efficiency, fading resilience and 

interference suppression capability, which are three crucial issues for future broadband mobile 

wireless communications [2] . In this thesis, we focus our attention on the so-called MC-DS-

CDMA transmission scheme [2] [3] , that has been adopted as an option in the CDMA2000 

third generation cellular standard [4] . 

 

When dealing with MC-DS-CDMA systems, the data sequence multiplied by a spreading 

sequence (direct sequence) modulates several carriers [3] . It should be noted that the MC-

DS-CDMA scheme deals with time-domain spreading whereas the so-called MC-CDMA is 

based on frequency-domain spreading. When designing receivers for MC-DS-CDMA mobile 

wireless systems, two issues should be taken into account. Firstly, the Multiple Access 

Interference (MAI) caused by other active users concurrently operating in the system, 

especially when the received signal power of the desired user is less than that of other users 

(the so-called near-far effect) [7] . Secondly, the multi-path fading of mobile wireless 

channels which greatly degrades the Bit Error Rate (BER) performance of the system. 

 

The conventional MC-DS-CDMA receiver consists of a correlator for each carrier followed 

by a maximal ratio combiner to counteract fading and narrow band interference [3] .However, 

this approach cannot eliminate the MAI and hence is not “near-far resistant”. In addition, the 

fading processes are assumed to be known at the receiver, which is not the case in practice. 

An alternative approach consists in designing a Minimum Mean Square Error (MMSE) 

receiver. This method was previously used with Single-Carrier DS-CDMA systems [5]  with 

adaptive filters such as Least Mean Square (LMS) and Recursive Least Square (RLS) [9] 

Indeed, the adaptive receivers make it possible to suppress both MAI and Inter Symbol 

Interference (ISI) and are shown to be near-far resistant [5] . In addition, they offer an 

attractive trade-off between performance, complexity and the need for side information 

(spreading codes, timing for all users, channel coefficients, etc.). 

 

MMSE receivers have been recently used for MC-DS-CDMA systems. Thus, two design 

structures are proposed in [10]: the Separate Detection (SD) structure consists in carrying out 

a Wiener filter along each carrier, whereas the Joint Detection (JD) structure is defined by the 

concatenation of the filter weights dedicated to each carrier. In both structures, the Wiener 

filtering is performed based on the least-square estimated fading processes. However, this 

approach has very high computational cost. To reduce the computational complexity, adaptive 

implementations of the SD and JD MMSE receiver structures are proposed in [11]. The 

authors have carried a comparative study between three adaptive filters: the Normalized LMS 

(NLMS), the Affine Projection Algorithm (APA) and the RLS algorithms. They showed that 

the JD receiver structure with the various adaptive implementations outperforms the SD 

receiver structure in terms of the BER performance. In addition, they confirm that the APA 

has better convergence features than the NLMS. 

 



 xiv 

 

 

They have concluded that the APA in the JD receiver structure corresponds to a trade-off 

between performance and computational cost. However, the step-size that governs the 

convergence rate and the steady state mean square error in the NLMS and APA is assumed to 

be constant. 

 

In this thesis, we will focus on designing adaptive MMSE receivers for asynchronous uplink 

MC-DS-CDMA systems, over frequency selective Rayleigh fading channels. More 

particularly, our focus will be on the adaptive SD and JD receiver structures. Our contribution 

is then twofold. Firstly, to meet the conflicting requirements of fast convergence and low 

steady-state excess mean square error in the NLMS and APA, we propose to study the 

relevance of Variable Step-Size (VSS) NLMS and APA, recently elaborated in the framework 

of signal processing [12], to design the SD and JD receiver structures [13]. Secondly, we 

carry out a comparative study with the fixed step-size NLMS and APA based receivers by 

taking into account the convergence features and the BER performance. 

 

The thesis is organized as follows. In the first chapter, an introduction about the mobile 

wireless systems is provided. Particularly, we point out the evolution of the mobile 

generations toward the fourth Generation (4G) and the employed multiple access techniques 

from the first Generation (1G) to the third Generation (3G). In addition, we detail the CDMA 

technology. In the second chapter, we focus on MC-DS-CDMA systems in Rayleigh fading 

channels. The transmitter model, the channel model and the conventional receiver model of 

these systems are described as presented in [3] . In Chapter 3, the optimal MMSE receiver and 

the various adaptive implementations of the SD and JD receiver structures using the NLMS, 

RLS and APA [11] are studied. In addition, the VSS-NLMS and VSS-APA based SD and JD 

receiver structures are developed and their performances with the fixed step-size are 

compared [13]. Finally, a conclusion and some recommendations for future work are provided 

in Chapter 4. 
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CHAPTER 1 

FUNDAMENTALS OF MOBILE WIRELESS 

COMMUNICATION SYSTEMS 

 

During the recent ten years there has been considerable progress in the development of 

wireless cellular telephony or digital mobile communication systems to compete wired-line 

telephone networks. This progress is further translated by a large number of mobile 

multimedia applications starting from wireless Internet applications to satellite transmission 

passing through wireless telephony. As a result, wireless coverage tremendously increased 

with no need to the setting up of expensive infrastructure like copper or fiber lines. 

 

1.1  Mobile Communications 

Up to these days four main generations of mobile communication systems are universally 

widely known. These are the first generation (1G), the second generation (2G) followed by 

the third generation (3G), with the 2.5G in-between, finally emerged the fourth generation 

(4G) mobile communication system. 

The first generation mobile cellular networks, denoted (1G), used analogue modulation and 

frequency-division multiplexing (FDM) to provide voice transmissions by using frequencies 

around 900 MHz. Examples such as the system of TIA/EIA-553 in the United States 

operating around 850 MHz, the Total Access Communication System (TACS), and Nordic 

Mobile Telephone (NMT) in Europe operating at 450 and 900 MHz bands [14]. 

Thereafter, an obvious move to wireless technologies started introducing the second-

generation of mobile communications (2G) that used Time Division Multiple Access 

(TDMA) digital technology. The 2G systems designed in the 1980s were still used mainly for 

voice applications [15] with added new capabilities including facsimile and messaging.  

Optimizing the data channels for packet data characterized the 2.5G generation, which 

introduced access to the Internet from mobile devices. This is formed by the General Packet 

Radio Services (GPRS), considered as a Global System Mobile (GSM) enhancement. 

The third generation (3G) wireless systems were developed in the 1990s as the demand for 

faster speed, global compatibility and multimedia services became a priority. Moreover, 

higher quality voice channels, as well as broadband data capabilities, (providing transmission 

speeds from 125Kbps up to 2 Mbps) made it possible to introduce global roaming with 

superior voice and data quality. 

Transition from analog to digital cellular network has almost completed towards the end of 

1995. Thereafter, the International Telecommunications Union defined future wireless 

systems beyond 3G wireless as 4 G mobile [15]. Fourth Generation (4G) mobile 

communications are qualified by the ability to support advanced and wideband multimedia 

services that can be symmetrical and asymmetrical, real-time and non-real-time 4 G will  

basically focus on the open wireless architecture, cost-effective and spectrum-efficient high-
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speed wireless mobile transmission. 

The competitive rush to design and implement digital systems led to a variety of different and 

incompatible standards [15]. Mobile systems all over the world have either GSM (global 

system mobile), mainly in Europe; TDMA (time division multiple access) (IS-54/IS-136) and 

CDMA (code division multiple access) (IS-95), in the U.S., or PDC (personal digital cellular) 

in Japan. 

 

Two second generation cellular systems (IS-54, GSM) use time/frequency multiple-access 

where by the available spectrum is divided into frequency slots (e.g., 30 kHz bands) but then 

each frequency slot is divided into time slots. Each user is then given a pair of frequencies 

(uplink and downlink) and a time slot during a frame. Different users can use the same 

frequency in the same cell except that they must transmit at different times. This technique is 

also being used in 2.5 generation wireless systems (e.g. Enhanced Data Rates for GSM 

Evolution, EDGE). It allows considerably higher transmission speeds of between 150 Kbps 

and up to 200 Kbps [15] [16]. 

Third Generation Standards, associated to Wide area networking coverage (WAN)s, are 

dominated by WCDMA access methods (Wideband Code Division Multiple Access)with a 

5Mhz channel bandwidth),are considered to be four times the bandwidth of cdmaOne and 25 

times that of GSM [15] [17]. 

3G WAN standards operate on licensed bands whereas WLAN/WPAN (Wide local area 

networking/ Wide personal area networking respectively) operates in unlicensed bands such 

as the Industrial, Scientific, and Medical (ISM) band used by Bluetooth [17] . 

The major step from the second generation to 3G wireless or 4G mobile was the ability to 

support advanced and wideband multimedia services . 

The cellular network evolution from the 1G to the 3G is summarized in Fig.(1.1). 
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Fig.1.1: Cellular network evolution from the 1G to the 3G 

 

GPRS is an extension of the GSM standard providing packet data capabilities with 

connection speeds up to 115 Kbps. 

The International Telecommunications Union Radio Communication Sector (ITU-R) [15] 

[17] published in 1999 issued a set of standards for third-generation (3G) wireless systems. 

These systems include cdma2000, Universal Mobile Telecommunications System (UMTS) 

Wideband CDMA (W-CDMA) FDD, UMTS WCDMA TDD, and Time Division Multiple 

Access (TDMA) system known as Universal Wireless Communication-136 (UWC-136). 

UMTS includes both voice and data capabilities in circuit and packet modes with connection 

speeds of 144, 384 Kbps & 2Mbps (availability dependent on mobility conditions). 

Later on, came out the bluetooth wireless technology which is considered as an open 

specification for a low-cost, low-power, short-range radio technology for ad-hoc wireless 

communication of voice and data anywhere in the world. Distance covered by this technology 

ranges from 10-100 meters only operating in 2.4 GHz band at a data rate of 720 Kbps [17]. 

Table (1.1) below shows the data transmission-rates of the mentioned standards of the 

different technologies. 

1G                         2G                           2.5G                          3G 

(Analog)           (Narrowband Digital)                                     (Wideband Digital) 

TACS                       GSM 
NMT 
RTM/RTMS              TDMA 
C-Netz                      (IS-54) 

 GPRS/ EDGE WCDMA 
(UMTS) 

AMPS                       CDMA                        CDMA                          cdma2000    
                                   (IS-95A)                     (IS-95B) 

cdmaOne 
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Table1.1: data transmission of different technologies 
 

Cellular technology Generation Data transmission capacity 

GSM 2G 14.4 Kbps 

CDMA (IS-95B) 2.5G 64Kbps to 115 Kbps 

GPRS 2.5G 115Kbps 

CDMA 2000 3G 125Kbps to 2 Mbps 

Bluetooth 3G 720Kbps 

UMTS 3G 144, 384 Kbps & 2Mbps 

 

It is noticed that the third generation CDMA 2000 cellular technology attains the highest data 

transmission capacity (up to 2Mbps) over the other mentioned technologies. 

In terms of speed of transmission, the theoretical data rate that GSM mobile networks could 

support is 9.6 Kbps, while the CDMA networks could support from 64Kbps up to 2Mbps 

again with the CDMA2000. 

1.2  Cellular Fundamentals 

 

In mobile technology, the geographical area used for transmission of data is divided into 

small areas called cells after which the name cellular came. The transmission from the base 

station to a mobile is referred to as the downlink and the transmission from a mobile to a base 

station is the uplink. The uplink- downlink system is shown in Fig.(1.2). 

 

 

 
 

Fig.1.2: Uplink and downlink in mobile wireless systems  

Base-Station 

uplink 
downlink 
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A mobile is ready to initiate and receive a call after it scans the control channels and tunes to a 

channel with the strongest signal [18]. It then exchanges identification information with the 

base station and is then authorized to use the network. 

 

The cellular wireless system consists of transmitter, channel and receiver. At the transmitter 

the bandwidth required for bearing data such as voice and video that have redundant 

information in them, can be reduced (or compressed) by a process known as source coding. 

Due to interference from other users, thermal noise and fading (time-varying amplitude 

response of the channel) that affect the data transmitted through the channel, the signal is said 

to be susceptible to errors. However, it is possible to detect and correct some of these errors at 

the channel by applying channel coding to the bits being transmitted. 

 

The transmitted signal passes through the channel on its way to the destination i.e. receiver, 

base station…etc. Further, the composite signal from the channel, results from multiple 

signals bouncing off obstacles, suffering varying delays and attenuations and getting 

superimposed. Both decoding and filtering are the major processes held at the receiver to 

retrieve the original transmitted data signal with the least minimum error. 

 

As the number of users of a cellular communication system is in increase, there should 

emerge a technology to compensate this tremendous growth. This led to introducing multiple 

access techniques that will be discussed in the next section. 

 

1.3  Multiple Access Techniques 

The goal in the design of cellular systems is to be able to handle as many calls as possible 

(this is called capacity in cellular terminology) in a given bandwidth with some reliability. 

There are several different ways to allow multiple access to the channel. These include the 

following: 

 Frequency Division Multiple-Access (FDMA)  

 Time Division Multiple-Access (TDMA)  

 Time/Frequency Multiple-Access 

 Code Division Multiple-Access (CDMA)  

o Frequency-Hop (FH) CDMA  

o Direct-Sequence (DS) CDMA  

o Multi-Carrier (MC) CDMA  

 Orthogonal Frequency-Division Multiplexing (OFDM) 

These schemes are known as the Multiple Access Techniques [19]. 

Multiple access systems designed for mobile communications have traditionally employed 

TDMA and FDMA techniques. Orthogonal frequency-division multiplexing (OFDM) is 

chosen over a single carrier solution due to lower complexity of equalizers for high delay 

spread channels or high data rates. 

 

Initially multiple-access techniques for cellular systems used Frequency Division Multiple 

Access (FDMA). Here the allocated spectrum is divided into frequency slots (frequency 

division duplexing). Each user is assigned a pair of frequencies when placing or receiving a 
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call. One frequency is used for downlink (base station to mobile) and one for uplink (mobile  

to base station). A disadvantage appears in preventing a reassignment of the spectrum even 

though the user may not be talking. 

 

In Time Division Multiple Access (TDMA), on the other hand, the time-domain transmission 

frame is periodically divided into time slots. Thus each user transmitting in TDMA or FDMA, 

accesses its own slot in either the time-domain or frequency-domain and hence they are thus 

orthogonal to each other either in time or frequency, respectively. 

 

Orthogonal Frequency-Division Multiplexing, (OFDM) is a modulation scheme that has 

recently gained immense popularity in the design of wireless communication systems. It is a 

digital multi-carrier modulation scheme, which uses a large number of closely-spaced 

orthogonal sub-carriers. Each sub-carrier is modulated with a conventional modulation 

scheme at a low symbol rate, maintaining data rates similar to conventional single-carrier 

modulation schemes in the same bandwidth. The orthogonality of the sub-carriers results in 

zero cross-talk, even though they are so close that their spectra overlap. It has high bandwidth 

efficiency and is scalable to high data rates. It solves the problem of Inter Symbol Interference 

(ISI). An example of this application is the Asymmetric Digital Subscriber Line (ADSL). 

Code division multiple-access or CDMA technique is becoming a popular technology for 

cellular communications since they allow many users to simultaneously access a given 

frequency allocation [19].The following sub-section introduces this technique with a brief 

historical introduction. 

1.3.1 Code Division Multiple Access Technique 

CDMA was initially used during World War II by English allies to foil German attempts at 

jamming transmissions. The allies decided to transmit over several frequencies, instead of 

one, making it difficult for the Germans to pick up the complete signal [20]. 

Moreover, CDMA is defined as a digital cellular technology that uses spread-spectrum 

techniques [2] [19]. CDMA provides better capacity for voice and data communications since 

individual conversations are encoded with a pseudo-random digital sequence [3] thus 

allowing more subscribers to connect at any given time (asynchronous). 

Unlike the above mentioned multiple access techniques (namely the TDMA and the FDMA, 

which are limited in time duration and frequency band respectively), a Code-Division 

Multiple Access (CDMA) uses all of the available time-frequency space asynchronously [7] 

[8] and thereby posses a very high spectral capacity that enables it to accommodate more 

users per MHz of bandwidth [4] [8] . This appears obviously in Fig.(1.3) below. 

http://en.wikipedia.org/wiki/Modulation
http://en.wikipedia.org/wiki/Orthogonality
http://en.wikipedia.org/wiki/Symbol_rate
http://en.wikipedia.org/wiki/Cross-talk
http://en.wikipedia.org/wiki/Frequency_spectrum
http://www.webopedia.com/TERM/C/cellular.htm
http://www.webopedia.com/TERM/C/CDMA.html##
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Fig.1.3: CDMA technique 

 

CDMA also have better security and higher data and voice transmission quality because of the 

spread spectrum technology it uses, which has increased resistance to multipath distortion. 

 

In a Single Carrier (SC) transmission, the data sequence multiplied by a spreading sequence 

modulates a single carrier [2] . Due to the presence of severe (ISI), the Bit Error Rate (BER) 

performance of a SC transmission is degraded in frequency selective fading channels. As a 

result and in a step aiming at improving the BER performance, DS CDMA has been applied 

and Rake combining is employed.  
 

1.4  Direct-Sequence CDMA (DS-CDMA) 

 

DS-CDMA uses a set of unique spreading sequences (signature waveforms or codes) to 

modulate the data bits of different users. The signature waveform is a signal which has a 

much larger bandwidth than the information bearing signal from the user [6] [7] . In 

particular, it spreads the signal directly by multiplying the data waveform with a user-unique 

high bandwidth pseudo-noise binary sequence. It follows that CDMA is called a spread 

spectrum technique [3] . Standards such as IS-95 and W-CDMA are based on CDMA 

technology). The signature sequences or codes also allow the receiver to demodulate the 

message transmitted by multiple users of the channel, who transmit simultaneously and 

generally, asynchronously. 

 

Direct-Sequence Code Division Multiple Access (DS-CDMA) is classified into a synchronous 

system when time of transmission is known and an asynchronous system without its 

knowledge. In the asynchronous system, however, each base station has a different and 

distinct spread code and the mobile station needs to designate that code in the initial cell 

search. 

Frequency 

Time 

User #1 

User #3 

User #K 

User #2 

Power 
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1.4.1 Spreading Codes 

 

Recall that in a CDMA transmitter the information signal is modulated by the spreading code 

and in the receiver it is correlated with a replica of the same code. Thus, low cross-correlation 

between the desired and the interfering users is important to reduce the MAI. 

 

For example, random codes exhibit good autocorrelation properties but worse cross-

correlation than the deterministic ones. Spreading codes can be divided into pseudo-noise 

codes and orthogonal codes. 

 
I) Pseudo-noise sequences 

 

They are generated with a linear feedback shift register generator. The outputs of the shift 

register cells are connected through a linear function formed by exclusive-or (XOR) 

logicgates into the input of the shift register as appears in Fig. (1.4). Bits 1, 5, 6, and 7 of 

the shift-register are XORed together and the result is shifted into the highest bit of the 

register. The lowest bit, which is shifted out, is the output of the PN generator. 

 

Bit 8 Bit 1

XOR 
 

 

Fig.1.4: PN generator 

 

    Three of the basic classes of pseudo-noise sequences are: 

     _ Maximum length sequences (M-sequences) 

     _ Gold sequences 

     _ Kasami sequences 

 

Gold codes and M-sequences are a set of spreading sequences which have the property of 

very low cross-correlation known binary sequences The Gold sequence having relatively 

good correlation values is to be used in the simulation protocols of this thesis [21] [22]. 

 

II) Orthogonal sequences: 

These are completely orthogonal for zero delay but for other delays they have very bad cross-

correlation properties [22] [23] . Moreover, they lose their properties when passed through 

different multi-path channels and thus are suitable only for synchronous applications. The 

Walsh-Hadamard sequence is an example of orthogonal sequences. 
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However, the use of orthogonal codes and multiple spreading techniques provide flexible 

code allocation to the base station and mobile user [24] . As a result of using unique code 

sequences in the CDMA system it is possible to achieve user separation at the receiver. 

 

1.4.2 General Characteristics of Spread Spectrum (SS) Signals 

 

Spread spectrum signals are characterized by [25]  

-Combating or suppressing the determinal effects of interference due to jamming, interference 

arising from other users of the channel, and self-interference due to multi-path propagation 

 

-Hiding a signal by transmitting it at low power and, thus, making it difficult for an 

unintended listener to detect in the presence of background noise. 

 

-Achieving message privacy in the presence of other listeners. 

 

1.5  Conclusion 

In spread spectrum CDMA all users use the same bandwidth, but each transmitter is assigned 

a distinct code. Cellular CDMA systems offer the potential of high spectrum efficiency and 

are proved to be multipath resistant if the receiver structure is appropriately chosen.  

As a result, this technology is proposed for second- and especially third-generation cellular 

mobile systems. 
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CHAPTER 2 

MULTI-CARRIER DS-CDMA SYSTEMS  

 

Recent studies have been shifted from DS-CDMA to Multi-Carrier (MC) transmission 

techniques to overcome the frequency-selectivity of the fading channel. In this chapter DS-

MC-CDMA will be introduced.  

 

However, it is possible to combine Direct-Sequence Code Division Multiple Access with 

Multi-Carrier transmission [5] to improve the performance of the communication system .The 

following sections of this chapter will explain this. The system model (transmitter, channel 

and receiver) will be described and discussed. 

 

2.1  Multi-Carrier Modulation (MCM) 

 

Multi-carrier modulation is a method of transmitting data by splitting it into several 

components, and sending each of these components over separate carrier signals. The 

individual carriers have narrow bandwidth, but the composite signal can have broad 

bandwidth. 

 

When dealing with MC-DS-CDMA systems, the data sequence multiplied by a spreading 

sequence (direct sequence) modulates several carriers [3] .Thus, a severe frequency-selective 

fading channel is transformed into several frequency-non-selective flat fading channels, hence 

avoiding ISI [26] [27]. 

 

The advantages of MC modulation are robustness in the presence of multipath fading, a very 

much reduced system complexity due to equalization in the frequency domain and the 

capability of narrow-band interference rejection. 

 

2.2  MC-DS-CDMA System Model 

 

Similar to all communication systems, a multi-carrier direct sequence code division multiple 

access (MC-DS-CDMA) mobile communication system is made up of transmitter, channel 

(the atmosphere) and receiver. 

 

The system model of a MC-DS-CDMA is illustrated in Fig. (2.1). The data sequences for the 

"K" users are transmitted through a Rayleigh fading channel. At the receiver, the original 

transmitted signal at the m th  carrier disturbed by Additive White Gaussian Noise (AWGN) 

proccess )(tm , is passed through the receiver block.  

 

The conventional MC-DS-CDMA based receiver provides a correlator for each carrier and the 

outputs of the correlators are combined by a maximal ratio combiner. A significant advantage 

is attained mainly in suppressing the narrow band interference effect and counteracting 

fading. Thus, there is no need for using the Rake structure [10] or even an interference 

suppression filter. 

http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci211747,00.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci211634,00.html
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Fig.2.1: MC-DS-CDMA system model. 

 

On the other hand, an obvious disadvantage arises as the Multiple Access Interference (MAI) 

cannot be suppressed and hence the system is said to be “not near-far resistant”. An 

alternative approach consists in designing a Minimum Mean Square Error (MMSE) receiver 

[6] [7] . It is noticed that the data sequences for the "K" users are adaptively detected using a 

minimum mean square error (MMSE) receiver to yield the closest estimates of that data. 

 

2.3  Transmitter Model 

 

In this section the spectrum of a single carrier DS-CDMA is first introduced Fig. (2.2a), 

followed by that of a multi-carrier DS-CDMA appear in Fig. (2.2b). 

The bandwidth is given by 

CT
BW

1
)1(1   

Where 10   and CT  is the single carrier chip duration. Now, if this spectrum is equally 

divided into M disjoint frequency bands, a spectrum of a multi-carrier system is obtained. 
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Fig.2.2 :(a)Power spectral density of SC DS waveform,(b) Power spectral density of MC DS 

waveform 

 

Then the bandwidth of each frequency band can be given by 

C

M
MT

BW
1

)1(   

where CMT  is the multi-carrier chip duration and M  is the number of carriers.  

 

An uplink asynchronous MC-DS-CDMA system with Binary Phase Shift Keying (BPSK) 

modulation is considered based on M  carriers and involving K users is shown in Fig. (2.3). 

 

 

Fig. 2.3: Transmitter model 

)(1 tc  tfj
e 12

 

tfj
e 22

 

tfj Me
2

 




M

m 1

 












M

m n

tfj

b
menTtcnbP

ts

1

2

111

1

)()(2

)(


 

)(2 11 nbP

 



 13 

 

 

 

where: 1P  is the transmitted power of the 1
st
  user's signal 

mf  the m
th

 carrier frequency 

)(1 nb  is the 1
st
 user information symbol sequence, chosen independently and equally from 

 1,1  

bT  is the bit duration. 

and 1c the spreading waveform of the 1
st
 user. 

At the transmitter the information-bearing signal is modulated with a user's unique spreading 

code. Here, the gold sequence being the considered sequence and the type of modulation 

considered here is the(BPSK) which is appropriate in applications where phase coherence 

between the transmitted signal and the received signal can be maintained over a time interval 

that is relatively long compared to the reciprocal of the transmitted signal bandwidth. 

 

The resulting signal modulates several carrier frequencies and is then transmitted. The 

transmitted MC-DS-CDMA signal of the k
th

 user can be expressed as follows 

 

                              







 







M

m

tfj

n

bkkkk
menTtcnbPts

1

2
)()(2Re)(


                                  (2.1) 

where:  

kP  is the transmitted power for each carrier of the k
th

 user signal 

mf  the m
th

 carrier frequency 

)(nbk  the k
th

 user information symbol sequence, chosen independently and equally from 

 1,1  

bT  is the bit duration. 

 

The spreading waveform of the k
th

 user is given by: 

                                                       





1

0

)()()(
N

i

ckk iTtiatc                                            (2.2) 

Where: 

cT  is the chip duration 

cb TTN / is the processing gain, 

  1,...,1,0with/1)(  NiNiak  is the normalized spreading sequence 

)(t  is the chip pulse shape, assigned to one over the interval ],0[ cT  and 0 otherwise.  

 

2.4  Channel Model 

 

The transmitted MC-DS-CDMA signal goes through a frequency selective fading channel. 

Frequency-selective fading causes different frequencies of an input signal to be attenuated and 

phase shifted differently in a channel. Frequently, channels experiencing frequency-selective 

fading may require an equalizer to achieve the desired performance. The fading channel 
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impulse response is given by 

                                    



L

l

c

tj

l lTtethth l

1

)(
)()()( 

                                                   (2.3) 

where L  is the number of resolvable multi-path components. In addition, the l
th

  resolvable 

path is characterized by its time-varying envelope )(thl and its time-varying phase )(tl .  

By suitably choosing the number M  of carriers, the carrier spacing and the bandwidth of the 

chip pulse shape, )(t , (assigned to one over the interval ],0[ CT  and zero otherwise), each 

carrier can be assumed to undergo independent frequency non-selective flat Rayleigh fading. 

Therefore, the system will have a frequency diversity gain equal to the number of carriers. 

Then the narrowband complex Gaussian channel co-efficient over the thm  carrier is given by 

                                                   
)(

)()(
t

mm
methth


                                                             (2.4) 

where 

- )(thm  is the random attenuation factor, assumed to be Rayleigh distributed. 

- )(tm  is the random phase shift, assumed to be uniformly distributed over [0,2 ]. 

 

In addition to the fading, the transmitted signal is also corrupted by an independent Additive 

White Gaussian Noise (AWGN) process )(t  with variance 2

 . 

2.5  Conventional Receiver Model 

 

Conventional asynchronous DS-CDMA systems allow each user to transmit and receive 

independently. Each receiver performs a simple correlation between the received baseband 

signal and the corresponding user’s spreading sequence. 

 

With the knowledge of the unique spreading codes, the receiver can isolate the data 

corresponding to each user by the process of channel estimation and detection. A 

conventional correlator based MC-DS-CDMA receiver for user number one proposed by 

Kondo et al [3] appears in Fig.(2.4). The received signal demodulated over M carriers, passes 

on to a filter having CMT durations into a sampler that collects N samples and finally into a 

correlator that correlates it with the spreading code of the first user, 1c .  

 

 

Fig.2.4: Conventional MC-DS-CDMA based receiver for the first user 
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where  

1c  is the spreading code of user #1. 

1P  is the transmitted power for user #1. 

)(1 nd  is the desired output for user  #1 
)(

)()(
nj

mm
menhnh


 , is a fading process with )(nhm  having zero mean, a uniformly 

distributed phase )(nm and a Rayleigh distributed envelope )(nhm . 

)(nm is an independent Additive White Gaussian Noise (AWGN) process  with variance 2 . 

 

The receiver then re-multiplies with the binary {± 1} pseudo-noise sequence. This effectively, 

assuming perfect synchronization, removes the pseudo-noise signal and what remains (of the 

desired signal) is just the transmitted data waveform.  

Because other users do not use completely orthogonal spreading codes, there is residual 

multiple-access interference present at the chip-matched filter output [7] [8] [18] [28]. Due to 

the non-orthogonality of practical spreading sequences, the conventional correlator receiver 

suffers from the near–far problem. Figure (2.5) illustrates one simple scenario of the near-far 

problem. Let user 1 be the desired user, then user 2 is the interfering user. Suppose that both 

users transmit at the same power level.  

 

Fig.2.5: Simplest near-far problem 

It is well known that the signal power attenuates with respect to distance it travels. Since user 

2 is much closer to the base station, its signal power at the base station is stronger than that of 

user 1. Moreover, the interference caused by user 2 may overwhelm the desired signal of user 

User 1 User 2 
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number 1. As a result, the performance of user 1 is deteriorated.  

On the other hand, suppose that user 2 is the desired user. Due to multi-path channel at the 

base station from the replicas of both users, the signal power of user 2 may be less although it 

is closer to base station. This multiple-access interference problem causes attenuation on the 

users’ signal power and can be defined as 

                                          Kk2              ,  log10
1

10 











P

P
ISR k                                  (2.6) 

This implies that the cross correlation between the spreading sequence of the user of interest 

and the signal from a strong interferer can be larger than the correlation with the signal from 

the desired user. Detection then is rendered unreliable.  

Results of simulation in the next section clarify the effect of the near far problem on the BER 

performance of the conventional match-filter based receiver structure in a MC-DS-CDMA 

communication system. 

 

The classical way to deal with this is power control, whereby all users’ transmittted powers 

are controlled so that the powers received from all users are equal. However this adds 

complexity to the system. 

 

Researches thereafter proved that, adaptive Minimum Mean Square Error (MMSE) receivers 

for Multiple Access (MC-DS-CDMA) mobile communication systems, over frequency 

selective fading channels, still outer-perform the conventional ones [2] [3] [5] [6] [10] . 

The time signal on the systems uplink in its complex analytic form is given by: 

                             )()()()( , tenTtcnbhPtr
K

k

M

m n

tfj

kbkkmkk
m 

 







1 1

2
2                       (2.7) 

where   

 bk T,0  is the delay of the k
th

 user signal 

 
MmKkmkh

,...,,;,...,,, 2121 
 are independent and identically distributed (i.i.d.) zero-mean complex 

Gaussian random variables which model the overall effects of phase shift and fading of the 

m
th

 carrier for the k
th

 user. 

 

2.6  Simulation results 

 

In this section, the effect of MAI and the near far problem on the BER performance of the 

conventional receiver of the MC-DS-CDMA communication system will be illustrated. It is 

assumed that 6 users are using the system.  

 

Three near-far scenarios for six users of the system will be discussed. First, the case in which 

the desired user (user #1) signal has a power equal to that of all other interfering user signals 

is studied. Second, the near far scenario1 problem, in which the other interfering users have a 

10dB power advantage over the desired user (ISR=10dB) is studied. Finally, the near-far 

scenario 2 problem in which the interfering users have 1000 power advantage over the desired 

user is taken into account. 

 

Fig.(2.6) shows the BER performance of the three scenarios mentioned above. It is obvious 
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that the BER of the near-far scenario 2, attains a value of 0.5 (considered the worst behavior) 

when the interference to signal ratio (ISR) is equal to 12 dB, compared to its value (0.001) in 

the case of the near-far scenario 1. The best performance, however, is achieved in the case of 

equal users' power, since the least BER value (0.0001) is attained at ISR=12dB. 

 

 
Fig.2.6: BER vs ISR for the three near-far scenarios 

2.7  Conclusion 

 

MC-DS-CDMA is being utilized in mobile communication systems over Rayleigh fading 

channels through the last decades. However, the received signal at the input of the receiver 

has MAI due fading. Moreover, the signal’s power of the desired user is attenuated in strength 

due to distance away from the base station, a phenomena known as the near-far problem. The 

conventional matched-filter based receiver structure was proposed to suppress interfering 

signals and improve BER performance. However, it is considered severely limited by MAI 

and the near-far problem. An alternative approach using MMSE filter based receivers will be 

introduced in the following chapter.  
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CHAPTER 3 

DESIGNING ADAPTIVE MINIMUM MEAN SQUARE ERROR 

(MMSE) RECEIVERS 

 
In this chapter, to suppress the MAI and to mitigate the effect of fading, we propose to study 

variable step size adaptive filter based MMSE receivers for asynchronous MC-DS-CDMA 

systems in Rayleigh fading channels. 

 

This chapter is organized as follows. In Section 3.1, the state of the art on receiver design for 

single and multicarrier DS-CDMA systems is provided. In section 3.2, the optimal MMSE 

receivers for MC-DS-CDMA systems are reviewed. In section 3.3, two adaptive MMSE 

receiver structures for MC-DS-CDMA systems are introduced. In section 3.4, two Variable 

Step-Size adaptive algorithms are implemented to the system. The results are discussed in 

Section 3.5 followed finally by the conclusion in the last section. 

 

3.1  State of the art on Receiver Design 

 

Adaptive receivers performing single-user detection have many advantages over the 

conventional receiver [29] , as they suppress interference and perform de-spreading. 

 

Efforts have been made to develop multi-user detection receivers to suppress MAI [5] [7] [8] 

[18][19][26] and mitigate the near-far problem. The Rake receiver implemented first, could 

not eliminate MAI and was considered limited by the near-far problem. Later, an optimum 

multiuser receiver proposed by Verdu consisted of a matched filter for each user solved the 

near-far problem and completely eliminated MAI but was considered highly computational as 

the number of users is in increase. A solution to this problem, proposed introducing the de-

correlating receiver [29] [31] [32] that completely eliminate MAI and achieve optimal near far 

resistance with less computational cost, due to processing linear complexity in the number of 

users. However, it was not suitable for adaptive implementations, a reason that pushed for 

using an MMSE receiver proven to be as near far resistant as the de-correlating receiver  

 

3.2  Minimum Mean Square Error Receiver 

 

The use of a minimum mean square error receiver allows a tradeoff between complexity of 

signal selection and receiver complexity in a multi-user environment. Recently, MMSE 

receivers have been used for MC-DS-CDMA [10] [11]. 

 

Here, our purpose is to retrieve the first user signal )(1 nb  from the received signal )(tr  

contaminated by fading, additive white noise and multiple access interference. For that 

purpose, we assume that synchronization has been achieved with the first user. Therefore, the 

delay 1  of the first user is equal to zero. 
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Before introducing the MMSE receiver, let us have a look at the mean square error criterion. 

In the MSE criterion, the tap coefficients (weights) over the m
th

 carrier denoted by )(nwm  of 

the filter of the receiver are adjusted to minimize the mean square value of the error 

                                            )()()()( 1 nynwnbn m

H

mm                                                               (3.1) 

where b )(1 n  is the data information symbol, )(ˆ
1 nb  is the estimate of that symbol at the output 

of the filter and )(nym  is the received vector. The MSE criterion is defined as the expectation 

of the error squared 

                                   




 

2

1

2
)()()( nynwnbEEMSE m

H

mmm                                        (3.2) 

Then the block diagram of the MMSE receiver is shown in Fig. (3.1). 

 

 

Fig.3.1: MMSE receiver 

 

The optimal receiver comprises a bank of matched filters (MF), one for each user, followed 

by a Viterbi algorithm for maximum likelihood sequence estimation (MLSE). See Fig. (3.2) 

below 

Fig.3.2: Optimum multi-user receiver. 
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Now, if the squared error signal in equation (3.2) exceeds a certain threshold, a training period 

or sequence is initiated by the MMSE based receiver. Since it cannot be ruled out that two or 

more receivers are trained simultaneously, the training sequences have to be user-specific to 

prevent these receivers from adapting to the same transmitter. The training sequence is 

applied iteratively or adaptively. 

 

Consequently, this receiver proved better performance when adjusting the filter weights 

adaptively. As a result, the least minimum error is attained [5] [8] [31] [33][34] [36], without 

the need to undergo complex computations to solve the resulting equations. Moreover, the 

linear MMSE [37] receiver has the property that a single user can be detected without having 

to detect all other users [19][31] . 

 

It follows that the adaptive receiver has the following block diagram Fig.(3.3). 

 

 

 

Fig.3.3: Adaptive MMSE receiver. 

where  

)(nym is the received filter input signal  

)(nwm is the filter weight  

)(nbm  is the original information data signal 

 

 

 

)(ˆ nbm is the estimated data signal at the output of the filter 

and )(nm is the resultant error. 

 

In the following section two design strategies of the MMSE receivers will be discussed. 

 

3.3  Adaptive MMSE Receivers 

 

The adaptive nature makes it possible to handle time-varying system parameters [34]  such as 

varying channel characteristics and changing number of users to achieve better bit error rates 

(BER’s) and a larger system capacity [38]. 
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Two main adaptive MMSE receivers for detecting asynchronous multi-carrier direct sequence 

code division multiple access are illustrated [11]. 

 

3.3.1 The Separate Detection Structure (SD-MMSE) 

 

Separate detection MMSE design structure consists in considering a particular filter for each 

carrier Fig. (3.4). )(y1 n  

 

 
 

Fig.3.4: Adaptive MMSE Receiver with Separate Detection (SD) 

 

The received signal )(tr  is firstly demodulated along each carrier to provide M outputs 

 
Mmm ty

,...,2,1
)(


. Each output is processed by a chip-matched filter and a chip rate sampler. 

Hence, the discrete time output of the m
th

 carrier during the n
th

 bit interval can be modeled as 

the following N×1 vector 

                                                        Tmmmm (N)y(2)y(1)y(n) y                                                      (3.3) 

The MMSE receiver consists in defining the impulse response { )(nmw } of the filter: 

                                                    Tmmmm (N)w(2)w(1)w(n) w                                                  (3.4) 

that minimizes the following Mean Square Error (MSE) criterion: 
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This leads to the well known Wiener-Hopf solution 
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Where:  

)]()([)( nnEn H

mmm yyR   denotes the auto-correlation matrix of the m
th

 carrier output vector, 

and  

 (n)(n)E(n) m1m ybp
*  is the cross-correlation vector between desired symbol and the m

th
 

carrier output vector. 

 

Nevertheless, solving the Wiener-Hopf equation in (3.6), by finding the inverse of R, is 

considered too cumbersome. Instead, an iterative or adaptive algorithm is used. This adaptive 

algorithm needs a certain number of iterations to converge to the optimum solution [39], and 

has the advantage to reduce the computational cost.  

 

3.3.2 The Joint detection Structure (MMSE-JD) 

 

The second design structure is based on a joint structure defined by the concatenation of the 

adaptive filter weights dedicated to each carrier Fig.(3.5). 

 

 
 

Fig.3.5: Adaptive MMSE Receiver with Joint Detection (JD) 

 

It can be derived by replacing in the above approach: 

- )(nmy  by a vector )(ncony  concatenating the M discrete time outputs 
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and 

- )(nmw  by a vector )(nconw  concatenating the M receiver filter weights  
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M

TT nnnn ])()()([)( 21 wwwwcon                                                      (3.8) 

 

Therefore, the criterion can be directly written as follows 
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                                               )()(Resgn)(ˆ
1 nnnb

H
concon yw                                                     (3.9) 

 

In addition, if a suitable training period is used, the code sequence, the carrier phase and the  

channel parameters are not necessary at the receiver. Once the training period is over, the 

filter weights can either be locked for a use in a stationary environment or track channel 

variations in a decision directed manner. 

 

At that stage, the training sequence )(1 nb  is replaced by the estimated data symbol of the 

desired user along each carrier, obtained as follows: 

                                                   (n)(n)Re sgn(n)b m

T

m1m ywˆ                                            (3.10) 

Then, equation (3.5) becomes: 
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The data symbol of the desired user is finally obtained as follows 
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Adaptive implementation of the MMSE receiver will be discussed in the next section. 

 

3.4  Adaptive Implementations of the MMSE Receivers 

 

The adaptive receivers make it possible to suppress both MAI and Inter-Symbol Interference 

(ISI) [41][42] and are shown to be near-far resistant [43], since their built in adaptive filters 

are known to effectively cope with both multiuser interference and multipath propagation in 

case of static channels [9] [34] .They also offer an attractive trade-off between performance, 

complexity and the need for side information (spreading codes, timing for all users, channel 

parameters, etc.).  

 

One way to overcome the problem with the expectation operator that appears in eq. (3.11) is 

to replace it by a time average leading to Least-Squares Algorithms described in the following 

sub-sections. It is well known that the MMSE filter can be approximated adaptively by many 

of these algorithms [40] . 

 

Two fixed step-size algorithms mainly, the Normalized Least Mean Square (NLMS) and the 

Affine Projection Algorithms (APA), in addition to the Recursive Mean Square (RLS) 

algorithm are implemented to adaptively adjust the filter coefficients to optimize its 

performance and to adaptively compensate for time variations in the channel characteristics. 

The performance characteristics of each algorithm are analyzed including their rate of 

convergence and computational complexity. 

 

3.4.1 The Normalized Least Mean Square (NLMS) Algorithm 

 

The LMS algorithm is basically a (stochastic) steepest descent method [25] . The major 

advantage of the steepest descent algorithm lies in its computational simplicity. Thus the main 
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benefits of the LMS algorithm are its simplicity in-addition to its robustness to noise [44] .A 

significant disadvantage, on the other hand, appears obviously in its slow convergence speed 

[45] . 

 

The principle of the LMS algorithm is to minimize the MSE by adjusting the vector of filter 

co-efficients in direction of the negative gradient of the MSE with respect to )(nwm . 

Then the weight update equation is given by  

                                                 
*

LMS (n)(n)μ(n)1)(n εyww                                           (3.13) 

where 

                                    (n)(n)(n)(n)(n)(n) T
ywbb̂bε                                     (3.14) 

(n)y is the received filter input signal  

(n)b  is the original information data signal 

(n)b̂ is the estimated data signal at the output of the filter 

and LMS a small positive constant, called step size, governing the convergence speed. 

 

If LMS is selected to be a large value, then the filter will converge faster than when selecting 

it to be small. 

It is well known that when the input signal is highly correlated, i.e., when the co-variance 

matrix of y(n) has a large range of eigen-values, the LMS algorithm can suffer from slow 

convergence.  

 

Yet, the convergence rate of the filter depends on the power of the received input signal )(ny  

which varies considerably in the case of fading channels. This led to normalizing the LMS. 

The normalized LMS (NLMS) utilizes the effective step-size , which is the LMS step-size 

normalized by the input energy [28] to overcome this problem. The update of the filter 

coefficients is normalized by an estimate of the received input signal power {y(n)}. Then, 

equation (3.13) is given by 

                           *H
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LMS
m (n))(n)(n)(n)(

(n)

μ
(n)1)(n ywby

y
ww 


                       (3.15) 

where: 

the effective step size  is chosen to be  0< NLMS  1, to ensure that the error converges 

regardless of the energy input signal. 

  is a small number that prevents the denominator from becoming zero if the signal power 

becomes small and thus increasing the stability of the filter . 

In matrix form equation (3.15) can be written as follows 

                             *1
eyyyww (n)(n)(n)(n)μ(n)1)(n T

LMSm


                                (3.16) 

for µ =1, the NLMS algorithm can be viewed as the solution to a least-squares problem that 

determines )w( 1n as the vector closest to w ( n) such that  

                                                        (n)(n)1)(n byw                                                      (3.17) 

and can be interpreted as a projection of w(n) that solves an underdetermined least-squares 

problem. As a result, the basic form of the Generalized Normalized Least Mean Square 

(GNLMS) algorithm [46]  or the affine projection algorithms (APA) can be simply derived. 
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These algorithms update the weights on the basis of multiple input signal vectors [47] , while 

the NLMS algorithm updates the weights on the basis of a single input vector [48] . 

 

 

3.4.2 The Affine Projection Algorithm (APA) 

 

A generalized form of the NLMS algorithm (GNLMS), known also as the affine projection 

algorithm will be introduced here. The APA is a better alternative than NLMS in applications  

where the input signal is highly correlated. APA algorithms offer the capability to trade off 

performance with computational complexity [49] whereas NLMS updates the weights )(nw  

by using the current vector )(ny , APA updates the weights by using the current and the L-1 

delayed input vectors )(ny ,…, )1(  Lny , (where L is the number of observers or the block 

size). By changing algorithm parameters and not fundamental structure, it is possible to 

improve performance [12][53]. 

 

The signal vectors {y(n)} have zero mean and are independent and identically distributed 

(i.i.d.) with covariance matrix 

                                               )]()([)( nnEn H

mmm yyR                                                     (3.18) 

If we define a matrix: 

                                               )1(.....)1()()(  LnnnnH
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                                        TLnbnbnbn )1(.....)1()()( 111 b                                    (3.20) 

                             and                        )()()()( nnnn wYbe                                              (3.21) 

the weights )(nw  can be updated as follows: 
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where: 

- APA  is the step size 

- APA  a small positive constant used for regularization. 

- L is the block size as mentioned in [50]. 

It should be noted that APA also approximates the RLS algorithm when the block size L 

approaches the filter length. 

 

3.4.3 The Recursive Least Squares Algorithm 

 

Due to the quicker convergence of the RLS algorithm, it would be attractive to believe that it 

could also be more effective in tracking non-stationary channel conditions [45] . However, it 

requires a significantly greater amount of memory and is much more computationally 

expensive. 

 

The Recursive Least Squares algorithm updates the coefficients to attain the minimization of 

the squared error signal instead of the expected value of an error signal from the time the filter 

initiated operation up to the current time. 

 

The coefficients at time n are chosen to minimize the following cost function: 
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The forgetting factor λ is chosen to be 0 < λ ≤ 1.     

 

The RLS algorithm operates in three steps at each recursion [25]  
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Step(2):                   )1()()1()1()()1( 1  nnnbnnn H
ywkww                      (3.25) 

   Step(3):                        )()1()1()(
1
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where )1( nP  is the error covariance matrix, )1( nk  is the filter gain and    

NIP
1)0(   (  is a small positive constant). 

 

3.5  Computational Cost of the Various Implementations 

 

In this section, a comparative study is carried out between NLMS, APA and RLS when using 

SD or JD schemes taking into account the computational cost, the convergence speed and the 

BER performance. Also different values for the block size (L) are studied. JD structure makes 

it possible to reduce the computational cost when using NLMS and APA, but this is no longer 

the case with RLS (See Table 3.1). 
 

 

Table 3.1: Computational cost for various adaptive filters [11] 

 

Adaptive 

filters 

Separate Detection Joint Detection 

Add./Sub. Mult./Div. Add./Sub. Mult./Div. 

NLMS 3NM 3NM+M 3NM 3NM+1 

APA NM(L
2
+2L+1) 

+L
2
M 

NM(L
2
+2L) 

+M(L
2
+2L+O(L

2
)) 

NM(L
2
+2L+1) 

+L
2 

NM(L
2
+2L) 

+L
2
+2L+O(L

2
) 

RLS 3N
2
M+3NM+M 3N

2
M+4NM 3N

2
M

2
+3NM+1 3N

2
M

2
+4NM 

 

where N are gold code spreading sequences , M is the number of carriers and L is the block 

size. 

 

3.6  Simulation Results  

 

Simulation Protocol in this test are based on 300 Monte Carlo simulations. The spreading 

sequences are gold codes. An asynchronous uplink transmission scenario is assumed with 5 

interferers having each 10 dB power advantage over the desired user (user k=1). The delays 

k  of the interferers are chosen to satisfy 62,)1(3  kTk ck . We use a moderate value 

for the number of carriers, i.e. M=6. As a Rayleigh fading is considered, the channel 
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parameters MmKkmk ,...2,1:,...2,1, }{   are generated according to the complex Gaussian distribution 

with zero-mean and unit-variance.  

 

Two important and essential characteristics of the adaptive algorithms that will be studied are 

the convergence speed and the bit error rate performance.  

 

In Fig.(3.6) below the three algorithms, the NLMS, APA and RLS are compared according to 

their convergence characteristics when the JD receiver structure is implemented. The SNR of 

the desired user is assigned to 20 dB. It is evident that the RLS minimizes the weighted error, 

therefore achieving optimum learning .It also has a faster rate of convergence compared to 

LMS-based algorithms. However, it is much more computationally expensive. 

 

 

Fig.3.6: Convergence characteristics of NLMS, APA and RLS for the JD receiver structure. 

 

Simulations in this figure confirm that the higher the block-size (L), the higher the 

convergence speed of the APA algorithm. Moreover, APA converges faster than the NLMS. 

Satisfactory MSE convergence is observed in around 200 iterations, compared to about 550 

for the NLMS. 

 

Next in Fig.(3.7), the BER performance for both the SD and the JD receiver structures (in 

decision directed mode) is studied when applying the fixed step-size NLMS, the fixed step-

size APA and the RLS adaptive algorithms with various Signal to Noise Ratios. 

 

Notice that an increase in the SNR leads to a better BER performance. Again the RLS shows 
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the least BER when applied to the JD receiver structure at a SNR approximately equal to 12 

dBs, rather than when applied to the SD structure. Therefore, it is recommended to implement 

the adaptive algorithms to the JD structure. 

 

 

Fig.3.7: BER vs. SNR for the separate detection and joint detection receiver structures with 

the various adaptive algorithms. 

 

From the above, we conclude that the JD receiver structure with the APA-L=6 applied, makes 

it possible to achieve a lower BER performance than when the NLMS is applied. 

 

In all the cases studied above, the normalized least mean square (NLMS) and the affine 

projection (APA), the fixed step-size, µ, governs the rate of convergence and the steady-state 

excess mean-square error. To meet the conflicting requirements of fast convergence [51] and 

low steady-state excess mean square error in the NLMS and APA, the concept of Variable 

Step Size (VSS)[12][13] where the step-size needs to be controlled is proposed. 

 

3.7  Variable Step-Size Adaptive Implementation 

 
According to the recent theoretical and practical work[6] proposed in the previous sections, 

the step-size (µ) that governs the rate of convergence and the steady-state excess mean-square 

error needs to be adjusted. 

 

3.7.1 Variable Step-Size Algorithms  

 

Several research papers [9] [13] [34] for proposing different schemes for controlling the step-

size where published all of which tend to obtain the optimum value at which the adaptive 

filter reaches its steady state faster. Two novel algorithms are presented and analyzed. They 
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outperform significantly the existing ones, while maintaining a reduced computational cost 

and realization simplicity [13]. 

 

Some authors worked on varying the step-size in an NLMS based filter design [51][52] , 

while others achieved progress when varying it in an APA-based one [12] [13]. 

 

The relevance of both the VSS-NLMS and VSS-APA is investigated to adaptively implement 

the SD and JD receiver structures by again taking into account the convergence features and 

the BER performances. 

 

3.7.2 Optimal Variable Step-Size 

 

To meet the conflicting requirements of fast convergence and low misadjustment error, a 

variable step-size algorithm [12][13] will be introduced in this section. 

 

Mentioned above the APA updates the weights )(nw  by using the current and the L-1 delayed 

input vectors )(ny ,…, )1(  Lny . 

If we again define a matrix 

                                      )1(.....)1()()(  LnnnnH
yyyY                                     (3.27) 

it follows: 

                                             TLnbnbnbn )1(.....)1()()( 111 b                                    (3.28) 

                                                        )()()()( nnnn wYbe                                                       (3.29) 

                                        )()()()()()1(
1

nnnnnn HH

APA eYYYww


                                          (3.30) 

The update recursion equation (3.30) can be written in terms of the weight error vector 

                                                 )1()()1(  nnne www
                                              (3.31) 

where  )(n
w  is the unknown weight vector and )1( nw is the estimated weight vector. 

Then equation (3.30) becomes 

                              )()()()()()()1(
1

nnnnnnn HH

APAe eYYYwww


                    (3.32) 

But )()()( nnn ewww  , so equation (3.32) is reduced to 

                              )()()()()()1(
1
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                                (3.33) 

Squaring both sides and taking expectations of eq (3.33) yields, 

                                       2
12

(n)(n)(n)(n)(n)E1)(nE HH

APA eYYYww ee


                                 (3.34)                               

 

           
      (n)n)(n)(n)(n)(n)(n)(n)(n)E

1)(n

H

APAeAPA eYYewYYYe  w

w

*

e

e

121**2

2

((n)E    ERe2

E







          (3.35) 

 

Since 
2

)(nwE e is initially zero and if we suppose that )()1(
2

nwE e , then 
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maximizing the above equation with respect to “µ” , minimizes the weight error vector, then 
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Assuming the noise )(t is identically and independently distributed and statistically 

independent of the data vector, and neglecting the dependency of filter coefficient )(nwe  on 

past noises, )(nopt can be written as follows: 
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Where: 

(n)](n))(n)(n)(n)(n)E[(n)E e

*

e

2

Σe wYY(YYww 1**   and Tr. is the trace matrix. 

Observe that the range space of Y(n) * is R(Y(n) * ), then (n))(n)(n)((n) *
YYYY

* 1  is a 

projection matrix onto R(Y(n) * ). 

 

Consequently, if we define 

(n)(n))(n)(n)(n)(n) e

* wYY(YYp 1* 


 , then p(n) will be the projection of )(nwe onto 

R(Y(n) * ) and 
2

(n)p can be written as  

                                          (n)(n))(n)(n)(n)(n)(n) e

*
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And the optimum step-size is given by the following equation 
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Let a positive constant, 

]})(n)(n)(ETrC 1* 

 YY[{
2 , thus (3.40) will be reduced to: 
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Note that, C can be approximated as the block-size L over the signal to noise ratio that is used 

in simulations. Then  

SNRLC /  

Equation (3.41) is the general equation used to calculate an optimum value of the step-size 

after a number of iterations n. It will be used to find both the optimal NLMS and APA step-

sizes as will be seen in the following two sub-sections. 

 

3.7.3 Variable Step-Size APA 

 

Recalling equation (3.41), we notice that it is indirectly dependant on the unknown filter 

coefficients w(n) or directly depending on the value of p(n) which is not available during 

iterating .However, when (n))(n)(n)(n)(n)(n) *
eY(YYp,

* 10   and the expectation even with 
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the presence of noise is given by 

                                     (n)])(n)(n)(n)E[(n)]E[ 1*
eY(YYp

*                                       (3.42) 

In addition, )(ˆ np  is updated as follows: 
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where 

10   is a smoothing factor 

and 

  is a small positive constant used for regularization. 

Substituting 
2

(n)E p by 
2

(n)p̂ , equation (3.41) becomes 
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Then the following weight-update equation in the case of affine projection algorithm 
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yields 
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Where 2max   is the maximum allowable step size that guarantee filter stability and C  is a 

positive constant that can be approximated by SNR/LC  . 

It should be noted that, when 
2

)(ˆ np  is large )(nAPA  tends to max . On the other hand, when 

2
)(ˆ np  is small the step size will be small. Therefore, depending on

2
)(ˆ np , the step size 

)(nAPA  varies between 0 and max . 

 

3.7.4 Variable Step-Size NLMS (VSS-NLMS) 

 

As a special case of the VSS-APA, the VSS-NLMS algorithm can be obtained by setting 

L=1[9]. Thus, the weight update equation of the VSS-NLMS can be written as follows 

 

                                       nen
n

n
nn NLMS *

2
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Where 

                                                (n)(n)(n)(n) H
ywbe  1                                                    (3.48) 

 

The variable step size )(nNLMS  is now updated as follows: 

                                                    
C(n)

(n)
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again, SNRC /1  

 

 

3.8  Simulation Results 

 

In this section we carry out a comparative simulation study between the various adaptive 

filters (NLMS, APA, VSS-NLMS, VSS-APA) when used to implement the SD and JD 

receiver structures. In addition, these adaptive implementations are compared with the 

conventional correlator based receiver [3] .These receivers are compared in terms of the 

convergence features and the BER. 

 

The advantages and the performance of the proposed techniques, along with a variety of 

characteristics are demonstrated by means of Monte Carlo simulations. The simulation held 

here is done by the use of the mathematical program Matlab. More particularly, we carry out a 

comparative study between the various adaptive filters (NLMS, APA, VSS-NLMS and VSS-

APA) taking into account the convergence features and the bit error rate performance. Again, 

the effect of the active number of users and inter-symbol interference on the BER 

performance will be studied. 

 

This test is based on 300 Monte Carlo simulations. The spreading sequences are gold codes of 

length N=31. An asynchronous uplink MC-DS-CDMA system is considered, with K=6 

multiple-access active users (five interfering users 62  k  plus the desired user 1k ). 

 

The interfering users have each a 10 dB power advantage over the desired user. The delays 

 
Kkk ,...,2,1

  of the users are chosen to satisfy 61,)1(2  kTk ck . Here, a moderate value for 

the number of carriers (i.e., M=3) is used as adopted by the third generation CDMA2000 

standard. As a Rayleigh fading is considered, the channel coefficients  
MmKkmk ,...,2,1;,...,2,1, 

  

are generated according to the complex Gaussian distribution with zero-mean and unit-

variance. 

 

In Fig. (3.8) the convergence characteristic of NLMS, VSS-NLMS, APA and the VSS-APA 

for the joint detection receiver structure are shown with the SNR of the desired user assigned 

to 20dB. Note that when implementing the NLMS algorithm, the mean square error converges 

to 0.08 only after 600 iterations. However, varying the step-size of this algorithm, i.e., 

implementing the VSS-NLMS, faster convergence to the 0.08 MSE is reached after 300 

iterations only, thus reducing the time of convergence to the half.  

 

Observe that the APA with the block-size L=6, converges to 0.03 after 200 iterations while 

VSS-APA with L=6 also, converges to the same value of the MSE after only 150 iterations. 

 

Moreover, the MSE converges to 0.02 after 100 iterations and to 0.01 when iterating 180 

times thus recording the fastest convergence speed and the least MSE. Indeed, satisfactory 

MSE is observed in around 150 iterations for VSS-APA, compared to about 500 for the VSS-

NLMS. 
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Fig. 3.8: Convergence characteristics of NLMS, VSS-NLMS, APA and VSS-APA for the JD 

receiver structure. 

 

 

This means retrieving the closest replica of the original transmitted signal with the least error 

in the least time or in the highest speed.  

 

The convergence characteristic is handled again in Fig. (3.9) below, but this time when 

different block sizes of the VSS-APA, using the JD structure. The SNR is assigned to 20 dB. 

 

It is noticed that the VSS-NLMS convergence speed is the slowest, since it needed 600 

iterations to reach approximately a 0.02 mean square error value. Regarding the VSS-APA, 

specifically when only four observers are there,(L=4), converging to the 0.02 occurred after 

200 iterations only, thus achieving a higher convergence speed , thereby reducing the time of 

convergence to the third (200/600). 

 

APA, L=6 

VSS-APA, L=6 
NLMS 

 

VSS-NLMS 

NLMS 
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Fig.3.9: Convergence features of the VSS-APA with different values of L as compared with 

the VSS-NLMS. 

 

However, when L is chosen to be six observers, the VSS-APA converges to 0.02 after 150 

iterations, while when considering L=8, this value is reached after 80 iterations. Moreover, 

the VSS-APA (L=8), converges to 0.01(least square error) value after being iterated for only 

180 iterations. Therefore, from this figure, it is quite clear that, the higher L, the higher the 

convergence speed of the VSS-APA algorithm. 

 

Fig.(3.10) below, illustrates the BER performance of the single detection (SD) receiver 

structure with the various adaptive algorithms. The SNR is studied during the period 0 to 20 

dBs. Through the period 0 to 20 dBs, the VSS-NLMS, showed better BER performance 

compared to the fixed NLMS. Whereas, during the same period, the VSS-APA(L=6) 

algorithm assured the best and least BER performance compared to the APA(L=6), VSS-

NLMS and the NLMS algorithms. 

VSS-NLMS 

VSS-APA, L=4 

VSS-APA, L=6 

VSS-APA, L=8 
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Fig.3.10: BER performance of the SD receiver structure with the various adaptive filters. 

 

Now let us apply the four adaptive algorithms (the NLMS, the VSS-NLMS, the APA(L=6) 

and the VSS-APA(L=6)) to the JD receiver structure and observe the results in Fig. (3.11). 

 

Notice that again the VSS-APA with L=6, shows the least BER (10
5
) at SNR=20, while 

when the fixed step-size APA with L=6 is applied the BER is 0.001. Moreover, the VSS-

NLMS outer-performs the fixed step-size NLMS. 

 

Next, the near-far problem and the performance of an MMSE adaptive MC-DS-CDMA 

communication system, with the presence of Interference to signal ratio (ISR), will be 

examined. The conventional correlator based receiver, the VSS-APA-SD receiver structure 

and finally, the VSS-APA-JD receiver structure are the three cases for which the BER 

performance is to be studied. Fig. (3.12) shows the interference to signal ratio ranges from 0 

to 20dBs, the number of users is chosen to be six and the SNR of the desired user is assigned 

to 15 dB. 
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Fig.3.11: BER performance of the JD receiver structure with the various adaptive filters. 

 

 

Fig.3.12: BER vs. ISR for the conventional correlator based receiver, APA with Separate 

Detection, APA with Joint Detection. 
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Again the VSS-APA-JD based receiver structure showed the least BER in the decision directed 

mode after training with 500 symbols. It attained a 0.0008 error rate value compared to 0.008 to 

that of the SD-VSS-APA and a 0.3 to the conventional correlator based receiver. 

 

In order to observe the effect of the number of active users of the MC-DS-CDMA 

communication system on the BER performance when the VSS-APA algorithm is applied to both 

the VSS-APA-SD and the VSS-APA-JD, in addition to the conventional correlator based 

receiver, simulation has been run after training with 500 symbols and 10000 Monte Carlo loops, 

Fig. (3.13) was obtained. 

 

 

Fig.3.13: BER vs. Number of active users for the conventional correlator based receiver, APA 

with Separate Detection, APA with Joint Detection 

 

It is noticed that the conventional correlator based receiver proposed by Kondo [3] attained a high 

bit error rate (0.2) while the VSS-APA-SD based receiver ended at 0.05 BER value with 16 

active users of the system but still the VSS-APA-JD recorded the least BER (0.02) value among 

the mentioned receivers. 
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3.9  Conclusion 

 

Simulation results have proved that the VSS-APA implemented to the JD receiver structure 
outer-performed the VSS-NLMS algorithm by achieving better BER performance. Therefore, it is 

recommended to use it when designing receiver structures in MC-DS-CDMA mobile 

communication systems. Nevertheless, the computational complexity is considered high. 
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CHAPTER 4  

CONCLUSION AND FUTURE WORK 

 

In this chapter, the conclusions of the work introduced and the work proposed in the previous 

chapters will be verified in the first section. Moreover, a comparison among the various 

receiver structures is held. In the second section the relevance to the future work will be 

introduced. 

 

4.1  Conclusion 

 
Over the last decades, efforts have been made to improve the performance of MC-DS-CDMA 

mobile communication systems. Since the transmission is wireless, the original signal is 

exposed to multi-path fading and MAI while passing through a Rayleigh fading channel in its 

way to the receiver. 

 

In particular, researches on receiver-design have been elaborating methods to retrieve a 

replica of the transmitted signal with the least MSE by suppressing MAI, mitigating the near-

far problem and compensating for multi-path fading. 

 

The so-called Rake receiver cannot eliminate the MAI and, hence, it is limited by the near-far 

effect. The optimal multi-user detector that consisted of a matched filter for each user, 

followed. It solved the near-far problem and completely eliminated MAI. However, it was 

considered highly computational as the number of users of the system is increasing. A 

solution to reduce this complexity led to use a de-correlating receiver. However, it is not 

suitable for adaptive implementations. As an alternative, MMSE receivers can be considered 

and can be implemented adaptively.  

 

Optimal adaptive MMSE receivers succeeded in reducing MAI and compensating for the 

effect of fading. However, they have high computational cost. To reduce the computational 

cost, two adaptive MMSE receiver structures are considered. The so-called separate detection 

structure uses an a separate adaptive filter along each carrier while the so-called joint 

detection structure uses one adaptive filter to jointly detect  the transmitted symbol over all 

carriers. 

 

Using adaptive filtering algorithms to implement the MMSE receivers is appealing to trade 

performance with complexity. A number of algorithms, mainly, the NLMS, APA and the RLS 

were implemented. It is confirmed that the JD receiver based structure outperforms the SD 

receiver based one in terms of BER performance and convergence features. However, the 

step-size in these adaptive algorithms should be controlled to meet the conflicting 

requirements of fast convergence and low steady state excess mean square error. Therefore, 

we propose to investigate the relevance of Variable Step Size (VSS) NLMS and APA 

adaptive filters. Simulation results show that the VSS-NLMS and VSS-APA based receivers 

have, respectively, better performance than those based on fixed step size NLMS and APA, in 
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terms of convergence features and BER. 

 

4.2  Future Work 

 

Throughout the chapters of this thesis, various receiver structures were investigated. The aim 

accompanied by the implementation of each of these structures was to improve the 

performance of the MC-DS-CDMA communication system in Rayleigh fading channels. All 

approaches faced the following problems: 

 

1-Reducing the near-far problem 

2-Suppressing the MAI 

3-Reducing computational complexity 

 

Receiver designers solved part of these problems and made it possible to trade-off 

performance with complexity. 

 

Affine projection algorithm is proven to achieve the best performance compared to the 

traditional LMS and RLS algorithms. In particular, it has been shown through our work that 

applying variable step size to the NLMS and the APA algorithms without a change in the 

main structure, led to better performance in terms of convergence features and BER. 

 

It is confirmed that the APA can trade performance with complexity by changing the scalable 

parameters L (the block size) and   (the step-size). To reduce farther the computational cost, 

our future work will focus on investigating the use of low-complexity adaptive algorithms as 

in [53] in our algorithms to update filter co-efficient.  

 

With the fact that APA algorithms are row projection methods with the advantage of reducing 

complex computational processes to linear computations, it is possible to combine them with 

data-reusing strategies [47] to derive a new class of data-reusing adaptive algorithms for 

updating filter coefficients. Moreover data reusing strategies are easily implemented. By 

repeatedly reusing projection matrices and reusing the output data for a number of times, we 

postulate that it is possible to improve performance. 
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