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Abstract 

 

Aspirin is an important for reduce the risk of heart attack and stroke. Human serum 

albumin is the major soluble protein constituent of the circulatory system and has 

many physiological functions including transport of a variety of compounds. In this 

work, interaction between Aspirin with human serum albumin was investigated by 

using fluorescence spectroscopy and UV absorption spectrum. From spectral analysis, 

Aspirin showed a strong ability to quench the intrinsic fluorescence of human serum 

albumin through a static quenching procedure. The binding constant (k) is estimated 

as k=2.02×10
4
 M

-1
 for HSA-Aspirin. In addition The Stern-Volmer constant is 

calculated at room temperature for Aspirin.FT-IR spectroscopy was used to determine 

the protein secondary structure. The observed spectral changes indicates an increase 

of intensity for HSA-Aspirin  interaction.. This variation of intensity is related 

indirectly to the formation of H-bonding in the complex molecules. 
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Introduction   
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1.1 Introduction 

 

 A technique used for the vibration of the atoms of a molecule is called Infrared 

(IR) spectroscopy. To obtain an infrared spectrum, determine what fraction of the 

incident radiation is absorbed at a particular energy when infrared radiation is 

passed through a sample. The appearance of any energy peak in an absorption 

spectrum corresponds to the frequency of a part of a sample molecule [Banwell, 

1972].   

 

Infrared Spectroscopy is an absorption method pertaining to wavelengths in the 

region of 1 to 100 μm, extending the region of visible light to longer wavelengths 

and shorter frequencies (or energies). The IR light does not have sufficient energy 

to induce transitions of valence electrons, but can excite vibrational and rotational 

motions in molecules. Noted that the principle of IR spectroscopy are similar to 

ultra violet (VIS-UV) spectroscopy or other spectroscopic techniques except the 

differences in energy transfer from radiation to the molecules[Wilson et al., 

1955]. 

 

The length of a bond will vary in length when atoms move relatively to each other 

causing the bonds to stretch, or bend when atoms move out of plane relatively to 

one another. Reported linear frequencies to have a resonance frequency of 3N-5 

and non-linear molecules have a frequency of 3N-6, where N is the degree of 

freedom, and some of these will interact with incident infrared radiation 

[Hollowood and Miramontos, 2011].  

 

Serum albumin, also known as blood albumin, is a type of globular protein found 

in vertebrate‟s blood. The albumin gene (ALB gene) is used to encode Human 

serum albumin and is similar to other mammalian forms such as bovine serum. 

They are all chemically similar [Hawkins, 1982].  
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1.2 Proteins 

Proteins are complex macromolecules. They are made up of successive amino acids, 

are covalently bonded together in a head-to-tail arrangement with substituted amide 

linkages called peptide bonds. The building blocks of proteins include 20 amino acids, 

which differ in the structure of their R-groups, and may be hydrophilic or 

hydrophobic, acidic, basic, or neutral. Proteins have the same basic structure, which is 

an amine group (NH2), central carbon atom (alpha-carbon) and a carboxyl group 

(COOH), with the only difference on the side chain labeled R in the figure 1.1. 

[Rosenberg, 2005]. 

 

 

                      Figure 1.1:   general structure of all amino acids [Nelson, 2005]. 

Proteins are known as polypeptides because each protein molecule is made up of a 

long chain of amino acids, and each molecule is attached to it neighboring molecule 

through a covalent peptide bond. A large number of different proteins are known, 

with each type of protein showing a unique sequence of amino acids (see figure 1.2). 

This is exactly the same from one molecule to the next, with each with its own 

particular amino acid sequence [Alberts et al., 2002]. 

 

   Figure 1.2: polypeptide (a chain made up of many linked amino acids). 
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1.2.1 Protein Structure 

Noted that protein structure has four levels that determine protein function. These 

structures are primary, secondary, tertiary, and quaternary [Stabler, 2013]. 

 

1.2.2 Primary Structure 

A primary structure is the simplest level of protein structure. The sequence of amino 

acids is in a polypeptide chain and it‟s unique for each protein [Richardson, 1981]. 

See Figure 1.3. 

 

Figure 1.3:   Primary Structure of protein [Smith et al., 2005]. 

1.2.3 Secondary Structure 

 A secondary structure of protein is formed when local folded structures form within a 

polypeptide as a result of interactions between the carbonyl of one amino acid, and 

the amino hydrogen of another. Alpha helix (α-helix) and the beta pleated sheet (β-

pleated sheet) are the most common types of secondary structures as depicted in 

figures 1.4 and 1.5 respectively. Both of these structures are held in shape by 

hydrogen bonds [Smith et al., 2005]. 

The structure of a α-helix involves the carbonyl (C=O) of one amino acid to be 

hydrogen bonded to the amino H (N-H) of an amino acid, that is four down the chain. 

The R groups of the amino acids stick outward from the α-helix, [Richardson, 1981]. 

 

Figure 1.4: Beta Sheet [Smith, 2005]. 
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In a β-pleated sheet, two or more segments of a polypeptide chain line up next to each 

other, forming a sheet-like structure held together by hydrogen bonds and the R 

groups extends above and below the plane of the sheet. The strands of a β-pleated 

sheet may be parallel, pointing in the same direction (meaning that their N- and C-

termini match up).In antiparallel sheets, the pointing is in the opposite directions 

(meaning that the N-terminus of one strand is positioned next to the C-terminus of the 

other [Nelson, 2005]. 

 

Figure 1.5: Alpha helix [Smith, 2005]. 

1.2.4 Tertiary Structure 

Tertiary structures involve a three dimensional space. Interactions between different 

secondary structures elements and R groups of the amino acid, which make up the 

protein, result in tertiary structures. The interactions can include hydrogen bonding, 

ionic bonding, dipole-dipole interactions, and London dispersion forces, producing a 

linear or spherical structure as in figure 1.6 [Beatty et al., 2016]. 

 

 

Figure 1.6:   Tertiary Structure [Smith et al., 2005]. 

1.2.5 Quaternary Structure 

Many proteins are made up of a single polypeptide chain and have only three levels of 

structure (as outlined above). However, some proteins are made up of multiple 
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polypeptide chains, also known as subunits. When these subunits come together, they 

give the protein its quaternary structure as in figure 1.7. For example, hemoglobin and 

Deoxyribonucleic acid (DNA) polymerase [Gregory and Dagmar, 2004]. Figure 1.8 

shows the Fourier transformation infrared (FTIR) spectrum for a protein and the 

bands. 

 

Figure 1.7: Quaternary Structure [Smith et al., 2005]. 

 

 

Figure 1.8:   FTIR spectrum of a typical protein illustrating the Amide I and Amide II 

bands [yang et al., 2012]. 

1.3 Human Serum Albumin 

The most abundant protein in blood plasma is Human Serum Albumin (HSA). HSA is 

able to bind and thereby transport various compounds such as fatty acids, hormones, 

bilirubin, tryptophan, steroids, metal ions, therapeutic agents and a large number of 

drugs. It serves as the major soluble protein constituent of the circulatory system. 
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HSA contributes to colloid osmotic blood pressure, and it can bind and carry drugs 

which are poorly soluble in water [Abu Teir et al., 2011; Alsamamra et al., 2017]. 

HSA binds a wide variety of hydrophobic ligands including fatty acids, bilirubin, 

thyroxine and hemin and also drugs [Carter et al., 1989].  

 

Abu Teir stated that a protein plays a significant role in bringing solutes into blood 

stream and delivering them to the target organs, as well as to maintain the potential of 

hydrogen (pH) and osmotic pressure of plasma. HSA concentration in blood plasma is 

40 mg/ml. To determine the three dimensional structure of HAS, an x-ray 

crystallographic measurements is applied [Carter et al., 1989].  

Human Serum Albumin is composed of a single polypeptide chain of 585 amino acids 

as shown in figure 1.9. It contains 35cysteines, forming 17 disulfide bridges. The 

Thiols group of the unpaired cysteine at the amino acid position 34 plays an important 

roles in transporting and serving as reservoir for nitric oxide and binds to many small 

metal ions such as (Cu
++

, Cd
++

, Hg
++

,Ag
+
 and  Au

+
). Moreover, a single tryptophan at 

amino acid position 214 is important as a research tool for protein chemists and 

biochemists because of the single tryptophan residue. For this reason, many 

spectroscopic and fluorescence studies, including molar concentration determination, 

fluorescence quenching studies, fluorescence lifetime studies also use it. HSA also 

contains many cysteine residues and charged amino acids, and it has small numbers of 

glycine, methionine [XM and Carter, 1992]. 

 

Figure 1.9:   Amino acid sequence of the protein HSA [Manuel and Bhusan, 2012]. 
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HSA contains three homologous domains in a heart-shaped conformation, named as 

domain I, domain II, and domain III, (see figure 1.10).  Each domain has two separate 

helical subdomains (named A and B), connected by random coil. These subdomains A 

and B consist of 10 alpha helixes: alpha helix (1 - 6) forms subdomain A, and helixes 

(7 - 10) forms subdomain B [Peters, 1998]. 

 

 

Figure 1.10: Molecular structure of HSA. Crystal structure of HSA with an indication 

of its subdomains (IA, IB, IIA, IIB, IIIA and IIIB), of the N and C termini 

[Bhattacharya et al., 2000]. 

 

The N terminal end attaches the Cu+2 and Ni+2 ions. Domain III is the site of the two 

high affinity fatty acid attachments. Other fatty acid sites are located in the center of 

Domains I and II. Fatty acid significantly increases conformational stability. The 

overall denaturation temperature is increased from about Co60 (defatted) to Co80 

(fatted) at pH 7.0, which must reflect an increase in stability in Domain III. Domain I 

has the highest net charge (-9) [Fujiwara, 2006]. 

Aromatic and heterocyclic ligands bind within two hydrophobic pockets in sub-

domains IIA and IIIA, which are site I and site II. Site I is dominated by strong 

hydrophobic interaction with most neutral, bulky, heterocyclic compounds, while site 

II mainly dipole-dipole, van de Waals, and/or hydrogen-bonding interactions with 

many aromatic carboxylic acids [Ouameur et al., 2004]. 
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HSA contained a single tryptophan residue (Trp 214) in domain IIA and its intrinsic 

fluorescence is sensitive to the ligands bounded nearby [Il’ichev et al., 2002]. For this 

reason, it is often used as a probe to investigate the binding properties of drugs with 

HSA. Kang and colleagues have shown that the distribution free concentration and the 

metabolism of various drugs can be significantly altered as a result of their binding to 

HSA [Kang et al., 2004]. Research literature confirms multiple drug binding sites for 

HSA [Bhattacharya et al., 2000].The binding properties of HAS depend on the three 

dimensional structure of the binding sites, which are distributed over the molecule. 

Strong binding can decrease the concentration of free drugs in plasma, whereas weak 

binding results in a short lifetime or poor distribution.  HAS‟s remarkable capacity to 

bind a variety of drugs has led to its prevailing role in drug pharmacokinetics and 

pharmaco dynamics [Kandagal et al., 2007].   

1.4 Aspirin 

Aspirin known as Acetylsalicylic Acid is the prototypical analgesic used in the 

treatment of mild to moderate pain. The molecular formula for Aspirin is C9H8O4 

(see figure 1.11 for the chemical structure) and has anti-inflammatory and antipyretic 

properties. It acts as an inhibitor of cyclooxygenase, which results in the inhibition of 

the biosynthesis of prostaglandins [Carswell et al., 1975]. 

 

 

Figure 1.11: chemical structure of Aspirin 
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Acetylsalicylic acid is a weak acid (pK a = 3.5) and for this reason it can be absorbed 

across the mucosal lining of the stomach. However, most of the drug is absorbed from 

the upper regions of the small intestine. Upon entering the bloodstream Aspirin is 

hydrolyzed to acetic acid and salicylic acid [Carswell et al., 1975]. 

The most common use of Aspirin is to treat mild to moderate pain or to reduce fever. 

Aspirin is also prescribed to individuals suffering from arthritis and osteoarthritis 

because of its anti-inflammatory action. In addition to its anti-inflammatory, 

antipyretic, and analgesic properties, aspirin is also prescribed to patients at high risk 

for heart attack [Patrignani, 2016]. 

Aspirin in high doses use prescribed in the treatment and management of rheumatic 

fever, rheumatic arthritis, other inflammatory joint conditions and pericarditis. In low 

doses, it is useful in preventing blood clots from forming, reducing the risk of 

a transient ischemic attack (TIA) and unstable angina. It is useful in preventing 

myocardial infarction in patients with cardiovascular disease, by preventing clot 

formation. It is helpful as a preventative medicine for stroke and colorectal cancer, but 

not to treat a stroke [Avorn, 1983]. 

1.5 Recent Studies 

Studied the competitive binding of vitamin C and aspirin to bovine serum albumin, 

using constant protein concentration and various drug concentrations at pH 7.2. FTIR 

and UV–Vis spectroscopic methods were used to analyze vitamin C and aspirin 

binding modes, the binding constants and the effects of drug complication on BSA 

stability and conformation. These authors reported that at low drugs concentrations, 

no major protein conformational changes occurred, whereas at high drugs contents, 

significant decreases of protein a-helix and b-sheet structures were observed. This is 

indicative of a partial destabilization of protein secondary structure at high drug 

concentrations. This study is interesting in the sense that BSA can be considered as a 

good carrier for transportation of vitamin C and aspirin in vitro [Nafisi and Sadeghi, 

2011]. 

 

 

https://www.medicalnewstoday.com/articles/176648.php
https://www.medicalnewstoday.com/articles/176648.php
https://www.medicalnewstoday.com/articles/164038.php
https://www.medicalnewstoday.com/articles/8886.php
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Research into the reaction mechanism between aspirin and bovine serum albumin 

(BSA) at different temperatures (293 K, 303 K, 310 K) and two different methods: 

method 1, the fluorescence spectroscopy focusing on the fluorescence change of 

protein; and method 2, the fluorescence spectroscopy, focusing on the fluorescence 

change of the drug, under simulated physiological conditions (pH = 7.4) revealed that 

the electrostatic forces played an important role on the conjugation reaction between 

aspirin and BSA [Li et al., 2014]. 

 

 Investigation on the interaction between aspirin and HSA by fluorescence 

spectroscopy, and from the interaction, constants KD of human serum albumin and 

aspirin were determined at different temperatures according to double reciprocal Line 

weaver-Burk plot. Wang and colleagues discuss the main binding force through 

thermodynamic equations. Where constants KD at 37°C 25°C was 1.44×10
-3

and 

1.96×10
-3

mol.L
-1

respectively [yang et al., 2008].  

 

Carried out research on the concurrent binding behavior of indomethacin to HSA 

under the effect of aspirin-mediated protein acetylation. They also explored the 

esterase-like catalytic property of the modified proteins, as binary or ternary 

systems, by using various spectroscopic and molecular docking techniques 

[Esmaeili, 2017]. 

 

1.6 Research Statement 

Infrared spectroscopy provides measurements of molecular vibrations through 

specific absorption of infrared radiation by chemical bonds. The form and frequency 

of the Amide I band, which is assigned to the C=O stretching vibration within the 

peptide bonds, is very characteristic for the structure of the studied protein. From the 

band secondary structure, components peaks (α-helix, β-strand) can be derived and 

analysis of this single band allows clarification of conformational changes with high 

sensitivity [Darwish et al., 2010; Alsamamra et al., 2017].  
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This study is limited to the mid-range infrared, covering the frequency range from 

4000 to 400 cm
-1

. This wavelength region includes bands that arise from three 

conformational sensitive vibrations within the peptide backbone (Amides I, II and III) 

of these vibrations. Amide I is the most widely used and can provide information on 

secondary structure composition and structural stability [Cui et al., 2008; Kang et al., 

2004; Rondeau et al., 2007; Abu Teir et al., 2014; Alsamamra et al., 2017]. 

Other spectroscopic techniques used for studying the interaction between drugs and 

proteins include fluorescence and UV-VIS spectroscopy. These have the advantage of 

offering high sensitivity, rapidity and ease of implementation. [Wybranowski et al., 

2008; Li et al.,  2008; Li et al., 2006].  

All the above-mentioned techniques will be used to study the interaction between 

HSA and Aspirin. 

Finally, this thesis is comprised of five chapters: chapter two will discuss the 

theoretical aspects to guide the reader to the important ideas of this study. Chapter 

three includes details of the experimental, procedures, and instruments used. In 

chapter four the results are presented and discussed. The final chapter contains 

conclusions and future work. 
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Chapter Two 

 Theoretical Background 
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2.1 Introduction 

In this chapter, I will outline spectroscopic techniques used in this thesis, along with 

the physical principle for each technique. In particular, Fourier transformation 

infrared spectroscopy and ultra-violet spectroscopy and florescence spectroscopy will 

be outlined. 

2.2 Electromagnetic Waves 

Electromagnetic waves (EMW) are transverse oscillating waves composed of electric 

and magnetic fields perpendicular to each other and perpendicular to the direction of 

propagation (see figure 2.1). EMW propagate by way of a sine or cosine waves at the 

speed of light in vacuum [Stuart, 2004]. Included in the electromagnetic spectrum 

are: radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-

rays and gamma rays (see figure 2.2). 

 

 

 

Figure 2.1: Plane electromagnetic wave propagating [Sharma, 2007]. 
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Figure 2.2: Electromagnetic spectrum [Shernan, 2014]. 

 

In vacuum, IR radiation has a wavelength between ≈ (780 nm - 1 mm). It spans three 

orders of the Mid-IR region from 4000 to 400 cm
-1

, where vibrational and rotational 

bands are observed, and the UV-VIS region is from 10-800 nm [Hollas, 2004].      

 

Figure 2.3: The IR region of electromagnetic spectrum [Shernan, 2014]. 

 

The wavelength   is inversely proportional to frequency  and is governed by the 

relation:    
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Where   is speed of light and ν is the frequency. 

Electromagnetic radiation comprises multiple electromagnetic waves or photons, 

which carry energy, momentum and angular momentum. The energy of each photon 

is given by Planck–Einstein equation: 

      
 

 
                                                        

Where   is the energy and   is Planck's constant and   is frequencyand   is 

wavelength [Yadav, 2005; Williams, 1976; Ball, 2001]. 

outlined that atomic spectra arise from the transition of electron between atomic 

energy levels, while molecular spectra arise from three types of energy transitions due 

to molecular rotation, molecular vibrational, and electronic transition [Williams, 

1976].  

According to Born Oppenheimer approximation, the total energy of the molecule is 

given by: 

                                                                         

Where: 

     : is rotational energy due to the molecule rotation about the axis passing the 

center of gravity for the molecule,     : is vibrational energy due to the periodic 

displacement of atoms around their equilibrium positions ,     : is related to the 

energy of the molecule's electrons [Sharma, 2007]. 

When radiation falls on a sample it may be absorbed and occurs when the energy of 

radiation matches the difference in energy levels of the sample, otherwise it may be 

either transmitted or scattered by the sample.  

A simplified representation of the quantized electronic and vibrational states is 

represented in figure 2.4. Research findings have confirmed that transitions between 

electronic energy states require more energy than transitions between vibrational 

energy states [Hollas, 2004; Turro, 1991; Ball, 2001].  
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IR radiation does not have enough energy to induce electronic transitions as seen with 

UV-VIS. Absorption of IR is appropriate to excite vibrational and rotational states of 

a molecule as shown in figure 2.4. 

 

Figure 2.4: A schematic representation of the quantized electronic and vibrational 

energy levels of a molecule. 

Intensity of the light absorbed to produce a given transition is given by Beer-Lambert 

law: 

 

  
                                                                           

In which    and    are the intensity of light transmitted through the absorber and 

incident upon it respectively. 

  : is the molar absorption coefficient or (molar extinction coefficient). 

 : is the concentration of absorbing molecule in the sample. 

 : is the length of the light path in the sample.  

Equation 2.4 can be represented in logarithmic form: 

       

 

  
                                                                     

Where   is called Absorbance [Hollas, 2004; Schulman, 1977]. 

 

2.2.1 Infrared (IR) Spectroscopy 

To obtain an infrared spectrum, infrared radiation is passed through a sample and 

determining the fraction of the incident radiation absorption at a particular energy. 

The energy at which any peak in an absorption spectrum appears corresponds to the 

frequency of a vibration of a part of a sample molecule [Stuart, 2004]. 



 

18 
 

Infrared spectroscopy (ῡ= 400 to 4000 cm
-1

) measures the changes in the vibrational 

and rotation movements of molecules. It is commonly used to show the presence or 

absence of functional groups, which have specific vibration frequencies for example, 

C=O, NH2, OH, CH, C-O etc., [Subodh, 2006]. 

In order to for a molecule to absorb radiation, incoming infrared radiation has to be of 

the same frequency as one of the fundamental modes of vibration of the molecule. 

Resulting in the increase of the vibrational motion of a small part of the molecule 

whilst the rest of the molecule is unchanged. Vibrations can lead to either a change in 

bond length (stretching) or bond angle (bending), and some bonds can stretch in-

phase (symmetrical stretching) or out-of-phase (asymmetric stretching) [Stuart, 

2004]. 

Infrared radiation covers wavenumbers approximately from13,000 to 10 cm
-1

of the 

electromagnetic spectrum, or wavelengths from 0.78 to about 1000 μm. At high 

frequencies, it is bound in the red end of the visible region and at low frequency it is 

bound in the microwave region. The IR region is further separated into three smaller 

areas: Near IR, Mid IR and Far- IR. Mid-IR, between 4000 to 400 cm
-1

, is the most 

frequently used region [Shernan, 2014]. Therefore, the Mid-IR range is selected for 

this study. As an experimental and analytical technique, IR spectroscopy is one of the 

oldest procedures available to contemporary researchers [Settle, 1997]. 

The key purpose of IR spectroscopic analysis is to determine the chemical functional 

groups in a sample. It works by positioning a sample in the path of an IR beam and 

absorption measurement of different IR frequencies is taken. Different functional 

groups absorb characteristic frequencies of IR radiation. Using various sampling 

accessories, IR spectrometers works on a range of sample types such as gases, liquids 

and solids, and makes the ideal tool for structural elucidation and compound 

identification [Shernan, 2014]. IR spectroscopy provides measurements of molecular 

vibrations due to the specific absorption of infrared radiation by chemical bonds 

[Narhi, 2013]. The energy at which peak in absorption spectrum appears ,it tallies 

with the frequency of vibration of a part of a sample molecule. Molecules in an array 

of point masses that are connected with each other by massless springs representing 

the intra-molecular interactions between the atoms are known as Harmonic vibrations 

[Wilson et al., 1955].                    
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The simplest case is given by two masses, mA and mB, corresponding to diatomic 

molecule A-B  upon displacement of the spheres along the x-axis from equilibrium 

position by    , a restoring force    acts on the spheres, which according to Hooke‟s 

law, is given by : 

                                                                        

Here   is the spring or force constant, which is a measure of the rigidity of the spring, 

that is, the strength of the bond [Hildebrandt and Siebert, 2008]. 

The potential energy   depends on the square of the displacement from the 

equilibrium position, 

  
 

 
                                                                     

As when spring (bond) is stretching it will affect the equilibrium distance (bond 

length) so potential energy will be affected.                                 

The kinetic energy   of the oscillating motion is: 

  
 

 
 ( ́)

 
                                                                  

Where   is the reduced mass defined by 

  
       

       
                                                              

Because of the conservation of energy, the sum of   and   must be constant such that 

the sum of the first derivatives of   and   is equal to zero. This leads eventually to the 

Newton equation of motion: 

    

   
 

 

 
                                                                 

This equation represents the differential equation for a harmonic motion. Solving this 

equation leads to: 

  √
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The above equation describes what one intuitively expects when the circular 

frequency of the harmonic vibration increases, the rigidity of the spring (or the 

strength of the bond) increases but decreases with increasing masses of the atoms 

(spheres).  

2.2.2 Normal Modes of Vibration 

 Outlines that the normal modes of a system are the vibrational motions of the system, 

such that each coordinate of the system oscillates under simple harmonic motion with 

the same frequency [Rosman, 2008].  

In Cartesian coordinate system, each atom can be displaced in the x, y and z 

directions, corresponding to three degrees of freedom. Thus, a molecule of N atoms 

has in total 3N degrees of freedom as shown in table 2.1, but not all of them 

correspond to vibrational degrees of freedom [Settle, 1997]. 

A nonlinear molecule (where the atoms are not located in straight line) has three 

rotational degrees of freedom, whereas a linear molecule has only two. The remaining 

3N-6 and 3N-5 degrees of freedom correspond to the vibrations of a nonlinear and a 

linear molecule as shown in table 2.1 , respectively [Hildebrandt and Siebert, 2008]. 

Table 2.1: Degrees of freedom for polyatomic molecules [Stuart, 1997]. 

Type of degree of freedom Linear Non-linear 

Translational 3 3 

Rotational 2 3 

Vibrational 3N-5 3N-6 

Total 3N 3N 

 

Stretching and bending are two types of molecular vibrations corresponding to the 

normal mode of molecule. Stretching is rhythmical movement along the bond axis 

and can be symmetric or anti-symmetric [Settle, 1997]. Bending vibrations arise 

when there is a change in bond angle between two atoms or when a group of atoms 

move, relative to the reminder of the molecule [Mirabeela, 1998].  

In order to determine which functional groups are present or absent, use the frequency 

of normal modes, which is a characteristic of the presence of certain functional group. 

By examination of this frequency one can determine which functional groups are 

present or absent [Shernan, 2014].  
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There is a wide range of variation in many of the group frequencies. This is because 

the bands arise from complex interacting vibrations within the molecule. Absorption 

bands may, however, represent predominantly a single vibrational mode. Certain 

absorption bands, for example, those arising from C-H, O-H, and C=O stretching 

modes, remain within fairly narrow regions of the spectrum [Settle, 1997].  

 

2.2.3 Quantum Mechanical Treatment of Vibration 

The harmonic oscillator approximation treats a diatomic as if the nuclei were held 

together by a spring. The potential energy of classical harmonic oscillator depends 

upon the square of the displacement from equilibrium and the strength of the spring. 

All values of energy are allowed classically. The quantum mechanical solution to the 

harmonic oscillator equation of motion predicts that only certain energies are allowed 

   
 

  
√
 

 
(  

 

 
)                                                           

The potential energy for diatomic molecule for harmonic oscillator approximation is 

shown below in figure 2.5. 

2.2.4 The An-Harmonic Oscillator 

Real molecules follow less precisely the simple harmonic motion and do not adhere to 

Hooks law because they are not so elastic. For example, if a bond stretches 60% of its 

real length then a molecular complicated situation should be assumed [Banwell, 

1972]. 

The Morse curve, see (fig. 2.5) for a molecule undergoing harmonic extensional 

compression a purely empirical expression, which fits this curve to good 

approximation was derived by Morse and is called the Morse function [Settle, 1997]. 

     [        (     ) ]
 
                                                   

Where : 

 : constant for a particular molecule,    :the dissociation energy,    :the dissociation 

energy. 
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When it is treated using Schrodinger equation and using   
 

 
 (     )

 
then the 

pattern of the allowed vibration energy levels are found to be : 

   (  
 

 
)  ̀  (  

 

 
)
 

                                                      

Where: 

          

  : is an oscillating frequency,  ̀  : is the oscillation frequency in wave number,    : 

is the corresponding an-harmonic it y constant which is positive and small for bond 

stretching (≈+0.01) .this means that the vibration levels crowded more closely with 

increasing   [Banwell, 1972].      

 

 

Figure 2.5: potential energy of a diatomic molecule as a function of atomic 

displacement (inter-nuclear separation) during vibration. The Morse potential (blue) 

and harmonic oscillator potential (green) [Settle, 1997]. 

 

2.3 Fourier Transform Infrared (FT-IR) Spectroscopy 

 

According to Settle (1977), FT-IR spectroscopy is a measurement of wavelength and 

intensity of the absorption of IR radiation by a sample. Historically, spectroscopy was 

heavily dependent on dispersion elements such as prisms or gratings .Hence different 

components of light ( λ, ν) were allowed into the sample separately, while FT-IR 
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allows simultaneous measurements at all frequencies and can be applied to both 

emission or absorption [Banwell, 1972].                                                                                                  

Infrared spectrometers capabilities have been significantly improved by the 

introduction of Fourier Transform spectrometers and have been applied to many areas 

that are very difficult or nearly impossible to analyze by dispersive instruments 

[Shernan, 2014]. The most important advantage of FT-IR spectroscopy for biological 

studies is that spectra of almost any biological system can be obtained in a wide 

variety of environments [Li et al., 2007]. 

2.3.1 Principle of IR Absorption 

At the very core of IR spectroscopy is the Principle of IR absorption by molecules. 

Absorption is the process by which the energy of a photon is taken up by the matter. 

Several types of physical processes are involved in absorption, depending on the 

quantum energy of the particular frequency of electromagnetic (EM) radiation. For 

example, electronic transitions and ionization [Settle, 1997]. During energy 

absorption, molecules are excited to a higher energy states including IR absorption. IR 

radiation lacks enough energy to induce electronic transitions compared to UV-VIS. It 

corresponds to energy changes on the order of 8 to 40 KJ/mole [Shernan, 2014]. 

According to Settle (1997), the absorption of IR is restricted to excite vibrational and 

rotational states of a molecule. IR‟s energy range corresponds to the range 

encompassing the stretching and bending vibrational frequencies of the bonds in the 

most covalent molecules. A change in the amplitude of molecular vibration occurs 

when the frequency of the radiation matches the vibrational frequency of the molecule 

and radiation is absorbed. However not all bonds in a molecule are capable of infrared 

energy absorption .Only when the vibrations or rotations within a molecule cause a 

net change in the dipole moment of the molecule, then the bond is capable to absorb 

IR [Pavia et al., 2009].  

IR spectrum represents a thumbprint of a sample with absorption peaks, 

corresponding to the frequencies of vibrations between bonds of the atoms making up 

the material. Since every material has its unique combination of atoms, no two 

compounds generate the exact same infrared spectrum [Settle, 1997]. This is why IR 

spectroscopy is so useful for obtaining positive identification (qualitative analysis) of 
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different kind of material. In addition, the size of the peaks in the spectrum is a direct 

indication of the amount of material present (quantitative analysis) [Thermo Nicolet, 

2001].  

The height of the peaks is defined by the Beer-Lambert relationship. It states that the 

concentration   is directly proportional to the absorbance  .  

That is: 

                                                                             

Where 

 : is the absorptivity of the molecule. 

 : is the path length or distance that the light travels through the sample [Workman, 

1998]. 

 

2.3.2 IR Spectrum Presentation 

Presentation of IR absorption information is generally takes form of a spectrum with 

wavelength or wave-number as the x-axis, and absorption intensity or percent 

transmittance as the y-axis. Transmittance,  , is the ratio of radiant power transmitted 

by the sample   to the radiant power incident on the sample   . Absorbance   is the 

logarithm to the base 10 of the reciprocal of the transmittance   . 

       (
 

 
)                (

 

  
)                                      

The transmittance spectra provide better contrast between intensities of strong and 

weak bands because transmittance ranges from 0 to 100% T, on the other hand, 

absorbance range is from infinity to zero [Shernan, 2014]. 

2.3.3 Theory of FT-IR Spectroscopy 

The most preferred method for IR spectroscopy is FT-IR. After IR is passes through a 

sample, the resulting spectrum represents the molecular absorption and transmission 

creating a molecular fingerprint of the sample [Thermo Nicolet, 2001]. 
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A simple optical device called an interferometer is involved in the mechanism of a 

FT-IR spectrometer.  As shown in the figure 2.6 below, the interferometer requires 

two mirrors, an infrared light source, an infrared detector and a beam splitter. 

 

Figure 2.6: The Michelson interferometer [Viji, 2006]. 

 

At the heart of an interferometer is a beam-splitter. This is a half-silvered mirror, the 

beam-splitter reflects about half of an incident light beam while simultaneously 

transmitting the remaining half. One half of this split light beam travels to the 

interferometer's moving mirror while the other half travels to the interferometer's 

stationary mirror [Hsieh, 2008]. Both beams are reflected back by the two mirrors 

towards the beam-splitter, upon where each of the two beams is again half reflected 

and half transmitted. This results in two output beams. One travelling to the detector 

and the other one travels to the source [Viji, 2006]. 

When the returning two beams reach the beam-splitter, an interference pattern, or 

interferogram, is generated. This interference pattern varies with displacement of the 

moving mirror, with the difference in path length in the two arms of the 

interferometer. The interference pattern, detected by the infrared detector as variations 

in the infrared energy level, is what ultimately yields, spectral information [Hsieh, 

2008]. The interferogram is Fourier transformed with the help of a computer to 

convert the space domain into wave number domain [Viji, 2006].  
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A very simple optical system operates in the FTIR spectrometer (Fig. 2.7). The 

interferometer requires two mirrors, an infrared light source, an infrared detector, and 

a beam splitter. 

 

Figure 2.7: A Simple Spectrometer Layout [Thermo Nicolet, 2001]. 

 

An infrared source is polychromatic, and the light emitted is over a broad range of 

frequencies. Each frequency yields a unique cosine signal and the resulting 

interferogram represents the sum of all cosine waves generated by each individual 

infrared frequency. Importantly, however, only at the point where both mirrors are at 

an equal distances from the beam splitter does complete constructive interference 

occur, with simultaneous constructive interference of all wavelengths. At all other 

points, only some wavelengths interfere constructively, whilst others do not. The 

Fourier transform resolves the frequency and intensity of each cosine wave in the 

interferogram. That is, the algorithm converts the measured intensity versus mirror-

displacement signal (the interferogram) into a plot of intensity versus frequency (a 

spectrum) [Hsieh, 2008]. 

 

Figure 2.8: FT-IR spectrometer layout and basic components [chemwiki]. 
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2.3.4 Amide Bands 

A polypeptide, or a protein for that matter, has nine infrared absorption bands. These 

include amide A, B, and I-VII. The amide I and II bands are the two most prominent 

vibrational bands of the protein backbone. The most sensitive spectral region for the 

protein secondary structure is the amide I band (1600 to 1700 cm
-1

), which is due 

almost entirely to the C=O stretching vibrations. The amide II is mainly from the in-

plane NH bending vibration and from CN stretching vibrations [Smith, 2011]. 

Amide vibrational bands in other categories are very complex depending on the 

details of the force field, the nature of side chains, and hydrogen bonding. So they are 

rarely used in the studying of protein structure. All characteristic amide bands are 

shown in (Table 2.2) [Kong and Yu, 2007;Raaman, 2006]. 

Table 2.2: Characteristic amide bands of peptide linkage [Kong and Yu, 2007; Smith 

2011]. 

Designation Approximate frequency Description 

Amide A 3300 NH stretching 

Amide B 3100 NH stretching 

Amide Ⅰ 1600-1690 C=O stretching 

Amide Ⅱ 1480-1575 CN stretching, NH bending 

Amide Ⅲ 1229-1301 CN stretching, NHbending 

Amide Ⅳ 625-767 OCN bending 

Amide Ⅴ 640-800 Out-of-plane NH bending 

Amide Ⅵ 537-606 Out-of-plane C=O bending 

Amide Ⅶ 200 Skeletal torsion 

 

In amide I region (1600 to 1700 cm
-1

), molecular geometry and hydrogen bonding 

pattern will give rise to different C=O stretching vibration. The amide I band contour 

consists of overlapping component bands (α-helix, parallel β-pleated sheet, anti-

parallel β-pleated sheet, random coils, and β-turns).characteristic software is used to 

assign each component band [Kong and Yu, 2007].  

Deuterium oxide (D2O) is employed in infrared studies. Water (H2O) is less 

frequently used because water absorbs strongly in the spectral region that overlap with 

amide I band and therefore it can affect the spectra. Conversely, D2O has relatively 

low absorbance in the region between 1400 to1800 cm
-1 

[Bai and Nussinov, 2007]. 
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 Some proteins frequencies and the assigned secondary structural element in amide I 

band when employing H2O or D2O are shown in (Table 2.3)  

Table 2.3: DE convoluted amide I band frequencies and assignments to secondary 

structure for protein in D2O and H2O media [Kong and Yu, 2007]. 

H2O D2O 

Mean frequencies Assignment Mean frequencies Assignment 

1624±1.0 β-sheet 1624±4.0 β-sheet 

1627±2.0 β-sheet   

1633±2.0 β-sheet 1631±3.0 β-sheet 

1638±2.0 β-sheet 1637±3.0 β-sheet 

1642±1.0 β-sheet 1641±2.0 3-helix 

1648±2.0 random 1645±4.0 Random 

1656±2.0 α-helix 1653±4.0 α-helix 

1663±3.0 3-helix 1663±4.0 β-turn 

1667±1.0 β-turn 1671±3.0 β-turn 

1675±1.0 β-turn 1675±5.0 β-sheet 

1680±2.0 β-turn 1683±2.0 β-turn 

1685±2.0 β-turn 1689±2.0 β-turn 

1691±2.0 β-sheet 1694±2.0 β-turn 

1696±2.0 β-sheet   

 

2.4 Ultraviolet 

UV-VIS spectroscopy (λ = 200 - 800 nm) measures the changes in electronic energy 

levels within the molecule arising as a result of transfer of electrons from π- or non-

bonding orbitals. It provides the knowledge about π-electron systems, conjugated 

unsaturation, aromatic compounds and conjugated non-bonding electron systems etc., 

[Subodh, 2006]. 

This absorption spectroscopy uses electromagnetic radiations between 190nm to 800 

nm. It is divided into the ultraviolet (UV 190-400 nm) and visible (VIS 400-800 nm) 

regions and the absorption of ultraviolet or visible radiation by often referred as 

electronic spectroscopy. 

Energy absorbed in the UV regions causes changes in the electronic energy of a 

molecule. As a molecule absorbs energy, an electron is promoted from an occupied 

molecular orbital (usually a non-bonding or bonding   orbital) to an unoccupied 

molecular orbital (an anti-bonding    or    orbital) of greater potential energy, as in 

figure 2.9 [Smith, 2011]. 
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Figure 2.9: Relative energies of orbitals most commonly involved in electronic 

spectroscopy of organic molecules [Subodh,  2006] 

For the vast majority of molecules, the lowest energy occupied molecular orbitals are 

σ orbitals, which correspond to σ bonds. Thus likely electronic transitions are:   

                                           

When radiation energy is absorbed during excitation of electrons from ground state to 

excited state, this process principally depends on the nuclei that hold the electrons 

together in a bond. The group of atoms containing electrons responsible for the 

absorption is called Chromophore [Hildebrandt and Siebert, 2008].      

 

Figure 2.10: UV-absorption spectra of free HSA (0.02 mM), free retinol (0.004 mM) 

and their protein complexes [Subodh, 2006]. 
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The wavelength of the radiation that will be absorbed by organic molecule is 

contingent upon the difference in energy between ground state and the various excited 

electronic states of the molecule [Smith, 2011]. 

Atoms in organic molecules are bonded through   and   bonds and the possible 

transitions between them are shown in (Fig. 2.11). Principally, the transition occurs 

from Highest Occupied Molecular Orbital (HOMO) to Lowest Unoccupied Molecular 

Orbital (LUMO). Of all the six transitions shown in (Fig 2.11), only the two of lowest 

energy (     and     ) can be achieved with radiation available in the range 

200-650 nm which corresponds to UV-Vis region [Yadav, 2005 ; Kalsi, 2004; 

Raaman, 2006] . 

 

 

Figure 2.11: Generalized molecular orbital energy level diagram and possible 

transitions for organic compounds [Yadav, 2005; Raaman, 2006]. 

 

The      transitions are generally intense while      transitions are weak.  Only 

molecules that have π bonds and atoms with nonbonding electrons absorb light in the 

range 200-700nm and it is called chromophores. Examples of chromopheric bonds 

and their absorption characteristics are given in (Table 2.4), and absorption ranges for 

various electronic transitions are shown in (Fig 2.12) [Kalsi, 2004]. 
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Figure 2.12: Absorption ranges for various electronic transitions [Yadav, 2005]. 

 

Table 2.4: Absorption characteristics of some common chromophoric groups [Kalsi, 

2004]. 

chromophore λmax Type of transition 

>C=C< 177      

-C=C- 178      

>C=O 186 

280 
     

     

180 

293 
     

     

-COOH 204      

-CONH2 214      

-N=N- 339      

-NO2 280      

-N=O 300 

665 
     

     

 

The absorption data were treated using linear double reciprocal plots based on the 

following equation [Rosman, 2008]: 

 

    
 

 

     
 

 

 [     ]
 
 

 
                                    

for ligand,    is the final absorption of the ligated protein, and   is the recorded 

absorption at different concentrations (L).                                             

The double reciprocal plot of 
 

    
 vs

 

 
 is linear and the binding constant   can be 

estimated from the ratio of the intercept to the slope. In order to determine whether 

the bidding between HAS and Aspirin is weak or strong, compare the value obtained 
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with the complex constants for strongly bound ligand-protein complexes vary within 

the range10
6
 to 10

8
 M

-1
 [Hornaback, 2006]. 

To measure the intensity of a light beam as a function of wavelength, a spectrometer 

is used. Spectrophotometers, for the measurement of absorbance in the UV-VIS 

range, come in a variety of configurations. The most common routine laboratory 

instruments are single or double beam devices made up of a light source, 

monochromatic, sample compartment, detector, data processor and display [Cooper, 

2004].         

Spectrophotometers components include a light source (UV and VIS), 

monochromator (wavelength selector), sample holder, a detector, signal processor and 

readout. The radiation source used is often a tungsten filament, a deuterium arc lamp, 

which is continuous over the ultraviolet region, and more recently light emitting 

diodes (LED) and xenon arc lamps for the visible wavelengths. The detector is 

commonly a photodiode or a charge-coupled device (CCD). Photodiodes are used 

with mono chromators, which filter the light resulting in a single wavelength reaching 

the detector. When measuring absorbance at the UV spectrum, the other lamp has to 

be turned off. The same goes when measuring visible light absorbance [Nakanishi et 

al., 1998].                                                                                   

The absorption of UV light by proteins has been research thoroughly and proposed as 

a structural probe from the start of molecular biology. The absorption of proteins in 

the UV arises mainly from electronic bands in aromatic amino acid side chains 

(tryptophan, tyrosine, phenylalanine) and ,to a lesser extent, cysteine residues, close to 

280 n [Serduyk et al., 2007]. 
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Figure 2.13: Schematic diagram of UV-VIS−NIR Spectrophotometer [Nakanishi et 

al., 1998]. 

The light source is a mono chromate splits the light into two equal intensity beams by 

a half mirrored device before it reaches the sample. Beam one is label led sample 

beam and beam two is label led reference. The sample beam passes through a small 

transparent container (cuvette) containing a solution compound being studies in a 

transparent solvent. The reference beam passes through an identical cuvette 

containing only the solvent. The containers for the sample and reference solution must 

be transparent to the radiation which will pass through them. Spectroscopy in the UV-

Vis−NIR region requires quartz or fused silica cuvettes. The light sensitive detector 

follows the sample chamber and measures the intensity of light transmitted from the 

cuvettes and passes the information to a meter that records and displays the value to 

the operator on a screen. Electronic detectors are used to measure the intensities of 

these light beams and compared [Nakanishi et al., 1998]. 

2.5 Fluorescence 

Luminescence is emission of light by a substance not resulting from heat. It is 

therefore essentially a form of cold body radiation. It can be divided into categories: 

fluorescence and phosphorescence, depending on the nature of the excited states 

[Melhuish et al., 1981]. 

Fluorescence and phosphorescence are photon emission processes. They occur during 

molecular relaxation from electronic excited states. The emission of light by a 

substance that has absorbed light or other electromagnetic radiation is a process called 

Fluorescence [Johnson and Spence, 2010]. An example of a molecule that is capable 
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of fluorescing is Fluorophore, which in its ground state has relatively low energy, 

stable configuration and it does not fluoresce. However, at high energy 

configurations, fluorophore is unstable and will eventually adopt the lowest-energy 

excited state, which is semi-stable [Melhuish et al., 1981]. 

The mechanisms by which fluorescence of fluorescent probes and other fluorophores 

takes place is depicted by the simple electronic-state diagram (Jablonski diagram) 

shown in Figure (2.14) below  

 

Figure 2.14:   The Jablonski diagram of fluorophore excitation [Dong and So, 2002]. 

In the above figure E denotes the energy scale; S0 is the ground singlet electronic 

state, S1 and S2 are the successively higher energy excited singlet electronic states. T1 

is the lowest energy triplet state [Johnson and Spence, 2010].                                            

Spectrochemical method of analysis or Fluorescence occurs when the molecules of 

the analyze are excited by irradiation at a certain wavelength and emit radiation of a 

different wavelength. Both qualitative and quantitative information is derived from 

the emission spectrum [Melhuish et al., 1981]. 

When a molecule absorbs light at a particular wavelength, the electronic state of the 

molecule changes from ground state to one of many vibrational levels in one of the 

excited electronic states. This is usually in the first excited singlet state.  

When the molecule is in an excited state, relaxation can occur via several processes. 

For example, the process of Fluorescence can occur resulting in light emission 

[Johnson and Spence, 2010]. And this relates with the relaxation of the molecule 

from the singlet excited state to the singlet ground state with emission of light. Since 

fluorescence has short lifetime (~10
-8

 sec), in many molecules it can compete 
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favorably with collisional deactivation, intersystem crossing and phosphorescence. 

The wavelength (and thus the energy) of the light emitted is dependent on the energy 

gap between the ground state and the singlet excited state [O'Reilly et al., 1975]. 

The most important characteristics of a fluorophore are fluorescence lifetime and 

quantum yield. In order to work out the Quantum yield, take away the number of 

emitted photons relative to the number of absorbed photons. The lifetime is 

determined by the time available for the fluorophore to interact with or diffuse in its 

environment, and hence the information available from its emission [Lakowicz, 

2006].                        

After the excitation occurs in a molecule, the excited state exists for a finite time 

(typically 1
-10

 nanoseconds). The fluorophore undergoes conformational changes 

during this time and is also subject to a multitude of possible interactions with its 

molecular environment. There are two important consequences of these processes 

:firstly, the energy of S2 is partially dissipated, yielding a relaxed singlet excited state 

S1 from which fluorescence emission originates; and secondly, not all the molecules 

initially excited by absorption return to the ground state S0 by fluorescence emission 

[O'Reilly et al., 1975]. 

At Fluorescence Emission stage a photon of energy hυEM is emitted, returning the 

fluorophore to its ground state S0. When energy is depleted during the excited-state 

lifetime, the energy of this photon is lower, and therefore of a longer wavelength 

compared to the excitation photon hυEX. The difference in energy or wavelength 

represented by (hυEX – hυEM) is called the Stokes shift [Johnson and Spence, 2010].  

There are two main categories for Fluorophores. Intrinsic fluorophores occur 

naturally, for example, aromatic amino acids. Eextrinsic fluorophore are added to the 

sample to provide fluorescence when none exists, or to change the spectral properties 

of the sample [Lakowicz, 2006]. 

2.5.1 Quenching 

Fluorescence quenching is a bimolecular process, which reduces the fluorescence 

intensity without changing the fluorescence emission spectrum. It is a consequence of 

transient excited-state interactions (collisional quenching) or from formation of non-

fluorescent ground-state species. Although, this rarely occurs, a decrease of 
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fluorescence intensity by interaction of the excited state of the fluorophores with its 

surroundings is known as quenching. Several mechanisms may involve quenching, for 

instance, collisional quenching occurs when exited state fluorophores are deactivated 

upon contact with some other molecule in solution, which is called a quencher 

[Sheehan, 2009].  

For collisional quenching the decrease in intensity is given by Stern-Volmer equation: 

  

 
      [ ]        [ ]                                                 

Where    is Stern-Volmer quenching constant,  is bimolecular quenching 

constant,  is the unquenched lifetime, and[ ]is the quencher concentration. The 

quenching constant indicates the sensitivity of the fluorophores to the quencher. A 

wide variety of molecules can act as a collisional quencher. Examples include oxygen, 

halogen, amines, and electron deficient molecules like acryl amide [Turro, 1991]. 

Different mechanisms for quenching may be involved depending on the fluorophores 

quencher pair. For instance, quenching of in dole by acryl amide place as a 

consequence of electron transfer from in dole to acryl amide, whilst quenching by 

halogens and heavy atoms occurs as a result of spin orbit coupling and intersystem 

crossing to the triplet state [Lakowicz, 2006; Sheehan, 2009]. 

Static quenching is another type of quenching. It occurs in the ground state and does 

not rely on diffusion or molecular collisions. It occurs as a result of complex 

formation in the ground state between fluorophores and quencher [Turro, 1991]. 

 

2.5.2 Phosphorescence  

When an electron is promoted into a higher orbital because of production of excited 

states, the direction of spin of the electrons is preserved. This happened because most 

of the molecules have an even number of electrons and they will be arranged in pairs. 

It is also possible for the spin of the promoted electron to be reversed, so pairing does 

not occur and leaving the molecule with two independent electrons of the spin in 

different orbitals [Lakowicz, 2006]. Quantum theory underscores that such a 

molecule can exist and found mainly in three forms that differ slightly. However, 
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these are normally indistinguishable in their energy, and the molecule is described to 

exist in a triplet state. Intersystem crossing is said to occur when the indirect process 

of conversion takes place from the excited state, which is the produced by absorption 

energy from singlet state, to a triplet state (see Fig. 2.13).This can take place in 

various substances and occurs when the lowest vibrational level of the excited singlet 

state, S1, has the same energy level as an upper vibrational level of the triplet state 

[Sheehan, 2009].  

It is theoretically forbidden for the direct transition from the ground state, usually 

singlet state, for a molecule with an even number of electrons, to an excited triplet 

state . This implies that w the reverse transition from triplet to ground state will be 

difficult. Moreover, while the transition from an excited singlet state, for example, S1, 

to the ground state with the emission of fluorescence can take place easily and within 

10
-9

- 10
-6

 seconds, the transition from an excited triplet state to the ground state with 

the emission of phosphorescence requires at least 10
-4

 seconds and may take as long 

as 10
2
 seconds. Therefore, describing phosphorescence as the transitions from the 

triplet state to the ground state [Sharma, 2007; Lakowicz, 2006]. 

In absorption spectroscopy, the fundamental process is the absorption of a discrete 

amount of energy. However, the mechanism of absorption of energy is different in the 

ultraviolet, infrared and nuclear magnetic resonance regions. The energy required for 

the transition from a state of lower energy (E1) to state of higher energy (E2) is exactly 

equivalent to the energy of electromagnetic radiation that causes transition [Sheehan, 

2009]. 

A molecule can only absorb a particular frequency provided the molecule contains an 

energy transition of magnitude       In order to understand matter; virtually all 

parts of the electromagnetic spectrum are used. However, in organic chemistry we are 

mainly concerned with energy absorption from only the ultraviolet and visible, 

infrared, microwave and radiofrequency regions [Subodh, 2006]. 
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Chapter Three 

Experimental Part 
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3.1 Introduction 

Section two is about dealing with samples, and film preparation. Section three 

describes the spectrometers used in this work, which are UV-VIS spectrophotometer 

(Nano Drop ND-1000), and Bruker IFS 66/S FT-IR. Section four presents the 

experimental procedure in details. 

3.2 Samples and Materials  

Human Serum Albumin, Aspirin were purchased from Sigma Aldrich chemical 

company and used without further purifications. The data were collected using 

samples in the form of thin films for FT-IR measurements and liquid form for UV-

VIS. Preparations of the thin film samples required three stock solutions as described 

below: 

3.2.1 Preparation of HSA Stock Solution 

HSA was dissolved in phosphate buffer Saline and at physiological (pH 7.4), to a 

concentration of (40 mg/ml), and used at final concentration of (40 mg/ml) in the final 

Aspirin - HSA solution. 

3.2.2 Preparation of Aspirin Stock Solution 

Aspirin with molecular weight of (180.157 g.mol
-1

), was dissolved in phosphate 

buffer Saline and, then the solution was placed in ultrasonic water path (SIBATA AU-

3T) for one hour  to ensure that all the amount of Aspirin was completely dissolved. 

3.2.3 HSA-Aspirin Samples 

The final concentrations of HSA-Aspirin solutions were prepared by mixing equal 

volume from HSA to equal volume from different concentration of Aspirin. HSA 

concentration in all samples kept at 40 mg.ml
-1

. However, the final concentrations of 

aspirin in mM are (0.5, 0.7, 0.9, 1.2 and 1.3). 
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3.2.4 Thin Film Preparations 

Silicon windows (NICODOM Ltd) were used as spectroscopic cell windows. The 

optical transmission is high with little or no distortion of the transmitted signal. The 

100% line of a NICODOM silicon window shows that the silicon bands in the mid- 

IR region do not exhibit total absorption and can be easily subtracted. 40 μl of each 

sample of HSA-Aspirin was spread on a silicon widow and an incubator was used to 

evaporate the solvent, to obtain a transparent thin film on the silicon window. All 

solutions were prepared at the same time for one run at room temperature 25°C. 

3.3 Instruments 

Many instruments can be used in studying the interaction of HSA with drugs. In this 

work the following instruments have been used in taking the measurements.  

3.3.1 FT-IR Spectrometer  

The FT-IR measurements were obtained on a Bruker IFS 66/S spectrophotometer 

equipped with a liquid nitrogen-cooled MCT detector and a KBrbeam splitter. The 

spectrometer was continuously purged with dry air during the measurements.  

3.3.2 UV-VIS Spectrophotometer  

The absorption spectra were obtained by the use of a NanoDrop ND-1000 

spectrophotometer. It is used to measure the absorption spectrum of the samples in the 

range between 220-750 nm, with high accuracy and reproducibility.  

3.3.3 Fluorospectrometer 

The fluorescence measurements were performed by a NanoDrop ND-3300 

Fluorospectrophotometer at 25°C. The excitation source comes from one of three 

solid-state LED's. The excitation source options include: UV LED with maximum 

excitation 365 nm, Blue LED with excitation 470 nm, and white LED from 500 to 

650nm excitation. A 2048-element CCD array detector covering 400-750 nm is 

connected by an optical fiber to the optical measurement surface. The excitation is 

done at the wavelength of 360 nm and the maximum emission wavelength is at 439 

nm. Other equipment such as Digital balance, pH meter, Vortex, Plate stirand 

Micropipettes were used [NanoDrop 3300 Fluorospectrometer V2.7 user's Manual 

2008].  



 

41 
 

3.4 Experimental Procedure  

3.4.1 UV-VIS Spectrophotometer Experimental Procedures  

Procedure of UV-VIS spectrophotometer was followed as described in 

NanoDrop1000 Spectrophotometer V3.7, 2008, User's Manual [NanoDrop 1000 

Spectrophotometer V3.7, User's Manual, 2008], which is as follows: 

A (10) μl sample of Aspirin is pipetted into the end of a fiber optic cable (the 

receiving fiber). A second fiber optic cable (the source fiber) is then brought into 

contact with the liquid sample causing the liquid to bridge the gap between the fiber 

optic ends. The gap is controlled to both 1mm and 0.2 mm paths. A pulsed xenon 

flash lamp provides the light source and a spectrophotometer utilizing a linear CCD 

array is used to analyze the light after passing through the sample. The instrument is 

controlled by personal computer (PC) based software, and the data is logged in an 

active file on the PC.  

Before taking the samples absorbance on the NanoDrop 1000 Spectrophotometer 

"blanked". When the NanoDrop 1000 Spectrophotometer is "blanked", spectrum is 

taken of a reference material (blank) and stored in memory of the instrument as an 

array of light intensities by wavelength. When a measurement of a sample is taken, 

the intensity of light that has transmitted through the sample is recorded.  

The sample intensities along with the blank intensities are used to calculate the 

sample absorbance according to the following equation:  

Absorbance = - log (Intensity sample/Intensity blank)                          (3.1) 

Thus, the measured light intensity of both the sample and of the blank are required 

calculating the absorbance at a given wavelength, and Beer-Lambert equation is used 

to correlate the calculated absorbance with concentration.  

Basic Use: the main steps for using the sample retention system are listed below:  

1- With the sampling arm open, pipette the sample onto the lower measurement 

pedestal see photo no.1 of figure3.1.  

2- Close the sampling arm and initiate a spectral measurement using the 

operating software on the PC. The sample column is automatically drawn 
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between the upper and lower measurement pedestals and the spectral 

measurement made see photo no.2 of figure 3.1.  

3- When the measurement is complete, open the sampling arm and wipe the 

sample from both the upper and lower pedestals using a soft laboratory wipe. 

Simple wiping prevents sample carryover in successive measurements for 

samples varying by more than 1000 fold in concentration see photo no.3 of 

figure 3.1.  

 

Figure3.1: Main steps for using the sample UV-VIS spectrometer [NanoDrop 1000 

Spectrophotometer V3.7, User's Manual, 2008]. 

 

3.4.2 Fluorospectrophotometer Experimental Procedures  

Procedure of Fluorospectrophotometer was followed as described in NanoDrop 3300 

Fluorospectrometer V2.7,2008 User‟s Manual,[NanoDrop 3300 Fluorospectrometer 

V2.7 User’s Manual, 2008], which is as follows:   

Before taking the measurements of samples the NanoDrop 3300 Fluorospectrometer 

was “balnked”.  

A (10) μl sample of Aspirin is pipetted onto the end of the lower measurement 

pedestal (the receiving fiber). A non-reflective “bushing” attached to the arm is then 

brought into contact with the liquid sample causing the liquid to bridge the gap 

between it and the receiving fiber. The gap, or path-length, is controlled to 1mm. 

following excitation with one of the three LEDs; emitted light from the sample 

passing through the receiving fiber is captured by the spectrophotometer. The 
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NanoDrop 3300 is controlled by software run from a PC. All data is logged and 

archived in a folder at a user defined location.  

Basic Use: The main steps for making a measurement are listed below:  

1- With the sampling arm open, pipette the sample into the lower measurement 

pedestal see photo no. 1 of figure 3.2.  

2- Close the sampling arm and initiate a measurement using the operating 

software on the PC. The sample column is automatically drawn between the 

upper bushing and the lower measurement pedestal and the measurement is 

made see photo no. 2 of figure 3.2.  

3- When the measurement is complete, open the sampling arm and wipe the 

sample from both the upper bushing and the lower pedestal using low lint 

laboratory wipe see photo no. 3 of figure 3.2. 

 

Figure 3.2: Main steps for using the sample fluorescence spectrometer [NanoDrop 

3300 Fluorospectrometer]. 

3.4.3 FT-IR Spectrometer experimental procedures  

The absorption spectra were obtained in the wave number range of 400-4000 cm 
-1

. A 

spectrum was taken as an average of 60 scans to increase the signal to noise ratio, and 

the spectral resolution was at 4 cm
-1

. The aperture used in this study was 8 mm, since 

we found that this aperture gives best signal to noise ratio. Baseline correction, 

normalization and peak areas calculations were performed for all the spectra by Optic 

User (OPUS) software. The peak positions were determined using the second 

derivative of the spectra.  

The infrared spectra of HSA, Aspirin-HSA complexes were obtained in the region of 

1000-1800 cm
-1

. The FT-IR spectrum of free HSA was acquired by subtracting the 

absorption spectrum of the buffer solution from the spectrum of the protein solution. 

For the net interaction effect, the difference spectra {(protein and Aspirin solution)-
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(protein solution)} were generated using the featureless region of the protein solution 

1800-2200 cm
-1

 as an internal standard [Surewicz et al. 1993].  

3.4.4 FT-IR Data Processing  

The analysis of IR spectra in terms of protein structure is not straightforward and 

presents serious conceptual and practical problems, despite the well-recognized 

conformational sensitivity of the IR-active bonds. Bands in amide I, amide II and 

amide III regions are broad, not resolved into individual components corresponding to 

different secondary structure elements.  

Resolution enhancement or band-narrowing methods are applied to resolve broad 

overlapped bands into individual bands. FT-IR spectroscopy presents several 

advantages over conventional dispersive techniques for this type of analysis through 

the application of second derivative, peak picking, spectral subtraction, baseline 

correction, smoothing, integration, curve fitting and Fourier self-deconvolution. In the 

present study several data processing tasks were used, such as:  

3.4.4.1 Baseline Correction  

The baseline correction method applied here includes two steps.  

The first step is to recognize the baseline; this is done by selecting a point from 

spectral points on the spectrum. Then adding or subtracting intensity value from the 

point or points to correct the baseline offset. Baseline correction task is used to bring 

the minimum point to zero. This is done automatically using Optic User Software 

(OPUS) and successfully removes most baseline offsets [Griffiths et al., 2007; 

OPUS Bruker manual, 2004].  

3.4.4.2 Peak Picking  

Automated peak picking involves two steps: (1) the recognition of peaks, and (2) the 

determination of the wave-number values of maximum or minimum absorbance. A 

threshold absorbance value is usually set so that weak bands are not measured 

[Griffiths et al., 2007].  
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3.4.4.3 Second Derivative  

Increased separation of the overlapping bands can be achieved by calculating the 

second derivative rate of change of slope of the absorption spectrum, 

Second derivative procedure has been successfully applied in the qualitative study of 

a large number of proteins [Haris et al., 1999].  

3.4.4.4 Fourier Self-Deconvolution 

The Fourier deconvolution procedure, sometimes referred to as „resolution 

enhancement‟ is the most widely used bands narrowing technique in infrared 

spectroscopy of biological materials. Both second derivative and deconvolution 

procedures have been successfully applied in the qualitative study of a large number 

of proteins [Workman, 1998; Kauppinnen et al., 1981]. In addition to providing 

valuable information about their secondary structure, the method has been shown to 

be useful for detecting conformational changes arising as a result of a ligand binding, 

pH, temperature, organic solvents, detergents,.etc. In many cases results obtained 

using this approach has been later supported by studies using other techniques such as 

X-ray diffraction and Nuclear Magnetic Resonance (NMR). However, both derivative 

and deconvolution techniques should be applied with care since they amplify the 

noise significantly [Haris et al., 1999].  

3.4.4.5 Spectral Subtraction  

Difference spectroscopy is another approach that is very useful for investigating 

subtle difference in protein structure. The principle of difference spectroscopy 

involves the subtraction of a protein absorbance spectrum in state A from that of the 

protein in state B. The resultant difference spectrum only shows peaks that are 

associated with those groups involved in the conformational change [Goormaghtigh 

et al., 2006 ; Haris et al., 1999]. The accuracy of this subtraction method is tested 

using several control samples with the same protein or drug concentrations, which 

resulted into a flat base line formation.  
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3.4.4.6 Curve Fitting  

The Curve Fit command allows calculating single components in a system of 

overlapping bands. A model consisting of an estimated number of bands and a 

baseline should be generated before the fitting calculation is started. The model can be 

set up interactively on the display and is optimized during the calculation [OPUS 

Bruker manual, 2004]. 
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Chapter Four 

Result and Discussion  
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In the first section, UV-VIS spectrophotometer results are discussed and analyzed. 

The next section deals with fluorescence spectrophotometer results. In the final 

section, FT-IR graphs and data analysis are given. 

4.1 UV-VIS 

UV-absorption spectroscopy was used to determine the binding constants between 

HSA and a drug (Aspirin). The strength of interaction between HSA and drugs is 

dependent on the binding constant which can be calculated using graphical analysis of 

the absorbance spectrum.  

The excitation has been done on 210 nm and the absorption is recorded at 235 nm for 

Aspirin. The absorption spectra of different concentrations of Aspirin (Fig.4.1) with 

HSA showed an increase of the intensity as the Aspirin concentration increases; this is 

due to major ligand protein interaction at protein surface which does not limit the 

mobility of ligand around HSA molecule. 

 

Figure 4.1: UV-absorbance spectra of HSA with different concentrations of Aspirin 

(a=freeAspirin,b=freeHSA,c=0.5mM,d=0.7mM,e=0.9mM,f=1.2mM,g=1.3mM) 

 

This result support that the peak shifts between free HSA solution and Aspirin-HSA 

complexes are due to the interaction between Aspirin and HSA.  
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4.1.1 Binding Constant  

Aspirin-HSA complexes binding constant were determined using UV-VIS 

spectrophotometer results according to published method [Stephanos, 1996; Koltz et 

al., 1971; Ouameur et al., 2004], by assuming that there is only one type of 

interaction between Aspirin and HSA in aqueous solution, which leads to establish 

equation as follows: 

K = [ Aspirin:HSA ] /[ Aspirin ] [ HSA ]                    (4.1) 

 

The absorption data were treated using linear reciprocal plots based on the following 

equation [Lakowicz, 2006]. 

 

    
 

 

     
 

 

 [     ]
  
 

 
                                          

Where   corresponds to the initial absorption of protein at 280 nm in the absence of 

ligand,   is the final absorption of the ligated protein, and   is the recorded 

absorption at different concentrations ( ). 

 

Figure 4.2: The plot of 1/(A-A0) vs. 1/L for HSA with different concentrations of 

aspirin. 
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Figure 4.2 represents the double reciprocal plot of 1/ (A- A0) vs. 1/L for HSA-Aspirin 

complexes respectively. The binding constant (K) can be estimated from the ratio of 

the intercept to the slope. The obtained values of the binding constants indicates a 

relatively weak interaction of Aspirin (K= 2.02x10
4
 M

-1
) when compared to other 

drug-HSA complexes with binding constants in the range of 10
5
and 10

6 
M

-1 

[Pourgonabadi et al., 2011]. The reason for the low stability can be attributed to the 

presence of mainly hydrogen-bonding interaction [Boulkanz et al., 1995].
 

4.2 Fluorescence  

Fluorescence spectroscopy can be applied to a wide range of problems in the chemical 

and biological sciences. The measurements can provide information on a wide range 

of molecular processes, including the interactions of solvent molecules with 

fluorophores, conformational changes, and binding interactions [Lakowicz,  2006]. 

Various molecular interactions can decrease the fluorescence intensity of a compound 

such as molecular rearrangements, exited state reactions, energy transfer, ground state 

complex formation, and collisional quenching [Turro, 1991; Sheehan, 2009].  

The fluorescence of HSA results from the tryptophan, tyrosine, and phenylalanine 

residues. The intrinsic fluorescence of many proteins is mainly contributed by 

tryptophan alone, because phenylalanine has very low quantum yield and the 

fluorescence of tyrosine is almost totally quenched if it is ionized or near an amino 

group, a carboxyl group, or a tryptophan residue [Darwish et al., 2010].     

As was observed, the HSA fluorescence spectrum exhibiting the peak maximum at 

448 nm (Fig.4.3) and the intensity increases as the aspirin concentration decreased. 
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Figure 4.3: Fluorescence emission spectra of HSA in the absence and presence of 

Aspirin in these concentrations (a=free aspirin, b=1.3mM, c=1.2mM, d=0.9mM, 

e=0.7mM,f=0.5mM,g=free HSA). 

 

4.2.1 Stern-Volmer quenching constants (   ) and the quenching rate constant of 

the biomolecule (  ) 

Fluorescence quenching can be defined as a bimolecular process that reduces the 

fluorescence intensity without changing the fluorescence emission spectrum; it can 

result from transient excited-state interactions (collisional quenching) or from 

formation of non-fluorescent ground-state species. 

To elucidate the mechanism of fluorescence quenching, the steady state fluorescence 

quenching data were examined based on the classic Stern-Volmer equation [Krimm 

and Bandekar, 1986]: 

  

 
      [ ]        [ ]                                           

where    and   are the HSA fluorescence intensity in the absence and presence of 

quencher (Aspirin);    is the HSA bimolecular quenching rate constant;    is the 

average fluorescence lifetime of the HSA molecule without quencher (of the order  of 
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10
-8

s) [Byler and Susi, 1986]; [ ] is the concentration of quencher,     is Stern-

Volmer fluorescence quenching constant. 

Linear curve was plotted according to the Stern-Volmer equation as shown in figure 

4.4. 

 

 

            Figure 4.4: The Stern-Volmer plot for Aspirin-HSA complex. 

 

Fig.4.4 represents the Stern-Volmer plot of HSA fluorescence intensity of Aspirin 

respectively. The curve is linear, suggesting the existence of a single type of 

quenching (dynamic or static) and/or a single binding site for Aspirin in the HSA 

neighborhood , The Stern-Volmer fluorescence quenching constant determined 

applying Eq. (4.2) is equal to (1.34 × 10
3
) L mol

-1
 for Aspirin respectively , The Stern 

– Volmer quenching constant        was obtained by the slope of the curveobtained in 

figure 4.4, The value is much lower than other ksv values for the similar systems 

signalized earlier in literature [Bhattacharya et al., 2000 ; Bai et al., 2008]. The 

value of   , which is equal to (1.34 × 10
11

) L mol
-1

 s
-1

 for Aspirin From equation (4.2) 

the value of          from which we can calculate the value of    using the 

fluorescence life time of 10
-8

 s for HSA. This value confirms clearly the existence of 
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static (diffusion- independent) mechanism of fluorescence quenching [Zsila et al., 

2003]. 

 

4.2.2 Determination of the Binding Constant Using Fluorescence 

Spectrophotometer 

When static quenching is dominant the modified Stern-Volmer equation could be 

used [Yang, 1994]. 

 

    
 

 

    
 

 

  
                                         

Where   is the binding constant of Aspirin with HSA, and can be calculated by 

plotting 
 

     
vs

 

 
, see figure 4.5 . 

 

 

Figure 4.5: The plot of 1/(F0-F) vs 1/[L*10
3
] for Aspirin-HSA complex. 

To determine the binding constant of HSA- Aspirin system, a plot of  
 

    
vs  

 

 
  for 

different Aspirin concentrations are made and shown in Fig .4.5 for Aspirin 

respectively. The plot is linear and has a slope of  
 

    
 and intercept  

 

  
according to eq. 

(4.3). The value of K which equal the ratio of the intercept to the slope was found to 
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be (2.51× 10
4
 M

-1
), which agree well with the value obtained earlier by UV 

spectroscopy and support the effective role of static quenching. 

 

4.3 FT-IR Spectroscopy 

FT-IR spectroscopy is a powerful technique for the study of hydrogen bonding [Li et 

al., 2006], and has been identified as one of the few techniques that is established in 

the determination of protein secondary structure at different physiological systems 

 [Arrondo et al., 1993]. The information on the secondary structure of proteins could 

be deduced from the infrared spectra. Proteins exhibit a number of amide bands, 

which represent different vibrations of the peptide moiety. The amide group of 

proteins and polypeptides presents characteristic vibrational modes (amide modes) 

that are sensitive to the protein conformation and largely been constrained to group 

frequency interpretations [Lakowicz, 2006]. 

The modes most widely used in protein structural studies are amide I, amide II and 

amide III. Amide I band ranging from 1600 to 1700 cm
-1

 and arises principally from 

the C=O stretching [Vanden bussche G et al., 1992], has been widely accepted to be 

used [Workman, 1998]. The amide II band is primarily N-H bending with a 

contribution from C-N stretching vibrations; amide II ranging from 1480 to 1600 cm
-1

 

while amide III band ranging from 1220 to 1330 cm
-1

 which is due to the C-N 

stretching mode coupled to the in-plane N-H bending mode [Arrondo et al., 1993]. 

The second derivative of free HSA is shown in Fig.4.6, where the spectra is 

dominated by absorbance bands of amide I and amide II at peak positions 1660 and 

1540 cm
-1

. Figure (4.7) respectively show the spectrum of HSA-Aspirin complexes 

with different concentrations. 
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Figure 4.6: Second derivative of free HSA 

 

Figure 4.7: Different spectra of HSA and its complexes with different Aspirin 

concentrations in the region 1800-1200 cm
-1

. 
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The peak position of HSA with different concentrations of Aspirin is listed in table 

4.1 respectively. It is clearly that the amide bands of HSA infrared spectrum are 

shifted in two different manners. 

 

Table 4.1: Band assignment in the absorbance spectra of HSA with different Aspirin 

concentrations for Amid I-III regions 

Band 

regions 

(cm
-1

) 

Free 
HSA 

 

 
0.5 mM 

 
0.7 mM 0.9 mM 1.2 mM 1.3 mM 

Amid I  

(1600-1700) 

1661 1660 1658 1657 1655 1653 

1614 1610 1608 1607 1605 1604 

Amid II  

(1480-1600) 

1571 1574 1578 1581 1582 1584 

1543 1540 1538 1534 1534 1533 

1512 1514 1517 1517 1518 1519 

 1472 1471 1471 1469 1468 1468 

Amid III  

(1220-1330) 

1343 1345 1347 1348 1350 1354 

1299 1293 1291 1290 1289 1288 

 1247 1246 1245 1244 1242 1240 

 

An intensity increase in the difference spectra of the Aspirin-HSA for amide I , amide 

II and amid III bands , this happen due to drug binding to protein C=O,C-N and N-H 

groups. 

From table 4.1, noticed that the change in the peak position indicates that the second 

structure of HSA change after interacted with Aspirin drug. 

In summary, the binding of Aspirin to HSA has been investigated by UV-absorption 

spectroscopy, fluorescence spectroscopy and by FT-IR spectroscopy. The binding 

constant value indicates a relatively weak binding of Aspirin with HSA and the 

quenching constant indicate that the intrinsic fluorescence of HSA was quenched by 

Aspirin through static quenching mechanism.  Analysis of FT-IR spectra reveals that 

HSA-Aspirin interaction induces intensity reduction. 
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Chapter Five 

Conclusion 
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In my work the interaction of aspirin with HSA was investigated by means of UV-

VIS spectrophotometer, and FT-IR spectroscopy. I have determined the binding 

parameter for binding of Aspirin with HSA: For aspirin-HSA the binding constant by 

using UV-absorption and fluorescence spectroscopy are estimated to be K= (2.02×10
4
 

M
-1

)respectively(2.45×10
4
 ), The experimental result The binding constant value 

indicate a relatively weak binding of aspirin with HSA and the quenching constant 

indicate that the intrinsic fluorescence of HSA was quenched by Aspirin through 

static quenching mechanism.   

Analysis of FT-IR spectrum indicated that HSA-Aspirin interaction induces intensity 

reduction and a change of the secondary structure of HSA in different bands was 

happened due its interaction of aspirin drug.  

This research need further studies to be a useful guide for synthesis of efficient drugs 

that interact with HSA such as the determinations of binding sites, binding location, 

and thermodynamic parameters (enthalpy, free energy, entropy) at different 

temperatures to deduce the type of the acting force for the binding reaction between 

drugs and HSA.                                           

Furthermore, it is needed to investigate the effect of ions on the binding constants, 

because of the existence of metal ions that can directly influence the binding force of 

drug with protein. Thus, affecting the storage time of the drug in blood plasma and 

enhancing the maximum effectiveness of the drug. 

For future work we investigate the interaction using other spectroscopic techniques 

such as circular dichroism spectroscopy under simulative physiological conditions 

,isothermal titration calorimetry (ITC), molecular docking and molecular dynamics 

simulation(MDS), we can also study the alteration of HSA secondary structure after 

the interaction with Aspirin, and also make thermodynamic investigations and 

electrochemical investigation for the interaction of Aspirin with HSA, and study the 

interaction with more protein transporters. 
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 دراست التفاعل بين الأسبرين مع مصل البيومين البشري باستخذام التقنياث المطيافيت

 اعذاد : خلود علي عواد خليفت 

 اشراف : د.حسين السمامرة

 ملخص:

ثٍىيٍٍ انًصم انثششي هى الأسثشٌٍ يهى فً ذمهٍم خطش انضشتح انمهثٍح وانسكرح انذياغٍح ,ان

انثشوذٍٍ انزائة انشئٍسً وعُصش أساسً فً انجهاص انذوساًَ ونه انكثٍش يٍ انىظائف 

انفسٍىنىجٍح ذشًم َمم انكثٍش يٍ انًشكثاخ انكًٍٍائٍح. فً هزا انثحث ذى دساسح انرفاعم تٍٍ 

انفهىسي واٌضا الأسثشٌٍ يع انثٍىيٍٍ انًصم انثششي ورنك تاسرخذاو ذمٍُاخ انرحهٍم انطٍفً 

ويٍ خلال انرحهٍم انطٍفً أظهشالأسثشٌٍ لذسج عانٍح  ،انرحهٍم انطٍفً لأشعح انفىق انثُفسجٍح

عهى اخًاد انطٍف انفهىسي لانثٍىيٍٍ انًصم انثششي يٍ خلال اجشاء الاخًاد الاسراذٍكً, ذى 

2.02x10حساب ثاتد انشتط نلأسثشٌٍ وانثٍىيٍٍ انًصم انثششي حٍث كاٌ )
4
 M

-1
ولذ ذى (,

أيا انرحهٍم انطٍفً تاسرخذاو  ،حساب ثاتد شرٍشٌ فىنًش عُذ دسجح حشاسج انغشفح  نلأسثشٌٍ

و ، ذمٍُح ذحىٌم فىسٌٍه نلاشعح ذحد انحًشاء فرى اسرعًانها فً ذحذٌذ تٍُح انثشوذٍٍ انثاَىٌح

، ثششيأشاسخ نضٌادج انرفاعم تٍٍ الأسثشٌٍ وانثٍىيٍٍ انًصم انويلاحظح انرغٍشاخ  فً انطٍف 

وهزا الاخرلاف فً انشذج ٌرعهك تطشٌمح غٍشيثاششج نركىٌ سواتط هٍذسوجٍٍُح فً انجضيء 

 انًعمذ.

 


