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HIGHLIGHTS

o Neural network model of cognition in Parkinson’s disease.

o Model presents a framework to explain results from three different cognitive tasks.
o The focus of the model is learning and reversal, as well as working memory.

e Model explains functional interactions between basal ganglia and prefrontal cortex.
e Model suggests a new approach to remediate Parkinson’s deficits in learning.
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ABSTRACT

We present a neural network model of cognition in medicated and unmedicated patients with Parkinson’s
disease (PD) in various learning and memory tasks. The model extends our prior models of the basal gan-
glia and PD with further modeling of the role of prefrontal cortex (PFC) dopamine in stimulus-response
learning, reversal, and working memory. In our model, PD is associated with decreased dopamine lev-
els in the basal ganglia and PFC, whereas dopamine medications increase dopamine levels in both brain
structures. Simulation results suggest that dopamine medications impair stimulus-response learning in
agreement with experimental data (Breitenstein et al., 2006; Gotham, Brown, & Marsden, 1988). We show
how decreased dopamine levels in the PFC in unmedicated PD patients are associated with impaired
working memory performance, as seen experimentally (Costa et al., 2003; Lange et al., 1992; Moustafa,
Sherman, & Frank, 2008; Owen, Sahakian, Hodges, Summers, & Polkey, 1995). Further, our model sim-
ulations illustrate how increases in tonic dopamine levels in the PFC due to dopamine medications will
enhance working memory, in accord with previous modeling and experimental results (Cohen, Braver, &
Brown, 2002; Durstewitz, Seamans, & Sejnowski, 2000; Wang, Vijayraghavan, & Goldman-Rakic, 2004).
The model is also consistent with data reported in Cools, Barker, Sahakian, and Robbins (2001), who
showed that dopamine medications impair reversal learning. In addition, our model shows that extended
training of the reversal phase leads to enhanced reversal performance in medicated PD patients, which
is a new, and as yet untested, prediction of the model. Overall, our model provides a unified account for
performance in various behavioral tasks using common computational principles.

Published by Elsevier Inc.

1. Introduction

particularly the dorsal striatum (Kish, Shannak, & Hornykiewicz,
1988; Rinne et al., 2000). In addition to motor dysfunction, PD pa-

Parkinson’s disease (PD) is a neurodegenerative disorder as- tients show impairment performing various cognitive tasks such
sociated with reduced dopamine levels in the basal ganglia, as planning (Dagher, Owen, Boecker, & Brooks, 1999; Owen, Doyon,

Dagher, Sadikot, & Evans, 1998) and cognitive set shifting (Hayes,
Davidson, Keele, & Rafal, 1998). PD patients also show impairment
performing various working memory tasks, including delayed-
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response tasks (Partiot et al., 1996), the Wisconsin Card Sorting
Task (Amos, 2000; Cooper, Sagar, Jordan, Harvey, & Sullivan, 1991;
Lees & Smith, 1983; Owen et al., 1993; Pickett, Kuniholm, Protopa-
pas, Friedman, & Lieberman, 1998), object and spatial span tasks
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(Gabrieli, Singh, Stebbins, & Goetz, 1996), as well as other working
memory tasks (Lewis et al., 2003).

In reversal learning, subjects initially learn to associate dif-
ferent stimuli with different responses (stimulus-response learn-
ing), and subsequently learn to associate the same stimuli with
the opposite responses (i.e., reversal). Experimental studies show
that dopamine agonists, such as pergolide and bromocriptine,
impair reversal learning in monkeys, PD patients, and healthy
subjects (Cools et al.,, 2001; Jentsch, Olausson, De La Garza, &
Taylor, 2002; Swainson et al., 2000). Cools et al. (2001) found
that medicated PD patients on dopamine agonists are more
impaired at reversal learning than unmedicated patients (also
see Swainson et al., 2000). Jentsch et al. (2002) found that the
administration of cocaine (dopamine reuptake inhibitor) to mon-
keys lead to impairment in reversal learning. Similar results were
found with administering quinpirole (dopamine agonist) to rats
(Boulougouris, Castane, & Robbins, 2009). It is hypothesized that
dopamine medications might overdose the PFC and thus impair
performance in reversal tasks (Cools et al., 2001). In line with this
hypothesis, we show how simulating this dopamine ‘overdosing’
of the PFC due to the administration of dopaminergic medications
impairs reversal performance in our model (see Experimental Pro-
cedures section for more details).

Dopamine medications (both precursors and agonists) are used
to treat motor symptoms of PD (tremor, rigidity, and bradykine-
sia), but can either enhance or impair cognitive function (Cools
et al., 2001; Feigin et al., 2003; Frank, Seeberger, & O'Reilly R,
2004; Swainson et al., 2000). For example, various studies show
that dopamine medications impair stimulus-response learning in
both PD patients (Gotham, Brown, & Marsden, 1988; Jahanshahi,
Wilkinson, Gahir, Dharmaindra, & Lagnado, 2010) and healthy
subjects (Breitenstein et al., 2006; Pizzagalli et al., 2007). In stim-
ulus-response learning tasks, subjects learn to associate the pre-
sentation of different stimuli with different responses based on
corrective feedback. Unlike stimulus-response learning, many
studies found that dopamine medications enhance working mem-
ory performance in PD patients as well as in Parkinsonian animal
models (Costa et al., 2003; Lange et al., 1992; Lewis, Slabosz, Rob-
bins, Barker, & Owen, 2005; Owen, Sahakian, Hodges, Summers, &
Polkey, 1995). It was also found that dopamine agonists enhance
working memory performance in healthy subjects (Mehta, Swain-
son, Ogilvie, Sahakian, & Robbins, 2001).

The model we present here builds on our earlier models
(Moustafa & Gluck, 2011; Moustafa & Maida, 2007), and collec-
tively addresses how PD and dopamine medications affect per-
formance in stimulus-response learning, reversal, and working
memory tasks. This and similar adaptive network, or “connection-
ist” theories of human learning are reminiscent of statistical learn-
ing theories, the most influential of which is Stimulus Sampling
Theory, developed by the late W. K. Estes and colleagues (Estes,
1961). Building on Estes’ work, we are able to extend “connec-
tionist” theories to account for broader conception of associations
among representation of events, thereby addressing the shortcom-
ings of earlier approaches in this domain.

1.1. Stimulus-response learning, reversal learning and working mem-
ory in PD

Experimental studies suggest that the basal ganglia subserve
stimulus-response learning. Graybiel (1998) noted that stimu-
lus-response learning is (a) acquired very slowly and (b) usually
occurs without awareness, processes that have been ascribed to
the basal ganglia function (Frank). Lesion and physiological studies
also confirm the key role of the basal ganglia in stimulus-response
learning. For example, Packard, Hirsh, and White (1989) found
that lesioning the basal ganglia in rats impairs stimulus-response

learning, but not long-term memory tasks. Jog, Kubota, Connolly,
Hillegaart, and Graybiel (1999) recorded striatal neurons’ patterns
of activity while rats performed a stimulus-response task, namely
a T-maze task. Jog et al. found that the activation of striatal neu-
rons increased while learning different motor plans in this task.
These changes in firing patterns were associated with better per-
formance, mainly a decrease in movement time and an increase in
performance accuracy. The model we present here assumes that
the basal ganglia are key for stimulus-response learning, consis-
tent with several experimental and modeling studies.

Various studies show that the basal ganglia and PFC are
important for reversal learning (Clatworthy et al., 2009; Cools
et al,, 2001; Cools & Frank, 2009). For example, Pasupathy and
Miller (2005) recorded from both the striatum and PFC while a
monkey performed a reversal task. They found that, within a trial,
the striatum increased its activation before that of PFC neurons,
suggesting that both basal ganglia and PFC are engaged during
reversal learning processes.

Working memory involves maintenance of information over a
short-time period as well as initiation of motor responses based on
active information. Like reversal learning, both the basal ganglia
and PFC participate in working memory performance (Apicella,
Scarnati, Ljungberg, & Schultz, 1992; Collins, Wilkinson, Everitt,
Robbins, & Roberts, 2000; Gabrieli, 1995; Gabrieli et al., 1996;
Kawagoe, Takikawa, & Hikosaka, 1998; Lawrence, 2000; Owen
et al,, 1998). For example, Gabrieli et al. (1996) tested working
memory capacity in PD patients and healthy controls using verbal
and arithmetic span tasks. In the verbal span task, subjects were
instructed to remember the last word of a given sentence. Subjects
were given up to seven sentences, and were instructed to report
the words in the same order they were presented. However, the
arithmetic span task was very similar to the verbal span task, with
the only difference being that subjects had to remember digits
instead of words. Gabrieli et al. found that PD patients showed
a lower working memory span than that of normal subjects. PD
patients reported a maximum of about three or four items in both
tasks, while the control subjects reported all the items, suggesting
a role for the basal ganglia for working memory performance.
Furthermore, several studies reported that the PFC is important
for maintenance of information in working memory (Goldman-
Rakic, 1995; Sawaguchi & Iba, 2001). Sawaguchi and Iba found
that inactivating PFC with muscimol interferes with performing
working memory tasks, while it had a minor effect on performing
a stimulus-response control task. Also, Sawaguchi and Iba (2001)
reported that increasing the length of the delay interval, from 2 to
4 s, was associated with an increase in the number of errors in the
working memory task. This finding provides converging evidence
that the PFC is key in the active maintenance of information in
working memory. Based on these studies, the model we present
here assumes that the BG and PFC play different but integrative
roles in working memory, such that the PFC is important for
maintenance of information, whereas the basal ganglia are key
for working memory-guided motor responses (i.e., the initiation
of motor responses, based on working memory information
maintained in the PFC (for similar ideas, see O'Reilly & Frank, 2006).

1.2. Model

We briefly describe our model in Fig. 1. The model archi-
tecture and learning equations are described in detail in the
Experimental Procedures section below. The model attempts to ex-
plain how PD and dopamine medications either impair or en-
hance cognitive performance in stimulus-response and reversal
learning as well as working memory tasks. Similar to our earlier
models (Moustafa & Gluck, 2011; Moustafa & Maida, 2007), we
use an extended actor—critic model to address these questions.
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Fig. 1. The basal ganglia-PFC model showing relevant brain structures. The
model has four modules: Input, PFC, motor response, and dopamine module.
The critic corresponds to dopamine neurons whereas the actor corresponds to
the prefrontal-striatal system. Learning (i.e., synaptic modification) takes place in
both the PFC and Striatum modules. Learning is modulated by dopamine phasic
responses projected from the critic. The Input layer sends topographic projections
to the PFC layer. The PFC layer is fully connected to the Striatum (Motor) layer
(i.e., every PFC unit is connected to every striatal unit). Activation of a unit in the
Input layer represents input received from the environment; activation of a unit
in the PFC layer represents attended-to stimuli; activation of a unit in the Striatum
module represents a selected motor response. Dotted lines represent dopaminergic
modulatory effects. Abbreviations: PFC, prefrontal cortex; SNc, substantia nigra pars
compacta; VTA, ventral tegmental area.

Table 1

Simulation of the effects of Parkinson’s disease and dopamine medications.
Parkinson’s disease is associated with decreased phasic and tonic dopamine
levels in the basal ganglia and prefrontal cortex. Dopamine medications increase
tonic dopamine levels but further decrease phasic signaling in the basal ganglia
and prefrontal cortex. See Experimental Procedures section for description of all
parameters. DA = Dopamine.

Tonic DA Phasic DA
Parkinson’s Disease (PD) N N
Dopamine (DA) medication 4 1"

Actor-critic models are systems-level models concerned with
modeling reinforcement-learning-based motor actions (i.e., learn-
ing to make motor actions that are followed by rewards). We as-
sume that PFC is important for stimulus selection and maintenance
of information in working memory, whereas the basal ganglia are
key for stimulus-response learning. In the model, PD is associated
with reduced dopamine levels in both the basal ganglia and PFC
(see for example Rinne et al., 2000). Dopamine medications in-
crease dopamine levels in both brain structures (see Table 1 for a
summary).

In our model, we also simulate functional roles for phasic and
tonic dopamine. Phasic mode is fast-acting and spans milliseconds,
while tonic mode is long-acting and can span minutes. Experimen-
tal studies have shown that phasic and tonic dopamine activate dif-
ferent dopamine receptors (Ballion et al., 2009; also see Dreyer,
Herrik, Berg, & Hounsgaard, 2010; Grace, 2008; Hauber, 2010;
Sammut et al., 2006). Interestingly, Grace and colleagues Grace
(2008) suggest that phasic dopamine is essential for synaptic
modification (and thus learning), while tonic dopamine is key
for the activation of postsynaptic neurons. Accordingly, we sim-
ulate changes in phasic dopamine signaling by changing the learn-
ing rate values according to disease and medication state (see
Learning algorithm for more details. We simulate increase in tonic
dopamine levels by increasing the gain parameter value, as previ-
ously proposed by Cohen and Servan-Schreiber (1992) and Servan-
Schreiber, Printz, and Cohen (1990).

1.3. Experimental procedures

Here, we describe the model architecture and the learning al-
gorithm used in the simulation results presented in this paper. The
model architecture and learning rules are the same as in Moustafa
and Gluck (2011), except that the model used here incorporates a
working memory mechanism in the PFC module to simulate per-
formance in various reversal and working memory tasks.

1.4. Model architecture

The model takes the form of an actor-critic architecture, in
which the critic is important for reward and feedback-based learn-
ing and the actor is key for stimulus and action selection learn-
ing and working memory (Fig. 1). The critic and actor influence
each other in that the critic sends a teaching signal to the actor to
strengthen or weaken stimulus and action selection learning. The
critic is not informed about what action the actor has selected, but
it is informed about whether the action made had rewarding con-
sequences. The model is trained using the temporal difference (TD)
model, which we describe in the learning algorithm section below.

The model has four modules: Input, PFC, motor response, and
dopamine module (see Fig. 1). The PFC layer is fully connected to
the Motor response layer (Striatum module). Each node in the In-
put module represents a cue presented to the network. The Input
and PFC modules have the same number of nodes (n = 20). The
motor module has three nodes, each representing a different motor
response. Input patterns presented to the network activate their
corresponding nodes in the Input module. The Input module sends
topographic projections to the PFC layer (in line with work done
by Goldman-Rakic et al., suggesting that there is topographic rep-
resentation of working memory in the PFC, which is maintained by
learning (Goldman-Rakic, 1995). In our model, we simulate basic
aspects of cortical anatomy, and assume perceptual input is pro-
jected to the prefrontal cortex via topographic connections. Here,
we use a winner-take-all network to simulate inhibitory connec-
tivity among PFC neurons. For simplicity, in the current simula-
tions, we allow only one PFC node to be active at each time step.
Here, we assume that competitive dynamics among PFC neurons
is the brain mechanism underlying limited working memory pro-
cesses. We also assume that negative feedback decreases the ac-
tivity of most active PFC neurons, as simulated in the Amos model
(Amos, 2000). As mentioned above, an increase in tonic dopamine
levels is modeled as an increase in activity and competition among
PFC neurons, which in turn enhance the selection of different stim-
uli following negative feedback.

The model has four parameters that are manipulated depending
on the simulated subjects’ disease status and dopaminergic
medications. These parameters are two learning rate parameters
(one each for the BG and PFC modules) and two gain parameters
(BG and PFC modules).

Learning rate parameters simulate changes in phasic dopamine
signaling (for experimental support, see Reynolds, Hyland, & Wick-
ens, 2001; Tsai et al.,, 2009), whereas gain parameters simulate
changes in tonic dopamine levels in the corresponding simu-
lated brain structure (Cohen & Servan-Schreiber, 1992; Servan-
Schreiber et al., 1990). We simulate PD by decreasing learning rate
and gain values in the basal ganglia and PFC modules. In addition,
we simulate the effects of dopaminergic medications by increas-
ing gain values while concurrently decreasing learning rate values,
beyond those used for healthy normals (Table 1).

The simulated striatum in the proposed model learns to map
input stimuli to responses (for similar ideas, see Guthrie, Myers,
& Gluck, 2009; Suri & Schultz, 1998). Like the PFC module, we
use a winner-take-all network to simulate inhibitory connectivity
among simulated BG neurons. At the cognitive level, the winning
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node represents the selected motor response (for similar ideas, see
Guthrie et al., 2009; Suri & Schultz, 1999). Unlike most existing
basal ganglia models (Ashby, Ell, Valentin, & Casale, 2005; Frank,
2005; Houk, 1995a; Suri & Schultz, 1999), the basal ganglia in our
model learns to map representations of selected stimuli and work-
ing memory information to motor responses.

Based on experimental findings (Carey, Pinheiro-Carrera, Dai,
Tomaz, & Huston, 1995), dopaminergic medications increase
dopamine levels in the PFC. Specifically, we simulate increase in
PFC tonic dopamine levels by increasing the gain value of the sig-
moidal activation function, as previously proposed by various com-
putational models (Amos, 2000; Cohen, Aston-Jones, & Gilzenrat,
2004; Cohen & Servan-Schreiber, 1992; Servan-Schreiber, Cohen,
& Steingard, 1996).

1.5. Learning algorithm

We assume that learning in the PFC and basal ganglia mod-
ules relies on phasic dopamine signals projected from the mid-
brain (for similar ideas, see Suri & Schultz, 1999). In this model,
phasic dopamine signals are key for both stimulus selection and
stimulus-response learning. The model is trained using the TD al-
gorithm, described next, which simulates various characteristics
of phasic dopamine firing (Schultz, Dayan, & Montague, 1997; Sut-
ton & Barto, 1987, 1990). Let TD(t) be the temporal difference er-
ror signal at time t (also known as the effective reinforcement);
R(t) be the reward presented at time t (reward is 1 when reward
is presented after correct feedback and is 0 otherwise); P(t) be the
reward prediction at time t; y be the discount factor (which deter-
mines how future reward affect reward predictions; is set to 0.99
in all simulation runs presented here). The TD error is computed as
follows:

ID(t) =R(t) +y P(t) —P(t—1) (1)

At time step t, TD is positive if an unpredicted reward is re-
ceived, zero if reward is predicted, and negative is predicted re-
ward is omitted.

Let w; be the weight connecting node i to the critic node; n be
the number of Input nodes; and x; be activation of input nodes
(which take binary (0, 1) values). Reward prediction P(t)is com-
puted by the critic node as follows:

P(t) = Y wi(t)xi(t) (2)
i=1

Now, we describe the equations of the actor module. Let wj;
be the weight connecting node i to node j; §;;(t) be the Gaussian
noise associated with the weight wj; (with zero mean and standard
deviation of 0.025, also see Moustafa & Maida, 2007). Similar to
weights in the Actor, we initialized critic weights using Gaussian
noise with zero mean and standard deviation of 0.025. In our
model, the Critic refines its prediction learning over time and the
refined policy is implemented by changes in the incoming weights.
The rule to describe these weight changes is given below. Thus,
the change in Critic weight at time step t is proportional to the
product of the TD error at that time step and the input value to the
weight at that time step. It is also important to provide parameter
values (especially those representing changes in dopamine levels),
and make clear whether these changed across simulations.

All weights are perturbed using Gaussian noise, which is
included to induce exploration in the system. Let u; be the
perturbed weight connecting node i to node j. Perturbed weight
values are computed as follows:

u;i () = wji(t) + 8 (6). (3)
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Fig. 2. Anexample showing the sigmoidal activation function with small and large
gain values. Tonic dopamine effects in a simulated brain area (either the basal
ganglia or PFC module) in the model are simulated by increasing gain value in the
sigmoidal activation function representing that area, as initially proposed by Cohen
and Servan-Schreiber (1992).

Activations of all nodes in the network are computed using a
sigmoidal function (Fig. 2):

f@) = m (4)

where G, is the gain parameter (Gye for PFC and Gy, for basal
ganglia module). Let n be the number of Input (or prefrontal) nodes.
The input nodes take binary (0, 1) values. The activation of a node
j is computed as:

Aty =f (Z uﬁ(ox,-(t)) : (5)
i=1

In the model, a winner-take all network computes the node
with the highest activation in both the PFC and BG modules. We
assume that winner-take-all competition among BG neurons is
assumed to be the mechanism underlying the choice of motor
responses. Similarly, we assume that winner-take-all competition
among PFC neurons is the mechanism underlying stimulus
selection processes.

v {1 ifAj > B&A; > A;foralli # j )

Af =10 otherwise

where B is a threshold; A; is the activation of node j; Af is the
activation of node j resulting from winner-take all computations
(for similar ideas, see Barto, 1995; Berns & Sejnowski, 1995;
Schultz et al., 1997; Suri & Schultz, 1999).

We simulate working memory as in our earlier models
(Moustafa & Maida, 2007; see Frank, Loughry, & O'Reilly, 2001
for similar ideas). We assume that each PFC node can maintain a
different stimulus in working memory. A PFC node maintains a cue
in working memory if input passed the threshold (8). Maintained
information in working memory in PFC influences motor learning
in the BG module (see Fig. 1).

Learning in the model is based on the three-factor rule of
learning—also known as the dopamine-based Hebbian learning
rule (for similar ideas, see Guthrie et al., 2009). According to this
rule, the phasic dopamine signal is essential for strengthening
weights linking active nodes. It is also important for weakening
weights linking an active node and another inactive node. Nu-
merous computational models also incorporate this learning rule
(Braver & Cohen, 2000; Guthrie et al., 2009; Suri & Schultz, 1999).
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Fig. 3. PD performance in the stimulus-response learning task. (a) Experimental results from Shohamy et al. (2006). (b) Modeling results.

Table 2

Parameter values used in the simulations, as found by exhaustive search for best-fit
values for all subjects. Abbreviations: LR, learning rate; G, gain; BG, basal ganglia;
PFC, prefrontal cortex. See Methods for description of all parameters.

Parameter LRg¢ Gpe LRprc Gprc
HC 0.15 1.2 0.09 14

PD off 0.08 0.07 0.04 0.07
PD on 0.06 1.8 0.02 1.99

Let LR, be the learning rate. There are two learning rate
parameters in the model, one for the PFC (stimulus selection)
module and one for the basal ganglia (motor) response module.
Let x; represents the activation level of the presynaptic node. The
weight update rule is,

wii(t + 1) = w;i(t) + LR TD()xi()A; . (7

In our model, we provide a good fit to experimental data
in 3 different tasks and 3 different subject groups using a
simplified model with 4 free parameters (learning rate and gain
in basal ganglia and prefrontal cortex modules). We search the 4-
dimensional space (for all 4 free parameters as mentioned above)
to find best-fit parameter values (for similar methodology, see
Frank, Moustafa, Haughey, Curran, & Hutchison, 2007). The 4
free parameters are learning rate in basal ganglia and prefrontal
modules along with gain in these two modules. For each subject
group, we searched the 4-dimensional space for best-fit parameter
values that capture average performance in all 3 tasks (see Table 2).
Best-fit parameter values are the ones closest to the average
performance, using ordinary distance function.

2. Results

Below, we show how computational principles described above
explain PD patients’ behavioral performance in stimulus-response
learning, working memory, and reversal tasks.

2.1. Simulation 1: dopamine medications impair stimulus-response
and probabilistic reversal learning

In the stimulus-response learning task, the model is presented
with two stimuli. On each trial, the model learns to predict which of
two stimuli is associated with reward. The model is presented with
eight different pairs of stimuli (trial types). The task design here is
similar to the task used by Shohamy, Myers, Geghman, Sage, and
Gluck (2006). On each trial, only one stimulus is associated with
reward presentation. The number of trials in this task is 96 trials.

Simulation results shown in Fig. 3 imply that medicated PD
patients should be more impaired at learning stimulus-response

tasks than unmedicated patients, which is in agreement with the
findings of Shohamy et al. and other results (Breitenstein et al.,
2006; Jentsch et al.,, 2002; Shohamy et al.,, 2006). Decreasing
the learning rate value (which simulates medicated PD patients,
see Table 1) slows down stimulus-response learning, and thus
explains medicated patients’ impaired performance in this task
(Fig. 3).

The probabilistic reversal task consists of two phases: acquisi-
tion and reversal. The acquisition phase involves probabilistic clas-
sification of stimuli. On each trial of this phase, the model learns
to select one of two stimuli. One stimulus is designated as the
correct stimulus, which is associated with 80% of positive feed-
back (and 20% negative feedback). The other stimulus is designated
the opposite ratio of reinforcement. As in Cools et al. (2001), this
phase has 40 trials. The second phase is the reversal phase in which
reinforcement contingencies are reversed so that the previously
incorrect stimulus is now correct and vice versa. As in the initial
learning phase, the reversal phase has 40 trials. Similar to Cools
etal. (2001), the learning criterion of any of the phases in our simu-
lations is correct responses in eight trials. In addition to simulating
the original probabilistic reversal task using the same number of
trials, we ran the model with a larger number of trials in the rever-
sal phase to test extended learning on reversal performance. Thus,
the number of trials in original reversal phase is 40 trials, and it is
80 trials in the extended learning simulation. We assume that each
run of the model corresponds to a different subject (each simula-
tion run has different initial random values; see the Experimental
Procedures section for details).

In our simulations of the original Cools et al. (2001) reversal
task (Cools et al., 2001), we found that many of the simulation runs
of the medicated PD network did not reach criterion performance
in the reversal phase (Fig. 4(b)). In other words, medicated PD
patients are more impaired at the reversal phase than unmedicated
PD patients and controls. In the model, dopamine medications
impair performance in the reversal phase. In the beginning of
the reversal phase, the model receives negative feedback, and
because of an increase in tonic dopamine function in the PFC,
the model shifts attention to other cue instead of learning to
reverse responses. This in turn leads to an increase in the number
of errors in the reversal phase in many of the simulation runs
of the medicated PD patients network (see parameter LRprc in
Table 2). This delays correct reversal learning, and thus suggests
an explanation for why medicated PD patients’ performance is
impaired in this phase. In the extended reversal task, where we
double the original number of reversal trials, we found that many
of the runs of the medicated PD network were able to reach
performance criterion in the reversal phase (Fig. 4(c)). The model
here suggest that impaired performance in medicated PD patients
in the reversal task reported by Cools et al. (2001) may be due to
the patients’ use of too few trials in the reversal phase, which did
not give them enough time to learn the task.
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Fig. 4. PD performance in the probabilistic reversal task. (a) Experimental results from Cools et al. (2001). (b) Modeling results of the original reversal task. (c) Modeling
results in the extended reversal learning tasks (see text). Increasing number of training trials of the reversal phase shows that PD patients can learn the reversal task.

2.2. Simulation 2: dopamine medications enhance working memory

The model simulates performance in the AX-CPT working mem-
ory task, which consists of three performance phases, one of which
requires working memory associations to be learned via reinforce-
ment feedback. This task was originally used to test working mem-
ory function in schizophrenic patients by Barch et al. (1997), Barch
et al. (2001), Braver and Cohen (2000), Cohen, Barch, Carter, and
Servan-Schreiber (1999) and Servan-Schreiber et al. (1996). Re-
cently, we used the AX-CPT task to test working memory function
in PD patients on and off medications (Moustafa, Sherman, & Frank,
2008). Here, we show how our model simulates PD patients’ per-
formance in this task.

In the AX-CPT task, the model is presented with sequential
letter stimuli (coded as A, B, X, Y in the human version). The
model is trained to select a motor response when A is followed
by X (AX “target” trials), and to select a different motor response
otherwise (AY, BX, and BY trials). The task requires the model
(and the subjects) to remember which cue (A or B) was presented
before which probe (X or Y), so the model can respond correctly
(hence it is a working memory task). Successful maintenance of
contextual information in working memory allows the model (and
presumably human subjects) to perform well at detecting the AX
target sequence, but will likely make more false positive errors on
the AY sequence (due to prepotent anticipation of an X). Context
maintenance should improve performance on the BX case, because
one can use the B to know not to respond to the X as a target. In
the original Moustafa, Sherman et al. (2008) study, we measure
working memory performance using the working-memory context
index, which is the average performance in AY trials subtracted
from average performance in BX trials. Here, we use accuracy
instead of (BX-AY) to measure performance in the AX-CPT task,
because accuracy takes into account performance in all trial types
of the task (AX, AY, BX, and BY).

Simulation results show that simulated PD patients off med-
ications are impaired at performing the AX-CPT task (Fig. 5). In
our model, this is due to decreased tonic dopamine levels in the
PFC, which we simulate by decreasing the gain parameter value
in the PFC module to reflect PD-associated decrease in PFC tonic
dopamine (see parameter Gpgc in Table 2). Consequently, input to
the PFC module is less likely to pass the threshold and thus is less
likely to be maintained in working memory. Conversely, increasing
dopamine levels in the PFC in the model, as in medicated PD pa-
tients, enhances performance in working memory, as we reported
in past experimental studies (Moustafa, Sherman et al., 2008).

3. Discussion

Our model provides an account for how the basal ganglia, PFC,
and dopamine interact in stimulus-response, reversal learning,
and working memory. In our model, the basal ganglia are key
for motor learning while the PFC plays a critical role in stimulus
selection and maintenance of information in working memory.
The basal ganglia output to the motor cortex in our model is
responsible for the initiation of motor responses. We argue that
tonic dopamine levels control the initiation of motor responses and
maintenance of information in working memory, whereas phasic
dopamine responses facilitate learning to select correct motor
responses via changes in synaptic plasticity in the basal ganglia, as
reported experimentally (Reynolds et al., 2001; Wickens, Begg, &
Arbuthnott, 1996). In agreement with many computational models
(Daw, Niv, & Dayan, 2005; Frank, 2005; Guthrie et al., 2009; Houk,
1995b; Moustafa & Maida, 2007; Suri & Schultz, 1999), we argue
that mesolimbic dopamine phasic signals projected to the striatum
are important for reinforcing motor responses that lead to reward
(however, see Dreher & Grafman, 2002, for a different theory of the
function of phasic dopamine signaling).
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Fig.5. PD performance in the AX-CPT working memory task. (a) Experimental results from Moustafa, Sherman et al. (2008). (b) Modeling results. Working memory context
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working memory performance.

In our model, PD is associated with decreased phasic and tonic
dopamine levels in both the PFC and basal ganglia, as reported
in several experimental studies (Cools, Miyakawa, Sheridan, &
D’Esposito, 2010; Fera et al., 2007; Kish et al., 1988; Monchi,
Petrides, Mejia-Constain, & Strafella, 2007; Prediger et al., 2006;
Tadaiesky et al., 2008). Here, we argue that dopamine medica-
tions increase tonic dopamine levels (beyond those of healthy
normals) in both the basal ganglia and PFC, but decrease the magni-
tude of phasic dopamine signaling in these brain structures which
is in agreement with various experimental studies (Carey et al.,
1995; Cools et al., 2010; Kaasinen et al., 2001; Muller, Ander, Kolf,
Woitalla, & Muhlack, 2007; Ruocco et al., 2008; Silberstein et al.,
2005). In our model, an increase in tonic dopamine levels increases
the activity of postsynaptic cells, which regulates the intensity
of the phasic dopamine response through its effect on extracel-
lular dopamine levels (See Experimental Procedures for details).
Empirical studies show that an increase in tonic dopamine levels
increases the activity of postsynaptic cells, which regulates the in-
tensity of the phasic dopamine response through its effect on ex-
tracellular dopamine levels (Schultz, 2007). This is in line with our
model, in which increased tonic dopamine impacts phasic signal-
ing of dopamine cells. On the other hand, we use learning rate pa-
rameters to simulate changes in phasic dopamine signaling (for
experimental support, see Reynolds et al., 2001; Tsai et al., 2009).

Here, we further illustrate how our model simulates per-
formance in stimulus-response, working memory, and reversal
learning tasks in healthy controls and PD patients. For stimulus—
response learning, as we mentioned above, various studies show
that dopamine medications and agents impair stimulus-response
learning performance in both PD patients (Gotham et al., 1988; Ja-
hanshahi et al., 2010; Shohamy et al., 2006) and healthy controls
(Breitenstein et al., 2006; Santesso et al., 2009). Our model shows
that decreasing the learning rate (due to increase of dopamine
levels in the basal ganglia and PFC with dopamine medications)
leads to impairment in performing the aforementioned stimu-
lus-response learning task (see simulation 1 results). As for work-
ing memory, the model shows that an increase in dopamine levels
in the PFC, as seen in medicated PD patients, leads to enhanced
working memory function (see simulation 2 results). In the model,
this can be attributed to the increase in dopamine levels, which
leads to an increase in PFC function and the resulting enhancement
of gating and maintenance of information in working memory.
This is in agreement with various experimental studies showing
that dopamine medications enhance working memory perfor-
mance in PD patients (Costa et al., 2003; Lange et al., 1992; Lewis
et al., 2005; Marini, Ramat, Ginestroni, & Paganini, 2003; Moustafa,
Sherman et al., 2008; Owen, Sahakian, Semple, Polkey, & Rob-
bins, 1995). However, see Poewe, Berger, Benke, and Schelosky

(1991) for an exception. Impaired performance in unmedicated PD
patients compared to medicated PD patients can be attributed to
decreased level of prefrontal dopamine, which in the model corre-
sponds to a reduced gain value in the prefrontal module, which in-
terferes with the maintenance of information in working memory.
As for reversal learning, our model argues that medicated PD pa-
tients are impaired at performing reversal learning tasks due to in-
crease of dopamine levels in the PFC. Simulation results show that
during the reversal phase, increase of dopamine levels in the PFC
made the model shift attention to different stimuli instead of learn-
ing to reverse responses, which delays learning. Interestingly, the
same mechanism explains enhanced attentional performance in
medicated PD patients, as we showed in our earlier work (Moustafa
& Gluck, 2011) and as reported experimentally (Cools et al., 2001;
Swainson et al., 2000).

Furthermore, the model shows that increasing the number of
training trials in the reversal phase of the probabilistic reversal
task enhances the performance accuracy (less number of errors) of
medicated PD patients, making their performance on the reversal
phase look like that of healthy subject simulations, which is a new
a prediction of the model. We conclude that impaired performance
of medicated PD patients in the reversal task in Cools et al. (2001)
study is possibly due to the use of a small number of trials in the
reversal phase. Future experimental research should examine this
prediction.

The model presented here, along with our earlier model
(Moustafa, Keri, Herzallah, Myers, & Gluck, 2010), demonstrates
that a common set of computational assumptions allows us to sim-
ulate performance in both attentional and working memory pro-
cesses. This is in agreement with experimental studies reporting a
positive correlation between performance in attentional and work-
ing memory tasks (for review, see Kane & Engle, 2002; Silver &
Feldman, 2005). Our models show that PFC, along with dopamin-
ergic modulation, is essential for both attentional and working
memory processes. Our model accounts for the various exper-
imental data through two different mechanisms, whose effects
are more pronounced depending on the task simulated. What we
found is that Simulations 1 and 2 (especially acquisition phases
of both) are very sensitive to basal ganglia learning rate param-
eter changes, while Simulation 3 is very sensitive to prefrontal
gain parameter values, although changes in learning rate also
have an effect on performance. Our interpretation for these find-
ings is that the performance on AX-CPT task relies more heav-
ily on the ability to maintain information in working memory
(through a prefrontal maintenance mechanism), and that changes
in learning rate affect performance but to a lesser extent. In sum-
mary, we have used the same computational principles to simulate
performance in various tasks, including stimulus-response, rever-
sal, and working memory, and provide a theory of the effects of PD
and dopamine medications on these different cognitive domains.
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3.1. Biological support for model features

There are various lines of biological support for model assump-
tion that tonic dopamine relates to gain parameter and phasic
dopamine affects learning, and how medications impact these bi-
ological processes. The assumption that tonic dopamine can be
simulated using gain parameter is supported by computational
models by Cohen, Braver, and O’Reilly (1996), Niv, Daw, Joel, and
Dayan (2007), Servan-Schreiber, Bruno, Carter, and Cohen (1998).
Various empirical studies also show relationship between tonic
firing of dopamine and behavioral performance (Bilder, Volavka,
Lachman, & Grace, 2004; Breitenstein et al., 2006). Similarly, the
relationship between phasic dopamine and learning has been es-
tablished in prior work by Schultz et al. (1997). Our model assumes
that learning rate parameter corresponds to magnitude of phasic
signaling and thus explains role of phasic signaling in learning. Our
model additionally assumes that an increase in tonic dopamine
leads to a decrease in phasic signaling. Supporting this assump-
tion, Taverna, Ilijic, and Surmeier (2008) have shown that stri-
atal D2-expressing neurons send inhibitory input to D1-expressing
neurons in the striatum. This connectivity between D1 and D2-
expressing cells might explain how an increase in tonic dopamine
leads to a decrease in phasic signaling. Experimental studies have
shown that phasic dopamine activates D1 receptors (Ballion et al.,
2009; Dreyer et al., 2010; Sammut et al., 2006), whereas tonic
dopamine activates D2 receptors (Ballion et al., 2009; Grace, 2008;
Hauber, 2010). This dichotomy is also supported by anatomical
(Richfield, Penney, & Young, 1989) and new empirical studies
(Grieder et al., 2012). Thus, an increase in tonic dopamine can
affect phasic signaling via this mechanism. An alternative mech-
anism is that tonic dopamine stimulates inhibitory D2 autore-
ceptors, thereby decreasing phasic dopamine responses (Grace,
1991). A similar neural mechanism exists in the prefrontal cor-
tex (Trantham-Davidson, Neely, Lavin, & Seamans, 2004): acti-
vation of D2-expressing neurons in the prefrontal cortex (Wang
& Goldman-Rakic, 2004) inhibits D1 cells (Williams & Goldman-
Rakic, 1995), which is also in line with our model assumption.

3.2. Relation to other models

Our model bears similarity to many of the existing models of
the basal ganglia and PFC, along with several unique features that
differentiate it from previous work in this area. Below, we discuss
similarities and differences between our work and past models.

There exist many basal ganglia models which simulate perfor-
mance in stimulus-response learning (Berns & Sejnowski, 1995;
Frank, 2005; Houk, 1995a; Suri & Schultz, 1998). The most com-
mon framework for simulating the role of the basal ganglia in
stimulus-response learning is the actor-critic model. These mod-
els assume that there are two different systems responsible for
reinforcement-based stimulus-response associations: (a) critic,
which is responsible for reward-prediction learning, and (b) actor,
which is responsible for stimulus-response learning (Barto). These
systems are interrelated: the critic sends a reinforcement signal to
the actor to either increase the likelihood of selecting the action
it has just made if it has desirable consequences, or not to select
the action just made if it does not have desirable consequences.
The critic, on the other hand, is not informed about what action
the actor has made. However, it is informed about whether the
action made had rewarding consequences. As in our model, exist-
ing actor-critic models simulate the learning of stimulus-response
tasks (Berns & Sejnowski, 1995; Khamassi, Girard, Berthoz, & Guil-
lot, 2004; Suri, Bargas, & Arbib, 2001; Suri & Schultz, 1998). We are
not aware of any model that simulates effects of dopamine med-
ications on stimulus-response learning. Our model assumes that
dopamine medications increase tonic dopamine levels. This in turn

reduces phasic signaling of dopamine cells, and thus impairs learn-
ing.

Reversal learning is more complex than stimulus-response
learning, as reversal learning involves the acquisition of stimulus—
response relationships as well as learning to associate the same
stimuli with different responses. Frank (2005) proposed a model
that simulates performance in probabilistic reversal tasks. Unlike
our model, Frank assumes that reversal deficits in medicated PD
patients are due to dysfunctional learning in the basal ganglia
indirect pathway (which we did not incorporate in our model).
In a more recent model, Frank and Claus (2006) incorporate the
orbitofrontal cortex and simulates performance in reversal tasks.
Assuming that dopamine medications might overdose and impair
the orbitofrontal cortex role in estimating the expected value
of decisions and when reinforcement contingencies change (as
shown by Cools et al., 2001), the Frank and Claus model can readily
simulate reversal learning performance in medicated PD patients.
Our model, however, is different from the Frank and Claus (2006)
model in that it incorporates a PFC module, where feedback to PFC
from the basal ganglia informs the PFC whether to maintain or
change the reinforcement contingencies. In contrast to our model,
the Frank and Claus model did not simulate the dissociable effects
of DA meds on learning and working memory.

There are also a larger number of basal ganglia-PFC models of
working memory. One of the earliest models of working memory
is that of Changeux and Dehaene (1989). Their model simulated
the role of PFC in active maintenance of information in working
memory and the occurrence of perseverative responses as related
to PFC damage. The model had two modules. The first consisted of
an input layer directly connected to an output layer, which is key
for associating stimuli with motor responses. The second module
subserved maintenance of information in working memory. This
module’s performance was modified by learning that depended on
reward presentation. The Changeux and Dehaene model showed
that damage to, or not incorporating, the PFC, led to the occurrence
of perseverative responses in working memory tasks. One limita-
tion of this model is that it does not incorporate a basal ganglia
module and thus is not applicable to explain behaviors in PD pa-
tients.

Frank et al. (2001) proposed a model that simulates perfor-
mance in the 1-2-AX working memory task. This task requires
the subject to maintain two cues in working memory in order to
correctly select a response to a target sequence. Specifically, the
subject is presented with a sequence of stimuli, one at a time,
consisting of the stimuli 1, 2, A, B, X, or Y. If the subject last saw
a 1, then the target sequence is an A followed by an X. If the sub-
ject last saw a 2, then the target sequence is a B followed by a Y.
The Frank model assumed that the function of the basal ganglia
is to gate information into working memory, while the function
of PFC is active maintenance of information in working memory.
O’Reilly and Frank (2006) proposed a similar model that incorpo-
rated the basal ganglia indirect pathway. The Frank models assume
that PD and dopamine medications mainly affect dopamine levels
in the basal ganglia, whereas our model assumes that the PFCis also
affected by PD and dopamine medications. Furthermore, Braver
and Cohen (2000) proposed a model that simulates performance
in the AX-CPT task. This model incorporated interactions between
sensory association cortex, PFC, the ventral tegmental area, and
cortical motor areas. This model also assumes that dopamine
neurons of the ventral tegmental area subserve gating of infor-
mation into working memory. One limitation of the Braver and
Cohen model is that it does not incorporate the role of basal gan-
glia in behavioral performance. The Braver model does not simu-
late performance in PD patients and did not simulate performance
in stimulus-response or reversal learning tasks. However, unlike
Frank’s models of working memory (O’Reilly & Frank, 2006), our
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model does not simulate performance in complex working mem-
ory tasks. The complex working memory task simulated by O’Reilly
and Frank (2006), termed 12-AX task, involves the maintenance of
two stimuli in working memory, while the AX-CPT task involves
maintaining only one stimulus in working memory. Our model
does not simulate the 12-AX task, since it uses a winner-take-all
network to simulate the selection of one stimulus to maintain in
the PFC. Further, it is not clear if the TD model can allow learning
of complex working memory task, because in our model, learning
progresses back in time to earliest predictors of reward, but in the
12-AX task, stimuli 1 and 2 are presented at different times (for
discussion, see O'Reilly, Frank, Hazy, & Watz, 2007).

Suri and Schultz (1999) proposed a model that simulates per-
formance in delayed-response tasks. In these tasks, a stimulus is
presented to the subject (e.g., A or B), and after a delay period in
which this stimulus is no longer present, the subject must select
a motor response (e.g., R1 or R2) depending on which stimulus
was presented before the delay. As in our model, this model in-
corporated an actor-critic architecture and was trained using the
TD algorithm. Like our model, Suri and Schulz assume that the
striatum subserves motor responses, and that lateral connectivity
of striatal neurons, simulated by a winner-take-all network, sub-
serves action selection. Monchi, Taylor, and Dagher (2000) pro-
posed another model that simulates the role of the basal ganglia
and PFC in different working memory tasks. These models assume
that basal ganglia input to the PFC is key for maintenance of infor-
mation in working memory. Monchi and colleagues simulate PD
by decreasing values of weights connecting PFC and BG nodes. Un-
like our model, Monchi and colleagues did not simulate the role of
dopamine in learning.

Cohen and Servan-Schreiber (1992) proposed an earlier com-
putational model of the role of PFC and dopamine in behavioral
performance, with special reference to applications to studies of
schizophrenia. As in our model, the PFC is key to active mainte-
nance of information in working memory and dopamine projected
to the PFC module increases the signal-to-noise ratio. As in the
Cohen model, Amos (2000) proposed a computational model that
simulated interactions between PFC and basal ganglia in the Wis-
consin Card Sorting Task. As in our model, Amos assumes that PFC
maintains the sorting rule (card, color, or shape) in working mem-
ory. The sensory association cortex encoded representations of in-
put stimuli, and the striatum integrated cortical information and
decided what action to perform. Feedback to PFC from the basal
ganglia informed PFC whether to maintain or change the sort-
ing rule (not modeled). The model simulated the occurrence of
perseverative responses in PFC-damaged subjects and random re-
sponses in PD patients. Dopamine reduction (as in PD) was simu-
lated by decreasing the gain parameters of the sigmoidal activation
function, and lesioning was simulated by decreasing the output of
neurons representing the lesioned area. One limitation of the Amos
model is that it does not simulate learning processes and does not
simulate dopamine medication effects on behavior.

In summary, previous models of frontal and BG function in
learning did not account for the role of dopamine or did not
simulate the role of the PFC (or other frontal areas) in learning and
memory; others did not simulate the effects of dopamine-related
disorders on performance on learning and memory functions. In
our model, we try to account for the effects all these factors have on
learning and reversal as well as working memory. We also simulate
the performance of patients with PD on three different tasks at the
same time, to investigate the effects of dopamine-related lesions
on learning and memory functions.

3.3. Model limitations

Though our model simulates performance in various behavioral
tasks, it has several important limitations. One limitation is that it

does not simulate performance in more complex working memory
tasks. Unlike the Frank et al. (2001) and O'Reilly and Frank (2006)
models, our model does not simulate the effects of distractor pre-
sentation on working memory performance and does not simulate
the maintenance of more than one item in working memory. In our
model, learning progresses back in time to earliest predictors of re-
ward, whereas in complex working memory tasks, multiple stimuli
are presented at different times, which renders learning progres-
sion with time ineffective (for discussion, see O'Reilly et al., 2007).
Future modeling work will address the simulation of these pro-
cesses as well as the effects of changing delay length on working
memory performance (see Sawaguchi & Iba, 2001). Another limi-
tation of our current model is that it does not simulate differential
effects of PD and dopamine medications on learning from positive
or negative feedback, as reported in various experimental studies
(Bodi et al., 2009; Frank et al., 2004; Moustafa, Cohen, Sherman,
& Frank, 2008; Moustafa, Sherman et al., 2008; Palminteri et al.,
2009). Furthermore, unlike Frank’s and Cohen’s models (Cohen,
Braver, & Brown, 2002; Frank, 2005), our model did not simulate
functional contributions of different dopamine receptors to per-
formance. As in our model, Cohen et al. argue that tonic dopamine
projected to the PFC is key for maintenance of information in work-
ing memory (also see Chadderdon & Sporns, 2006 for similar ideas).
This can be attributed to the effects of tonic dopamine via D1 recep-
tors in the PFC, which has been shown to mediate working memory
function (Cohen et al., 2002).

Furthermore, previous research found that administration
of levodopa to healthy subjects enhances associative learning
(Knecht et al., 2004; Pessiglione, Seymour, Flandin, Dolan, & Frith,
2006). This is different from experimental studies and simula-
tion results presented here showing that dopamine agents impair
stimulus-response learning (Jahanshahi et al., 2010; Knecht et al.,
2004; Pizzagalli et al., 2007). Given that levodopa and dopamine
agonists have different effects on behavioral performance (see Bre-
itenstein et al., 2006). Levodopa is converted to dopamine by
dopaminergic neurons, and thus might balance phasic signaling
of dopamine. This enhancement of phasic signaling of dopamine
might enhance stimulus-response learning, as found in the Knecht
et al. (2004) study. On the other hand, dopamine agonists act on
postsynaptic cells and increase tonic firing of dopamine (Breit-
enstein et al.,, 2006). According to our model, increase in tonic
dopamine reduce phasic signaling of dopamine cells, and thus
might explain slow learning associated with dopamine agonists.
Future experimental and computational studies should investigate
differential effects of levodopa and dopamine agonists on behav-
ioral performance.

Despite its limitations, our model provides a unified account for
PD patients’ performance in various behavioral tasks and provides
new theories regarding how PD and dopamine medications might
affect stimulus-response and reversal learning as well as working
memory processes. Based on simulation results, we posit that
reversal deficits in medicated PD patients are due to the low
number of training trials used in the experimental studies (Cools
et al, 2001). Our model shows that increasing the number of
trials in the reversal phase leads to enhanced performance in
medicated PD patients. The model also extends our previous model
(Moustafa & Gluck, 2011) of attentional and category learning, and
further simulates PD patients’ performance in working memory
and reversal tasks.

Important future directions based off of this work will include
extending the current model to dissociate the effects of levodopa
and dopamine agonists on learning. More research is needed
to further investigate dose-response curves of medications, and
how this correlates to cognitive function. In future models and
experiments, it will be of key relevance to account for individual
differences across patients in their response to medications as
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potentially predicted by naturally occurring genetic variations in
dopamine related genes (DAT1, DRD2, DARPP32). Finally, more
work is needed to explore the potential application of these models
as a framework for relating levels of activity in the model nodes to
observable BOLD signals in fMRI studies of learning in PD patients,
on and off medications.
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