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Abstract 

This thesis is concerned with the oscillation and non oscillation of solutions 

of a class of even order neutral differential equations. The general form of this 

class of equations involves two delayed arguments. 

The thesis presents main concepts and basic definitions of neutral differential 

equations and establishes both necessary and sufficient conditions for non 

oscillatory solutions. Several results in the oscillation theory of that class of 

even order neutral differential equations are proposed and a number of 

examples are given to illustrate the main theorems. 

This study also investigates deeply and analyzes and compares, in order to 

understand accurately, the results about necessary and sufficient conditions 

for the oscillation and non oscillation of solutions of even order neutral 

differential equations with constant and variable coefficients.  
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  الملخص

لحلول فئة معينه من المعادلات التفاضلية  التذبذب وعدمتهتم هذه الأطروحة بخاصية التذبذب 

يحتوي على اشتمال  المعادلات الفئة من و الشكل العام لهذه ، المتعادلة من الدرجة النونية الزوجية

  .على متغيرين متأخرين عن المتغير الذي يمثل الوضع الحاليلاقتران المجهول ا

و تؤسس  ،للمعادلات التفاضلية المتعادلة و التعاريف الأساسيةالمفاهيم  على تقدم  هذه الأطروحة

هذه الأطروحة على العديد من النتائج   تحتوي. لحلوللعدم تذبذب االشروط الضرورية و الكافية 

 .الصادرة في نظرية التذبذب لتلك الفئة من المعادلات التفاضلية المتعادلة من الدرجة الزوجية

   .الرئيسية النظريات لتوضيح تقترح عدد من الأمثلة

ط والشر حول النتائجفي  ،دقيق فهم من أجل ، تحقق هذه الدراسة أيضا بعمق وبالتحليل وبالمقارنة 

المعادلات التفاضلية المتعادلة من الدرجة الزوجية لحلول   وعدمهللتذبذب  ةو الكافي ةالضروري

  .بوجود عوامل ثابتة ومتغيرة
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Introduction 

 Differential equations with deviating arguments (DEWDA) are among the most 

important equations in applied mathematics. This importance occurs because they provide 

mathematical models for many real-life systems, in which the rate of change of the system 

depends not only on its present state but also could depend on past or future states. 

DEWDA initially was introduced in the eighteenth century by Laplace and 

Condorcet 26  . Bernoulli ( 1728) while studying the problem of sound vibrating in a tube 

with finite size investigated the properties of solutions of the first order of DEWDA, and 

was the first to work in this area [1]. However, the systematic study of such type of 

differential equations has begun in the twentieth century in connection with the needs of  

applied science and technology 11  . 

 In the late thirties and early forties Minorsky in his study of ship stabilization and 

automatic steering pointed out very clearly the importance of the consideration of the delay 

in the feedback mechanism 8 . The great interest in the theory of automatic control and 

dynamics systems, during these and later years, has certainly contributed significantly to 

the rapid development of the theory of delay differential equations 26 , 11 , 8 .   

 Myshkis in his book (1950) introduced a general class of equations with delayed 

arguments 8 . In 1958 G.A. Kamenskii 5  proposed a classification method for a general 

class of DEWDA, he classified such type of equations into three types, they are: retarded 

type, neutral type, and advanced types. 

Oscillatory behavior of solutions of DEWDA is one of the most important properties 

of this type of equations, besides existence of positive solutions, and asymptotic behavior 

of solutions. This importance comes from the viewpoint of applications where these 

properties provide a qualitative description of solutions of the DEWDA. 

 Since 1950 the oscillation theory of DEWDA has received the attentions of several 

mathematicians as well as other scientists around the world. However, the theory of 

oscillation of DEWDA has been extensively developed in the last 30 years. 

 In 1987 Ladde, Lakshmikantham, and Zhang in their well presented book [5], 

introduced the first systematic treatment of oscillation and non oscillation theory of 
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DEWDA 4 . In 1991 Gyori, and Ladas introduced one of the most important books in the 

oscillation theory of DEWDA. The last book is also a extensive reference for the theory of 

DEWDA, and it contains several applications. Recently several books appeared that are 

specialized in the subject of oscillation, such as Bainov and Mishev (1991), and Agarwal 

(2000).     

In parallel, during the second half of the twentieth century the area of applications of 

DEWDA has greatly expanded. Now such equations find numerous applications in 

physics, control theory, power systems engineering, material science, robotics, neural 

networks, ecology, physiology, immunology, public health, and economics  (see references 

of 2,3,4,8,12,30 ).  

The simplest type of past dependence in differential equation is that in which the past 

dependence is through the state variable and not the derivative of the state variable, in this 

were DEWDA are the so-called retarded functional differential equations or delay 

differential equations 8 . 

 When the delayed argument occurs in the derivative of the state variable as well as 

in the independent variable, the system is called neutral differential equations  8 . 

 Although the oscillatory theory of non-neutral differential equations has been 

extensively developed during the last three decades, only in the last ten or fifteen years 

much effort has been devoted to the study of oscillatory behavior of neutral delay 

differential equations (NDDE). From the viewpoint of applications, the study of oscillatory 

behavior of solutions of NDDE, the study of other types of DEWDA, and its theoretical 

interest are all important. Accordingly, NDDE have many applications in natural science, 

technology, and economics. For more illustration, NDDE appear in the following 

applications: 

1. Study of vibrating masses attached to an elastic bar  4 , 8 . 

2.  Study of distributed networks containing loss-less transmission lines  4 , 8 . 

3. Problems of economics where the demand depends on current price but supply 

depends on the price at an earlier time  30 . 

4.  To describe the Flip Flop circuit which is the basic element in a digital electronic  

12 . 
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In fact, the appearance of neutral term in differential equations can cause or destroy 

oscillation of its solutions. Moreover, in general the theory of neutral differential equations 

presents complications which are unfamiliar for non-neutral differential equations: Most of 

authors obtained sufficient rather than necessary conditions for oscillation of higher orders 

NDDE. However, the conditions assumed differ from author to author due to the different 

techniques they used and different forms of equations they considered. Also, it is 

interesting to note that the conditions assumed by different researches for similar form of 

equations are often not comparable, see [17]. 

In our thesis we study the oscillation of a certain class of even order NDDE of the forms 

with constant or variable coefficients: 

          , 0.                                                                   (1) 

           , 0.                                                               (2) 

Throughout this thesis, the following conditions are assumed to hold; 2 is even; 

0;   0 ;   , ∞ ,   ∞; ,∞ ;   ,

0 for   ,   , ∞ , and  ,  is nondecreasing in  for each fixed 

;    . 

The outline of the thesis is as follows: 

Chapter One: Contains the main concepts, definitions, and preliminary material that are 

essential for the rest of the thesis. 

Chapter Two: Is devoted to oscillation and non oscillation theories of equations (3) and 

(4) for the case of constant coefficients  

 0                                                                  (3) 

 | | 0                                                              (4) 

where 1  and   0. 
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Chapter Three and Chapter Four:  highlight on Tanka's results, [20] and [21] 

respectively. The theory of oscillation for equation (1)(respectively (2)) will be studied 

since it is of extreme significance over earlier theories. Not only it provides necessary and 

sufficient conditions for the oscillation, but also compares NDDE with ODE. The detailed 

proof, the resulting corollaries along with its evidences, and lemmas, will be all presented 

and proved along with the chapter. 
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Chapter One 

Preliminaries 

This chapter contains some basic definitions, and results which are essential for the rest of the 

thesis. Sections 1.1 and 1.2, introduce the definition of DEWDA, their classification, and definition 

of NDDE. Section 1.3, gives  the meaning of solution of  NDDE  and  sections 1.4 and 1.5, 

introduce the definition of oscillation and some oscillatory  phenomena caused by deviating 

arguments. Section 1.6 contains basic lemmas related to the subject.  

 1.1 Differential equations with deviating arguments (DEWDA) 

Differential equations with deviating arguments are differential equations in which the 

unknown function appears with various values of the argument. They are classified into 

three types: 

i. Differential equations with retarded argument: 

 Differential equation with retarded argument is a differential equation with deviating 

argument in which the highest-order derivative of the unknown function appears for just 

one value of the argument, and this argument is not less than the remaining arguments of 

the unknown function and its derivatives appearing in the equation. 

ii. Differential equations with advanced argument: 

 Differential equation with advanced argument is a differential equation with 

deviating argument in which the highest-order derivative of the unknown function appears 

for just one value of the argument, and this argument is not larger than the remaining 

arguments of the unknown function and its derivatives appearing in the equation. 

iii. Differential equations of neutral type: 

 Neutral differential equation is a differential equation in which the highest-order 

derivative of the unknown function is evaluated both with the present state and at one or 

more past or future states. 
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Example 1.1.1: 

1) ′ , , . 

2) ′′ , , ′ . 

3) ′′   , ), ′ , , ′  

4) ′′ , , ′ , , ′ . 

5) ′ , , , ′ . 

6) ′′ , , ′ , , ′′  

Equation (1), (2), (3), and (4) are equations with retarded argument if 0 in (1) 

and (2), 0    3 ,       4 . 

 Equations (1), (2), (3), and (4) are equation with advanced argument if 0 in 

(1) and (2), 0    3 , and   in  4 . 

Equations (5) and (6) are equations of neutral type. 

1.2 Neutral delay differential equations (NDDE) 

A neutral delay differential equations is a differential equations in which  the highest-

order derivative of unknown function appears in the equation both with and without 

delays (retarded arguments). 

Example 1.2.1: 

1) ′   , , , 0, is a first order NDDE. 

2)   ′′   , , ′ , , ′ , ′′ , 0 is second order 

NDDE. 

In general, the behavior of solutions of neutral type equations may be quite different 

than that of non neutral- equations, and results, which are true for non- neutral equations, 

may not be true for neutral equations. 
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1.3 Solution of NDDE 

We shall be concerned with the oscillatory behavior of the solutions for even order neutral 

differential equation of the forms 

           , 0                                                            (1.3.1)    

           , 0.                                                          (1.3.2)       

 The following conditions are assumed to hold:    2 is even ;   0;    0;

,∞ , lim ∞ ∞; ,∞ , ,    0  for   , ,∞

, and   ,   is nondecreasing in 

  for each fixed    ; .  

By a solution of (1.3.1) or (1.3.2), we mean a function   that is continuous and satisfies 

(1.3.1) or (1.3.2) on ,∞  for some . Therefore, if   is a solution  of (1.3.1) or 

(1.3.2 ), then  is n-times continuously on  ,∞  . Note that,   itself is 

not continuously differentiable. 

1.4 Definition of oscillation 

 There are various definitions for the oscillation of solutions of ordinary differential 

equations (with or without deviating argument). In this section we give two different forms 

of definitions of the oscillation. These forms are most frequently used in literature. 

Definition 1.4.1: A non- trivial solution  is said to be oscillatory if it has arbitrarily 

lagre zeros for t≥ t0 that is, there exists a sequence of zeros ,    0  of  such 

thatlim ∞ ∞, otherwise  is said to be non- oscillatory. 

For non oscillatory solutions there exists a t1 such that   0, for all   . 

Definitions 1.4.2: A non- trivial solution  is said to be oscillatory if it changes sign on 

(T,∞), where T is any number. 

As the solution  is continuous, if it non oscillatory it must be eventually positive or 

eventually negative. That is there exists a T0  R such that  is positive for all t≥ T0 or 

is negative for all t≥ T0. 
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Example 1.4.1: The equation 

′   0                                                                                   (1.4.1)  

Has oscillatory solutions x1(t) =sin t, and x2 (t)= cos t. 

Example 1.4.2: The equation 

3 0                                                                                 (1.4.2)                             

Has non oscillatory solutions  . 

Example 1.4.3: the equation 

           ′′  4 0                                                                               (1.4.3)  

Has an oscillatory solution sin 2 , and a non oscillatory solution  

  . 

Example 1.4.4: Consider the equation 

 ′′′     0, 0                                          (1.4.4) 

Whose solution  1 cos , it is oscillatory according to definition 1.4.1, and non 

oscillatory according to definition 1.4.2. In fact, definition 1.4.1 is more general than 

definition 1.4.2 and is the most used in literature, also, it is the one used in this thesis. 

Example 1.4.5: 

 ′′   ′  4 0                                                                   (1.4.5) 

Whose solution sin t  , this solution is not periodic but has an oscillatory property. 

Example 1.4.6: Consider the NDDE 

2  
 

0                                                     (1.4.6) 
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It has an oscillatory solution x(t)= sin t. 

Example 1.4.7: Consider the NDDE 

       1 ′′′ 1 0                                                 (1.4.7) 

It has a non oscillatory soltuon  x(t)= e-t, but x(t)   0 as t ∞. 

 1.5 Effects of deviating arguments on oscillation 

The oscillation theory of DEWDA presents some new problems, which are not 

presented in the theory of corresponding ordinary differential equations (ODE). However, 

results for oscillation of differential equations may not be true for DEWDA. 

In this section we consider some oscillatory and non oscillatory phenomena caused by 

deviating arguments, through the discussion of the following example. 

Example 1.5.1: Consider the equation   

 ′ 0,       0                                                       (1.5.1) 

It has oscillatory solution x1(t) sin ,   cos  . While the equation   

          ′   0,        0                                                                 (1.5.2)                        

Has non- oscillatory solution . 

This example shows that first order DEWDA can have oscillatory solution. While, as 

known, the first order scalar ODES that contain the unknown function do not possess 

oscillatory solution. 

Example 1.5.2: Consider the equation 

′′ 9 0                                                                                 (1.5.3) 

It has oscillatory solution x1(t) = sin3t, and x2 (t)= cost 3t. But equation 

′′  9 0                                                                                        (1.5.4) 
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Has non oscillatory solutions x1(t)= e3t, and x3(t)= e-3t 

It is obvious that the nature of solution changes completely after the appearance of 

deviating argument in the equation. 

Example 1.5.3: Consider the equation 

 ′′   2  0                                                                               (1.5.5) 

It has an oscillatory solution  cos , and non oscillatory solution 

. 

Here, in second order DEWDA one solution is oscillatory, but the other is non oscillatory, 

and this case can never occur in second order linear ODE, where either all solutions are 

oscillatory or all solutions are non oscillatory. 

1.6 Some basic lemmas 

This section contains basic lemmas needed later in the thesis. 

We begin by classifying all possible non oscillatory solutions of equation (1.3.1) according 

to their asymptotic behavior as ∞. 

Lemma 1.6.1 ( ): (Kiguradze ) Let  2 and 1  1      and let    ,∞  

satisfies  

                  0 ,    for    .  

Then there exist  an integer  0,1,2, …… ,  and a number   such that  1 1  

and  

                 0,                                      ,       0 ,            
  1   0                        ,                      

      

Lemma1.6.2 ( ):  let   be a non oscillatory solution of (1.3.1) . Then one of the 

following two cases holds: 

(I) There is an integer   with 0 ,  1 1   and a number   such that  

               0,                        ,                                                                (1.6.1) 

           0                      ,       0   
1 0,       ,        ,

                                         (1.6.2)   

(II) There is a number     such that   

             0,                                                                                                        (1.6.3) 

               1 0              ,       0                                                (1.6.4) 
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 and 

             lim ∞ 0  ,    lim ∞ 0                                                                         (1.6.5) 

Note: Where  h t  x . Furthermore the case (II) can hold only when 

1 1 and   is eventually positive. 

Definition 1.6.1 ( ): Let denote the set of all non oscillatory solutions of (1.3.1).  For 

an integer j with 0  and 1 1 , we denote  to be  the set of all non 

oscillatory solutions  of (1.3.1) which satisfy (1.6.1) and (1.6.2). In addition, we denote 

  to be the set of all non oscillatory solutions  of (1.3.1) which satisfy (1.6.3)-(1.6.5). 

Lemma (1.6.2) means that every non oscillatory solution  falls into one and only one 

of the classes  (0 ,  1 1) and . More precisely,   has the following 

decomposition: 

     

… .     1            ;
… .   1           ;   

… .       1        ,
… .        1        ; 

 

Note:  can appear only when  is eventually positive, so if   is either oscillatory 

or eventually negative, then (1.3.1) cannot possess a non oscillatory solution  satisfies 

(1.6.3), so that in this case the class  should be removed from decomposition from  . 

Let .then we see by (1.6.2) that the asymptotic behavior of  Lx t  as  t ∞ is as 

follows: 

(i) If j 0, then either  

   (i-1)      lim Lx t const 0    or  

   (i-2)      lim Lx t 0.  

(ii) If  1 j n 1, then one of the following three cases holds: 

   (ii-1)     lim const 0;        

   (ii-2)     lim const 0;        

   (ii-3)    lim 0;      and     lim | | ∞.  

(iii) If  j n, then either  

   (iii-1)   lim const 0    or 

   (iii-2)   lim | | ∞.   
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Lemma 1.6.3 5 : 

If   is as in lemma 1.6.1  and for some  0,1, … , 2 , 

                  lim ,                                                                      (1.6.6)          

Then  

                 lim 0                                                                            (1.6.7) 
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Chapter Two 

Oscillation and Non oscillation for Linear and Nonlinear Equations  

2.1  Oscillation and non oscillation of linear equation  

In this part of the study, equation (A) theorems that present oscillation and non oscillation 

will be demonstrated. Relying on the coefficient value, this part will be divided into several 

sections. According to equation (A) outcomes, confirming conditions for oscillation and 

non oscillation of equation (2.1.1) will be derived taking into consideration the fact that 

this equation is a special case for equation (A). 

We consider the neutral linear functional differential equations of type  

       ∑ 0                                (A) 

Where 2, 1  1, and the following conditions are assumed to hold: 

a. : ,∞  is continuous and satisfies | |  on [ , ∞) for some constant 

λ<1; 

b. τ: ,∞  is continuous and increasing, τ(t) < t for t   and lim ∞ ∞; 

c. each : ,∞ ,∞  is continuous, 1 ; 

d. each : ,∞  is continuous and satisfies lim ∞ ∞, 1 . 

From equation (A), we have  a special equation  

              0                                            (2.1.1)                              

Where 1, , 0, , ,∞ , 0 for   . 

The main results are contained in theorems 2.1.1 and 2.1.3. Theorems  2.1.1 presents 

sufficient condition for the non oscillation of equation (2.1.1). Theorems 2.1.3 and 2.1.4 

present sufficient condition for the oscillation of equation (2.1.1).  

Case 1: equation (2.1.1) has a non oscillatory solution if                        

      ∞∞                                                                                    (2.1.2) 

The objective of this case is to obtain criteria for equation (A) to have non oscillatory 

solutions of two types described in section 1.6: 

Type I):     lim ∞ const 0     for some   0,1, … 1 ; 

 

Type II):     lim ∞ 0;      and     lim ∞
| | ∞ 

      for some   1,2, … 1 . 



14 
 

where    . 

 Solutions of type (I) :We start with Type  I) solutions, and note that such  solutions 

can be completely characterized in case   

       0  is satisfied (which include the case of one-signed). 

Theorem 2.1.1 : Suppose that (2.1.3) holds                

         0     for all large .                                                                       (2.1.3) 

     Equation (A) has a non oscillatory solution  satisfying    

          h t   0                                                                             (2.1.4) 

and 

         lim ∞ const 0                                                                (2.1.5) 

     for some  0,1,… . . , 1                 if and only if          

             ∑ ∞ ∞                                                                   (2.1.6) 

 Solutions of type (II) : We now consider non oscillatory solutions of  

type II  of equation (A), that is, those solutions  which satisfy (2.1.4) and  

    lim ∞ 0  and    lim ∞ ∞                          (2.1.7)    

  for some   1,2, … n 1  such that  -1
n- -1

σ=1. 

 If    is one such solution of (A), then integration of (A) gives 

             ∑ ∞ ∞  

                                                

 and  

             ∑ ∞ ∞                                                    

For some 0  sufficiently large. Since (2.1.4) holds, then  satisfies case (I) from 

Lemma (1.6.2), so    is a function of Kiguaradze degree   for some 1,2, …

1  such that  -1
n- -1

σ=1. Thus, there exist positive constants ,  and T such that  
| |     and    | |      for    , 

Combining the above inequalities, which follows readily from (2.1.3) and (2.1.7), we see 

that  

             ∑ ∞

0
∞                                                                 (2.1.8) 

and   

             ∑  ∞

0
∞                                                                      (2.1.9) 
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Thus, (2.1.8) and (2.1.9) are necessary conditions for the existence of a solution  

satisfying (2.1.4) and (2.1.7) of equation (A) for which (2.1.3) is satisfied. 

The following theorem presents sufficient conditions for the existence of such a solution of 

(A) in the case where 0   for   .  

Theorem 2.1.2 : Suppose that 0   for   . Let 1,2, … 1  be such 

that -1
n- -1

σ=1. Equation (A) has a non oscillatory solution  satisfying (2.1.4) and 

(2.1.7)  if  

             ∑ ∞ ∞                                                        (2.1.10) 

and   

             ∑ ∞ ∞                                                        (2.1.11) 

Example 2.1.1: Consider the special case of (A) with N=1  

                0                                   (2.1.12) 

In addition to (a-d) assume that (2.1.3) is satisfied. Condition (2.1.6), (2.1.10) and (2.1.11) 

for this equation reduce to                                               

                   ∞

0
  ∞                                                                   (2.1.13) 

                   ∞

0
  ∞                                                                     (2.1.14) 

and 

                   ∞

0
  ∞                                                                     (2.1.15) 

respectively.  Suppose that  satisfies 

                 0 lim ∞ inf   lim ∞ sup ∞                                                    (2.1.16)             

(Example of such  are  
                   ,            ,               sin  
Where     and       are positive constant).  Then, the set of (2.1.6) for all  0,1, . . . , 1 

reduces to a single condition   

                           ∞∞

0
                                                                           (2.1.17) 

From Theorem 2.1.1 it follows that if  (2.1.17)  holds , then  (2.1.12) has a solution  

satisfying (2.1.5)  for every 0,1, … . . , 1  , and that if     

                      ∞∞                                                                              

 then (2.1.12)  cannot have a solution  satisfying  (2.1.5)  for any           0,1, … . . ,

1 , we note that theorem 2.1.2 is not applicable to equation (2.1.12) subject  to  (2.1.16), 
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since in  this case conditions (2.1.14) and (2.1.15) are not consistent for any  ,  since   

is finite  as ∞ . 

Next, suppose that   , where 0,1  is a constant.  Then, (2.1.14) and (2.1.15) 

become  

                   ∞   ∞                                                                           (2.1.18) 

and 

                   ∞   ∞                                                                         (2.1.19) 

Since   lim ∞ ∞ .  Which may hold simultaneously; for example, the function  

,   being a constant, from inequality (2.1.18) we have  

 1 0        1 1,   And, from inequality (2.1.19) we have     

1 0      1 , so it satisfies both (2.1.18) and (2.1.19) if   

0       1   1 1. According to theorem 2.1.2, condition 

(2.1.18) and (2.1.19) for some 

0,1, … . . , 1   with 1 n- -1σ=1 guarantee the existence of  a solution   of  equation 

(2.1.12) which has the asymptotic behavior  (2.1.7) 

Example 2.1.2: Consider the equation  

      1 0  , 0                                      (2.1.20) 

where 0 1 ,   and  0 . 

(i) Suppose that  1 .Then , (2.1.20)  is  a special case of (2.1.12) 

in which  2, 1,  , , 1  and       

. From section 1.6 we have     for (2.1.20). 

Note that .  Since      is positive  and   1 1 is, more specifically, 

since the proper solution is positive, then  we have from lemma(1.6.2) case II in section  

1.6 λ 0.  So   | | λ| |  and hence  λ | |.  Which 

implies that    

lim ∞ 0. To explain that, the set of all solutions  of equation (A) satisfies  

0  is  , and this class  is empty if  

1  and     is odd     or     1  and  n  is even,   

 note that ,  , ,   

since .  Then,  | |  
1 , so we have  | |  

, so we have    
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Continuing in this manner we have  

 . Equation (2.1.20) has a solution   belonging to the class 

. 

The possible asymptotic behavior of the members  of     are:                        

lim ∞
λ const 0                                                                          (2.1.21)                 

lim ∞ λ const 0       (2.1.22)                              

lim ∞
λ 0    , lim ∞ λ ∞                               (2.1.23)     

If 1 then, since    satisfies (2.1.16),  1   and  2, we 

have      1∞∞ 1 ∞   use the integration 

by parts     

                 1 ∞ 1  lim ∞   

                                                     1  lim ∞
υ

υ
υ 1 s 1 A

a 

                                                     1 1  
υ

υ
υ 1 a 1 ∞ 

Since υ 1 0,  then (2.1.17) holds, and so (2.1.20) has a solution satisfying (2.1.21)as 

well as a solution satisfying (2.1.22). However, there is no solution of (2.1.20) which has 

the asymptotic property (2.1.23), because the condition  

(2.1.9)  which is necessary for the existence of such a solution is violated for equation 

(2.1.20). 

If  1, then, 

        s21p  ds= 1  limA ∞ se sA
a

ds=∞
∞

a
 

Since  υ 1 0, then equation ∞∞  (n = 2) holds, so that (2.1.20) has neither 

a solution satisfying (2.1.21) nor  a solution satisfying (2.1.22). Since (2.1.8) is not 

satisfied.   

(ii) Suppose that  λe 1 .then , (2.1.20)  is  a special case of (2.1.12)  

 in which 

2, 1,  , , 1  and   

  .  

From section 1.6 we have     and the possible types of asymptotic behavior of 

non oscillatory solutions x t  of (2.1.20) are (2.1.21) and (2.1.22), 

          lim x t λx t ρ 0                                                                    (2.1.24)                  

and  
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          lim ∞ or ∞                                                                 (2.1.25)                

Exactly the same statements as in (i) hold for solutions which satisfy (2.1.21) and (2.1.22), 

depending on whether  < 1or  > 1. Equation (2.1.20) has a solution satisfying 

(2.1.24). 

Case 2: equation (2.1.1) has oscillatory solution if  

            1 ∞∞
0

          for some   0                               

This   result is based on the following theorems due to Joar ̆ and Kusano 7 . 

• Oscillation criteria : We are  interested in the situation in which all 

proper solutions of equation (A) are oscillatory.  Since this situation is equivalent to the 

nonexistence of non oscillatory solutions of (A), Jaroš and Kusano obtained   conditions 

under which none of the solution classes appearing in the classification  in section 1.6 

has a member they   derivation of the result is based on the following lemma due to 

Kitamura 28, . 487   which provide oscillation criteria for functional differential 

inequalities of the form  

         sgn  0                                                      (2.1.26) 

where   2, 1, : ,∞ ,∞  is continuous, : ,∞ ,∞  

is continuous, and lim ∞ ∞. 

We introduce the following lemma which is useful in the proof of theorem 2.1.3. 

Let  min ,  

Lemma 2.1.1 : Let σ 1  and n be even.  There is no non oscillatory solution of 

(2.1.26) if  

         1∞ ∞    for some                                           (2.1.27) 

Let  be a non oscillatory solution of equation (A), let t  from 

(A) we have t ∑ 1  , for , that is  

t ∑ 1  , for  .  It follows that   0,1, … . ,

1  is strictly monotone and of constant sign eventually. Hence 

0    or    0  from large , that is   is eventually one-

signed, we examine   in two cases: 

1)  is eventually positive : Since  is eventually  

one-signed. Then, the function   h t    is either eventually positive or 

eventually negative. 
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  (1-i) Consider the case where  h t   0 for large . Put 

h t . Since, in this case, | | | | for large , we see from  (A) that  

         ∑ 1 sgn  0       

Provided    is large enough. It follows that   is a non oscillatory solution of each of the 

differential inequalities  

         sgn  0      1                                             2.1.28  

for all sufficiently large , and that   is a member of   if   and only if   is a solution 

of degree  of  2.1.28  , for each 1 . 

  (1-ii) Consider the case where    0 for large  . Put 

. Since  | | . 

We find  ⁄ | |, which combined with (A), yields 

       1 ∑ 1
1 sgn  0. 

It follows that  
1 1 sgn  0, 1                                  2.1.29  

for all sufficiently large , and that   is a member of 0  if   and only if   is a 

solution of degree 0 of  2.1.29  ,  for each 1 . 

2)  is eventually negative : we will be  interested in this  case and the case where 

 is oscillatory and such that     0     for all large ,in these cases,  we 

must have    is empty as was note in section 1.6, then there is no solution of (A) 

satisfying h t   0 for large , then, the function 

h t  satisfies   

             1 | | | | for large                                                                     (2.1.30) 

Provided the Kiguradze degree of   is positive. From (A) and (2.1.30) we see that   

satisfies  

       1 sgn  0,      1                                    2.1.31  

for all sufficiently large , and that   is a member of  if   and only if   is a solution 

of degree  of  2.1.31  for each 1 . 

Jaros and Kusano derived oscillation criteria for equation (A) to obtain conditions which 

preclude all the possible solution classes  , 0 , and 0  appearing in the 

classification . That this is indeed possible can be seen from the above observations 

combined with lemma 2.1.1which apply directly to the functional differential 

inequalities 2.1.31 , 1 . 

Here, the interesting case where  is eventually negative, so 0  is empty. 
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The following theorem follows in this manner. 

Theorem 2.1.3 :  Let 1 and  be even. Suppose that  is eventually negative 

or that  is oscillatory and satisfies (2.1.3). All proper solutions of (A) are oscillatory if 

there is 0,1, … . . ,  such that          

  ∞           for some   0                               (2.1.32)               

Where  min , . 

Proof: According to classification  , 1,3,… , 1 , and 0   are the possible classes of 

non oscillatory solution of  (A) with  1 and  be even. Our task is, to show that all of 

these solution classes are empty if the hypotheses of the theorem are satisfied. In this case  

0  is necessary empty. Suppose that    for some  1,3,… , 1 .  Then, each of the 

inequalities in  2.1.31  possesses a non oscillatory solution of degree . However, this 

impossible, because from Lemma 2.1.1 applied to 2.1.31  it follows that (2.1.32) prevent  

2.1.31  from having a non oscillatory solution of any kind. Thus we must have    

for all  1,3,… , 1  .    

Example 2.1.3 : Consider  the  equations  

                0                                                          2.1.33  

Where  0 1 , 0 1 , 0 and  : , ∞ 0,∞   is continuous, 0. This is a 

special case of (A) in which 1 , 1, , ,       . 

Noting that min 1, , we have all proper solutions of  equation (2.1.33) are 

oscillatory if  

 ∞∞
0

,          for some   0   

Theorem 2.1.4 : Consider the equation 

            0,                                            (2.1.34) 

Where  , ,∞ , , and assume that   is even and that the hypotheses  1  and 

2  are satisfied. 

1   There exist positive constants  and  .  such that . 

2   There exists a positive constant  such that 

           0. 
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Furthermore, assume that   is not eventually negative. Then every solution of equation 

(2.1.34) oscillates. 

The example below illustrates Theorem 2.1.4. 

Example 2.1.4: The NDDE  

         cos 2 cos 4 0, 0,       

Note that there is nonnegative 1 2⁄  and  3 2⁄   such that1 2⁄ 3 2⁄ , 

and  0, satisfies the hypotheses of theorem 2.1.4. Therefore, every solution of this 

equation oscillates. For example, 
⁄

 is an oscillatory solution. 

The following example shows that if we remove the hypotheses 2  from theorem 2.1.4, 

the result may not true. 

Example 2.1.5: The NDDE  

1
2 cos 2

3
2 cos 4 0, 0, 

Satisfies all the hypotheses of theorem 2.1.4 except   2 . Since 0 1, note that 
⁄  is a non oscillatory solution of this equation. 

 

Remark 2.1.1:  From case 1we have the following result  

Equation (2.1.1) with 0 1 is oscillatory if     

                             ∞           for some   0                                       (2.1.35) 

and equation (2.1.1) is non oscillatory  if 

                                ∞ .                                                                      (2.1.36) 

Remark 2.1.2: If       where   0  condition (2.1.2) and  

(2.1.35) fail to be satisfied.                                                            
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2.2 Non Oscillation of nonlinear equation    

     In this section we discuss the non oscillatory behavior of the equation  

0                                                   (2.2.1) 

Where  2, 1, and the following conditions are always assumed to hold: 

a) 0,∞ ,  is nondecreasing on 0,∞ ,  for  0 and 

lim ∞ ∞; 

b) 0   ,∞  , | | 1 for  0 ,  where  is a positive constant, and 

0 for  0 ; 

c) 0  ,∞  and  0    0 ; 

d) ∞,∞ \ 0  and  0 for  0 ; 

e) 0  ,∞      lim ∞ ∞ . 

Definition 2.2.1:   Equation (2.2.1)  is called strictly sublinear if there is a number α such 

that 0 1 and  
|f u |
|u |

|f u |
|u |           for       |u |   |u |, u u 0 .    

 

Equation (2.2.1)  is called strictly super linear if there is a number β 1 such that  
|f u |
|u |

|f u |
|u |           for       |u |   |u |, u u 0 .    

The equation 

   | |     0   

Is a special case of equation (2.2.1), is strictly sublinear if ∞ 1 and is strictly super 

linear if 1 ∞  . 

Note: We say that a non oscillatory solution  of equation (2.2.1) or the inequality 

   sgn  0.                                                            (2.2.2) 

are of class  if  x satisfies 

0,                        0 ,
      1    0,           1 ,

 

for all sufficiently large t . 
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Theorem 2.2.1 : Let (a)-(e), (2.2.3) and (2.2.4) be satisfied.  

           τ  is locally Lipschitz continuous on 0  , ∞                                               (2.2.3) 

           h is locally Lipchitz continuous on τ 0   ,∞                                            (2.2.4) 

Assume that equation (2.2.1) is strictly sublinear and 0 j n 1,  1 σ 1 . Assume 

in addition that  g t min  g t , t . satisfies  

              lim inf  g t 0                                                                                   (2.2.5) 

Then, a necessary and sufficient condition for (2.2.1) to have a non oscillatory solution of 

class   is that  

           t p t f c g t dt ∞,              for some  0.                                              (2.2.6) 

Theorem 2.2.2 : Let (a)-(e), (2.2.3) and (2.2.4) be satisfied.            

Assume that equation (2.2.1) is strictly super linear and 1 j n 1 , 1 σ 1. 

Assume in addition that   min  , . satisfies  

              lim inf 0                                                                                    (2.2.7) 

Then, a necessary and sufficient condition for (2.2.1) to have a non oscillatory solution of 

class   is that  

            
t0

 dt  ∞          for some c 0                       (2.2.8) 

Example 2.2.1: Consider the equation  

       . 2 | |   0                                 (2.2.9) 

where n 2 , σ 1 or 1 , p C 0,∞  , p t 0  on  0,∞  , and τ , h, γ  are constants 

such that | | 1 , | | ∞ , | | ∞ . First, notice that  

case (II)  in lemma 1.6.2 does not occur (that is, the class   for equation (2.2.9) is 

always empty) since the function h t h sin t  takes a nonpositive value on [T, ∞) for all 

T. Let j be an integer satisfying: 1 j n 1  and   1 σ 1. 

Remark2.2.1:  Theorem 2.2.1 shows that equation (2.2.9) with ∞ 1 has a non 

oscillatory solution of class    if and only if                    

    | | ∞
t0

tn j 1 γj p t dt ∞ ,
∞

t0
 

While theorem 2.2.2 shows that equation (2.2.9) with 1 ∞ has a non oscillatory 

solution of class    if and only if  

 | | ∞
t0

tn j γ j 1  p t dt ∞ .
∞

t0
 

 Consider the special case that n is even and σ = 1 in equation (2.2.9).  

We see that if γ 1   and the condition 



24 
 

                   t  p t dt ∞                                                                                             (2.2.10) 

are satisfied, then all the classes , j   1, 3, . . . , n—  1, for equation  (2.2.9) are empty. 

Since   is also empty, we can conclude the following: Let n be even, σ = 1 

and γ 1, then equation (2.2.9) has no non oscillatory solutions if and only if (2.2.10) 

holds. Similarly, if n be even, σ = 1 and γ 1.  Then equation (2.2.9) has no non oscillatory 

solutions 

 if and only if            t  p t dt ∞ . 

The following results concerning the non oscillatory solution of the  

Equations: 

, 0 ,  for                                    (2.2.11) 

and 

, 0                                               (2.2.12) 

Where  is a real number, 0 , 2, 1,   ,∞  , lim ∞ ∞ ,

,∞  , ,∞ 0,∞ ,  

  , 0 for   , ,∞ 0,∞  , and   ,  is nondecreasing  

if   0,∞  for each fixed ,∞ . 

  . .   27 : Suppose that | | 1 , , 0  0 and | , |

| , | for  | | | | , 0.  If                                                                                                                   

                      | , |∞   ∞                                                              (2.2.13)                         

for some 0 , then equation(2.2.11)  has a bounded  non oscillatory solution. 

Theorem 2.2.4  27 :  Suppose that 

| | 1 ,  , , 0, 0  | , | | , |    | | | | ,

0.  If                        

                       ,∞   ∞                                                       (2.2.14)             

For some  0 , where  then (2.2.11) has an unbounded non oscillatory 

solution. 
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Theorem 2.2.5 18 : Let   be an integer with  0 1 . Suppose that equation 

(2.2.15) holds  

   1   and    ,       .                                                   (2.2.15) 

Then equation (2.2.12) has a positive solution  such that  

                   1                                    ∞   

for some 0    if and only if    

                     , ∞   ∞     for some   0 .                               

If  1 in equation (2.2.11) , then the function  

      ( , 0,  , 0 1), is a nontrivial solution of the 

equation   0 , 

 and so it is natural to expect that, if   is small enough in some sense, equation   (2.2.11) 

possesses a positive solution   which behaves like 

 the function  as ∞ . 

For the case  | | 1,  the smallness condition on  is characterized by the integral 

condition        

            , ∞   for som    0∞                                   (2.2.16) 

In fact, it is known that equation (2.2.11) with | | 1  has a solution  satisfying 

lim ∞  (exist and is positive finite value) if and only if (2.2.16) holds, see [7], [18]. 

It has been observed that there is a slight difference between the case 1 and the 

case 1 1.  M.Naito discussed the case 1 and he proved that the same result 

as the case| | 1, more precisely, we have the following theorem. 

Theorem 2.2.6 15 : Let  be an integer with 0 1. Then the equation  

, 0                                                      (2.2.17) 



26 
 

has a solution  satisfying lim ∞  (exist and is positive finite value) if  and only if  

(2.2.16) holds. 

Remark 2.2.2: The purpose in  18  is to extend this result to the equation  

        , 0 

where  ,∞  ;  2 ;   1 for the case  equation  

(2.2.15), of course (2.2.15) means that   is a periodic function satisfying   

1 ,  , and hence there are  

a constants  and  such that 1   ∞ for . 

Remark 2.2.3: 

 If  1  then the linear equation  

 0         

has a non oscillatory solution if  t  p t dt ∞, and  the equation   

   | |     0       

has a non oscillatory solution if    , ∞∞  .            
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2.3 Oscillation of Nonlinear Equation. 

We investigate the oscillatory behavior of the equation   

0                                              (2.3.1) 

Where, , ,∞ ,  , 0 , 0  on any half line ,∞  , ,

, with commute delayed argument i.e.   

, . 

The following assumptions are made for their use in this section: 

(1)                  if , 0 

(2)                if , 0 

(3)                          if 0  and 0 , for each  , 

         Where :  for some  ,∞  . 

(4)                        if 0  and 0 , for each  

(5)  is bounded away from zero if  is bounded  away from zero . 

(6) ∞ ∞ . 

(7) ,∞  and  , where b is positive constant . 

(8) There exists a positive constant M such that  . 

The main result is contained in the following theorem: 

Theorem 2.3.1 10 : Assume that conditions (1)-(8) hold. Then, 

If n is even, every solution of equation (2.3.1) is oscillatory. 

Proof: Suppose that equation (2.3.1) has non oscillatory solution  . 

Without loss of generality, assume that   is eventually positive (the proof is similar 

when   is eventually negative). That is  0,  

0,  0, and 0 for  for some . 

Set     .                                                                                (2.3.2)  
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Since   is nonnegative then  0 for   . Using the fact that  for  

 , then from (1), and (3) we have: 

            

                                                                           (2.3.3) 

Since  0, and      0  from (1) we have (2.3.3)  

Now using (2.3.1) and (2.3.2) we obtain  

                                                                                         (2.3.4) 

From (2.3.3) and (2.3.4) we have: 

  . 

Hence 

                                              (2.3.5)  

Since  0 for   , 0 and so,   is monotonic for  0,1, … , . 

Therefore 0  or  0 eventually, if 0 then from the facts that 

0 and   0 , imply that 0 eventually , so a contradiction .  Hence there 

exists  such that  0 for   . 

From (2.3.1), and the fact that  0 , we have: 

      0                                 (2.3.6) 

Let  such that   1 0 for  3 , then integrate (2.3.6) from  to infinity, we 

get : 

     ∞  . 

where  L=lim ∞ . Since 0 eventually, we show that: 

     ∞∞                                                                                  (2.3.7) 

Using (2.3.7), with (7), and (8), follows that: 
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     ∞∞                                                                       (2.3.8) 

Integrating (2.3.5), and using (2.3.8), we show that:   

     ∞∞                                                                                                        (2.3.9) 

Since (5) and (6) hold, then (2.3.9) implies that  lim ∞ inf  0. 

 But  is positive and monotonic, so   0 as ∞  . So  is decreasing, implies 

that t 0 eventually. For  1 , t 0  

as t ∞ since t  is monotonic and t 0 ( t  is concave up  .Hence t  is 

increasing ,which implies that   z˝ t 0 . for  z˝ t  is monotonic and negative . 

Continuing in this manner we have: 

    0 , for     0,1, … , 1                                                   (2.3.10) 

with strict inequality holding for 1.If   is even , using (2.3.10) and the fact that  

0 ,we get to t 0, and this contradicts  t 0, and this complete the proof. □ 

Remark 2.3.1: If   is odd, then t t   0 as   t ∞ , so that any solution of  

equation (2.3.1) is either oscillatory or tends to zero as t ∞. 

Example 2.3.1:  consider the NDDE                                                                              

     x t 2 cost x t 2π 3 cost x t 4π 0                                        (2.3.11) 

Here  2,   2  ,   3  ,   ,  2  ,  

and 4  .   The delay arguments       and    are commute i.e.  

6  , the function     satisfies conditions (1)-(5), and    satisfies the 

divergent integral in condition (6). Also conditions (7) and (8) are satisfied by (2.3.11). 

Thus all conditions of theorem 2.3.1 are satisfied. Therefore, we can conclude that every 

solution of equation (2.3.11)  is oscillatory. In fact, cos t
3 cos t

   ,   sin t
3 cos t

    are 

oscillatory solutions of  (2.3.11). 

Example 2.3.2:  consider the NDDE 

x t x t π 2 ⁄ 1 0,                                                (2.3.12) 
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Where   , equation (2.3.12) has the unbounded oscillatory solution x t e sin t. 

Remark 2.3.2: If  1 , 0 1      then the equation  

    | |     0                         (2.3.13) 

 has no non oscillatory solution if and only if 

  t p t dt ∞.  

And if 1, and n is even then it has no non oscillatory solution if and  

only if   t p t dt ∞.   

In particular equation (2.3.13)  with 0 1 is oscillatory      

If and only if    

           t ,  p t dt ∞                                                                     (2.3.14) 

Remark 2.3.3: Equation (2.3.13) is oscillatory if 

      ,∞ min , ∞                               (2.3.15)  

with  1. See  19 . 
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Chapter Three 

Necessary and Sufficient Conditions for Oscillation of Solution of NDDE 
Compared with an ODE 

 In this chapter we will mention main results for the oscillation of  

Solution of the equation: 

           , 0                                                         (3.1.1) 

by using new approach in which we  provide conditions related to a 

certain ODE. 

3.1 Main result  

The following confirm the required results. 

Theorem 3.1.1  : Equation (3.1.1) is oscillatory if and only if  

                             , 0                                              (3.1.2) 

is oscillatory. 

Using the known oscillation results for the equations: 

                           0                                                        (3.1.3) 

and 

              | | sgn  0                                           (3.1.4) 

We can obtain oscillation results for the equations 

0                                                          (3.1.5) 

and 

| |     0                               (3.1.6) 
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Corollary 3.1.1 : 

 (i) Equation (3.1.5) is oscillatory if  

               ∞ ∞                                                (3.1.7)                               

(ii) Suppose that (3.1.7) fails, then  equation (3.1.5) is oscillatory if 

               lim ∞ sup  t
∞ 1 1 !                       (3.1.8)                               

or if  

                lim ∞ inf  t
∞ 1 1 ! 4⁄                                              (3.1.9)                         

Equation (3.1.5)   has non oscillatory solution if    

               lim ∞ sup   
∞ 1 2 ! 4⁄                                          (3.1.10)  

To prove corollary 3.1.1 we need the following oscillation result for equation (3.1.2).  

Lemma 3.1.1 16  :    

(i)  Equation (3.1.3)  is oscillatory if  (3.1.7)   holds                                       

(ii) Suppose that (3.1.7) fails, then  equation (3.1.3) is oscillatory if 

                    lim ∞ sup t
∞ 1 !                  

or if  

                    lim ∞ inf  t
∞ 1 ! 4⁄                                       

equation (3.1.3) has  non oscillatory solution if    

                    lim ∞ sup  
∞ 2 ! 4⁄ . 

Proof of corollary 3.1.1: 

Combining Theorem3.1.1 with Lemma 3.1.1, we obtain corollary 3.1.1.  

This completes the proof.   

Now we give an example that illustrates this result: 

Example 3.1.1: We consider the linear neutral differential equation  



33 
 

                       0                                                  (3.1.11) 

Where  0, , applying corollary 3.1.1, we conclude that: 

Equation (3.1.11) is oscillatory if either:  

i        1 1 ! 4⁄ ,  

Since  

lim ∞ inf  
∞ lim ∞ inf   ∞   

                                                  =lim ∞ inf    lim ∞    

                         lim ∞ inf       lim
∞

1

1
   

                         lim ∞ inf      lim ∞    

                        lim ∞ inf      1 1 ! 4⁄  

if   1 1 ! 4⁄ .  Or 

(ii)  If  ,  

we let  , where  1,   

∞  ∞   

                             ∞  

                              lim ∞ lim
∞
  ∞.   

Equation (3.1.11) has non oscillatory if either:   

(iii)     and   1 2 ! 4⁄  

 lim ∞ sup t       lim ∞ sup t        ∞  ∞                                                                                                     

                                                             lim ∞ sup t         ∞  

                                                     lim ∞ sup t     
∞
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                                      lim ∞ sup t  1 lim ∞                                                                                           

                                               lim ∞ sup t                                                                                            

                                               lim ∞ sup    

Hence equation (3.1.11)  is non oscillatory if   1 2 ! 4⁄  

(iv)    , so 0  lim ∞ sup t       lim   ∞ sup t         ∞    ∞  

                                         lim ∞ sup t          ∞                                                                                         

                                               lim ∞ sup t          ∞               

                                          lim ∞ sup t         ∞  

                              lim
∞
  sup t    lim 

1
 

since    0   

                                            lim ∞ sup     =0 

 

Corollary 3.1.2: equation (3.1.5) is oscillatory if (3.1.12)  holds. 

                                 ∞∞                                                                      (3.1.12)               

equation   (3.1.5) has non oscillatory solution if (3.1.13)  holds. 

                                ∞∞                                                                          (3.1.13)   

To prove corollary 3.1.2 we need the follwing lemmas:  

Lemma 3.1.2 28   : Let n be even. If  

           ∞ ∞        for some    0, 

then 

 0  is oscillatory, and consequently 

  (3.1.3) is oscillatory. 

Where min ,  . 

Lemma 3.1.3 16 : Asume that           

                          lim ∞ inf 0⁄ . 
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i. Equation (3.1.3 is strongly oscillatory if and only if either (3.1.7)                                              

or 

              lim ∞ sup t
∞ ∞. 

ii. Equation (3.1.3) is strongly non oscillatory if and only if  

                         ∞ ∞  

 and  

             lim ∞
∞ 0 . 

Lemma 3.1.4 22 : Suppose that        for        and  

                       lim ∞ inf ∞⁄ , 

then equation (3.1.3) is  strongly  oscillatory  if and only if  

                       lim ∞ sup   ∞ ∞, 

and equation (3.1.3) ) is  strongly  non oscillatory  if and only if  

                       lim ∞  
∞ 0.  

Note that corollary 3.1.1 implies corollary 3.1.2 . 

Proof of corollary 3.1.2:Suppose that  (3.1.12)  holds, from lemma 3.1.2 it follows that the 

equation  

                         0                                                       (3.1.14)   

is oscillatory for all constants  0. Lemma 3.1.3. and lemma 3.1.4 have shown that 

equation (3.1.14) is oscillatory for all   0 if and only if either  (3.1.7)   holds or 

                          lim ∞ sup   ∞ ∞, 

this means that if (3.1.12)  holds, then either (3.1.7)  or (3.1.8) is  satisfied, 

and so equation (3.1.5) is oscillatory .  

Suppose next that (3.1.13) holds. Then   

            0 lim ∞  
∞ lim ∞  

∞ 0. 
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consequently, if  (3.1.13) holds, then (3.1.10) is satisfied, and so (3.1.5) has non oscillatory 

solution.  

Corollary 3.1.3: Equation (3.1.6) is oscillatory if and only if  (3.1.15)holds. 

   , ∞∞                                                                                 (3.1.15) 

To prove corollary 3.1.3, we need the following result which has been obtained by 

Kitamura 28, corollary 3.1  . 

Consider the equation  

                            0                                                (3.1.16) 

Lemma 3.1.5   : Let  be even, assume that           

                          lim ∞ inf 0⁄ , 

 the condition (2.3.17) is a necessary and sufficient condition for  (3.1.16)  to be oscillatory  

                             t p t dt ∞                                                                            (3.1.17) 

Proof of corallary 3.1.3: 

From lemma 3.1.5  equation (3.1.16) is oscillatory ,so with theorem3.1.1 we obtain 

corollary 3.1.3.  

Let us consider the equation 

           , 0                                           (3.1.18)   

Where 0, 0, ,∞ , ,∞ , lim ∞ ∞, 

, 0    , ,∞ .  

From theorem 3.1.1, we obtain the following comparison result. 

Corollary 3.1.4: Suppose that ,  for    ,and  ,

| , | for   , ,∞ . If equation (3.1.1) is oscillatory , then 3.1.18  is 

oscillatory. 

To prove corollary 3.1.4 we need the following result due to H. Onoes 6 . 
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Lemma 3.1.6 6 . : If the differential inequality  

                          , 0 

Has an eventually positive solution, then the differential equation  

                          , 0 

Has an eventually positive solution.  

Proof of corollary 3.1.4: Assume that (3.1.18) has non oscillatory solution, then theorem 

3.1.1 implies that  

                               , 0, 

has a non oscillatory solution . Without loss of generality, we may assume that  

0 for all . For the case where 0 for all large ,  is an 

eventually positive solution of 

                              , 0, 

Where , , ,  and hence the case  0 can be treated similarly. From 

Lemma 1.6.1 it follows that   is eventually nondecreasing. In view of the hypothesis of 

corollary 3.1.4, we see that   for all large  , and  

                ,   

 , , ,  

We have the differential inequality  

                 , 0, 

that has non oscillatory solution, hence from lemma 3.1.6 the differential equation  

                 , 0 , 

has non oscillatory solution, so from theorem 3.1.1 equation 3.1.1 has a non oscillatory 

solution. This completes the proof.□ 
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3.2  Proof of the “if” part of theorem 3.3.1 (Sufficient condition) 

We want to prove that if the equation 

, 0                                                                    (3.2.1) 

has a non oscillatory solution, then the equation 

  , 0                                                                         (3.2.2) 

has a non oscillatory solution.  

 The following lemmas are required to complete the proof. 

Lemma 3.2.1: Let  1 and 0 . Suppose that ,∞ , 

∆ ,∞ , ∆ 0, ∆ ′ 0 fo    ,  and    lim ∞ ∆ ′ 0.⁄  

For the case 1, assume moreover that lim ∞
⁄ 0. Then  

                       ∆             ∞ .  

Where    ∆ t . 

Lemma 3.2.2: Let  λ 1. Suppose that  , ∞ ,  0 for  

 . If     is nondecreasing and concave on   , ∞ , then there  exists  a 

constant α such that  

0
1
2  

1
2  

1
2   2 ,      2 . 

Lemma 3.2.3: Let  λ 1. suppose that  , ∞ ,  0 for  

 . If     is nondecreasing and convex on , ∞ , then there  exist  a 

constant α such that  

     0       2 ,          2 . 
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Lemma 3.2.4: let 1 and . Suppose that  , ∞ ,   0       

.  Assume moreover that 

∆ ,∞ ,  ∆ 0, ∆ ′ 0        ∆ ′′ 0   or  ∆ ′′

0   for     ,   lim ∞ ∆ ′ 0.⁄   

1
2  ∆       ∞ . 

Lemma 3.2.5: Let , ∞  satisfy   0 and  0 for  . Then 

there exists an integer 1,3, … , 1    such that 

0, 0 1,
                                            

1 0, ,
                                           (3.2.3)          

   for  . In particular, 0 for  . 

Remark 3.2.1: A function  satisfying 3.2.3   for all large  is called a function of 

Kiguradze degree   . Let  be a function of Kiguradze degree 1,3, … , 1  

satisfying 0 for all large , it can be shown (cf. [2],[3],[19]) that  

                       lim 0,    1, 2, … , 1                                                 (3.2.4) 

And that one of the following three cases holds:  

lim 0     lim ∞;                                                               (3.2.4a) 

lim 0      lim ∞;                                                                              (3.2.4b) 

lim 0      lim 0.                                                     (3.2.4c) 

If 3.2.4 holds, then we put , and if 3.2.4 or 3.2.4 holds, then we put 

1. Then it is easy to verify that 0,1,2, … , n 1 , 

lim 0  and   lim     0    ∞ .                                                          (3.2.5) 
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Lemma 3.2.6:  Let  1. Suppose that  , ∞ , ∆ ,∞  and  ∆

0 for  . For the case  1, assume moreover that  lim 0.   ∆  is a 

function of Kiguradze  for some  1,3, … , 1   then there exist a constant α  

  and an integer  0,1,2, … , 1   such that  

                          ∆ 0    

 For all large  . 

Proof of the "if" part of Theorem 3.3.1: It is sufficient to prove that if equation (3.2.1) 
has a non oscillatory solution, then equation (3.2.2) has a non oscillatory solution. Let  

be a non oscillatory solution of (3.2.1). Without loss of generality, we may assume that 

0 for all large . Then ∆ 0  and  ∆ 0 for all large t. In view of  Lemma 

3.2.5, we find that ∆  is a function of Kiguradze degree  for some ∈ 1,3, … ,

1 , and hence lim ∆ const.  Since 0   ∆  for all large , we 

have lim ⁄ 0 if  1. By Lemmas 3.2.2, 3.2.3 and 3.2.6, there are a 

constant  and an integer ∈ 0,1,2,… , 1 such that  

1
1

∆ 0  for all large   

Put 1 ∆ . Then  0 for all large . From the 

monotonicity of  it follows that  

1
1 ∆

1
1 ,  

1
1 ,  

for all large . Lemma 3.1.6 implies that (3.2.2) has a non oscillatory solution.  

The proof is complete. □ 

Note: The proof of the lemmas in this section can be found in [ 20 ]. 
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3.3 Proof of the “only if” part of the theorem 3.1.1. (Necessary condition) 

In this section we give the proof of the "only if" part of Theorem 3.1.1. To this end, we 

require the following result concerning an "inverse" of the operator∆. 

Lemma 3.3.1: Let  and  be numbers such that max , 1 , and let ∈  and 

0. Define the set  as follows:  

  Y ,∞ : 0, , ,  | | , . 

Then there exists a mapping Φ on Y which has the following properties:   

(i) Φ maps  into ,∞ ; 

(ii) Φ is continuous on Y in the , ∞ -topology;  

(iii) Φ satisfies Φy t λ  Φy t τ y t  for  and y∈Y; 

iv  If  λ = 1 and y∈Y is nondecreasing on ,∞ , then (Φy)(t) ≥ 0 for     ; 

(v) If  λ > 1, then lim (Φy)(t) = 0 for y ∈ Y.  

Here and hereafter, , ∞  is regarded as the Frechet space of all continuous functions on 

, ∞  with the topology of uniform convergence on every compact subinterval of , ∞ . 

We divide the proof of Lemma 3.3.1 into the two cases 0 < λ ≤ 1 and λ > 1.  

Proof of Lemma 3.3.1: The case 0 < λ ≤ 1. 

 For each y∈Y, we define the function Φy on , ∞  by 

Φy t
, , 1 ,

0,1, … ,
0, ,

 

 (i) Let y∈Y. Note that 0. It is obvious that Φy t  is continuous on ,∞

: 0,1,2, … . We observe that  

   lim Φy t 0 lim Φy t , 
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And that if    1, then 

                 lim Φy t ∑   

                                                     ∑   

                                                     ∑   

                                                      lim Φy t .  

Consequently, Φy t  is continuous on , ∞ . 

 (ii) It suffices to show that if ∞
1 is a sequence in C , ∞  converging to 

∈  , ∞ uniformly on every compact subinterval of , ∞ , then Φ  converges to Φ  

uniformly on every compact subinterval of ,∞ . We claim that Φ  Φ  uniformly on 

, 1 , 0,1,2, … Then we easily conclude that Φ  converges to Φ  

uniformly on every compact subinterval of , ∞ . Observe that  

Φ Φ ∑   

                                                ∑   

For       0,1,2, …. then we see that  

                Φ Φ 0   ∞ ,    0,1,2, … .,  

So that Φ  converges to Φ  uniformly on for    0,1,2, … 

 (iii) Let ∈ . If  ∈ , τ , then τ 0 and  

Φ Φ . 

If , 1 , 1,2, … then  

                            Φ ∑   

                                           ∑ 1    
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                                            ∑   

                                            Φ ,  

Since 1 , .  

      (iv) Assume that 1. Let y∈Y be nondecreasing on , ∞ . Notice that 

0 for  . It is easy to see that Φ 0   ,   Φ 0 for 

, . let  , 1 , 1,2, …  if    1 is odd, then 

                        Φ ∑ 2 2 1 0./   

If    2 is even, then                

          Φ ∑ 2 2 1 0. Therefore we obtain 

Φ 0  for  . The proof for the case 0 1 is complete.□  

Proof of Lemma 3.3.1:  The case 1. 

 For each ∈ , we assign the function Φ  on , ∞  as follows:  

                  Φ ∑ ,     , ∞ ,
  Φ ,               , .

  

Let ∈ . Then  

             2            (3.3.1) 

For , 1,2, … Thus we see that the series ∑  converges uniformly 

on every compact subinterval of τ,∞ , so that Φ is well-defined, and Φ  is 

continuous on , ∞  and satisfies  

| Φ |
2

1
,  

For each y∈Y, where 2 ∑ . This means that (i) and (v) follow.  

(ii) Take an arbitrary compact subinterval I of τ,∞ . Let 0. 
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There is an integer 1 such that  

                                    ∑ ,    .                                                    (3.3.2) 

Let  be a sequence in Y converging to y∈Y uniformly on every compact subinterval 

of , ∞ . There exists an integer 1 such that  

                                    ∑ ,    ,    .  

It follows from (3.3.1) and (3.3.2) that                      

             Φ Φ ∑   

                                                           ∑   

                                                           ∑  

                                             2. ,    , , 

Which implies that Φ  converges Φ  uniformly on I. We see that 

 Φ    Φ  uniformly on , ,  because of   Φ Φ  on ,  for 

y∈Y. Consequently, we conclude that Φ is continuous on Y.  

      (iii) Let y∈Y. Observe that  

                  Φ ∑ 1  

                                           ∑  

                                           Φ ,     . 

The proof for the case λ>1 is complete.□  

Lemma 3.2.2: Let , ∞  be a function of Kiguradze degree   for some 

1,3, … , 1 , then lim 1 for each  0.  

Proof: We may assume that 0 for all large . Recall that  satisfies one of 

(3.2.4a)- (3.2.4c) If (3.2.4a) holds, then  
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lim lim 1. 

In exactly the same way, we have 1 for the case (3.2.4c). Assume that 

(3.2.4b) holds, by the mean value theorem, for each large fixed , there is a number 

 such that  

       . 

Thus we obtain  

1  

By (3.2.4b) we conclude that lim 0  and lim ∞, so that lim 1. 

Now we prove the "only if" part of Theorem 3.1.1. 

Proof of the "only if" part of Theorem 3.1.1:  

We show that if equation (3.2.2) has a non oscillatory solution, then equation (3.2.1) has a 

non oscillatory solution. Let z(t) be a non oscillatory solution of (3.2.2). Without loss of 

generality, we may assume that  is eventually positive. Set 1 . Then  

is an eventually positive solution of  

                , 1 0                                                          (3.3.3) 

Lemma 3.2.5 implies that  is a function of Kiguradze degree  for some 

1,3, … , 1 , and one of the cases (3.2.4a)- (3.2.4c) holds. Hence,  lim const  0. 

From lemma 3.3.6 it follows that  

                2 ,                                                                              (3.3.4) 

for some . 

We can take a sufficiently large number  such that 0   

 0,1,2, … , 1 , 0 for  , and  
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                min , inf : max   , 1 . 

Recall (3.2.4). Integrating (3.3.3),we have  

            
! !

,  

For , where  

                   
!

∞ ∑
!

,     , 

and   ∞ lim 0. 

Consider the set  of functions ∈ ,∞  which satisfies  

0  for  ,   and   0   for  . 

Then  is closed and convex, and there is a constant 0 such that 

| |  on  ,∞  for  , by lim ⁄   0. Lemma 3.3.1 implies that 

there exists a mapping Φ on  satisfying (i)-(v) of lemma 3.3.1.  

Put  Ψ Φy , ,     . 

For each , we define the mapping : , ∞  as follows:  

1 ! 1 ! ,   , ,

0, , ,
 

Where  

,
, 1 , 1 ,

, , 0 1 ,
0, 0,

 

For   and ∈ . In view of the fact that  

0 , , 1 , , , ∞ , 
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We see that  is well defined on Y and maps Y into itself. Since Φ is continuous on Y, by 

the Lebesgue dominated convergence theorem, we can show that  is continuous on Y as 

a routine computation.  

Now we claim that (Y) is relatively compact. We note that (Y) is uniformly bounded 

on every compact subinterval of , ∞ , because of Y . By the Ascoli-Arzela 

theorem, it suffices to verify that  (Y) is equicontinuous on every compact subinterval of 

, ∞ . Let  be an arbitrary compact subinterval of , ∞ . If 1, then 

            0
!
  ,         for   and    

If  3, then  

0
2 ! 1 !

  ,
1

 

for   and   . Thus we see that :   is uniformly bounded on . The 

mean value theorem implies that (Y) is equicontinuous on I. Since | |

0  for  , , , we conclude that (Y) is equicontinuous on every compact subinterval 

of , ∞ . 

By applying the Schauder-Tychonoff fixed point theorem to the operator , there exists a 

  such that  . 

Put  Ψ .Then we obtain 

               ∆  ,     

Since  

∆                                                                                                                            

Ψ Ψ  

                               = Φ Φ  

                                Φ Φ  

By lemma 3.3.1(iii) we obtain 



48 
 

                 ∆  =                                                                                        (3.3.5) 

And hence  ∆  is a function of Kiguradze degree . 

Since   0  is increasing for   , so that 

 0 ∆  =  

 But   

             0 ∆                                                      (3.3.6) 

 for   . We will show that  

               0 1 for all large t.                                                           (3.3.7)      

Then the proof of the "only if" part of Theorem 3.1.1 will be complete, since (3.3.5) and 

(3.3.7) imply that  

,  

,  

for all large t, which means  is a non oscillatory solution of (3.2.2). 

If ∞ 0, then we put , and if ∞ 0, then we put 1. It can be shown 

that ∆ 0. Indeed, since  

lim ∆ lim lim 4 1  

                                     lim , 

We see that if , then ∆ ∆
!

0, and that if 1, then 

∆ ∆
!

0.  

First assume that λ≠1. From Lemma 3.3.6 it follows that 0 for all large . In 

view of Lemma 3.2.1 and the fact that 
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 0, we have  

1
1 ∆

3
4 1  

For all large t. Hence, by (3.3.6), we obtain 1  for all large t.  

Next we assume that 1 and 0. Since  is nondecreasing in , ∞ , 

from Lemma 3.3.1 (iv), we see that Φ 0 for , so that / 4 1  for 

. Hence, 0 for . By using Lemma 3.2.4 and the same argument as in the 

case λ≠1, we can show that   1  for all large t.  

Finally we suppose that 1 and 0. Then 1 and ∞ 0. Therefore, 

 on , ∞ . As in the case 1 and 0, we have / 4 1  for 

, which implies that 0 for . Note that ∆ 0    ∆ ″ 0 for , 

since 1. By Lemma 3.2.2, (3.3.6) and (3.3.4), we conclude that  

                               ∆ ∆ 2   

                                       2  

                                       ,     2 . 

The proof is complete. □ 
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Chapter Four 

Necessary and Sufficient Conditions for the Oscillation of Solution with 
Positive Variable Coefficients 

In this chapter we will mention main results for the oscillation of  

Solution of the equation: 

           , 0.                                                       (4.1.1) 

which is a certain kind of generalization of theorem 3.1.1 with the following assumptions 

(H1) and (H2):  

1           0 1    for  ; 

                                          2           1              for  .  

4.1 Main result  

Throughout this chapter we use the notation:  

1;        … 1 ,       1,2, … .. 

We define the function  on  by 

                    

∑ 1 if  1 holds,
for  .

∑ if  2 holds,
 

 Where  converges uniformly on , and hence S(t) is continuous on .  We will show 

that  

                 0 ,                                                                          (4.1.2) 

We note that if 1, then 

1
1

1
1

1
1

,  and      
1

1
. 
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Theorem 4.1.1 : Suppose that 1  or 2 holds. Then equation (4.1.1) is oscillatory 

if and only if  

                         , 0                                                           (4.1.3) 

is oscillatory.  

Theorem 4.1.1 means that (4.1.1) has a non oscillatory solution if and only if (4.1.3) has a 

non oscillatory solution. 

Theorem 4.1.1 is a generalization of theorem 3.1.1 with 1. Indeed, for the case where 

0   and  1, we see that  1  and that (3.1.1) is oscillatory if and only 

if  

, 1 0 

is oscillatory .  Put  1 . 

Now we assume that  

           , 1       0       for  .                                           (4.1.4) 

since (H1) or (H2) holds, and 1 .  

 Consequently, from Theorem4.1.1, we have the following result.  

Corollary 4.1.1: Suppose that (4.1.4)holds. Then (4.1.1) is oscillatory if and only if  

        , 0                                                                                  (4.1.5) 

is oscillatory.  

The oscillatory behavior of solutions of non-neutral differential equations of the form  

                 , 0                                                                                          (4.1.6) 

  Theorem 4.1.1, with the known oscillation results for non-neutral differential equations 

of the form (4.1.6), can be used to obtain oscillation criteria for the 
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 linear neutral differential equation  

               0                                                     (4.1.7) 

and for the nonlinear neutral differential equation  

                 | | 0           (4.1.8) 

where 0, 1  and the following conditions are assumed to hold:  

                  ;           ,∞ ,      0        for  .                                                   (4.1.9) 

First let us show that S(t) satisfies (4.1.2). 

Lemma 4.1.1     : If (H1) or (H2) holds, then  satisfies (4.1.2). 

From theorem 4.1.1, lemma 4.1.1, lemma 3.1.6, we have the following result. 

Corollary 4.1.2: Suppose that (H1) or (H2) holds. If  

                    , 0                                                                            (4.1.10)  

is oscillatory, then (4.1.1) is oscillatory. If  

                       , 0                                                             (4.1.11)  

has a non oscillatory solution, then (4.1.1) has a non oscillatory solution.  

Proof: Assume that there exists a non oscillatory solution of (4.1.1). 

 Then Theorem 4.1.1 implies that (4.1.3) has a non oscillatory solution . Without loss 

of generality, we may assume that 0  for all large , since the case 0 can be 

treated similarly. Put 

 1 1 . From Lemma 4.1.1we have  
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1
1

1
1

,  
1
1

,
1
1

1
1 ,  

For all large . From Lemma 3.1.6 it follows that (4.1.10) has a non oscillatory solution.  

Consequently, if (4.1.10) is oscillatory, then (4.1.12) is oscillatory.  

Let  be an eventually positive solution of (4.1.11). Thus 

    , 0 

, ,                 

,                 

Then Lemma 4.1.1 implies that 1 1  is an eventually positive 

solution of  

 , 0, 

and hence (4.1.1) has a non oscillatory solution, by Lemma 3.1.6 and Theorem 4.1.1 . This 

completes the proof.□  

The following oscillation result was established by Kitamura [22, Corollaries 5.1 and 3.1]. 

Lemma 4.1.2:  assume that (4.1.9) holds. If (3.1.12) holds, then the equation (3.1.3) is 

oscillatory. If (3.1.13) holds then equation (3.1.3) has a non oscillatory solution. 

Lemma 4.1.3: let 0  and  1. Assume that (4.1.9) holds. Then the equation (3.1.4) is 

oscillatory if and only if equation (3.1.15) holds. 

Combining Corollary 4.1.1 with Lemmas 4.1.2 and 4.1.3, we have the following 

oscillation criteria for (4.1.7) and (4.1.8).  

Corollary 4.1.3: If  (3.1.12) holds, then (4.1.7) is oscillatory. If (3.1.13) holds, then 

(4.1.7) has a non oscillatory solution.  
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Corollary 4.1.4: Equation (4.1.8) is oscillatory if and only if (3.1.15) holds.  

Remark 4.1.1: Corollary 4.1.3 with (H1) have been already established by Jaros and 

Kusano [7, Theorems 3.1 and 4.1]. Corollary 4.1.3 with (H2) extends the results in [9, 

Theorem 1] and [10, Theorem 7].  

Remark 4.1.2: Corollary 4.1.4 with (H1) has been obtained by Y. Naito [29] in the case 

where  is locally Lipschitz continuous.  
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4.2 Proof of the “if” part of theorem 4.1.1.(Sufficient condition) 

Want to show that if equation (4.1.1) has a non oscillatory solution, then equation (4.1.3) 

has a non oscillatory solution.  

The following lemmas are required to complete the proof. 

Lemma 4.2.1: Let H1 and the following condition (4.2.1) hold: 

          
,∞ , ∆ 1 ,∞

∆ 0,        ∆ ′ 0     ,   and
 lim ∞ ∆ ′ 0.⁄         for some   0,1, …

                                   (4.2.1) 

Then  

               S t ∆             ∞ .                                              (4.2.2) 

Lemma 4.2.2: Suppose that   H2 and (4.2.1) hold. Assume, moreover, that  

lim ∞
⁄ 0. Then (4.2.2) holds. 

Lemma 4.2.3: Suppose that (H1) or (H2) holds. Let     , ∞  satisfy 

∆ ,∞  and  ∆ 0 for  . Assume moreover, that lim ∞ 0 if  H2 holds. 

if ∆  is a function of Kiguradze degree k for some k 1,3, … , 1 , 

then there exist a constant  0  and an integer  0,1,2, … , 1  such that  

          ∆ 0  for all large  .                                     (4.2.3) 

Proof: Recalling (3.2.5), we have  

           lim ∆ 0  and    lim ∆    0    ∞  

For some 0,1,2, … , 1 . Choose a constant 0 so small that . By lemmas 4.1.1, 

4.2.1and 4.2.2, we conclude that (4.2.3) holds.□  
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Proof of the "if" part of Theorem 4.1.1: Let  be a non oscillatory solution of (4.1.1). 

Without loss of generality, we may assume that 0 for all large . Then ∆

0  and  ∆ 0  for all large  . By virtue of Lemma 3.2.5, we see that ∆  is a 

function of Kiguradze degree  for some k 1,3, … , 1 . From Lemma 4.2.3, there are a 

constant  0 and an integer 0,1,2,… , 1  such that  

 ∆ 0     for all large  .  

Set ∆   . Then  0 for all large  . we see that 

∆ , ,  

For all large t. Lemma 3.1.6 implies that (4.1.3) has a non oscillatory solution. The proof 

is complete. □ 
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4.3 Proof of the “only if ” part of theorem 4.1.1. (Necessary condition) 

In this section we give the proof of the "only if" part of Theorem 4.1.1. 

We define the following mapping  Φ which is an "inverse" of the operator ∆.  

        Φ
∑ 1   1 ,

∑   2 ,
 

For  ∈ , where  

         : | | max , 1 ,   ,                                                  (4.3.1) 

   0 and  ∈  1,2,… . The properties of the mapping Φ are as follows. 

Lemma 4.3.1: The mapping Φ is well-defined on  and has the following properties (i)-

(iv): 

(i) Φ maps V into C( ); 

(ii) Φ is continuous on V in the C( )-topology;  

(iii) Φ satisfies ∆ Φυ t υ t  for t∈   and υ∈V. 

(iv) If (H2) holds, then lim Φ 0 for   . 

Proof of the "only if" part of Theorem 4.1.1: We show that if (4.1.3) has a non 

oscillatory solution, then (4.1.1) has a non oscillatory solution. Let  be a non 

oscillatory solution of (4.1.3). We may assume that  is eventually positive. Lemma 

3.2.5implies that  is a function of Kiguradze degree  for some  ∈ 1,3, … , 1 . 

Hence, (3.2.3) holds and one of the cases (3.2.4a)- (3.2.4c) is satisfied.  

We can take a sufficiently large number 1 such that 

 0 0,1,2, … , 1 , 0     . Integrating  4.1.3 , we have 

         
! !

0                                                (4.3.2) 

For     , where , , 
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!

∞ ∑
!

, 

And ∞ lim 0,∞ . note that  and 0 for . 

Consider the set Y of functions  which satisfies  

         0      and  0   for  . 

Then Y is closed and convex. Set 

1
2 , ,

1
2 , .

 

By ∞ 0,∞ , there is a constant  such that  and 

for  . Define the set  by (4.3.1). We easily see ⊂  and η∈ . 

For each y∈Y, we define the mapping :  →  as follows:  

         
! !

, Φ Φ , ,
0,    ,

 

Where  

         ,
, ,

, , 0 ,
0, 0,

 

For    and ∈ . In view of (4.3.2) and the fact that  

         0 , ,           , , ∞ , 

We see that is well-defined on Y and maps Y into itself. Since Φ is continuous on Y, by 

the Lebesgue dominated convergence theorem, we can show that  is continuous on Y as a 

routine computation.  

Now we claim that (Y) is relatively compact. We note that  (Y) is uniformly bounded 

on every compact subinterval of  , because of ⊂ . by the Ascoli-Arzela theorem, it 
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suffices to verify that  (Y) is equicontinuous on every compact subinterval of . Let I be 

an arbitrary compact subinterval of ,∞ . If 1, then 

         0
!

,        ,      . 

If 3, then 

          0
! !

 

for  and y∈Y. thus we see that : y∈Y  is uniformly bounded on I. the mean 

value theorem implies that  (Y) is equicontinuous on I. Since | |

0     , ∞, , we conclude that  (Y) is equicontinuous on every compact 

subinterval of .  

By applying the Schauder-Tychonoff fixed point theorem to the operator  , there exists a 
  such that  . 

Put . Then we obtain  

          Δ 0,    ,                                                 (4.3.3) 

By (iii) of Lemma 4.3.1, and hence Δ  is a function of Kiguradze degree .  

We will show that  

          0   for all larg  .                                                                     (4.3.4) 

Then the proof of Theorem 4.1.1 will be complete, since (4.3.3) and (4.4.4)imply that  

         ,  

                                                    ,  

For all large , which means that  is a non oscillatory solution of (4.1.1).  

If  ∞ 0, then we put  , and    ∞ 0,then we put  1.  

 By  4.3.3 , we  ind that lim ∞ ∆
1

2
∞ , so that  lim ∞

∆
0. 
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From Lemma 4.2.3 it follows that 0 for all large . In view of Lemmas 4.1.1, 

4.2.1and 4.2.2, and the fact that lim 0, we have  

          

For all large t. This completes the proof. □ 
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