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Abstract 

Wind speed prediction using machine learning algorithms is crucial for various applications, 

such as wind energy planning and urban development. This paper presents a case study on wind 

speed prediction in Jerusalem using the Adaptive Neuro-Fuzzy Inference System (ANFIS) and 

K-Nearest Neighbors Regression (KNNR) algorithms. The study evaluates their performance 

using multiple metrics, including root mean square (RMSE), bias, and coefficient of 

determination R2. ANFIS demonstrates good accuracy with lower RMSE (0.196) and minimal 

bias (0.0003). However, there is room for improvement in capturing overall variability (R2 = 

0.15). In contrast, KNNR exhibits a higher R2 (0.4093), indicating a better fit, but with a higher 

RMSE (1.4209). This study provides insights into the applicability of ANFIS and KNNR in wind 

speed prediction for Jerusalem and suggests future research directions. The outcomes have 

practical implications for wind energy planning, urban development, and environmental 

assessments in similar regions. 
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Definitions 

 

Term Definition 

Machine learning 

A type of artificial intelligence that involves training 

computer algorithms to learn patterns and relationships in 

data without being explicitly programmed. 

Artificial intelligence 

The ability of machines to perform tasks that typically 

require human intelligence, such as perception, reasoning, 

learning, and decision-making. 

Artificial neural network 

A computational model inspired by the structure and 

function of biological neurons in the brain that is used to 

learn patterns and relationships in data. 

Fuzzy logic 

A mathematical framework for dealing with uncertainty and 

imprecision that is based on degrees of truth and 

membership in sets. 

Fuzzy inference system 
A system that uses fuzzy logic to make decisions or 

predictions based on uncertain or imprecise data. 

Regression 

A statistical technique used to model the relationship 

between a dependent variable and one or more independent 

variables. 

K nearest neighbor 

regressor 

A machine learning algorithm that predicts the value of a 

new data point based on the values of its nearest neighbors 

in the training data. 

Adaptive Neuro-Fuzzy 

Inference System 

A type of fuzzy inference system that uses a neural network 

to learn the parameters of the fuzzy logic rules. 

Renewable energy 

Energy that comes from sources that are replenished 

naturally and rapidly, such as sunlight, wind, water, and 

geothermal heat. 
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Chapter 1 Introduction  

Meeting the energy needs of the global population is viewed as a significant hurdle, prompting 

the emergence of new concepts and innovations. The demand for accessible and cost-effective 

energy is steadily growing. According to Figure (1.1a) based on data from (World Bank, 2013), 

a positive correlation exists between energy consumption and wealth, with individuals in affluent 

nations consuming greater amounts of energy compared to those in less developed countries. 

 

 

Figure 1.1 : a) GDP per capita vs. annual energy consumption (World Bank, 2013). b) 

World population estimates (1950 -2080) (Until, 2013). 

 

The economic expansion experienced by developing economies directly contributes to a rise in 

their energy consumption. Consequently, it becomes crucial to ensure a continuous provision of 

affordable energy to meet the needs of these developing economies. Figure (1.1b), based on data 

from the United Nations Department of Economic and Social Affairs in 2013, illustrates the 

projected global population growth until 2080. It is evident that most of this growth is anticipated 

to occur in developing countries (blue). The combination of a growing population in these 

nations, along with an increase in energy demand per capita due to their economic growth, will 

result in a substantial surge in energy demand throughout the 21st century. 
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The most used energy is non-renewable energy. They are dominant in the electricity generating 

sector. However, the use of non-renewable energy has some disadvantages (Kabeyi & 

Olanrewaju, 2022). It is the main source of greenhouse gases, its price is not stable especially in 

the times of conflicts, and electricity power generation station based on oil tend to be centralized. 

 

Generation of electricity using renewable energy could overcome these issues. Renewable 

energy sources are attracting more and more attention from electricity generation authorities, and 

energy companies because they are natural, free, and environmentally friendly. Among various 

renewable energy sources, wind energy recognized as one of the most significant and potentially 

valuable energy sources (W. Y. Chang, 2014; Jung & Broadwater, 2014; X. Wang et al., 2011). 

 

In the field of meteorology, wind speed is a measurable parameter that arises from the movement 

of air between areas of high pressure and low pressure, driven by temperature fluctuations. It is 

typically quantified in meters per second using an anemometer. Wind speed plays a pivotal role 

in several areas including weather forecasting, aviation and maritime operations, construction 

projects, as well as the growth and metabolic processes of numerous plant species. 

 

Wind speed forecasting has an essential role in designing and operation of wind turbines. A 

reduction in costs and enhancement of the proper utilization of resources could be achieved by 

accurate wind speed prediction. Accurately predicting wind speed plays a crucial role in 

effectively scheduling aviation and maritime operations, as well as construction projects. It 

enables these industries to plan and adjust their activities based on the prevailing wind 

conditions, ensuring safety and optimal performance. 

 

Moreover, wind speed prediction is valuable for farmers as it assists them in making informed 

decisions about which plant species to cultivate each year. By considering the expected wind 

patterns, farmers can select plant varieties that are better adapted to specific wind conditions. 

This helps optimize crop yields, reduce potential damage from strong winds, and enhance overall 

agricultural productivity. 
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1.1 Objectives: 

The objectives of this work include:  

• Improving wind speed prediction accuracy in Jerusalem using ANFIS and KNNR 

algorithms. 

• Conducting a comparison between ANFIS and KNNR to determine which of both 

outperforms the other. 

 

1.2 Problem Statement: 

 

Wind energy is acknowledged for its status as a renewable energy source that offers several 

advantages, including its low cost of electricity generation, abundant availability, high 

efficiency, and minimal environmental impact (Chang, 2013c). Consequently, numerous 

countries are increasingly acknowledging the potential of wind energy as a significant 

opportunity for future electricity generation. As a result, the installed capacity for wind energy 

is growing at an annual rate of approximately 13 percent (Growth Rate of Installed Wind Power 

Capacity Worldwide from 2012 to 2021, 2023). 

 

Nevertheless, the power output of wind turbines, which are used for converting wind energy into 

electricity, is influenced by atmospheric meteorology and wind speed (W. Y. Chang, 2013b, 

2013a). This dependence on these factors means that unexpected fluctuations in wind turbine 

power generation can lead to higher operating costs for the electricity system. This is primarily 

due to an increased demand for primary reserves and can potentially jeopardize the reliability of 

the electricity supply  (Sideratos & Hatziargyriou, 2007). 

 

In an electricity system, it is essential to continuously match the electricity supply with the 

demand. However, the variability in wind power output poses challenges in maintaining this 

balance. Enhancing the prediction accuracy of wind speed and power represents a viable solution 

to address this issue. By improving the precision of wind forecasts, electricity system operators 

can better anticipate fluctuations in wind power generation and make necessary adjustments to 

ensure a reliable and balanced electricity supply. 
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In addition to the balance challenge, the growing integration of wind energy into the power grid 

has brought about a multitude of challenges that need to be addressed. These challenges 

encompass several areas, including electricity market clearing, real-time grid operations, 

ancillary service needs and associated costs, maintaining competitive power quality, as well as 

ensuring power system stability and reliability (Wu & Hong, 2007). 

 

Enhancing wind forecasting can be regarded as one of ways to address many of these issues. 

Since forecasting changes in wind power production is necessary for planning spinning reserve 

capacity and facilitating the management of grid operations (Sideratos & Hatziargyriou, 2007). 

Accurate prediction of wind speed is required to reduce reserve capacity and increase the share 

of wind energy (Lei et al., 2009).  

 

In addition, wind power forecasting plays a crucial role in scheduling conventional power plants 

in advance and facilitating power trading activities in the spot market. (Lange & Focken, 2008). 

Therefore, improving the performance of wind speed and wind power forecasts has substantial 

economic and technical implications for the system. Many studies have concluded that wind 

energy is applicable in Palestine, especially in high areas such as Hebron (wind speed up to 7.5 

m/s) and Jerusalem (Albisher & Alsamamra, 2019). 

 

Predicting wind speed is recognized as a crucial yet challenging task in forecasting wind power 

for electricity generation. While numerous wind speed prediction models have been developed 

globally, their applicability is limited to specific locations as they are site dependent. 

Consequently, the implementation of machine learning algorithms utilizing local data becomes 

imperative to accurately predict wind speed locally in East Jerusalem. By leveraging local data 

and machine learning techniques, more precise wind speed predictions can be achieved, 

contributing to improved wind power forecasting for electricity generation in the region. 
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Chapter 2 Literature Review 

Various methods are available for wind speed prediction, classified by time scale or 

methodology employed. The classification of wind speed prediction methods based on the time 

scale varies in the different literature sources. One classification includes three categories: 

immediate short-term forecasting, short-term forecasting (day-ahead), and long-term 

forecasting (several days ahead) (X. Wang et al., 2011). Another classification includes four 

categories: Ultra-short-term forecasts (a few minutes to an hour ahead), Short-term forecasts 

(an hour to several hours ahead), Medium-term forecasts (a few hours to a week ahead), and 

Long-term forecasts (a week to a year or more ahead) (W. Y. Chang, 2014; Zhao Dongmei et 

al., 2011; X. Zhao et al., 2011). 

 

In this study, the second classification is used. The classification based on time scale is 

important because there are different applications for each category. The applications of ultra-

short-term forecasting are power market clearing, real-time grid operations, regulation actions. 

The applications of the short-term are economic load dispatch planning, appropriate load 

decisions, power market operational security. The applications of the medium-term are unit 

commitment decisions, reserve requirements decisions, online/offline generator decisions. The 

applications of the long-term are maintenance planning, operations management, optimal 

operating cost, feasibility study for design of the wind farm. 

 

The classification of wind speed prediction methods based on the methodology varies in the 

different literature descriptions. However, making a comparison between many studies  (W. Y. 

Chang, 2014; Jung & Broadwater, 2014; X. Wang et al., 2011), the methods can be divided 

into seven distinct categories, namely: persistence method, physical methods, statistical 

methods, spatial methods, regional methods, hybrid methods, and probabilistic methods. 

 

2.1 The Persistence Method 

 

The persistence method is a straightforward approach that assumes the wind speed at a future 

time will remain the same as the current wind speed at the time of prediction (X. Zhao et al., 
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2011). In this method, if the actual wind speed at time t is denoted as v(t), then the predicted 

wind speed at 𝑡 + 𝛥𝑡 can be represented as the follows: 

 

𝑣(𝑡 + Δ𝑡) = 𝑣(𝑡) (2.1) 

 

In addition to being the simplest method, the persistence method is also the most cost-effective 

option available. Given the frequent use of the persistence method by electric utilities for ultra 

short-term predictions, it is crucial to evaluate any newly developed forecasting method against 

this classical benchmark. Such a comparison is necessary to assess the potential improvement 

in forecast accuracy that the new method can offer compared to the forecasts obtained from the 

persistence method (W. Y. Chang, 2013c). 

 

While the persistence method demonstrates relatively higher accuracy than other ultra-short-

term wind forecasting methods in certain aspects, its accuracy declines significantly as the time 

scale of the forecast increases (Wu & Hong, 2007). 

 

2.2 Physical Methods 

 

The physics methods are based on computational fluid dynamics to simulate the behavior of the 

atmosphere. These methods are particularly valuable for ultra short-term and short-term 

forecasting as atmospheric dynamics play a significant role during these time scales. Therefore, 

the utilization of physics methods becomes essential in accurately predicting wind speed and 

power during these forecast intervals. 

 

The physical methods use weather forecast data and a detailed physical description to model the 

wind farm site conditions (Kariniotakis et al., 2004; Lange & Focken, 2006). Physics-based 

methods refine numerical weather prediction (NWP) data by incorporating site-specific 

conditions through a downscaling approach that focuses on the physics of the lower atmospheric 

boundary layer. This enables a more detailed and accurate prediction of wind speed and power 

by considering the unique characteristics of the local environment. 
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For the downscaling method, a comprehensive physical description of both the wind farm and 

its surrounding is required, consisting of two parts; wind farm description which includes details 

such as the layout of the wind farm, the characteristics of individual turbines (including their 

power curves), and other relevant information specific to the wind farm setup, and terrain 

description, this part involves providing a detailed account of the terrain surrounding the wind 

farm, including the roughness of the terrain and the presence of any obstacles that may impact 

the wind flow patterns. 

 

2.3 Statistical Methods 

 

The statistical methods are easy to model and are a cost-effective alternative to the physical 

methods. The statistical methods do not require the acquisition of physical data (which is 

necessary with the physical methods and is one of the major drawbacks of these methods) and 

instead use historical data. The statistical methods present the relationship between the wind 

speed prediction and the explanatory variables, including the NWPs and the on-line measured 

data (Kariniotakis et al., 2004). 

 

The statistical methods use historical data to build a statistical model that predicts the present 

over the next few hours using the NWP forecast for time t + k and the on-line measurement for 

time t. The statistical methods can be divided into four categories. 

 

 

 

2.3.1 Conventional Statistical Methods 

Conventional statistical methods rely on the utilization of time series models to represent the 

underlying problem and facilitate the prediction of future values. The process of formulating a 

time series model typically involves four key steps: model identification and estimation, 

followed by model diagnostics checking, and ultimately, forecasting. 
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Within this framework, different types of time series models can be applied, including the 

following: 

 

1. Autoregressive Model (AR): This model considers the past wind speed values to forecast future 

values, assuming a linear dependence between the current value and its preceding values. 

 

2. Moving Average Model (MA): This model utilizes past forecast errors to predict future wind 

speeds, assuming a linear relationship between the current value and previous forecast errors. 

 

3. Autoregressive Moving Average Model (ARMA): Combining elements of both autoregressive 

and moving average models, this approach incorporates past wind speed values and forecast errors 

to generate future predictions. 

 

4. Autoregressive Integrated Moving Average Model (ARIMA): Extending the ARMA model, 

ARIMA incorporates differencing to achieve stationarity in the time series. It involves three 

components: autoregressive (AR), differencing (I), and moving average (MA). 

 

The ARMA model is used in (Milligan et al., 2003) for wind speed prediction in US wind farms. 

Multiple ARMA models with varying parameters were utilized, with some demonstrating 

improvements compared to the persistence model. It is worth noting that the performance of these 

ARMA models is significantly influenced by their specific parameters. 

 

In the study conducted by Liu et al. in 2010, the improved time series method (ITSM) based on 

ARIMA is utilized to predict the sub-wind speed series obtained from wavelet decomposition 

(Liu et al., 2010). Similarly, in another study (Peng Lv & Lili Yue, 2011), the Autoregressive 

Conditional Heteroscedastic (ARCH) model is combined with ARIMA for prediction purposes. 

In both cases, the results demonstrate that the proposed methods enhance the accuracy of 

predictions when compared to classical time series models. 

 

In another study conducted by M.-D. Wang et al. in 2012, the ARIMA-ARCH model is employed 

for directly predicting the wind speed instead of the sub-wind speed series. The performance of 
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this model surpasses that of the ARIMA model, indicating its improved predictive capability 

(M.-D. Wang et al., 2012). 

 

In (Erdem & Shi, 2011), four distinct approaches based on the ARMA model were introduced 

and evaluated for predicting the wind velocity vector encompassing both wind speed and 

direction. These approaches were the component approach, traditional-linked ARMA, vector AR 

(VAR), and restricted VAR methods. The findings indicated that the component approach 

exhibited superior performance in predicting wind direction compared to the traditional-linked 

ARMA method. However, for wind speed prediction, the traditional-linked ARMA approach 

outperformed the component approach. Moreover, the VAR and restricted VAR approaches 

demonstrated nearly identical prediction performance in this context. 

 

The AR model in combination with a Bayesian approach is employed in (Miranda & Dunn, 

2006). The estimation of the AR model parameters was performed through a Monte Carlo 

simulation. The simulation results show that the Bayesian approach has great potential for wind 

speed prediction. 

 

2.3.2 Machine Learning Methods 

The architecture of an Artificial Neural Network (ANN) typically consists of an input layer, one 

or more hidden layers, and an output layer. Within each layer, artificial neurons are 

interconnected with the neurons from the preceding layer. This structure enables the ANN to 

effectively capture intricate nonlinear relationships between the input and output layers through 

a training process. Unlike previously mentioned physical and statistical methods that rely on 

explicit mathematical expressions, ANN models leverage large sets of historical data to learn 

and make predictions. Different combinations of the ANN architecture can be achieved by 

varying the number of hidden layers, the number of neurons in each layer, and the activation 

function employed. Short-term wind energy forecasting commonly makes use of ANN models 

due to their flexibility and ability to handle complex patterns. (Kalogirou, 2001). 

 

An ANN method is employed in (Sfetsos, 2002) to predict hourly wind speed data using time 

series analysis. The suggested method offers an added extra advantage for utilities that use hourly 
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intervals and have substantial wind penetration. In (W. Y. Chang, 2013d), a backpropagation 

neural network-based model is used for short-term wind predictions, it shows very good 

accuracy. In (More & Deo, 2003), two methods are used for wind prediction:  backpropagation 

neural network and recurrent neural network. The results indicate that neural network prediction 

outperforms conventional statistical time series analysis in terms of accuracy. 

 

In (Guo et al., 2012), a multilayer Feed-forward Neural Network based on modified Empirical 

Mode Decomposition (EMD-based FNN) is used to predict wind speed on a monthly and daily 

basis in Zhangye city, China. The study findings demonstrate that the proposed method exhibits 

superior performance compared to both the baseline FNN and the unmodified EMD-based FNN. 

 

In (Li & Shi, 2010), a comprehensive comparative analysis of three different types of ANN 

approaches is conducted. The approaches include Feed Forward Back-Propagation (FFBP), 

Radial Basis Function (RBF), and Adaptive Linear Element (ADALINE) methods. The 

researchers investigate the influence of various factors, such as input variables, learning rates, 

and model structures, on the accuracy of wind speed predictions. Interestingly, the results 

indicate that the accuracy of each approach varies depending on these factors. Furthermore, it is 

observed that even when using the same wind dataset, no single approach consistently 

outperforms the others. 

 

The research conducted by (Kani & Riahy, 2008) introduces a novel approach to predict the wind 

speed in the short-term period using ANN in combination with the Markov chain method. The 

ANN is initially employed to provide a preliminary prediction, while the Markov chain is utilized 

to refine this prediction based on long-term patterns. The performance is evaluated using data 

recorded at intervals of 2.5 seconds. The results demonstrate the effectiveness of this approach 

in enhancing the accuracy of short-term wind speed predictions. 

 

In (Jursa R, 2007), the ANN approach with Particle Swarm Optimization (PSO) for short-term 

wind speed prediction is presented. PSO is used to choose the input variable from a list of 

neighboring sites. Compared to ANN, the suggested method reduces the prediction error. 

Moreover, (Amjady et al., 2011) proposes a prediction approach that combines Modified Hybrid 
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Neural Network (MHNN) and a new Enhanced Particle Swarm Optimization (EPSO) to achieve 

high learning capability while avoiding overfitting and falling into local minima. The improved 

Mutual Information (MI) method is used to pick the most informative input values for the 

prediction method by filtering irrelevant and redundant input values. The findings support the 

validity of the presented method. 

 

In (Kitajima & Yasuno, 2010), a Complex-Valued Neural Network (CVNN) is proposed for 

wind speed prediction. CVNN uses vector quantities (wind speed and direction) as inputs instead 

of real-valued data. The findings indicate that the accuracy of the predictions surpasses that of 

the Real-Valued Neural Network (RVNN). 

 

In (Catalão et al., 2011b), a three-layer feed-forward network is utilized, trained using the 

Levenberg-Marquardt method, to predict subseries of wind speed by employing the Wavelet 

Transform (WT). The resulting subseries is then reconstructed into the future wind power series 

through inverse WT. To demonstrate the efficiency of the suggested approach in terms of 

prediction precision and computational speed, a comparison is made against the reference 

method. 

 

Due to ANFIS being a pivotal algorithm in machine learning, especially for predicting wind 

speed in this study, it is crucial to dedicate a subsection within the literature review to 

comprehensively discuss its significance and relevance. 

 

2.3.2.1 ANFIS: 

The fuzzy logic approach employs a nonlinear mapping technique that utilizes linguistic 

variables (such as low, medium, and high) and a truth variable that ranges from zero to one. This 

approach is valuable in situations where accurately modeling a system is challenging, but an 

imprecise model exists. By allowing the utilization of approximations and handling fuzzy data, 

fuzzy logic helps overcome these difficulties. However, it is important to note that relying solely 

on fuzzy logic is not entirely satisfactory due to its limited learning capability. 
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The ANN-fuzzy technique is a hybrid approach that combines the strengths of ANN and fuzzy 

logic, where ANN is particularly effective in processing fundamental computations using 

unprocessed data, while fuzzy logic is better suited for complex computations involving 

advanced reasoning similar to human thinking. By leveraging the advantages of both methods, 

the approach achieves a promising strategy for various prediction applications, effectively 

addressing the limitations of each individual method. 

 

In (Sideratos & Hatziargyriou, 2007), a combination of ANN and a fuzzy logic approach is 

employed to optimize the utilization of NWPs. The process begins with the ANN model 

providing an initial wind speed forecast utilizing the NWPs. Subsequently, the fuzzy model 

assesses the accuracy of the predictions generated by the NWPs. Finally, these evaluations are 

utilized by an ANN model to generate the final predictions. This integration optimizes the 

utilization of NWPs and enables the generation of accurate predictions for wind speed by 

leveraging the strengths of both techniques as confirmed by the simulation results. 

 

In their study, (Catalão et al., 2011a) the authors present a hybrid approach combining ANFIS 

with two methods. The first method is the hybrid wavelet transform, utilized to transform the 

wind speed series into a collection of consecutive subseries. The second method is particle swarm 

optimization, employed to adjust the membership function parameters of the ANFIS. The ANFIS 

independently forecasts the converted subseries, utilizing the benefits of both the wavelet 

transform and particle swarm optimization techniques. The results obtained with the hybrid WPA 

method in comparison to the reference approaches were promising, showcasing its potential and 

effectiveness in addressing the prediction task at hand. 

 

(Hong et al., 2010) propose a method that combines the Simultaneous Perturbation Stochastic 

Approximation (SPSA) algorithm with ANFIS.  The SPSA algorithm is used to train the ANFIS 

neural network. The experimental results indicate that the proposed method outperforms the 

reference method, demonstrating its superior performance in the given context. 
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2.4 Hybrid Methods 

 

The primary concept behind hybrid models is to integrate different approaches to take advantage 

of each (Wu & Hong, 2007). While the primary objective of combining models is typically to 

enhance prediction accuracy, it is important to note that this approach does not guarantee superior 

performance compared to the best individual models in all cases. However, combining models 

is credible because it optimizes information that is limited in the individual models (Zhao 

Dongmei et al., 2011). Hybrid models incorporate multiple approaches, such as a mixture of 

physical and statistical methods or a mixture of short- and medium-term models (Soman et al., 

2010). 

 

Various approaches involving the combination of different models have been developed to 

enhance prediction capabilities. As mentioned earlier, one such combination approach is the 

ANFIS method. Shi et al in (Shi et al., 2012) present two hybrid models that combine the ARIMA 

method with different techniques. The first hybrid model integrates ARIMA with ANN, while 

the second hybrid model combines ARIMA with Support Vector Machines (SVM). The research 

investigates the applicability of these hybrid models through two time-horizons. In these models, 

the ARIMA method is employed to capture linear features, while the other methods are utilized 

to capture nonlinear features. The findings indicate that the hybrid approaches offer feasible 

alternatives for predicting wind speed time series. However, it is important to note that these 

hybrid models do not consistently outperform the individual methods across all prediction time 

horizons examined in the study. 

 

In (Guo et al., 2011), a novel hybrid approach to wind speed prediction was presented. This 

approach combines a backpropagation neural network with the concept of removing seasonal 

influences from real wind speed datasets using seasonal exponential fitting. The experimental 

results demonstrated that the proposed method outperformed a single neural backpropagation 

network. 

 

The study conducted by (Catalão et al., 2011b), introduces a hybrid model for short-term wind 

speed forecasting. This model combines ANN with the Wavelet Transform (WT) technique. By 
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utilizing the wavelet transform, the wind speed series is decomposed into more informative 

constitutive series. The experimental results demonstrate that the proposed hybrid approach is 

very useful for wind speed forecasting. 

 

In (Sánchez, 2006), a hybrid model of nine time series models is proposed, the ultimate 

prediction is computed by dynamically adjusting a linear combination of the different 

predictions, each prediction has its weight based on its performance. The findings indicate that 

the hybrid model surpasses the performance of the individual time series. 

 

(Bouzgou & Benoudjit, 2011) proposes a Multiple Architecture System (MAS) for the purpose 

of predicting wind speed. Multilayer Perceptron (MLP) neural networks, multiple linear (MLR)-

based regression, SVM regression and Radial Basis Function (RBF) neural networks are 

examined as suitable models for creating the ensemble forecast. Three combining techniques are 

investigated using an ANN method: nonlinear fusion, simple average, and weighted average. In 

comparison to the single prediction, the recommended combination strategies boost 

performance. 

 

The study conducted by (Qin et al., 2011) investigates the hybrid approach RBF neural networks 

and persistence methods. According to the experimental results, the persistence method is better 

for random data with white noise. On the other hand, the RBF method proves to be more suitable 

for predicting wind speed changes that exhibit a monotonic pattern. The simulation findings 

show improvements in the hybrid approach. 

 

In the study conducted by (Li et al., 2011) a novel approach known as Bayesian Model Averaging 

(BMA) is introduced to integrate wind speed forecasts generated by diverse ANN models. 

Specifically, the research explores three distinct ANN models, namely the RBF network, Back-

Propagation (BP) network, and ADALINE network. The BMA methodology assigns weights to 

individual forecasts based on their corresponding posterior model probabilities, assigning higher 

weights to superior forecasts and lower weights to inferior ones. The findings provide compelling 

evidence supporting the efficacy of the proposed hybrid approach, affirming its ability to 

enhance wind speed prediction accuracy. 
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In the work conducted by (Haque et al., 2012), a comprehensive analysis of various short-term 

wind speed prediction methodologies is presented, encompassing the Backpropagation Neural 

Network (BPNN), Radial Basis Function Neural Network (RBFNN), ANFIS. To enhance the 

prediction performance of these models, a technique known as similar days (SD) is incorporated, 

which considers historical weather data corresponding to the predicted day to identify similar 

wind speed days for further analysis. The experimental findings demonstrate notable 

improvements in the performance of all the examined models when the SD preprocessing is 

employed. Particularly, the SD-based ANFIS model exhibits superior performance compared to 

both single and hybrid models, exhibiting a substantial enhancement in prediction accuracy of 

up to 48% when contrasted with the individual ANFIS model. 

 

2.5 Spatial Methods 

 

In general, wind speed forecasts are predictions for the future, and the forecast horizon is 

determined by the needs of the power system. In contrast, spatial correlation forecasting is 

frequently utilized to describe the wind resources at a site for which there is insufficient 

information but a nearby monitoring station is accessible. It considers the spatial relationship 

between wind speeds at different locations. It is a helpful signal when evaluating the potential 

for wind energy at locations without wind data. 

 

In contrast to conventional wind speed and power prediction, spatial correlation prediction 

considers the spatial link between wind speed at different locations. Spatial correlation prediction 

requires wind speed data from multiple spatially correlated locations, and the data often contain 

time lags, which increases the complexity and cost of spatial correlation prediction. For spatial 

correlation prediction, either statistical models that consider the spatial correlation information 

or physical models that consider the terrain information can be used. 

 

There are several approaches to the spatial correlation prediction problem. The Measure-

Correlate-Predict (MCP) method is the most often utilized strategy (Thøgersen et al., 2007). 
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Using wind data from the reference site, the method is utilized to obtain long-term wind data at 

the target site. Four different MCP methods are presented: Matric MCP, Linear Regression, 

Wind Index MCP model, and Weibull Scale. They have all been shown to work well, but 

performance is obviously dependent on the nature of the available data. 

 

In (Kwon, 2010), the long-term wind speed is predicted using the MCP technique, and the 

probability models are then applied to the target site using Monte Carlo-based numerical 

simulation. Prior to wind turbine construction, this model is used to evaluate the degree of 

uncertainty in the potential for all forms of wind energy. The method proved to be an effective 

means of evaluating the likely annual energy production of the site. 

 

(Alexiadis et al., 1999) presented a technique for predicting wind speed and the associated power 

generation from few minutes up to several hours in advance based on cross-correlation of 

neighboring sites (0.8 to 40 km apart). Based on spatial correlation models, an ANN approach 

was developed using data of many different sites over a whole year period, which significantly 

improves the prediction accuracy by 20% compared to the persistence prediction model. 

 

In (Barbounis & Theocharis, 2007), spatial correlation was used to develop a Local Feedback 

Dynamic Fuzzy Neural Network (LF-DFNN) for wind speed prediction. In this study, LF-DFNN 

is used to predict the wind speed in multiple steps for the target site using spatial information 

from two remote reference sites aligned with the target site along the prevailing wind direction. 

It is shown that LF-DFNN exhibits superior performance over alternative network models in the 

context of this application. 

 

Based on spatial correlation models, a Takagi, Sugeno, and Kang (TSK) Fuzzy technique is 

developed in (Damousis et al., 2004) for estimating wind speed and energy at a specific target 

location. The training task of the model is performed using a genetic algorithm (GA) based 

learning technique. The evaluation of the performance for different terrain scenarios shows 

significant progress over the persistent model. 
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To assess or define the characteristics of the wind resource at a specific location of interest 

utilizing the information available from a known resource, the Bayesian hierarchical model was 

constructed (Miranda et al., 2006). The hierarchical model consists of two levels. At the primary 

level, the wind speed data at the reference site is formulated as the cumulative sum of distinct 

components, namely the temporal, spatial, and error components. At the subsequent level, a first-

order random walk model is employed to capture the temporal aspect, while a multivariate 

normal distribution is utilized to characterize the spatial component. The ability of Bayesian 

inference to predict spatial correlations has been demonstrated. 

 

An approach for long-term prediction of wind speed and power using NWPs offered at 

neighboring wind farm sites is proposed in (Barbounis et al., 2006). Depending on the neural 

dynamics model, three different forms of local recurrent neural network (LRNN) models are 

used. In addition, two learning techniques - Global Recursive Prediction Error (GRPE) and 

Decoupled Recursive Prediction Error (DRPE) - are used to update the weights of the model. 

The proposed strategies have been shown to outperform static and persistent models. 

 

In (Velázquez et al., 2011), a spatial correlation-based ANN model is developed for estimating 

wind speed data at a designated station. The neighboring measuring stations' wind speed data are 

utilized as input signals for the model's input layer. The two most important results of this study 

are that as the number of reference stations increases, the estimation errors diminish and that 

there is a tremendous reduction in error when wind direction is included in the input signal. These 

findings emphasize the importance of incorporating spatial information and wind direction in 

improving the accuracy of wind speed estimation using the ANN model. 

 

2.6 Regional Methods 

The primary objective of regional forecasting is to anticipate the aggregate electricity generation 

within a defined area, considering a specific number of wind turbines. The necessity for regional 

forecasting arises as market operators seek to estimate the comprehensive generation of wind 

power within a particular region. This approach offers a swifter alternative compared to the 

summation of individual wind farm forecasts, while concurrently enhancing accuracy through the 
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advantageous impacts of spatial smoothing. Numerous methodologies have been proposed to 

facilitate regional forecasts. 

 

Regional forecasting models predominantly rely on the upscaling approach, which involves 

scaling up available online measurements and NWPs to cover the entire region. This approach 

mitigates the challenge of acquiring wind power measurements and NWPs from all wind farms 

within the region. Although limited research has been conducted on regional forecasting, the 

growing prominence of wind energy necessitates the development of effective solutions for 

accurate regional forecasting in the future. 

 

In (Focken et al., 2001), regional forecasts are generated using linear upscaling within the 

Previento wind power prediction system. The upscaling process involves utilizing the ratio of the 

measured wind power at a single site to the ensemble of sites. The practical implementation of this 

approach in Germany is demonstrated, showcasing its effectiveness in regional forecasting. 

 

Three distinct approaches-FNN upscaling, Cascaded model, and FNN cluster model-are offered 

depending on the availability of NWPs and online SCADA data in (Pinson et al., 2003), which 

uses an ANN-Fuzzy technique based on the upscaling approach to predict regional wind 

generation. The outcomes demonstrate an improvement in the overall performance; however, it is 

observed that surpassing the persistence model's performance during the initial forecast period is 

challenging. To boost the performance during the initial forecast horizon, SCADA data is required. 

 

In (Murugesan et al., 2012), a finite-state Markov chain model is proposed to predict the aggregate 

power output of a wind farm. This model considers temporal and spatial dynamics of wind power 

generation. The temporal dynamics are captured using autoregression analysis. The spatial 

dynamics, on the other hand, are captured by a rigorous stepwise procedure. 

 

From the information provided above, it can be observed that wind speed prediction models can 

be categorized in two ways: based on the time interval of prediction and the methodology 

employed for prediction. In this discussion, various methods have been explored, encompassing 

their principles, advantages, disadvantages, and practical examples. It is evident that certain 
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models outperform others in specific regions while underperforming in different locations, thus 

confirming the notion that these models are site dependent. This characteristic forms the basis of 

the problem under investigation in this study. 

 

Notably, neighboring countries to Palestine have conducted numerous studies related to wind 

speed prediction. For instance, Khosravi et al. employed three machine learning algorithms (SVR, 

ANFIS, and FNN) to predict wind speed and other parameters in Iran (Khosravi et al., 2018). The 

results demonstrated that SVR performed better than the other two models. Similarly, in Nigde, 

Turkey, researchers utilized five machine-learning algorithms to predict wind power (Demolli et 

al., 2019), showing that machine-learning algorithms are particularly effective for long-term 

forecasts. 

 

However, there is a lack of studies specifically focusing on wind speed prediction within Palestine 

itself. Only one study (Salah et al., 2022) investigated wind speed prediction in the Jerusalem 

region using machine learning algorithms. The authors employed six different machine learning 

algorithms and four features for their predictions. The results indicated that SVM outperformed 

the other algorithms in that study. 

 

Given the unique geographical characteristics and wind patterns of Jerusalem, there is a need for 

a case study that evaluates the performance of additional machine learning algorithms tailored to 

this specific context. Therefore, the objective of this study is to address this gap by conducting a 

comparative analysis of two machine learning algorithms not previously examined in Salah et al.'s 

study: ANFIS and KNNR, for wind speed prediction in Jerusalem. ANFIS was selected based on 

its wide utilization and proven effectiveness in the literature across various regions, while KNNR 

was chosen for its simplicity, small computational time, and limited prior testing in this context. 
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Chapter 3 Methodology 

3.1 Machine Learning 

One of the good approaches to understand what machine learning is, is to compare between it 

and statistics. In statistics, maximum likelihood estimation (MLE) is a systematic tool for 

statistical inference. However, MLE essentially requires knowledge of the probability 

distribution from which the data are drawn, up to an unknown parameter of interest. Often the 

unknown parameter has a physical meaning, and its estimation is key to better understanding 

certain phenomena. Thus, to enable MLE, one needs to know a lot about the process of data 

generation, which is called modeling. Modeling may be conditioned by physics or by prior 

knowledge of the problem, but in any case, it requires some expertise (Bzdok et al., 2018).  

 

However, for some types of data sets, modeling the data they contain is difficult, if not 

impossible, because the input/output process is not well understood. For such types of data, 

therefore, a distribution-free approach is required; in other words, we could say that machine 

learning prefers a black-box approach. Thus, a machine learning model is not explicitly 

programmed, but is built based on training data to make predictions. 

 

3.1.1 Modeling  

This study adopts a conventional machine learning approach that comprises the following 

steps: obtaining data, processing data, selecting features, constructing a machine learning 

model, and evaluating the model through testing and validation. 

 

This scientific investigation presents an examination into the prediction of wind speed by 

employing machine learning algorithms. Specifically, this case study delves into the utilization 

of two techniques, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and the k-

Nearest Neighbors Regressor (KNNR), to achieve enhanced wind speed forecasting accuracy. 

 

The ANFIS model represents a hybridized framework that amalgamates the capabilities of 

fuzzy logic and neural networks. By employing fuzzy logic, the model effectively captures and 

models the inherent uncertainties present within the system, while the neural network 



 

21 

 

component enables learning and optimization processes. ANFIS develops a fuzzy inference 

system by adaptively adjusting its parameters (premise, consequent and membership functions 

parameters) through the utilization of a hybrid learning algorithm. 

 

To accomplish wind speed prediction using ANFIS, the following procedural steps are 

undertaken: 

 

a) The collection of wind speed data, encompassing historical wind speed records alongside 

relevant input parameters (e.g., temperature, humidity, pressure). 

b) Preprocessing of the data by means of input normalization, and subsequent division into 

training and testing datasets. 

c) Training of the ANFIS model utilizing the designated training dataset. This entails the 

model's adjustment of its parameters through the employment of forward and backward 

passes, thereby optimizing both the fuzzy membership functions and the neural network 

weights. 

d) Validation of the trained model via the utilization of the testing dataset, thereby 

evaluating its performance based on metrics such Root Mean Square Error (RMSE). 

e) Once the model has been duly validated, it is primed for wind speed prediction by 

providing the appropriate input variables. 

 

KNNR is a non-parametric algorithm widely adopted for regression tasks. It leverages the 

concept of proximity, predicting the output of a novel data point by considering its k nearest 

neighbors within the training dataset. The predicted value is derived from an average of the 

target values associated with these nearest neighbors. To accomplish wind speed prediction 

utilizing KNNR, similar steps to ANFIS with some differences are undertaken. 

 

3.1.2 ANFIS 

Fuzzy logic represents an advanced form of logic that extends beyond the binary framework of 

traditional logic systems. Unlike classical set theory, where variables are confined to possessing 

a definitive truth value of either 0 or 1, fuzzy logic allows for the assignment of truth values 

that span the entire range of real numbers between 0 and 1. This pioneering concept was 
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introduced in conjunction with the development of fuzzy set theory, which diverges from 

classical set theory in its treatment of membership within sets. 

 

Classical set theory operates on the premise that a member either unequivocally belongs 

(assigned a value of one) or indisputably does not belong (assigned a value of zero) to a set. In 

stark contrast, fuzzy set theory acknowledges the existence of gradation by permitting the 

membership degree of an element to assume any value within the inclusive interval of zero to 

one. This introduces a nuanced approach, where the membership function serves as the bridge 

to distinguish classical and fuzzy set theories as shown in Figure (3.1). 

 

Within classical set theory, the membership function simply maps the elements of the universe 

to the discrete values of either zero or one, signifying the absence or presence of membership, 

respectively. In the context of fuzzy set theory, however, the membership function takes on a 

broader role by facilitating the mapping of elements in the universe to continuous values 

encompassing the closed real interval spanning from zero to one. This augmented functionality 

captures the essence of fuzzy set theory by reflecting the inherent uncertainty and imprecision 

inherent in many real-world scenarios. 

 

 

Figure 3.1: A fuzzy set Ã in a universe set U is defined as a set of ordered pairs {(y, Ã(y) 

)  y  U, where Ã is a membership function (Ã: U → [0,1] and Ã(y) represents the 

degree of membership of y in Ã. 
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A fuzzy if-then rule represents a proposition that adheres to the structure "if A then B," wherein 

both A and B are fuzzy sets. To exemplify this concept, consider the following scenario: "if the 

temperature is categorized as low, then the wind speed tends to be high." Here, temperature 

and wind speed are linguistic variables, while low and high correspond to linguistic values or 

fuzzy sets. 

 

In instances where only the premise segment of the if-then statement possesses fuzziness, the 

rule assumes the designation of a Takagi-Sugeno if-then rule. To illustrate, consider the 

following example: "if the velocity is classified as high, then the friction force can be expressed 

as k multiplied by the square of the velocity". In this case, the premise, which is the velocity, 

exhibits fuzziness, while the consequence, which is the calculation of the friction force, follows 

a deterministic mathematical expression involving a constant (k) and the squared value of the 

velocity (Jang, 1993). 

 

The incorporation of fuzzy if-then rules, including the Takagi-Sugeno variant, within various 

scientific domains has proven to be a powerful means of modeling complex systems, enabling 

the representation of linguistic uncertainty, and facilitating effective decision-making 

processes. 

 

A fuzzy-rule-based system, also referred to as a fuzzy inference system, comprises a 

sophisticated framework consisting of five fundamental functional blocks, as expounded by 

(Jang, 1993): 

 

1. Rule Base: This foundational block encompasses a repository of numerous fuzzy if-then rules 

that encode expert knowledge or learned patterns. These rules serve as the guiding principles 

for the system's decision-making processes, delineating relationships between input variables 

and corresponding output actions. 

 

2. Database: The database component assumes a pivotal role in defining the membership 

functions associated with the fuzzy sets utilized within the fuzzy rules. It encapsulates 
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information pertaining to the shape, characteristics, and boundaries of the fuzzy sets, 

providing the foundation for linguistic representation and subsequent inference operations. 

 

 

3. Decision-Making Unit: Situated at the heart of the system, the decision-making unit 

undertakes intricate inference operations based on the rules present in the rule base. By 

evaluating the fuzzy input variables and applying appropriate reasoning mechanisms, this 

unit facilitates the determination of the system's output or action. 

 

4. Fuzzification Interface: This interface serves as a crucial intermediary between the crisp input 

values and the subsequent fuzzy inference processes. By employing various transformation 

techniques, it converts the crisp inputs into degrees of match or compatibility with the 

linguistic values defined within the membership functions, thus enabling the system to reason 

and operate on a linguistic level. 

 

5. Defuzzification Interface: The final block of the fuzzy-rule-based system, the defuzzification 

interface, assumes the responsibility of transforming the fuzzy outcomes generated by the 

inference process into a crisp output. Employing diverse defuzzification methods, this 

interface effectively aggregates and interprets the fuzzy results, ultimately yielding a precise 

and actionable crisp output. 
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A comprehensive fuzzy inference system adheres to a meticulously orchestrated series of steps, 

as outlined by (Jang, 1992), to facilitate intricate fuzzy reasoning processes. These steps 

encompass: 

 

1. Fuzzification: The initial step entails a comparison of the input variables against the defined 

membership functions within the premise portion of the fuzzy rules. This comparative 

analysis aims to ascertain the precise degree of membership for each linguistic label, 

effectively quantifying the level of association between the input variables and the fuzzy 

sets. 

 

2. Rule Aggregation: Proceeding from the fuzzification stage, the membership values 

obtained for each linguistic label are aggregated using a specific T-norm operator, such as 

multiplication or minimum. This aggregation process serves to determine the firing 

strength or weight assigned to each rule within the fuzzy inference system, considering the 

degrees of membership obtained from the previous step. 

 

3. Consequent Generation: Based on the determined firing strengths derived from the rule 

aggregation phase, the consequent segment of each rule is generated. This qualified 

consequent can assume a fuzzy or crisp nature, depending on the specific requirements and 

characteristics of the fuzzy inference system being employed. The consequent represents 

the anticipated outcome or action associated with the respective rule, serving as a critical 

component in subsequent reasoning and decision-making processes. 

 

4. Defuzzification: The culminating stage of the fuzzy reasoning process involves the 

aggregation of the qualified consequents obtained from the previous step. Through a 

rigorous aggregation process, these consequents are seamlessly combined to yield a single 

crisp output. 

 

By diligently adhering to these meticulous steps, a sophisticated fuzzy inference system 

harnesses the power of fuzzy logic and linguistic representation, enabling robust reasoning, 

decision-making, and inference capabilities in complex real-world scenarios.  
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Fuzzy inference systems, as per the elucidation provided by (Jang, 1992), are commonly 

categorized into three distinct types, each predicated on the specific approach employed to 

generate the system's output. These classifications are as follows: 

 

• Type 1: Within this category, the ultimate output is derived through a meticulous process 

of weighted averaging. More precisely, it entails calculating the crisp output of each rule 

and subsequently determining its weighted average. The weighting factor is determined by 

the firing strength of the respective rule, while the output membership functions are 

required to adhere to the characteristics of monotonic functions. 

 

• Type 2: This classification involves the acquisition of a comprehensive fuzzy output by 

applying the "max" operation to the qualified fuzzy outputs, which correspond to the 

minimum values between the firing strength and the output membership function of each 

rule. The resulting fuzzy output can subsequently be transformed into a crisp output using 

diverse methodologies, such as centroid of area, mean of maximal values, or other suitable 

schemes. 

 

• Type 3: In the context of Type 3 fuzzy inference systems, Takagi-Sugeno's if-then rules 

are employed as the cornerstone of the framework. Within this paradigm, the output of 

each rule assumes a linear combination of the input variables, along with a constant term. 

The overall output of the system is then determined through the application of a weighted 

average approach, whereby each rule's output is assigned an appropriate weightage. 

 

Adaptive neuro-fuzzy inference system (ANFIS) is a Takagi-Sugeno fuzzy inference system 

implemented as an artificial neural network to determine system's properties (membership 

functions and fuzzy rules). To introduce the architectural essence of ANFIS, we focus on a 

specific instance involving a fuzzy inference system comprising two inputs, denoted as x and y, 

along with a single output, referred to as z. Within this scenario, we consider a rule base that 

encompasses two Takagi-Sugeno's fuzzy if-then rules: 
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Rule 1: In the presence of input values x characterized by membership in A1 and y 

characterized by membership in B1, the consequent portion of this rule can be mathematically 

expressed as: 

 

 𝑓1  =  𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 , 𝑤ℎ𝑒𝑟𝑒 𝑝, 𝑞 𝑎𝑛𝑑 𝑟 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠. (3.1) 

 

Rule 2: Similarly, when the input values x exhibit membership in A2 and y exhibits 

membership in B2, the consequent segment of this rule can be formulated as: 

 

 𝑓2  =  𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 (3.2) 

 

ANFIS is composed of five layers (Jang, 1992). for each layer, the node functions are of the 

same function family and nodes are either fixed (circle nodes) or adaptive (square nodes) as 

illustrated in Figure (3.2). 

 

Layer 1, the input layer, comprises solely adaptive nodes. These nodes are governed by 

a unified function denoted as in equation (3.3). The linguistic label (fuzzy set) 𝐴𝑖, and its 

corresponding membership function 𝜇𝐴𝑖, ascertain the behavior of this node. Notably, this layer 

incorporates three premise parameters that significantly impact the node's functionality. 

 

𝑂𝑖
1 = 𝜇𝐴𝑖(𝑥)  , where x denotes the input associated with node i. (3.3) 

 

Layer 2, referred to as the fuzzification layer, encompasses fixed nodes labeled as 𝜋. The 

primary role of these nodes is to multiply the outputs of the previous layer, layer one. 

Specifically, the node output 𝑂𝑖
2 is computed as the product of the membership functions 𝜇𝐴𝑖(𝑥) 

and 𝜇𝐵𝑖(𝑥), where i takes values of 1 and 2, representing the respective nodes within the layer. 

 

Layer 3, known as the normalization layer, comprises fixed nodes labeled as N. These 

nodes undertake the computation of the ratio between the firing strength of each rule (𝜔𝑖) and 

the sum of all rules' firing strengths. The output of each node within this layer, denoted as 𝑂𝑖
3, is 

computed as: 
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𝜔𝑖̅̅ ̅ =  
𝜔𝑖

𝜔1 + 𝜔2
 , with I ranging from 1 to 2. (3.4) 

 

Layer 4, recognized as the defuzzification layer, integrates adaptive nodes governed by 

a specific node function. The output of each node within this layer, denoted as 𝑂𝑖
4, is obtained 

through the multiplication of the normalized firing strength 𝜔𝑖̅̅ ̅ and the consequent function, 

which assumes the form (𝑝𝑖𝑥+𝑞𝑖𝑦+𝑟𝑖). The parameters p, q, and r, known as the consequent 

parameters, play a critical role in shaping the node's behavior. 

 

Layer 5, designated as the output layer, encompasses a sole fixed node labeled as Σ. This 

node calculates the overall output by summing the outputs of all nodes within the preceding 

layer, layer four. The computation can be represented as: 

 

 𝑂𝑖
5 = 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 =∑𝜔𝑖̅̅ ̅ 𝑓𝑖  (3.5) 

 

Through the intricate interplay of these five layers, ANFIS enables the integration of adaptive 

neuro-fuzzy inference techniques, facilitating advanced system analysis, decision-making, and 

pattern recognition in diverse scientific domains. 
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Figure 3.2: ANFIS architecture. Circle nodes are fixed while square nodes are adaptive. 

Source (Jang, 1993) 

 

3.1.3 KNNR 

K-nearest neighbors is a classification algorithm, which is a part of supervised learning. In 

supervised learning each point in dataset has m features 𝑥1, 𝑥2, … , 𝑥𝑚 and a response y. In a 

classical problem, a set of responses consists of the so-called class labels (a known finite set of 

elements). 

 

The simple logic behind KNN is to find the nearest neighbor from the dataset to a testing object 

and check the nearest class label, but a decision based on one neighbor is not accurate, so we 

take more than one neighbor. The number of considered neighbors is called k (the k in KNN), 

choosing k is an optimization problem and it depends on the dataset. When k is more than one 

the predicted class label is the most frequent class label for the k neighbors, for it is possible to 

have many most frequent class labels, weights are introduced in distance calculations, in this 

case it is called weighted KNN. 

 

Choosing K is a complicated problem, since when k is small, the classifier is sensitive to 

outliers although it is almost ideally processes the training data, and when k is increases, the 
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boundary becomes smoother and almost turns into a straight line, classes are split more 

naturally but more errors occur on the training data. A good approach is to estimate the error 

rate by splitting the initial dataset into test and training samples (using what is called k-fold 

cross-validation).   

 

The nearness could be determined based on the common concept of distance i.e., the Euclidean 

distance (the generalization of Pythagorean law to any finite dimension), but it could be 

different using another metric. 

 

Definition: Let X be as set, A metric defined on X is a function 𝑑(𝑥, 𝑦): 𝑋, 𝑋 
𝑚𝑎𝑝𝑠 𝑡𝑜
→      𝑅 , for 

any 𝑥, 𝑦, 𝑧 ∈ 𝑋, which satisfies three conditions: 

1. It is non-negative, 𝑑(𝑥, 𝑦) ≥ 0 and 𝑑(𝑥, 𝑦) =  0 if and only if 𝑥 = 𝑦 . 

2. It is symmetric 𝑑(𝑥, 𝑦) =  𝑑(𝑦, 𝑥). 

3. The triangle inequality is satisfied, 𝑑(𝑥, 𝑦)  ≤  𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦). 

 

Minkowski distance is a common example of a metric, it is given by (in p dimension): 

 

𝑑𝑞(𝑥, �́�) =  √|𝑥1 − �́�1| +  |𝑥2 − �́�2| + ⋯+ |𝑥𝑝 − �́�𝑝|
𝑞

 𝑤ℎ𝑒𝑟𝑒 𝑞 𝑖𝑛 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑏𝑖𝑔𝑔𝑒𝑟 𝑡ℎ𝑎𝑛 1. (3.6)  

 

Euclidean distance is a special case of Minkowski distance where q = 2, Manhattan distance 

also is a special case where q = 1, when q approaches infinity it is called Chebyshev distance, 

and it is given by 𝑑∞(𝑥, �́�) =  max
𝑖 ∈ {1,2,… ,𝑝}

𝑥𝑖 − �́�𝑖. Choosing the metric is another optimization 

problem in KNN. 

 

KNN Classification: Assume that 𝑋 = (𝑥1, … , 𝑥𝑛) is a training dataset of size n, where each 

object of this dataset has p features 𝑥1 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝),𝑤ℎ𝑒𝑟𝑒 𝑖 ∈  {𝑖, … , 𝑛} and 

corresponds to the response 𝑦𝑖  ∈ 𝑌, and let d be a metric defined on a p-dimensional set of 

objects. Thus, a classification algorithm is as follows: 

1. For a new object z, calculate 𝑑(𝑥𝑖, 𝑧) to each object 𝑥𝑖 , 𝑖 ∈  {1,2, … , 𝑛}. 

2. Arrange the elements of the training dataset in order of non-decreasing distances to z: 
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𝑑(𝑧, 𝑥1
(𝑧)) ≤  𝑑(𝑧, 𝑥2

(𝑧)) ≤ ⋯  ≤ 𝑑(𝑧, 𝑥𝑛
(𝑧)),𝑤ℎ𝑒𝑟𝑒 𝑥𝑖

(𝑧) = 𝑥𝑡𝑖  (3.7) 

 

and 𝑡1 is a solution to the problem: 

Arg min
𝑖 ∈ {𝑖,…,𝑛} 

𝑑(𝑧, 𝑥𝑡𝑖) (3.8) 

  

and 𝑡2 is a solution to the problem: 

Arg min
𝑖 ∈ {𝑖,…,𝑛} / {𝑖,…,𝑛} 

𝑑(𝑧, 𝑥𝑡𝑖) (3.9) 

 

3. Renumber the responses according to the instructions in step 2: 

𝑦𝑖
(𝑧) = 𝑦𝑡𝑖 , 𝑖 ∈  {𝑖, … , 𝑛} (3.10) 

  

4. Among K-nearest neighbors, find the most frequent class 𝑦 ∈ 𝑌 : 

𝑎(𝑧, 𝑘) =  Arg max
𝑦 ∈𝑌 

|(𝑦𝑖
(𝑧) = 𝑦) (3.11) 

 

Where the function |() being the indicator of event A, is equal to one when event A is 

occurred and zero otherwise. 

 

KNNR (k-nearest neighbors regression) has the same concepts as KNN but differs that for 

regression we don’t have finite classes' labels as outputs (responses) but the infinite real 

numbers line. So instead of choosing the most frequent class label, we take the average of the 

k-nearest neighbors' responses. 

 

3.2 Dataset 

The machine-learning algorithms underwent training utilizing wind data sourced from the 

extensive network of Palestinian meteorological stations. These datasets were meticulously 

collected over an extensive timeframe spanning 11 years, specifically commencing from January 

1, 2008, and concluding on December 31, 2018. To ensure accuracy and representativeness, the 

wind measurements were meticulously recorded in a continuous manner, employing a cup 

generator anemometer positioned at a height of 20 meters. Notably, the data acquisition site was 
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Jabal Al-Mukabber, a village located in East Jerusalem, Palestine, with precise geographic 

coordinates of Latitude 31.7555 N and Longitude 35.2410 E. This specific region stands at an 

elevation of 720 meters above sea level, guaranteeing a comprehensive and diverse dataset for the 

subsequent analyses and model training. 

 

The data set contained four features: timestamp, wind speed, air temperature, and atmospheric 

pressure. Measurements were taken at 3-hour intervals (8 measurements for each day). The dataset 

itself consisted of an extensive 32,131 rows of data. Notably, within this dataset, 150 rows were 

identified to have zero values in the wind speed variable, while an additional 69 rows lacked data, 

specifically with 36 missing values in the wind speed variable and 33 missing values in the 

temperature variable.  

 

To address the presence of empty cells and ensure data completeness, a preprocessing step was 

executed using the pandas imputing function. This essential data manipulation task was 

accomplished using a Python script, expertly filling the vacant cells with appropriate values. It is 

worth noting that the existence of zero values in the wind speed variable is deemed acceptable due 

to the rounding convention associated with wind speed, where values below 0.25 are rounded 

down to zero. 

 

Table (3.1) provides an illustrative subset of the dataset, offering a glimpse into the intricate 

interplay of the various variables. Furthermore, Figure (3.3) showcases the comprehensive 

timelines of all variables encapsulated within the dataset, providing a visual representation of 

their temporal evolution and patterns.  

 

Table 3.1: A sample of the dataset. 

Date Time 
Temp 

(oC) 

Wind Speed 

(m/s) 

Pressure 

(mbar) 

25-01-2008 8:00 5.4 3.0 922.8 

25-01-2008 11:00 7.9 3.5 921.6 
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25-01-2008 14:00 10.7 2.5 919.7 

25-01-2008 17:00 9.0 1.0 919.2 

25-01-2008 20:00 8.1 0.0 919.5 

25-01-2008 23:00 7.3 1.0 919.1 

26-01-2008 2:00 6.5 3.0 918.7 

 

 

Figure 3.3: The entire timelines for every variable present in the dataset. 

 

A rigorous statistical analysis was conducted on the dataset, yielding insightful findings as 

presented in Table (3.2). It was observed that the wind speed variable exhibited a minimum value 

of zero, indicating moments of calm conditions, while the maximum value reached 14.5 m/s, 

denoting instances of heightened wind intensity. The calculated mean wind speed stood at 3.11 

m/s, capturing the central tendency of the dataset, while the corresponding standard deviation was 

determined to be 1.54 m/s, reflecting the dispersion of values around the mean. 
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Further analysis revealed that three quarters of the wind speed values were found to be less than 

or equal to 4 m/s. This threshold holds significance, as wind speeds within this range are deemed 

suitable for the operation of small-scale turbines. Hence, the dataset offers valuable insights into 

the prevailing wind conditions, suggesting favorable conditions for harnessing wind energy using 

compact turbine systems. 

 

Regarding the air temperature, it has a mean of 18.2 oC and its values range from zero to 39.7 oC 

where three quarters of values are less than 23.4 oC.  for the atmospheric pressure, values range 

from 909 to 939.3 mbar while 75% of values are less than 925mbar.  

 

Table 3.2: The analysis of wind speed data involves calculating various statistical measures 

such as the minimum, mean, maximum, standard deviation, 25th, 50th, and 75th 

percentiles of the dataset. 

 

To analyze the relationships between the variables, the correlations were calculated using the 

Pearson coefficient. The calculation was done with the Python libraries NumPy and Pandas, the 

correlation matrix is shown in Table (3.3), a heatmap representing the correlation matrix was 

created with the libraries Matplotlib and Seaborn, it is shown in Figure (3.4). In addition, pair plots 

(Figure 3.5) between all variables (the timestamp is expressed in nanoseconds, the notation “1e18” 

Centralized 

statistical quantities 
Temp (oC) Pressure (mbar) Speed (m/s) 

Mean 18.22 922.55 3.11 

SD 6.98 3.67 1.54 

Min 0 909.0 0 

25% 12.6 919.9 2.0 

50% 18.5 922.3 3.0 

75% 23.4 924.9 4.0 

Max 39.7 927.3 14.5 
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signifies ten to the power of 18, the notation “@20 m”  denotes the wind speed measured at an 

elevation of 20 meters, and the pressure is expressed in millibars) were created using the latter two 

libraries. 

 

 

Table 3.3: Correlation matrix: depicting the correlation coefficients between dataset 

variables. 

 Time Temperature  Pressure  Speed  

Time 1 0.023 0.029 -0.083 

Tempreature 0.023 1 -0.415 0.009 

Pressure 0.029 -0.415 1 -0.35 

Speed -0.083 0.009 -0.35 1 

 

 

Figure 3.4: A heatmap representing the correlation matrix. 
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Figure 3.5: Pair plots displaying pairwise relationships among all variables. 

3.3 Evaluation Metrics 

The prediction of wind speed inherently encompasses a characteristic element of uncertainty, 

rendering exactness unattainable. Consequently, it assumes paramount significance to diligently 

evaluate the accuracy of wind speed predictions. Crucially, the evaluation process necessitates 

meticulous scrutiny of error measurements utilizing data independent of those employed for model 

construction or parameter tuning. 

 

The adoption of such a rigorous evaluation methodology ensures the robustness and 

generalizability of the wind speed prediction model. By judiciously employing unseen data, 

unaffected by the model's development process, the assessment not only gauges the model's 

efficacy but also safeguards against potential overfitting or biased performance estimation. This 

stringent evaluation practice provides critical insights into the model's predictive capabilities, 

enabling researchers and practitioners to ascertain its reliability and make informed decisions 

based on the outcomes. 
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Consequently, by prioritizing comprehensive and unbiased evaluation methodologies, the 

accuracy and credibility of wind speed predictions can be appropriately assessed, further 

enhancing the reliability and utility of the predictive models deployed in this domain. 

 

The prediction error is the numerical deviation between the actual measurement and the 

corresponding prediction, and is mathematically expressed as follows: 

𝑒𝑡+𝑘|𝑡 = 𝑣𝑡+𝑘 − 𝑣𝑡+𝑘|𝑡  (3.12)  

 

Where 𝑣𝑡+𝑘 represents the actual wind speed (measured value) at a specific moment 't+k', while 

𝑣𝑡+𝑘|𝑡 denotes the predicted wind speed calculated at time ‘t’ for the projected future time ‘t+k’. 

 

It is crucial to assess the accuracy of a predictive model on data that was not utilized in its 

construction or parameter tuning. Various evaluation metrics, such as Bias Eq (3.13), Mean 

Absolute Error (MAE) Eq (3.14), Mean Square Error (MSE) Eq (3.15), Root Mean Square Error 

(RMSE) Eq (3.16), Standard Deviation of Errors (SDE) Eq (3.17), and coefficient of 

determination (R2) Eq (3.18) are employed to determine the effectiveness of the model (Allison 

et al., 2020; Madsen et al., 2005; X. Zhao et al., 2011). 

𝐵𝑖𝑎𝑠𝑘 =  𝑎𝑣𝑔(𝑒𝑡+𝑘|𝑡) = �̅�𝑘  =  
1

𝑁
 ∑𝑒𝑡+𝑘|𝑡

𝑁

𝑡=1

 (3.13) 

𝑀𝐴𝐸𝑘 = 
1

𝑁
 ∑  |𝑒𝑡+𝑘|𝑡|

𝑁

𝑡=1

(3.14) 

𝑀𝑆𝐸𝑘 = 
1

𝑁
 ∑  (𝑒𝑡+𝑘|𝑡)

2
𝑁

𝑡=1

(3.15) 

𝑅𝑀𝑆𝐸𝑘 = √𝑀𝑆𝐸𝑘 = √
1

𝑁
 ∑ (𝑒𝑡+𝑘|𝑡)

2
𝑁

𝑡=1

(3.16) 

𝑆𝐷𝐸𝑘 =  𝑆𝑑𝑡(𝑒𝑡+𝑘|𝑡) =  √
1

𝑁
 ∑  (𝑒𝑡+𝑘|𝑡 − �̅�𝑘)

2
𝑁

𝑡=1

(3.17) 
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𝑅2 =  1 −
∑  (𝑣𝑡+𝑘 − 𝑣𝑡+𝑘|𝑡)

2𝑁
𝑡=1

∑  (𝑣𝑡+𝑘 − �̅�𝑡+𝑘)2
𝑁
𝑡=1

(3.18) 

 

Where 'N' denotes the size of the testing sample set, representing the total count of data instances 

specifically allocated for evaluation and testing purposes within the dataset. 

 

Bias serves as a metric to assess the disparity between the average forecasted wind speed and the 

actual observed values, indicating overestimation (bias > 0) or underestimation (bias < 0) of the 

method. However, it only shows systematic errors and lacks information about the forecasting 

method's accuracy alone (Y. Zhao et al., 2016). 

 

In contrast, Mean Absolute Error (MAE) employs the original data's units, providing a more 

precise analysis of both random and systematic errors when compared across different models 

(Zhang et al., 2019). It is a non-negative real-valued value, and lower values indicate better 

accuracy. 

 

Mean Squared Error (MSE) quantifies the average squared disparity between the observed and 

predicted values, quantifying the model's error. It would be zero in an ideal scenario with 100% 

accuracy. RMSE considers both random and systematic errors, where larger values indicate greater 

deviations and smaller values indicate more precise predictions. Significant discrepancies between 

MAE and RMSE values suggest a wider spread of predicted values in comparison to the measured 

data (Y. Zhao et al., 2016). 

 

R2 is a coefficient of determination indicating the amount of variance explained by the prediction 

model, with values close to 1 indicating an optimal model and negative values indicating a poor 

prediction. 

 

When conducting model comparisons, it is crucial to quantitatively measure the advancements 

achieved by the advanced model in relation to the benchmark model. To this end, the improvement 

over the benchmark model can be mathematically expressed as follows (Madsen et al., 2005): 
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𝐼𝑚𝑝𝐸𝐶 = 
𝐸𝐶𝑟𝑒𝑓 − 𝐸𝐶𝑎𝑑𝑣

𝐸𝐶𝑟𝑒𝑓
(3.19) 

In this context, the symbol EC denotes the evaluation criteria used for assessing the performance 

of the models, including established metrics such as R2, MAE, etc. 

3.3.1 References Models 

A variety of reference models have been established as benchmark models to serve as a basis for 

preliminary assessments of the accuracy of novel wind prediction models. This subsection delves 

into an examination of notable reference models currently in existence. 

 

1. Persistence model 

 

The persistence model, a widely employed benchmark model, posits that the forthcoming wind 

speed remains identical to the present wind speed, as mentioned previously. 

 

2. The weighted summation of persistence and the mean power production. 

 

The persistence model exhibits suitability for very short-term forecasts but proves inadequate 

for longer time horizons. To address this limitation, a novel reference model has been proposed 

(Nielsen et al., 1998). It is a weighted summation that combines the persistence component 

with the mean component as follows: 

 

𝑣𝑡+𝑘|𝑡 = 𝑎𝑘 𝑣𝑡 + (1 − 𝑎𝑘)�̅� (8) 

 

where 𝑣𝑡 represents the measured value at time t, �̅� denotes the estimated mean, and 𝑎𝑘 signifies 

the correlation coefficient between 𝑣𝑡 and 𝑣𝑡+𝑘. 

 

3.3.2 Forecast Accuracy: 

Prediction accuracy decreases with increasing prediction duration. For short-term forecasts, the 

MAE is generally between 5% and 15%, and errors increase rapidly as the forecast horizon 

becomes longer. For example, MAE is usually between 13 and 21% for 1-2 days ahead and 
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increases to 20-25% for 3 days (Zack, 2003). In (Marti et al., 2006) it is shown how the 

performance of the models exhibits a correlation with the topographic intricacy of the terrain. 

As the complexity of the terrain increases, MAE increases significantly, i.e., in a flat terrain 

MAE is much lower than in a complex terrain. 

 

Model performance is correlated with seasonal variability in (Lange M & Focken U, 2006). 

Since wind speeds are higher and uncertainties are larger for summer storms, the prediction 

errors are more pronounced in summer compared to winter. In (Pinson & Kariniotakis, 2004), 

the Meteorological Risk Index (MRI), which evaluates weather stability, is introduced to 

compare forecast errors. As the MRI increases, the forecast error increases linearly. The 

forecast uncertainty in (Lange & Heinemann, 2002) also depends on air pressure rather than 

wind speed. At low pressure, the prediction error is larger than at high pressure. 
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Chapter 4 Results and Discussions  

 

Two machine-learning algorithms were applied on the dataset to predict wind speed, which are 

adaptive (ANFIS), and k nearest neighbors regression (KNNR). The simulation testbed used 

Intel(R) Core (TM) i7-1265H CPU running @ 2.3 GHz, with 16 GB memory, 64-bit MS 

Windows 10 Home with x64 processor architecture, The Python environment setup consisted of 

Python (3.8.11) and common ML libraries, mainly scikit-learn (0.24.2), SKFuzzy and NumPy, 

among other libraries for data extraction and visualization, such as seaborn and matplotlib. The 

dataset was split into training and testing sets. This section demonstrates and discusses the results 

of each model, then A comparison between the two models is conducted. Finally, a comparison 

between this study and other studies is conducted. 

 

4.1 ANFIS: 

 

Several ANFIS experiments were conducted by varying different parameters to search for the 

optimal model. The experiments involved testing different numbers of membership functions 

(one, two, and three) for each feature, as well as different epochs, number of populations, and 

membership functions. Results were analyzed and discussed for each variation. 

The evaluation metrics showed that there wasn't a significant difference between using one 

membership function and three membership functions (RMSE is 0.198 for both). However, using 

two membership functions resulted in even better results than both one and three, so it was 

selected as the optimal number of membership functions.  

When two membership functions are used for each feature, it usually involves creating two fuzzy 

sets, with one corresponding to low values and the other to high values. The shapes of these 

fuzzy sets can vary and may be triangular, trapezoidal, or Gaussian, among others, depending on 

the data and the specific problem being analyzed. For this problem, the generalized bell function 

was used for its simplicity and performance. 

Four variations of rules were used in this scenario, where the form of the rule is "if [feature1] is 

low (high) and [feature2] is low (high), then [output] is equal to [coefficients]". For example, 



 

42 

 

one rule might be "if temperature is low and pressure is low, then wind speed is equal to 𝑝1 ∗

𝑡𝑒𝑚𝑝 + 𝑞1 ∗ 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 + 𝑟1. 

The dataset, which contains 32,131 samples, was divided into two sets: 30% for testing (9,640 

samples) and 70% for training (22,491 samples). The ANFIS model used four premise 

membership functions, resulting in 24 parameters. The RMSE for the training set was 0.193, 

while the RMSE for the testing set was 0.196.  

Figures (4.1) and (4.2) show the membership functions for the temperature feature before (with 

mu = -2.9 and std = 3.08) and after (with mu = -2.0 and std = 3.09) modeling, respectively. 

Similarly, Figures (4.3) and (4.4) depict the membership functions for the pressure feature before 

(with mu = -4.24 and std = 3.89) and after (with mu = -4.7 and std = 3.8) modeling, respectively, 

demonstrating changes in the statistical properties of the features due to the modeling process. 

 

Figure 4.1: The membership functions for the temperature before modeling. 
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Figure 4.2: The membership functions for the temperature after modeling. 

 

Figure 4.3: The membership functions for the pressure before modeling. 

   

Figure 4.4: The membership functions for the pressure after modeling. 
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The ANFIS algorithm's prediction visualization is depicted in Figure (4.5), where it compares 

the predicted and actual wind speed values. The visualization revealed a discernible pattern in 

the ANFIS algorithm's predictions, supporting the recently mentioned accuracy measure (RMSE 

0.193), although a few small outliers were visible. According to Figure (4.6), RMSE of the 

ANFIS model decreases significantly before 60 epochs, after which it approaches a horizontal 

asymptote of approximately 0.12. 

 

 

Figure 4.5: The ANFIS algorithm's prediction visualization (predicted wind speed 

(standarized) vs. actual (standarized)). 
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Figure 4.6: The RMSE of the ANFIS model per epoch. 

Bias and R2 values were computed, yielding a bias value of 0.0003 and an R2 value of 0.15. A 

bias of 0.0003 implies a close correspondence between the predicted and observed wind speed 

values on average. A negligible bias suggests the absence of systematic overestimation or 

underestimation of wind speed by the model. 

 

When considering these evaluation metrics together, a bias close to zero and a low RMSE suggest 

that the model is performing well in terms of predicting wind speed. However, the low R2 value 

of 0.15 implies that the predicted values account for only a small fraction of the observed wind 

speed data's variability. This suggests the potential presence of unaccounted factors or variables 

influencing wind speed. 
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4.2 KNNR:  

Several experiments were performed to find the optimal model for KNNR, with different 

parameters used for each experiment. The variations included changing the number of neighbors, 

the type of metric used, and the weight function used in prediction. The results for each variation 

were analyzed and discussed. 

 

In Figures (4.7, 4.8), the correlation between RMSE and the number of neighbors (k) is 

illustrated. Specifically, Figure (4.7) demonstrates this relationship when the weight function 

used is "distance", and the metric utilized is the Minkowskian metric with a power of two (also 

known as the Euclidean metric). On the other hand, Figure (4.8) depicts the same relationship 

but with the "uniform" weight function replacing the "distance" function. In both figures, RMSE 

initially begins at a high value of approximately two, then gradually decreases until it approaches 

a horizontal asymptote. In Figure (4.7), the RMSE approaches an asymptote of approximately 

1.66, while in figure (4.8), it approaches an asymptote of approximately 1.42. 

 

 

Figure 4.7: The RMSE of the KNNR model vs. the number of neighbors (“distance” 

weight function, p equals 2). 
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Figure 4.8: The RMSE of the KNNR model vs. the number of neighbors (“uniform” 

weight function, p equals 2). 

 

Figures (4.9, 4.10) illustrates the relationship between the RMSE and the Power parameter for 

the Minkowski metric (p). Figure (4.9) shows this relationship when the weight function used is 

"distance," and the number of neighbors (k) is 5. Figure (4.10) displays the same relationship but 

with the "uniform" weight function replacing the "distance" function.  

 

In Figure (4.9), the RMSE oscillates between p=5 to p=38. Generally, the RMSE increases with 

an increase in power. Therefore, the best values are at small powers, particularly at p=1 and p=2. 

On the other hand, in Figure (4.10), the RMSE generally decreases as the power increases, except 

for the interval between p=20 to p=40.  

 

Overall, there is a small difference between the RMSE values in both figures, indicating that 

choosing the Power parameter for the Minkowski metric (p) is not a significant issue. 
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Figure 4.9: The RMSE of the KNNR model vs. the power parameter for the Minkowski 

metric (“distance” weight function, k equals 5). 

 

Figure 4.10: The RMSE of the KNNR model vs. the Power parameter for the 

Minkowski metric (“uniform” weight function, k equals 5). 

 

In Figure (4.11), the prediction visualization of the KNNR algorithm compares the actual and 

predicted wind speed values. The results showed that the algorithm struggled to predict high 

wind speeds since they were infrequent and represented only a small percentage of neighbors for 
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each data point. This finding supports the high RMSE accuracy measure of 1.42 mentioned 

earlier. 

 

 

Figure 4.11: The KNNR algorithm's prediction visualization (predicted wind speed vs. 

actual). 

 

The RMSE value of 1.421 indicates a relatively higher average prediction error compared to the 

ANFIS model. A higher RMSE suggests that the KNNR model's predictions have larger 

deviations from the actual observed wind speed values. The R2 value of 0.41 suggests that 

approximately 40.93% of the variance in the observed wind speed values is explained by the 

predicted values. Although it is an improvement compared to the ANFIS model, the R2 value 

still indicates that a significant portion of the variability in the wind speed data remains 
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unexplained by the KNNR model. The bias value of 0.037 indicates a slight overall tendency of 

the KNNR model to slightly overestimate the wind speed values on average. However, the bias 

is relatively small and close to zero, suggesting that the model's overall tendency to overestimate 

or underestimate the wind speed is minimal. 

 

When comparing these metrics to the ANFIS model, the KNNR model exhibits a higher RMSE, 

indicating larger prediction errors. However, the KNNR model has a higher R2 value, suggesting 

a better fit to the observed wind speed data compared to the ANFIS model. The bias for the 

KNNR model is slightly higher than that of the ANFIS model but remains relatively small. 

Additionally, the ANFIS model generated a denser prediction compared to the KNNR model. 

 

In contrast to the article authored by (Salah et al., 2022), which employed six different machine 

learning models on the identical dataset, the ANFIS model demonstrated superior performance 

with lower RMSE values (0.193) compared to all six models. The respective RMSE values for 

these models were as follows: MLR (1.37), Ridge (1.38), Lasso (1.37), Random Forest (1.16), 

SVR (1.38), and LSTM (1.21). 
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Chapter 5 Conclusions and Future Works 

 

5.1 Conclusions  

 

This study investigated the use of machine learning algorithms for wind speed prediction using 

a dataset collected from a Palestinian meteorological station. The study focused on two popular 

algorithms: ANFIS and KNNR. 

 

The results of this study demonstrated the potential of machine learning algorithms in wind speed 

prediction, which can help in optimizing wind energy generation and reducing the cost of energy 

production. The ANFIS model achieved an RMSE of 0.193 m/s, while the KNNR model 

achieved an RMSE of 1.42 m/s. The study also found that ANFIS outperformed KNNR in terms 

of accuracy, but KNNR had a faster computation time. 

 

5.2 Future Works 

 

There are several potential areas for future research in wind speed prediction using machine 

learning algorithms. One possible direction is to investigate the use of deep learning models, 

such as Convolutional Neural Networks (CNNs) which has shown promise in other time-series 

prediction tasks. Another potential area for future research is to explore the use of ensemble 

methods, which combine multiple models to improve accuracy and robustness. Additionally, it 

may be useful to investigate the impact of different preprocessing techniques and feature 

selection methods on the performance of machine learning models for wind speed prediction. 

Finally, the results of this study can be further validated using additional datasets from different 

locations and climates to assess the generalizability of the proposed approach. 
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Appendix A 

A.1 ANFIS Code 

“ “ “ 

import numpy as np 

import skfuzzy as fuzz 

from skfuzzy import control as ctrl 

from sklearn.model_selection import train_test_split 

 

# import data  

data = np.loadtxt('final.csv', delimiter=',') 

temp = data[:,0] 

pressure = data[:,1] 

wind_speed_actual = data[:,2] 

 

# Split the data into training and testing sets 

temp_train, temp_test, pressure_train, pressure_test, wind_speed_actual_train, 

wind_speed_actual_test \ 

= train_test_split(temp, pressure, wind_speed_actual, test_size=0.2, random_state=42) 

 

# find maximum, minimum and average of data columns 

temp_max = np.max(temp) 

temp_min = np.min(temp) 

temp_mean = np.mean(temp) 

s = temp_max + temp_min 

m = s / 2 
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temp_middle = int(m) 

 

pressure_max = np.max(pressure) 

pressure_min = np.min(pressure) 

pressure_mean = np.mean(pressure) 

s = pressure_max + pressure_min 

m = s / 2 

pressure_middle = round(m,2) 

 

wind_speed_actual_max = np.max(wind_speed_actual) 

wind_speed_actual_min = np.min(wind_speed_actual) 

wind_speed_actual_mean = np.mean(wind_speed_actual) 

s = wind_speed_actual_max + wind_speed_actual_min 

m = s / 2 

wind_speed_actual_middle = round(m,2) 

 

# Define the antecedent and consequent membership functions 

temp_range = np.linspace(temp_min, temp_max, num=100) 

temp_low = fuzz.trimf(temp_range, [temp_min, temp_min, temp_middle]) 

temp_high = fuzz.trimf(temp_range, [temp_middle, temp_max, temp_max]) 

 

pressure_range = np.linspace(pressure_min, pressure_max, num=100) 

pressure_low = fuzz.trimf(pressure_range, [pressure_min, pressure_min, pressure_middle]) 

pressure_high = fuzz.trimf(pressure_range, [pressure_middle, pressure_max, pressure_max]) 
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wind_speed_range = np.linspace(wind_speed_actual_min, wind_speed_actual_max, 

num=100) 

wind_speed_low = fuzz.trimf(wind_speed_range, [wind_speed_actual_min, 

wind_speed_actual_min, wind_speed_actual_middle]) 

wind_speed_medium = fuzz.trimf(wind_speed_range, [5, wind_speed_actual_middle, 9.5]) 

wind_speed_high = fuzz.trimf(wind_speed_range, [wind_speed_actual_middle, 

wind_speed_actual_max, wind_speed_actual_max]) 

 

# Define the fuzzy variables 

temp_input = ctrl.Antecedent(temp_range, 'temperature') 

pressure_input = ctrl.Antecedent(pressure_range, 'pressure') 

wind_speed_output = ctrl.Consequent(wind_speed_range, 'wind_speed') 

 

# Add the membership functions to the fuzzy variables 

temp_input['low'] = temp_low 

temp_input['high'] = temp_high 

 

pressure_input['low'] = pressure_low 

pressure_input['high'] = pressure_high 

 

wind_speed_output['low'] = wind_speed_low 

wind_speed_output['medium'] = wind_speed_medium 

wind_speed_output['high'] = wind_speed_high 
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# Define the fuzzy rules 

rule1 = ctrl.Rule(temp_input['low'] & pressure_input['low'], wind_speed_output['low']) 

rule2 = ctrl.Rule(temp_input['high'] & pressure_input['high'], wind_speed_output['high']) 

rule3 = ctrl.Rule(temp_input['low'] & pressure_input['high'], wind_speed_output['medium']) 

rule4 = ctrl.Rule(temp_input['high'] & pressure_input['low'], wind_speed_output['medium']) 

 

# Define the control system and add the rules 

wind_speed_ctrl = ctrl.ControlSystem([rule1, rule2, rule3, rule4]) 

 

# Create a simulation to evaluate the control system 

wind_speed_sim = ctrl.ControlSystemSimulation(wind_speed_ctrl) 

 

wind_speed_predicted_test = [] 

for i in range(len(temp_test)): 

    wind_speed_sim.input['temperature'] = temp_test[i] 

    wind_speed_sim.input['pressure'] = pressure_test[i] 

    wind_speed_sim.compute() 

    wind_speed_predicted_test.append(wind_speed_sim.output['wind_speed']) 

 

rmse_test = np.sqrt(np.mean((wind_speed_actual_test - wind_speed_predicted_test)**2)) 

print("RMSE on testing set:", rmse_test) 

“ “ “ 

A.2 KNNR Code 

import numpy as np 
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import pandas as pd 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

from sklearn.neighbors import KNeighborsRegressor 

from sklearn.metrics import mean_squared_error 

from sklearn.metrics import r2_score 

 

# Load wind speed dataset 

wind_data = pd.read_csv("final.csv") 

 

# Separate features and target variable 

X = wind_data.iloc[:,0:2] 

y = wind_data.iloc[:,2] 

 

# Split the data into training and test sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

weights = 'distance'  # Weight points by inverse of their distance 

metric = 'minkowski'  # Distance metric 

k = 50  # Number of neighbors 

p = 1  

rmse_list = [] 

ks = [] 

# for k in range(1,51) : 
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#     # Instantiate KNN regression model and fit the training data 

#     knnr = KNeighborsRegressor(n_neighbors=k, weights=weights, metric=metric, p=p) 

#     knnr.fit(X_train, y_train) 

 

#     # Make wind speed predictions using the test data 

#     y_pred = knnr.predict(X_test) 

#     rmse = np.sqrt(mean_squared_error(y_test, y_pred)) 

#     ks.append(k) 

#     rmse_list.append(rmse) 

ps = [] 

# for p in range(1,51) : 

#     # Instantiate KNN regression model and fit the training data 

#     knnr = KNeighborsRegressor(n_neighbors=5, weights=weights, metric=metric, p=p) 

#     knnr.fit(X_train, y_train) 

#     # Make wind speed predictions using the test data 

#     y_pred = knnr.predict(X_test) 

#     rmse = np.sqrt(mean_squared_error(y_test, y_pred)) 

#     ps.append(p) 

#     rmse_list.append(rmse) 

 

# Instantiate KNN regression model and fit the training data 

knnr = KNeighborsRegressor(n_neighbors=5, weights="uniform", metric=metric, p=2) 

knnr.fit(X_train, y_train) 
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# Make wind speed predictions using the test data 

y_pred = knnr.predict(X_test) 

# Calculate the RMSE 

rmse = np.sqrt(mean_squared_error(y_test, y_pred)) 

print("RMSE: ", rmse) 

r2 = np.sqrt(r2_score(y_test, y_pred)) 

print("R2: ", r2) 

bias = (y_test-y_pred).sum() / len(y_test) 

print("Bias: ", bias) 
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و   ANFIS: دراسة خاصة باستخدام التنبؤ بسرعة الرياح باستخدام خوارزميات تعلم الآلة

KNNR 

 

 إعداد: 

 خليل شيبان محمود أبوعياش

 

 إشراف: 

 د. حازم دوفش، د. حسين السمامرة 

 

 ملخص 

ا  اأمر  ة  سرعة الرياح باستخدام خوارزميات تعلم الآلب  التنبؤيعد    لمحطات طاقة الرياحمن التطبيقات، مثل تخطيط    للعديد    مهم 

  ةوخوارزمي  ANFIS  خوارزميةدراسة حالة حول توقع سرعة الرياح في القدس باستخدام    والتنمية الحضرية. يقدم هذا البحث  

KNNR  .  أداتم الخوارزمياتتقييم  الجذريبا  ء  التربيعي  المتوسط  ذلك  في  بما  مقاييس،  عدة  ( RMSE)  للخطأ ستخدام 

قيمة ( و0.196)  RMSE  حيث كانت قيمةدقة جيدة  ANFIS خوارزمية  ظهر  ت  .  (R2)، ومعامل التحديد   (bias)والانحياز

  KNNRخوارزمية  ظهر  ت  (. بالمقابل،  R2 = 0.15العام )  التغير(. ومع ذلك، هناك مجال للتحسين في التقاط  10*3-3نحياز )الا

R2   ( مما يشير إلى تطابق أفضل، ولكن بـ  0.41أعلى ،)RMSE  ( يقدم هذا البحث رؤ1.421أعلى .)حول قابلية تطبيق    ية

ANFIS  وKNNR  ا عملية على   يةويقترح اتجاهات بحث قدس في مدينة الفي توقع سرعة الرياح مستقبلية. تحمل النتائج آثار 

 طاقة الرياح والتنمية الحضرية وتقييمات البيئة في المناطق المماثلة.محطات تخطيط  


