Deanship of Graduate Studies

Al-Quds University

A Generalized Definition of the Fractional Derivative with

Applications in Newtonian Mechanics

Samah Mousa Khalaf Bajali

M.Sc. Thesis

Jerusalem-Palestine

1444-2023



A Generalized Definition of the Fractional Derivative with

Applications in Newtonian Mechanics

Prepared by:

Samah Mousa Khalaf Bajali

B.Sc. Mathematics

Al-Quds University-Palestine

Supervisor: Dr. Ibrahim Algrouz

A thesis Submitted in Partial Fulfilment of Requirements for

the degree of Master of Mathematics at Al-Quds University

1444 Hijri- 2023 AD



Al-Quds University
Deanship of Graduate Studies

Graduate Studies / Mathematics

Thesis Approval

A Generalized Definition of the Fractional Derivative with Applications in Newtonian
Mechanics

Prepared by: Samah Mousa Khalaf Bajali
Registration No: 22011223

Supervisor: Dr. Ibrahim Alghrouz

Master thesis submitted and accepted, Date: 27/5/2023.

Names and signatures of examining committee members are as follows:

1. Head of Committee: Dr. Ibrahim Alghrouz Signature: .

2. Internal Examiner: Dr. Jamil Abu Ismail Signature:

3. External Examiner: Dr. Yousif Bdeir Signature:

Jerusalem-Palestine

1444 Hijri- 2023AD



Dedication

| present this as a way of gratitude to my mother for, encouraging me and supporting me

throughout the whole experience.
To my late father who was the reason | even started this journey.
To all people who encouraged me.

| present this to all of them.



Declaration

| certify that this thesis submitted for the degree of master is the result of my own research,
except where otherwise acknowledge, and this study (or any part of the same) has not been

submitted for a higher degree to any other university or institution.

Signed: o2
Student Name: Samah Mousa Kalaf Bajali

Date: 27/5/2023.



Acknowledgement

First and foremost, my determination, strength and guidance needed to complete this

research is all thanks to almighty Allah (alhamdulillah).

| am thankful to my supervisor Dr. Ibrahim Algrouz for his encouragement, guidance and

support.

| offer my heartful regards to everyone who supported me during the completion of this

thesis.



Abstract

This work studies the proposed new generalized fractional derivative (GD) definition,
showing that the index law D*DAf(t) = D*"Bf(t); 0 < a,f < 1 works for a
differentiable function expanded by a Taylor series. (GD) is applied for some functions, the
results are compared with Caputo fractional derivative. The solutions of some fractional
differential equation are obtained via the (GD) operator. A comparison with the conformable
derivative (CD) is also discussed. Newtonian Mechanics is discussed in the light of the

fractional calculus.
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Chapter one

Introduction

Fractional calculus is not a new concept in math, which has applications in several fields of
science such as economics [5], biology [18]. A lot of definitions for the fractional derivative
have been introduced over more than four hundred years. Every definition has its own
advantages and disadvantages. with Caputo (Ca) and Riemann—Liouville (R-L) definitions

being the most used ones [10].

For the Caputo definition, the y —derivative of f(t), where y € (n — 1,n] is defined as

follows

1 t dn
oDYf () = 1“(n——y)fa (-t df—(nx))dx

For the Riemann—Liouville definition, the y —derivative of f(t), wherey € (n — 1,n]is

defined as follows

1 ar (fat (t—2)" Y f(x) dx)
(n—vy) dx™

aD\}(z_Lf(t) = T

For the conformal derivative (CD) definition of a function f:(0,0) — R, the

y —derivative of f(t) att > 0, wherey € (0, 1] is defined as follows

1-vyy—
£e—0

€

And if the limit exists, we have

DEPF(0) = lim DEP £(t)



Or for differentiable functions,

peef(ey = v

The main drawback of R-L is that it does not give zero when differentiating a constant.

The main advantage of the Conformable derivative over Ca and R-L is that it simplifies the

process in finding the derivative of product and quotient of functions.

AsD (fg) = f (D (9)) +g (D (f))and D(g) = 40¢ ”g‘zf @9 hoth are true for only

the CD definition.

Also, Ca, R-L and CD definitions all do not satisfy DDA (f) = D**B(f) which is a main

advantage for the generalized definition which is discussed in this thesis.

The study is based on analysing the CD definition then applying and comparing its

properties with the proposed definition [1],[2],[10],[14].

In this thesis, we have chapters organised as follows. In chapter two, we study the
generalized fractional derivative definition introduced by Kaabar [3] we discuss the main
theorems and properties related to the definition we also apply the definition on some

functions.

In chapter three we use the generalized fractional derivative operator to solve some
fractional differential equations and comparing its results with other fractional operators.
Furthermore, in chapter four we apply the (GD) fractional operator to the Newtonian

mechanics, while trying to find the physical meaning for fractional physics.



Chapter two

Generalized Fractional Calculus

In this chapter, we study the new generalized definition of the fractional derivative

introduced by Kaabar [3] which gives more accurate results than the well-known

conformable derivative definition, we analyse the properties and related theorems.

2.1. Generalized Fractional Derivative

In this section we mention, discuss and complement the properties of the new generalized
definition of the fractional derivative (GD) which was recently introduced by Kaabar [3].

The definition is an improvement to the known conformable fractional derivative (CD).

Definition 2.1. For a function f: (0,0) — R, the y —derivative of f(t) att > 0, where

vy € (0,1] is defined as follows

f ot +—"B _et1=Y)_ f(p)
(DEP)F () = lirr%) Ho-y+D ; p € R
E—

&

Where T refers to the gamma function with '(s) = [.”z5~ e ?dz.

If fisy — differentiable at (0,a) for some a > 0 and the limit exists, then at t = 0 the

fractional derivative is defined as follows



(DYP)f(0) = lim D f (t)

We say that f is y — differentiable function if the generalized derivative of f of order y

exists. For ease we are using LY ( f(t)) to denote the generalized derivative (D{°) f (t).

Remark 2.1. When y = 1 we obtain the classical derivative definition

(DFP)F(6) = lim fe+ ? - f©

Theorem 2.1. If f(¢t) is a differentiable function then f(t) is an y —differentiable function,

with

I'(p) 1—-y 4f(@®) +
V4 — Y .
O =g O per

Proof: By the definition of LY f(t) ,we have

r'(p) 1-
f @+ et'”=Y) - f(0)

&

Leth=—®) _¢1-Vihene = JP YDy y-1 then h — Owhene — 0
Fp-v+1) T'(p)

Substituting in the definition we get

NS (> B R DR 4O

" T(p-y + 1) h—0 h

Hence,

ey — T 1y df®
L f(t) l"(p—y+1)t dt



Theorem 2.2. If a function f:[a,b] — R, is y —differentiable function at z > 0, for

somey € (0,1],then fis continuous at z.

Proof: As the function is y —differentiable function at t = z , the definition states

fz+m—8_e1-v) - f(2)

(Ly(f(Z)) — !E}r}) F(p_ Y +£1)
We can look into
I'(p) 1-vy
) . e Gy )@
f(z Ty s D y>-f(Z)— - €
As € = 0, then
lim f (z _,_%821-”_ f(2)=LYf(z) » (0)

I'(p)

——~ 717V it'sclear thath » 0 as e — 0, then
F(p-y+1)

We assume h =

lm f(z+h)-f(z) =0
Or lim f (z +h) = f(2)

Hence, f is continuous at z. O



Theorem 2.3.

(i) LYf(t) = 0, for constant functions where f(t) = c.

. _ r(k+1) k— _ k. +
i) LYf(t) = —F(k—y+1)t v o forf(t) =t%k € R.
Proof:
Using theorem 2.1.
For (i) we have,
I'(p)
Y - 1=y 0 =
LYf(t) o= y+1)t 0=0
For (ii) we get,
L'(p)
Y - M7 41—y k-1
LYf(t) Ty + 1)t kt
kT'(p)
Y = W kv
L Fp-v+ 1
Taking p = k , we get
kT (k)
Y = V7 kv
Vr®O=r0— %D
But z['(z) = T'(z + 1) hence,
_ T(k+1) k—
L'f©) = Fk-y+1) Y =

Remark 2.2. Taking into consideration the y — derivative of f(t) = t¥ wherey = k ,then

1
r'(y+1)

LY(tY) =T(k+ 1) =T(y + 1). Hence it is easy to see that LY ( tY ) =1



Theorem 2.4. Lety € (0,1],t > Oand f, g be y — differentiable functions, then

(i) LY (af+bg)(t)= al” (f(t)) + b L”(g(t)) ; a,b are constants,

(i)  L'(f 9@ = f(OLY(g(®) + g@®) LY (f(D)),

vl _ 9O LYGO)-f@®) LY (9) (&)
SO (g) © lg(®)])?

(iv) LY (fog)(®) = f(g(t) L (g(t)), and f(g(¢) exist

Proof:
Using Definition 2.1.

for convenience sometimes we would use the substitution

['(p)
u=t+——————— ¢tV
Fp-v + 1)

For (i) we have,

@f +bg) (¢ + i rgyet ™) - @f +b)®

&

LY (af +bg)(t) = lim

I'(p) 1- I'(p) 1-
(af)(t + =——ett Y |+ b gt + =—L—ct' Y |- (af)®) — (b g)(®)
= lim ( Fp-y + 1) ) ( SF(p—y+1) )




@D P ) @no
£—0 &

I'(p) 1-
bg) |t +=—T——==ct'" Y |=(bg)(t)
+ lim ( Fp-vy+ 1) )

£—0 &

=al¥(f)(®) + bL'(g)(®)

For (ii) we have,

() (¢ + gyt - (F®

&

I 9)(® = lim

We need to add and subtract the value (f)(t)(g)(u)

_ iy P @)~ (HB@w) + (HB(9w) -H OO

£—0 &

_ o D@ - (NO@W) | NO@W) -NDOEO
B EE}}) & + gg}) &
= W (HO) lim g@) +H® L (@)®)
. : ) 1-yy —
but lim g(u) = g(lim ¢ + =2 et~ = g(®)

= (LWH®)g@®) +(H©®) L'(g)®)

For (iii) we have,



f L'(p) 1- f
()t + 5= et Y) - (DM
Ly(_)(t):hm g -y + 1) g

£—0 &

Q |~

F(P) 1-
N S )10

I'(p) vy @©®
@Dy +n "

= lim
£—0 &

(H@) * (@O = (g) WO O
i @ @W9®

£—0 &

Then its treated similarly the product case but using f(t)(g)(t)

_ i D@ * (@) 0) = (H () + (HE)9E) — (9) () )

£—0 &

_ 1
I ) (e

_ 9O LHO - O L"9)E)
[9(D]?

For (iv) we have,

L'(p) 1-
(f cg) (t +m€t )= c9®

LY (f e g)(®) = lim -

L'(p) -
L VA G

£e—0 &




-1 fl@)-f@®) . g —-g()
= lim lim
eh g gt e e

But lim g(u) = g(¢) or lim g(u) — g(t) = 0
Hence, we could say g(u) — g(t) = h withh — 0ase — 0
f® +h- f(g®)

- 1111—>o h

* LY (g(0))

=f ((@®) LY (g®) D

Corollary 2.1. For y € (0,1],t > 0 and f being y —differentiable function, then

v (1) (1 — _ OO
L ()(t) oK

Proof:
Using theorem 2.4. part (iii)

We have,

1 fOIM-MIO®
e = FOT

_f@® - 0-1-L(H(®
- [f (O]

_ O
[FOP

10



Remark 2.3. It’s easy to see that Corollary 2.1. can be generalized for the case of n power
instead of power 1 to get LY (fin) (t) = —nf ™ 1(t) - LY (f)(t) . An easy proof can be

found by induction.

Corollary 2.2. For y € (0,1],t > 0 and f being y —differentiable function, then,
UIf®F=2f®-L'{)®)
Proof:
Using theorem 2.4. part (i)
We have,
I'If®O)F = fFOLY(F®) + f(&) LY (F(©)

=2f@O-LY(H() o

Remark 2.4. It’s easy to see that Corollary 2.2 can be generalized for the case of n power
instead of 2 to get LY [f()]* =n f*1(t) - LY(f)(t) . An easy proof can be found by

induction.

Theorem 2.5. For the function f(t) = t*; k € R*, L*LE(f(t)) = L**F(f(t)) is satisfied,

where 0 < a,a+B,0<1.
Proof:

Using theorem 2.3. part (ii) we have,

11



For R.H.S

r(k+ 1)
k — (@a+p) + 1

La'l'ﬁ (tk) — 1_, t(k —(a+ﬁ)

For L.H.S

r(k+ 1)

£k =(B))
k= @B+ 1

LE(t%) = =

r(k+ 1)

£k =(B))
k= @B+ 1

L*LA(tF) = L° =

__T&AD  sas(k-(B)
k- (B)+ 1)L (t )

_ _ T+ r((e-)+1) ¢(k=(8))—(a)
re= (B +1) | r((k-(8))- (@+1)

= Ldct1) ¢k =(B))=(@)
(k=) - (@) +1)

- THD  (k—(a+B))
(k- (a+B) + 1)

=R.H.S m

Remark 2.5. For a function f(t) = t? then LY/2LY/? t? = Ll/z% t3/2 = % t also

[ t? = % t , while in case of conformable derivative D{},D{7, t2 = D{f, 2 t3/% =

22 ¢7/6 put DEP 2 = 2t

Theorem 2.6. For a differentiable function f(t) that has the expansion f(t) =

0
o L k[(o) tk  then L*LE (£ (¢)) = L**F(f(t)). satisfied, where 0 < a,a + 5,8 < 1.

12



Proof:

Using theorem 2.4. part (i) and theorem 2.3. part (ii)we have,

For R.H.S
a+p w 90 arpk
LEPCf(0) = Zk=o—— L577t
_ v f(k)(o) r'k+1) t(k_(a+ﬁ)
k=0 x1 Tr(k- (a+B)+1)
For L.H.S
2, £ (0
By = Y L2 e
k=0 '

_vo [P0 Tkt k)
T 4k=0 g l"(k—(ﬁ)+1)t

O fM0)  Tk+1)

£k —~(B))
ki Ttk — (B) + 1)

L¥(LAtk = L%(

k=0

_ v BP0 TEHD  ar(k-p)
= Yk=o0 Xl r(k—(ﬁ)+1)L (t )

=y [P0 _ rlen r((e-®)+1) (& =(B) —(a)
=00k Th- B+ | r((k-(8)- (@+1)

_yo [P0 [(k+1) ¢k =(B) =(@)
=0 W (ke -(B) - (@ +1)

_ g F®(0) r'(k+1) t(k_([g))_(a)
k=0 kI T(k- (@a+B)+1)

=R.H.S m

13



Remark 2.6. For a function f(t) =e?* f()(0) =2% then L'e?* =Y 0— “ otk =

k= oi. r;lz;;;) t- = ¥, k tk-D = Z?:o(k_l)! t®& -1 also L1/2]1/2 g2t —
L= (Zeofemiero ) = Bl o

While in case of conformable derivative DfP e? = Y. OF Dth" =

Ljc= Ok' ke = 3L O(k 1)! e®= - but D1/2D1/2 = D1/2 Zf:o(kz_kn! e = =

o _2 1y f(k-1
Yo gy (k= t*Y.

Definition 2.2. For a function f:(0,00) — R that is n —differentiable at ¢, the

y —derivative of f(t)att > 0,wherey € (n,n+ 1] is defined as follows

=1 (g4—LP) o=y _flvI-1(p)
LY £(£) = lim Mo-y+1) ;p € RY
E—

&

Where [y]is the smallest integer greater than or equal to y.

Remark 2.7. For function f(t) which isn —differentiableatt > Owithy € (n,n+ 1] it

could be seen by applying theorem 2.1. that

['(p)

mtm—vﬂﬂ ().

LV f) =

Example2.1. For the function f(t) =t? ,p=k =2

r')

2- 1.5 £(2) _ 0.5
et fA@M) =2t

wheny = 1.5then L'St? =

while when y = 2 then L2 ¢% = FF((?) £2-2f@ () = 2r(2) = I'(3)

14



Remark 2.8. For integer y we have [y] = y hence,L” f(t) = £ (t) which is the same as

the ordinary derivative.

Theorem 2.7. (Rolle’s theorem for the generalized fractional differential function). Leta >

0 and f: [a,b] — R be a given function which satisfies the following:

(1) f is continuous on [a, b]
(i)  fisy —differentiable on (a, b) for somey € (0,1]

(i) f(a) = f(b)

Then, there exists ¢ € (a, b) such that LY (f(c)) = 0.

Proof: Since f is continuous on [a, b] and f(a) = f(b), there exists c € (a,b), thatisa
point of local extrema by extreme value theorem, and c is assumed to be a point of local
minimum without loss of generality. So, we have

_ T iy
LY(f(c*) = limf(c+r(p—v+1)sc v)-f(o)

e—0+ &

fle+a @ _ciovy - £(o)

V() = lim —— @Y+ D
However, LY (f(c* )) and LY (f (¢~ )) have opposite signs. Hence, LY (f(¢)) = 0. m|

15



Theorem 2.8. (Mean value theorem for the generalized fractional differential function). Let

a > 0and f:[a,b] — R be agiven function which satisfies the following:

(i) f is continuous on [a, b]

(i)  fisy —differentiable on (a, b) for somey € (0,1]
then, there exists ¢ € (a, b) such that

O - f@ 1

VU@ =5 —hnan "~ o+

Proof: Define a function g(t) by

fb) - f(a)

9O =fO=f@ =G

l(hty—hay)

1

With h = e

As g(t) is continuous on the interval (a, b), differentiable on the interval [a, b] and g(a) =

g(b) = 0. g(t) satisfies all conditions of roll’s theorem Then, there exists ¢ € (a, b) such
that L”(g(c)) = 0.

fb) - f(a)

LY(g®) = L (f()) = L (f(@)) - ml (hLY(tY) = hL¥Y(a"))

But we know that LY (contant) = 0 and LY (t¥) = I'(y + 1) . hence, we have

(g(®) = 17 (f(®) - [L2LE (hry + 1)

(h bY— ha?)

Buth = ToiD

fb) - f(a)

L'(g@®) =L (f ) - hb" — hav)

Applying roll’s theorem we have,

16



b —
L*(g(0) =LY (f (C))_[% -

Therefore,

fb) - f(@
1 (f()) = Lhm, A

Theorem 2.9. (Cauchy theorem for the generalized fractional differential function). Let

a > 0and f, g: [a,b] — R be given functions which satisfy the following:

(1) f, g are continuous on [a, b]
(i)  f,g are y —differentiable on (a,b) for some y € (0,1] and L"(g(t)) #

Oforte (ab)

then, there exists ¢ € (a, b) such that

L' (f(0)) _ f(b) — f(a)
Lv(g©) 9 —g@

Proof: Consider the function

f)—f

(a)
g() —g(a)

H(t) = f(t) = f(a) - (9(t) — g(a))

As H(t) continuous on the interval [a, b], differentiable on the interval (a, b) and H(a) =
H(b) = 0 . H(t) satisfies all conditions of roll’s theorem. Then, there exists ¢ € (a, b)

such that LY (H(c)) = 0.

b) —
LY(H(®) = L' (f(®)) - <%> L' (g®)

Substituting t = ¢ we get

17



fb) - f(a@)

LY(H(c) = L (f(c)) - <—g(b) ~ 5@

)Ly(g(c)) =0
or

L' (f(0) _fb) —f(a)
L(g©) 9®) —g(a

Which completes the proof. o

2.2. Generalized Fractional Integral

In this section we discuss and complement the integral associated with the generalized

definition of the fractional derivative introduced by Kaabar[3].

Definition 2.2. For a continuous function f:[a,©) - R,a =0 and y € (0, 1] then the

generalized fractional integral I} f (t) exists

_ T-y+1) rt fx)
Lf@) = ) I, Soydx

Example 2.2 For a function f(t) = 2 ,we have

dx

r(p — 1)t 2
18 (2) = (p V+)fx

r'(p) 1=y

re-vy+ 1t
= 2 -y )f x~ Y dx
r(p) a

18



e —v+ Dx¥ ¢
rp) y a

F(p—y+1)<t7’ a”)

I'(p) Y v

Remark 2.9. For the case when a = 0 and p = y then the fractional integral of a constant

. . 1 (tY t¥
function f(x) = cisI? (c) = ey (7) = o

Example 2.3 For a function f(t) = t? ,we have

dx

8 (¢2) = F(p—y+1)f X

r(p) xtY

r'p—-—y+ 1t
= 2 G 4 )j 1Y dx
rp) a

T —y+ 1D X ¢
B r'(p) 24y 'a

2F(p —y + 1) [t gty
= - m|
I'(p) 24y 24y

Example 2.4 For the general case of f(t) = t™ we have

F(p—y+1)°x"
a (+ny —
YOS TGy e

_ Flp —v + 1)ftx—1+y+n dx
r(p) a

19



T -y 1) Ay
- I (p) y+n'a

T —-y+ 1D [tr" o
- I (p) y+n y+n

Remark 2.10. For the case when a = 0 and p = y then fractional integral of t™ function is

10 o 1 ty+n
r =7y

Theorem 2.9. Let f: [a, ) — R be continuous function such that I f (t) exists, ¢ > a and

y € (0,1], then
LYLf(@® = f(©
Proof: As f is continuous, I3 f (t) is differentiable.

Hence, using theorem 2.1. we have

I'(p) [y d( I f(t))
p=—v+1 dt

Ly( ny(t)) = T

_ r(p) 1-y 4 (Tlp—y+1) (tf(x)
"~ r(p- y+1)t dt( T'(p) fa x17Y dx)

= tl-v i(

Ef@)
e (Jo 5 dx)

a x1-v

— 1y f®O
=t o

= f® o

20



Theorem 2.10. Let f: [a, ©0) — R be continuous function such that LY f (t) is continuous,

t >aandy € (0,1], then
LLYf(t) = f(t) — f(a)
Proof:

Using Definition 2.2. we have

(p—v+1) (LF&X) .
L'(p) a XY

I
L F() =

using theorem 2.1. we have

L F() =

rp—y+1) (F1 M) .., dU®)) .
I'(p) X7V \I(p — v+ 1) dx

[0y,
-, dx
= feO 1

=f®O-f@ o

Theorem 2.11.(Mean value theorem for fractional integral)

Let f: [a, b] = R be continuous function and y € (0, 1], then there exists ¢ € [a, b] such

that

Fp—y+ 1 (°fx) 1 1
I'(p) Ay X =1 (F(y D A Vo ay)
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Proof: As f is continuous on [a, b] then I, f(t) is continuous on [a, b] , y —differentiable
on (a, b) by applying the mean value theorem for fractional derivative theorem 2.8. there

exists ¢ € (a, b) such that

Lf(b) — 1
LV(I]/f(C)) = ( 1 yf( ) yfga) )

—_ hY - - qY
fo+D Y " Ty+D ¢

But from theorem 2.9. we know that

U (Lf©)=f©
Using definition 2.2. we have

F'p—y+ 1 ("fx)

W)= =]
And
I'p — 1 ¢
Lf(a) = (o r(;)+ ) a ];E’_? dx =0
Hence, we get
Fp—-—y+1) pfx)
_ - r (Z) Ja xlicV dx
f(C) - 1 by B 1 y)
(r<y +D 7 T T+D ¢

Or
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I -y + 1 ”f(x)d _( 1

T'(p) T\ F D ) “y)f(c)':'

2.3. Generalized Fractional Derivative of some Functions

In this section we apply the generalized definition of the fractional derivative on some

known functions.

2.3.1. Fractional Derivative of the Exponential Function

For a function f(t) = e*t,1 € C.

By Taylor theorem e = Y7 ok,

Hence, we have fory € (0,1]

X Ik

LV(e“) =
]
k=0 k!

z/l_ Ik + 1) _Tk+D
o k! (k y + 1)

LY (5

— D]E’aelt O

Remark 2.11. For y = % , the y — Generalized derivative of the exponential e?t

23



A Tk + 1) -

1
S0ty —
LZ(e ) - k' (k N %)

2)

2.3.2. Fractional Derivative of Sine Function

For a function f(t) = sin wt

We know that the sine function could be written in complex as
sin(wt) = l( iwt _ lwt)
20
Then, we have fory € (0,1]
1 . .
LY (sin(wt)) = % (LY (e'@t) — LY (e™i@t))
— Zil D)E‘a(eiwt) _ D)ga(e—iwt))
— D)Ga%((eiwt) _ (e—iwt))

= D% (sin(wt)) O

Remark 2.12. For y =% , the y — Generalized derivative of the exponential (sin(wt))

reduces to

1 © ik X
L2 (sin(wt)) = l.[ (iw) ( I'(k+1) k—— Z (- lw) F(k + 1) k-1
F (k+5)

2i e k! F(k+2) : 2)]
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2.3.3. Fractional Derivative of Cosine Function f(t) = cos wt

We know that the cosine function could be written in complex as
1, . .
cos(wt) = 5 (elwt + eiwt)
Then, we have fory € (0,1]
1 . .
LY (cos(wt)) = > (LY (e'@t) + LY (e™t@t))
1 . i
— E(Dfa(elwt) + D)ga(e lwt))
1 . i
— D)Eaz((elwt) + (e Lwt))
= D{* (cos(wt)) O

Remark 2.13. For y =% , the y — Generalized derivative of the exponential (cos(wt))

reduces to

1 (iw)* F(k+1) k__) Z( Lw)k F(k+1) PN

L% (cos(wt)) = 5 [ ] (r ( 1)
k=0 5

Remark 2.14. We can find the fractional derivative of hyperbolic functions since its related

to the trigonometric ones as sinh(t)) = —i sin(it) and cosh(t)) = cos(it) . it’s easy to

see that the fractional derivative is as follows:

LY (cosh(t)) =LY (cos(it))
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LY (sinh(t)) = LY (—i sin(it))

1
For y = - we have

r'(k+1)

()

LY (cosh(t)) =2 [T "2 (

LY (sinh(t)) = %[Zf:o (_1!)k

r'(k+1)
k 1

r(k+3)

k—l o 1
t"z) + Zk:og(

1
k—= o 1
t 2) - Zk:Oa(

26

r'(k+1)

r'(k+1)
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£4°3)]



Chapter three

Generalized Fractional Differential Equations

In this chapter we solve many types of fractional differential equations using the generalized

derivative operator.

3.1. Generalized First Order Fractional Differential Equations

In this section we take in consideration some types of first order fractional differential

equations.

3.1.1. Generalized Linear Fractional Differential Equations

In this section we solve some linear y —Order fractional differential by first transforming
the fractional equation to ordinary differential equation. Many different examples are used

to demonstrate the ideas.
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3.1.1.1. General Solution of Linear Equation

Theorem 3.1. For the linear first order fractional differential equation of the form as follows,
LYy(x) + g(x)y(x) = h(x)
withy € (0,1] and g(x), h(x) y(x) are differentiable functions has the general solution
y(x) = Tlx) [[ s(x) * H(x)dx + c]
where s(x) = e 6(0ax

r 1
G() = 0 g(x)

Tp—-—rv+1 o
I'(p)

H(x) = * h(x)

Proof: First we use the theorem 2.1. to get

LYy(x) + g(x)y(x) = h(x)

T'(p) 1-y 2y _
oo T S 9@y(@) = h(x)

Multiplying both sides with %x”‘l we get,

L+ 6@y = HE)

Where G(x) = F(”pr)“) 1y g(x),

Flp — v + 1)
I'(p)

H(x) = * h(x)

Multiplying both sides with s(x) = e/ 6@dx e get,
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d y(x)
X

s(x) * +5(x) * G()y(x) = s(x) * H(x)

which can be written as

1500 (0] = () * HE)

By integrating both sides, we get
s y@] = [ s+ H@ + ¢
Hence, it is easy to see that,

1
y(x)=§ [js*H(x)dx+c] O

Remark 3.1: In case of an initial value problem with initial condition y(a) = b. The

constant c is calculated based on the initial condition

Example 3.1: Let’s consider the initial value problem

2y +y() =1,  y(0) =0.

Solution: Using theorem 2.1. we get

L2y(0) + y(x) = 1

r(p) 1d
®)_3 Zix)w(x) =1
F'(p+ 5)

For p =y = 0.5 we have,
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F(%) 1 dy) _
rl)xz 0 +y(x)=1
Or

-1
aytx) 4 x2 x2
ax r(%)y( )= rQ)
Llfx_?ld ile.S
The integrating factor s(x) = e"@ =e'@
Hence,
1 leo.s
y(x) = —; — [f er(i) * 1dx + ]
2 yo.
'@
—2 o5
rd
=e 2 [l +c]
2

—2_,05 2 4
I = jer(%) dx =Jer(%) * 2u du

using the substitution u = x%5 ,du = 0.5 x™%%dx = 0.5 u'dx

Using the integration by parts method, we get

[ 2u1 e@” 21 e@u
2/r(3) [2/7(3)12
0.5 _2 o5 leos
_ X e G) — 21 er(f)
2/r(3) [2/7(3)12
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Hence,

The constant c is calculated based on the initial condition y(0) = 0

y(0)=0=l—@+clthen c=@

Hence y(x) = x®° FG) — [F(?] + [F(?]Ze@x =

Example 3.2: Solve the differential equation

1
12 — 42 3/2
y() +y(x) =x*+ T(Z5)
Solution: Using theorem 2.1. we get
1 2 3/2
L2 =
y(x) +y(x) =x°+ F(le)x
I'(p) dy( ) — x3/2
for 5 e TYE=XE s”
For p =y = 0.5 we have,
rG) EX31C))
2 yx _ 3/2
r) * "o YW= X+ rzs5)”~

or
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|w

dy(x) X 2 x2 2
=24 X)=-"mt—m—x
dx r(%)y () r3)  r)re@s)
Llfx_Tldx 2 x05
The integrating factor s(x) = e™@ =e'@
Hence,
2 3
(x) @xos i + 2x dx +c
YW =" o1 1
R r (_) r (7) *I'(2.5)

_ @” us 2u?
I j e n (%) + " (%) s 2udu

Which is easily solved using integrating by parts method to get, known thatl“(%) =
5 3
Vrand T (3) = 5.

2 3
I= e\/ﬁu<u4‘ — 2vmu® + 3mu? — 3n3/%u +En2)

248 3 5
+ eVm (§n2u3 — 4m%u? + 4m2u — 2n3 )
and write in terms of X to get,

3
y(x) = (xz — 2V x3/% + 3mx — 3m3/2\/x + En2>

=2 o5

8 3 5 &
+ (§n2x3/2 — A2%x + 4m2\/x — 273 > +ce' 2 o
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3.1.1.2. Using Taylor series

Another way to simplify the way to find the solution of the fractional differential equation

is to substitute the function with its Taylor series expansion.

Example 3.3: Solve the initial value problem Lzy(x) = e**, y(0) = 0.

Solution: As ek* = Z;’f’zol;—?x”.The fractional differential equation can be simplified

using theorem 2.1. we get

1
L2y(x) = ef*

[(p) 1dy(x) ik"
X2 = ) —

1 ]
rp+z % =™

n

X

1, o
dy(x) T+ )k ,1

1
= — 2
dx (o) Ll x

I(p+3)
I'(p)

[ee) k™ 1’l—1
Zn=0§fx 2dx

[dy(x) =

. Mo+ 2) S ken (xn+%)+
y(x) =— ) — c
T'(p) Ll n+%

2 T+ 3) 2
n!  T(p) n+%

y(x) = )t

n=0

Lettingp = n+ % we get

33



Ok T+ 1) X"
y(x)—;n! - )(n+;>+c

8

k™ 1
y@o) =) —= x"2 + ¢
n=0 F(Tl + 2)

y(0) = 0 implies that ¢ = 0, we get

1
Example 3.4: Solve the initial value problem Lzy(x) = x?sin (x), y(0) = 0.

2n
Solution: As sin (x) = Yo 0(2—

o .The fractional differential equation can be simplified

using theorem 2.1. we get

L%y(x) = x?sin (x)

' 1 dy(x) an+s
o + %) Z(2n+1)'

dy(x) T+ %) GH
dx  T(p) ;(2n+ 1)!

F(p+3) 3

2n+
— 2 o0 X 2
fay) ="22 5z [ 2

2n+Z

o 1
F'(p+ 5) x“"72
y(x) = ( ) +c
,; e “n+ %)(Zn +1)!
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Lettingp =2n+ % we get

S T(2n+4 2+
yoy = Y RERED 2 4.
n=ol2n+ 7) (2n + 7)(271 + 1)!

oo 7
O @n3) XM
Yoo = ;F(2n+%) ((2n+ 1)!)+C

= (2n + 3)(2n + 2 7
yoo =y GEDENED) jonid 1 ¢

y(0) = 0 implies that c = 0, we get

e @n+3)2n+2) 7
}’(x)—z rro 2 x“"'2 0O
n=0 ( n+2)

3.1.2. Generalized non-Linear Riccati Fractional Differential Equations

In this section we look into some non-linear Riccati fractional differential equation by first
transforming the fractional equation to non-linear ordinary differential equation. Many

different examples are used to demonstrate the ideas.

This section is dedicated not to how the equations are solved but rather comparing the

solution at different values of x with the conformable derivative results.
The general form of Riccati equation is

Ly(x) = a(x) + b(x) * y + c(x) * y?

35



Where a(x), b(x), c(x) are continuous y —differentiable functions, withy € (0, 1].

If one particular solution y; can be found, then the general solution of the Riccati equation

is obtained as

y =y, +u witha = [b(x) + 2c(x) y;Ju + c(x) u?

which is a Bernoulli equation and is easily solved with the substitution u =

Example 3.5: Solve the fractional Riccati differential equation

LYy(x) +y(x)?> =1, y(0)=0,0<y <1

Solution: Using theorem 2.1. we get
Ly(x) +y*(x) = 1

'(p) 1—y AY(xX)
X
[p—y+1) dx

+y%2(x) =1

For p = y = 0.75 the equation becomes

r(0.75)
r(1)

d
XO'ZS Z)(cx) + yz(x) = 1,y(0) =0

AsT'(0.75) = 1.2254167,T'(1) = 1 using MATLAB we get the solution

* 107

y(x) = tanh (3e725000

X0'75)
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For y = p = 0.9 the equation becomes

r(0.9)
(1)

d
x01 Zix) +y2(x) = 1, y(0) =0

AsT(0.9) = 1.0686287, I'(1) = 1 using MATLAB we get the solution

108

y(x) = tanh (Gemecaz X

0.9)

Using the conformable derivative definition, we get

dy(x)
1-y
x dx

+y?(x) = 1,y(0)=0
For p = y = 0.75 the equation becomes
x0-25 df;—ix) +y%(x) = 1,y(0) =0
Using MATLAB, we get the solution
y(x) = tanh (§x0'75)
For p = y = 0.9 the equation becomes
x0 2 4 y2(x) = 1,y(0) = 0

Using MATLAB, we get the solution

10
y(x) = tanh (? x99)
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X GD CD

0 0 0

0.1 0.191109 0.232758
0.2 0.314388 0.378887
0.3 0.414521 0.493351
0.4 0.498470 0.585395
0.6 0.630212 0.720640
0.8 0.726082 0.810287
1 0.796171 0.870062

Tablel: comparison of GD results with CD aty = 0.75

X BPM [17] EHPM [9]
0 0 0

0.2 0.30996891 0.3214
0.4 0.48162749 0.5077
0.6 0.59777979 0.6259
0.8 0.67884745 0.7028

1 0.73684181 0.7542

Table 2: comparison of the results of different methods at y = 0.75
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Remark 3.2: We could easily see from Tables 1 and 2 that the values obtained from (GD)
method are in good agreement with the results from the Bernstein polynomial method

(BPM) and enhanced homotopy perturbation method (EHPM).

However, the conformable (CD) method although easier to use than the previous methods

its results are less accurate than the (GD) method.

X GD CD

0 0 0

0.1 0.130155 0.138975
0.2 0.239518 0.255255
0.3 0.338002 0.359213
0.4 0.426664 0.451906
0.6 0.576062 0.605387
0.8 0.691369 0.720626
1 0.777791 0.804455

Table 3: comparison of GD results withCDaty = 0.9 o

Example 3.4: Solve the fractional Riccati differential equation

LYy(x) —2+y(x) + y?(x) = 1, y(0)=0,0<y <1
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Solution: Using theorem 2.1. we get
L'y(x) =2+y(x) + y*(x) = 1

I'(p) 1y 4Y()
— X
F'p—y+1) dx

—2xy() + ¥ = 1

For p = y = 0.75 the equation becomes

(0.75) 0.25 4¥(x) _ o ~
ra * = —2xy(0)+ y*(x) = 1,y(0) =0

AsT'(0.75) = 1.2254167, I'(1) = 1 using MATLAB we get the solution

4107 3 1
= — — _xi—tanh !(—) | +1
y(x) ﬁ*tanh<ﬁ36762501x tan (\/i)>+

Using the conformable derivative definition, we get

L1y L&)

T 2y + y*(x) = 1,y(0) =0

For p = y = 0.75 the equation becomes
X025 28 54 y(6) + y2(0) = 1,(0) = 0

X

using MATLAB, we get the solution

y(x) = V2 * tanh (\/ng% — tanh‘%%)) +1
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X GD CD

0 0 0

0.1 0.232741 0.296344
0.2 0.437253 0.565564
0.3 0.643518 0.835261
0.4 0.848667 1.09467
0.6 1.23489 1.5423
0.8 1.56165 1.86687
1 1.81546 2.07957

Table 4: comparison of GD results with CD aty = 0.75 o

3.2. Generalized Second Order Fractional Differential Equations

In this section we briefly look into second order fractional differential equations. We also

study the solution to the homogeneous fractional equation with constant coefficient.

Defention3.2 The general form of the linear second order fractional differential equation is

as follows,
LYYy + A(x) LYy + B(x) y = C(x)

With A(x), B(x), C(x) are y — differential functions, with y € (0, 1].
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Defention3.3 The fractional Wronskian of two functions f(x) and g(x) is defined by

L f g(x)
W, (f (x), g(x)) = |LV(f(x)) L7 (g(x))

= f(x) * LY (g(x)) — g(x) * LY (f (x))

Remark 3.3 Two functions f(x), g(x) are linearly dependent if and only if their fractional

Wronskian is identically zero.

We are going to study the case of Homogeneous fractional equation with constant

coefficient which has the general form
LYlYy+al'y+by=0
With a, b being constants.

(

1y
We start with considering the function e To+n" ) because this exponential function has the

y fractional derivative is a constant multiple of the exponential itself. We consider the

solution
y=e (ﬁx”)
Which has the y —derivative below
LY <ec<ﬁﬂ)> —c ec(ﬁm
and

1 1
LYLY <ec (ny>> = Czec (ny)
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Substituting these values in the equation we get,

[c? + ca+ b]ec(ﬁxy) =0
But we know that the exponential function is never zero then
c2+ca+b=0
Case 1: The roots ¢, ¢, of this equation are distinct reals if a? —4b > 0

In this case the two solutions
1 1
yl = ecl (F(y+1)xy),y2 — eCZ ([‘(y+1)xy)
Since the ratio

1 () 1
y1 € _ e(C1—C2) (ny)

1
Y2 e 2 (mxy)

# constant as (¢; —¢;) # 0

Hence the two solutions are linearly independent and the general solution in this case is as

follows

1 1
y = 5, TG0 4 5,0 TG0

sy, S, are arbitrary constants.
Case 2: The roots c;, ¢, are equal reals then we have

1
V= ecl (F(V+1)xy)

And we can find a second linearly independent solution in the form of

_ 1
T Ty+1

1
Y2 xr e T
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The general solution in this case is

1 C (#x]’)
=(s, +s _xV ) e 1 C(y+1)
Y ( LTS T,

Case 3: The roots c;,c, are distinct complex numbers which can be written as m +in

then we have the two real solutions

1 1
= TG ( . y)
}’1 e cosin F(y n 1)x
1 1
= "o g ( . y)
y,=e sin(n F(y+1)x

With the general solution being

Y= 8$1Y1+ S2)

Example 3.4 Solve the following homogeneous fractional equation

LYLlYy+4LlYy+3y=0

Solution: The equation ¢? + 4c¢ + 3 = 0 has the two distinct solutions
c=-1,-3

Then the general solution is

1 1
y=spe o) 4 spe o) g
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Example 3.5 Solve the following homogeneous fractional equation

LYlYy+4LlYy+4y=0

Solution: The equation c? + 4c¢ + 4 = 0 has one solution

c=-2
Then the general solution is
1 —2 (ot x?)
= + Y > r'(y+1) O
Y (sl 2T+

Example 3.6 Solve the following homogeneous fractional equation

LYLYy+2LlYy+2y=0

Solution: The equation c? + 2¢ + 2 = 0 has the two complex solutions
c=-1%1i

the general solution is

1
y = sle_l (F(V+1)xy) CcoSs (
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Defention3.4. The general form of the linear nth order fractional differential equation is as

follows,
LNy + ALy o+ A2 () LYy + A1 () ¥ = Ap (%)
With A, A,,_4, ..., A, are y — differential functions.

Which is treated after transforming the fractional equation to ordinary differential equation.
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Chapter four

Fractional Newtonian Mechanics

In this chapter we study the Newtonian Mechanics in a new light based on the new
generalized definition of the fractional derivative. We look into different topics for the one-
dimensional case including the equations of motion at constant velocity and constant
acceleration, free falling objects, linear momentum and fractional kinetic energy. We also

looked into the two-dimensional motion.

4.1. Introduction

A possible mechanical interpretation of the half-derivative can be given in terms of Abel's
solution to the classical tautochrone problem. A tautochrone or isochrone curve which is a
Greek term that means equal time is the curve for which the time that an object take sliding
disregarding friction to the lowest point in the curve is independent of the object starting

point on the curve.

Motion of an object involves its displacement from one place in space and time to another.

The displacement Ax is defined as the change in position, and is given by
Ax = x5 — x;

Whereas the average velocity v during a time interval At is given by
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Ax  xp—x;
At tp—t

v =

And when we take the limit of the average velocity as the time interval At becomes infinitely
small we get the instantaneous velocity v and is given by

y Ax
v=lim—=x
At—0 At

While the instantaneous acceleration a is given by

Av

a=lim—=7
At—0 At

For a known physical value s we denote the fractional one as 3.

Looking into these values considering the generalized fractional derivative in theorem 2.1.

with y € (0,1] it is easy to see that the y —velocity

I d

While the y — acceleration

r d
A0 = 1 0(0) = o ot
Or
. L ® L, d T, dx
a() = r(rxm) = F'p— v+ 1 ! dt F'p—y+1) ! dt )

~ I'(p) L, d2x(®)
_<F(p— y + 1)> e ( dt?2 )

we are only interested in the case where p = .
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4.2. One-dimensional motion

We will discuss the motion of objects in one dimension in the light of the generalized

fractional derivative. We will discuss the case when p = y

Newtons second law states that F = m * a which becomes

F=msa=mx*T(y)t? dz_it)
or
F=T@)t"" (m= ’ th)) =T(y) t'""(F)

Let us consider the case where the fractional force is constant for example (F = 3N) for an

object with 1kg mass

3 d v(t)

— - 1+y
I'(y) dt

or

0 = [ rom T dr= oo D= 3
TEELTH T T T Y T T+ D)
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— —@— gamma=0.25

£ 5
= gamma=0.5
4 /.*.’k._'—._‘__. gamma:0.75
> g
3 gamma=1
2
1
0
0 0.5 1 1.5 2 2.5 3 3.5

time (t)

Figure 1: Graph of ©(t) vs. t for different values of gamma

We can see from the figure that for gamma = 1 the constant force yields a constant

acceleration.

4.2.1. Constant velocity motion

An object is moving with constant velocity, it means that the instantaneous velocity at any
point (t = ¢ ) inatime interval say [a, b] is the same value as the average velocity over the

entire time interval. In other words, the acceleration is equal to zero.

From the definition of the fractional velocity, we have

0(t) = LY (x(1))
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Multiplying both side by I, from the left then using theorem 2.10 and remark 2.8, we have

- ~ oA tY
x(t) —x(0) = ey 4.1

Example 4.1 Let us consider an object moving with constant velocity ¥ = 3 from a

starting point (assume x(0) = 0), then the equation of motion for this case

Values of y x(t)
0.25 3 £0-25
r(1.25)
1/3 ] t1/3
r'(4/3)
0.5 t05
3
r'(1.5)
2/3 3 t2/3
r'(5/3)
0.75 3 075
r(1.75)
1 3t

Table 5: x(t) at different values of y
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0 0.5 1 1.5 2 2.5
time (t)

Figure 2(a): Graph of Xx(t) vs t fory = 0.25,;, 0.5

10

a0

w

Figure 2(b): Graph of x(t) vs t fory = 0.5,%, 0.75, 1.
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We can see from the figure that for gamma = 1 is the classical case. o

4.2.2. Constant acceleration motion

An object is moving with constant acceleration, it means that the instantaneous acceleration
atany point (t = ¢ ) inatime interval say [a, b] is the same value as the average acceleration
over the entire time interval. In other words, the velocity increases or decreases at the same

rate throughout the motion.

The plot of the normal a versus t gives a horizontal line while the plot of normal v versus t

gives a straight line with either positive, zero, or negative slope.

Because the average acceleration equals the instantaneous acceleration when a is constant,

we can write a = a ,we can choose initial time to be zero for convenience.
This case is actually the generalization of constant velocity
From the definition of the fractional acceleration, we have
at) =L"(w(t)
Multiplying both side by I,, from the left then using theorem 2.10 and remark 2.8, we have

tY

o(t) — 9(0) = ey

4.2

Remark 4.1. When y = 1 the equation 4.2 reduces to the known newton equation

v(t) —v(0) = at
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Applying the definition of the fractional velocity to equation 4.2, we have

tY

~ — ]/ — ~ A

o(t) = LY (x(t)) = 9(0) + aI‘(y )

Multiplying both side by I,, from the left then using theorem 2.10 and remark2.9, we have

tY N a 1 t%
Fy+1) Ty+DTI@)2y

x(t) —x(0) = 9(0) 4.3

Remark 4.2. When y = 1, equation 4.2 reduces to the known newton equation

2

x(t) —x(0) =v(0)t + a%

Remark 4.3. We can see that when we substitute a = 0 in equation 4.3 then we would get

equation 4.1.

Now if we want to Solve for ©(t) from X and @ without knowing the time it needed we

first solve the equation 4.2 for t we get

@~ 20 - PO 11y =

then we substitute it in equation 4.3

2(t) — 2(0) = 9(0)

1 (5@ — 5(0)
T+ 1)< A D)

a1 1(0-0© ’
oDtz & ot
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A TO)2y (2(6) — 9(0)) 4.4

20— 2(0) = 5(0) <ﬁ(t);ﬁ(0)) r+1) 1 1

For the case when y = 1 we get the

x(t) — x(0) = v(0) <M) + %% (v(o) — 17(0))2
Or

2a(x(t) — x(0)) = v(t)? — v(0)?

Which coincides with newtons thirds law.

Example 4.2 Let us consider an object moving from rest (zero initial velocity) with constant
y —acceleration of 3 from a starting point (assume x(0) = 0), then the equations of motion

for this case

~ tY
PO =350
3 1 t%
() =
Iy +1)I'(y) 2y
14 D(t) x(t)
0.5 t0-5 3 .
) T(15)I(0.5)
0.75 £0.75 2 .
3 ¢l
(1.75) [(1.75)r(0.75)
1 3t 5
5 t

Table 6: x(t) , (t) at different values of y
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Figure 3(a): Graph of ¥(t) vst fory = 0.5,0.75,1
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Figure 3(b): Graph of x(t) vst fory = 0.5,1,2 o
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4.2.3. Free fall motion

A freely falling object is any object moving freely under the influence of gravity only,
regardless of its initial motion (whether it has initial velocity or not), also we neglect the air
resistance. Objects thrown upward or downward and those released from rest are all

considered freely falling.

This is a special case of constant downward acceleration motion of 9.8 m/s? .

The equations of motion for this case are

o(t) — 9(0) = —98m 4.5
24 98 1 t*¥
2(t) — 2(0) = 5(0) 4.6

ry+1 TG+D)TQG)2y

Example 4.3 Let us consider an object thrown upward with initial velocity ©(0) = 15m/s
.We can assume the hand of the person as a reference point (assume x(0) = 0), then the
equations of motion for this case

tY

88—+ 15
F'y+1)

o(t) = —9.

t¥ 9.8 1 t%r
Fry+1) T+1TIy) 2y

x(t) =15
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Y v(t) x(t)

05 98-t 4115 15t 8,
°T(15) [(15) T(15)r(05)

0.75 e B O 193 e
T (1.75) (1.75) 3 T(L75)r(0.75)
- 9.8

1 9.8t + 15 15028,

Table 7: x(t) , ©(t) at different values of y
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Figure 4(a): Graph of ¥(t) vs t fory = 0.5,0.75,1
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Figure 4(b): Graph of x(t) vs t for y = 0.5,0.75, 10

4.3. Linear momentum, Work and Kinetic energy

Linear momentum is a physical quantity that is directly proportional to the object’s mass
(m) and velocity (v). Therefore, the greater an object’s mass or its velocity, the greater its

momentum.
Linear momentum (p) is defined as follows
p=m=xv
We can define the fractional linear momentum as
p=mx (V)

or
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d x(t)
dt

p=mx* Tyt )

Work (w) is a measure of energy transfer that occurs when an external force is applied over
an object hence it moves a certain distance. In the case where the force is constant, work is
easily computed by multiplying the length of the path (s) by the component of the force

acting along the path.
The work is defined as follows
w = F xs * cosO
Where 6 is the angle between the objects path and the applied force.
We can define the fractional work as
W= (F)*s=*cosf
Or

w=TW)trY F)x*sx*cosh

Example 4.4 let us consider an object being pulled through a path 5m long with a constant
force F = 50N that is inclined at an angle 8 = 30°. Then the fractional work applied by this

force is

w=G0T(y)t!™” )x6+cos30 O

60



Kinetic energy (k) is a form of energy that an object has as a consequence of its motion. If
work is done on an object by applying a net force, the object speeds up hence it gains kinetic
energy. Kinetic energy is a property depends on the object motion and its mass and is defined

as follows
k = 0.5 m v?
We can define the fractional Kinetic energy as
k=05m ( 9)?
or

d x(t)

I — 1-y 2
k=05m (IT'(y)t T )

It’s also known that linear momentum and Kinetic energy are related as follows

It still holds for the fractional relation.
Example 4.5 In example 4.1 if the object has a 1kg mass, we have
p=Q@BIrt7)

k=05@TH)t'" )% o

Remark 4.4 The case where y = 1 we get the classical Newtonian formulas.
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4.4. Two-dimensional motion

In this section we study the motion of objects in both the x- and y-directions simultaneously
under a constant acceleration. An important special case of this two-dimensional motion is
called projectile motion. We neglect the effects of air resistance and the rotation of Earth,

the path of a projectile in Earth’s gravity field is curved in the shape of a parabola.

An important fact about projectile motion is that the horizontal and vertical motions don’t

affect each other (they’re independent).

Constant acceleration motion equations developed in section 4.2.2. can be applied separately
for the x-direction motion and the y-direction motion. With the difference that the initial

velocity has two components, not just one as seen in figure 5.

We assume that at t = 0 the projectile leaves the origin with an initial velocity v,. If the

velocity vector makes an angle 6 (the projection angle) with the horizontal line, we have
Vyg = VoC0s 8 and v,y = vy sinf

where v, is the initial velocity in the x —direction and v,,, is the initial velocity in the

y —direction.

Figure 5: The parabolic trajectory of a particle that leaves the origin with a velocity of v,
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Because we neglected air resistance this means that acceleration component in the x-
direction is zero (a, = 0), hence the projectile’s velocity component along the
x —direction remains constant. The acceleration component in the y —direction is the

acceleration of gravity (a, = — g).

We look into 4.2,4.3,4.4 equation in section 4.2.2.

For the equation of the horizontal motion (in x —direction), we have
V() = Vxo =0

tY

x(t) —xo = onm

For the equation of the vertical motion (in y —direction), we have

tY
t) — =-98———
tY 9.8 1 t?
y(t) —yo

TUTG+ D) T+ DTG) 2y

(230 (8) = vy0)°

vy (t) — vy(,) I+ 1 1

t) — yo = —
() = Yo Uy"( 9.8 98 T(y)2y
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