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Abstract 

This work studies the proposed new generalized fractional derivative (GD) definition, 

showing that the index law 𝐷𝛼𝐷𝛽𝑓(𝑡)  =  𝐷𝛼+𝛽𝑓(𝑡);  0 <  𝛼, 𝛽 ≤  1 works for a 

differentiable function expanded by a Taylor series. (GD) is applied for some functions, the 

results are compared with Caputo fractional derivative. The solutions of some fractional 

differential equation are obtained via the (GD) operator. A comparison with the conformable 

derivative (CD) is also discussed. Newtonian Mechanics is discussed in the light of the 

fractional calculus.  
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Chapter one 

Introduction 

 

Fractional calculus is not a new concept in math, which has applications in several fields of 

science such as economics [5], biology [18]. A lot of definitions for the fractional derivative 

have been introduced over more than four hundred years. Every definition has its own 

advantages and disadvantages. with Caputo (Ca) and Riemann–Liouville (R-L) definitions 

being the most used ones [10]. 

For the Caputo definition, the 𝛾 −derivative of 𝑓(𝑡), where 𝛾 ∈  (𝑛 −  1, 𝑛] is defined as 

follows  

𝐷γ 
𝐶𝑎

𝑎 𝑓(𝑡) =
1 

Γ(n − γ )
∫ ((𝑡 − 𝑥)𝑛−γ−1

𝑡

𝑎

𝑑𝑛𝑓(𝑥)

𝑑𝑥𝑛
 )𝑑𝑥 

For the Riemann–Liouville definition, the 𝛾 −derivative of 𝑓(𝑡), where 𝛾 ∈  (𝑛 −  1, 𝑛] is 

defined as follows 

𝐷γ 
𝑅−𝐿

𝑎 𝑓(𝑡) =
1 

Γ(n − γ )

𝑑𝑛 (∫ (𝑡 − 𝑥)𝑛−γ−1𝑡

𝑎
𝑓(𝑥) 𝑑𝑥)

𝑑𝑥𝑛
 

For the conformal derivative (CD) definition of a function 𝑓: (0, ∞)  ⟶  ℝ, the 

𝛾 −derivative of 𝑓(𝑡) at 𝑡 >  0, where 𝛾 ∈  (0, 1] is defined as follows  

𝐷γ 
𝐶𝐷 𝑓(𝑡) = lim

ε⟶0

𝑓 (𝑡+ε𝑡1− γ ) − 𝑓(𝑡) 

ε
  

 And if the limit exists, we have 

𝐷γ 
𝐶𝐷𝑓(0) = lim

t⟶0+
𝐷γ 

𝐶𝐷 𝑓(𝑡) 
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Or for differentiable functions, 

𝐷γ 
𝐶𝐷𝑓(𝑡)  = 𝑡1− γ

𝑑𝑓(𝑡)

𝑑𝑡
 

The main drawback of R-L is that it does not give zero when differentiating a constant.  

The main advantage of the Conformable derivative over Ca and R-L is that it simplifies the 

process in finding the derivative of product and quotient of functions. 

As 𝐷 (𝑓𝑔) =  𝑓 (𝐷 (𝑔))  + 𝑔 (𝐷 (𝑓)) and 𝐷( 
𝑓

𝑔
 ) =

𝑔 (𝐷(𝑓))−𝑓 (𝐷(𝑔))

𝑔2   both are true for only 

the CD definition. 

Also, Ca, R-L and CD definitions all do not satisfy 𝐷𝛼𝐷𝛽(𝑓) = 𝐷𝛼+𝛽(𝑓) which is a main 

advantage for the generalized definition which is discussed in this thesis. 

The study is based on analysing the CD definition then applying and comparing its 

properties with the proposed definition [1],[2],[10],[14].   

In this thesis, we have chapters organised as follows. In chapter two, we study the 

generalized fractional derivative definition introduced by Kaabar [3] we discuss the main 

theorems and properties related to the definition we also apply the definition on some 

functions.  

In chapter three we use the generalized fractional derivative operator to solve some 

fractional differential equations and comparing its results with other fractional operators. 

Furthermore, in chapter four we apply the (GD) fractional operator to the Newtonian 

mechanics, while trying to find the physical meaning for fractional physics. 

 

 



3 
 

Chapter two 

Generalized Fractional Calculus  

 

In this chapter, we study the new generalized definition of the fractional derivative 

introduced by Kaabar [3] which gives more accurate results than the well-known 

conformable derivative definition, we analyse the properties and related theorems.  

 

2.1. Generalized Fractional Derivative  

 

In this section we mention, discuss and complement the properties of the new generalized 

definition of the fractional derivative (GD) which was recently introduced by Kaabar [3]. 

The definition is an improvement to the known conformable fractional derivative (CD). 

 

Definition 2.1. For a function 𝑓: (0, ∞)  ⟶  ℝ, the 𝛾 −derivative of 𝑓(𝑡) at 𝑡 >  0, where 

𝛾 ∈  (0, 1] is defined as follows  

(𝐷γ 
𝐺𝐷)𝑓(𝑡) = lim

ε⟶0

𝑓 (𝑡 +
Γ(𝜌)

Γ(ρ – γ + 1)
ε𝑡1− γ ) – 𝑓(𝑡)

𝜀
;    𝜌 ∈  ℝ+.  

Where Γ refers to the gamma function with Γ(𝑠) =  ∫ 𝑧𝑠−1𝑒−𝑧𝑑𝑧
∞

0
. 

 If  𝑓 is 𝛾 − differentiable at (0, 𝑎) for some 𝑎 >  0 and the limit exists, then at 𝑡 =  0 the 

fractional derivative is defined as follows  
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(𝐷γ 
𝐺𝐷)𝑓(0) = lim

t⟶0+
𝐷𝐺𝐷 𝑓 (𝑡) 

We say that f is 𝛾 − differentiable function if the generalized derivative of 𝑓 of order 𝛾 

exists. For ease we are using 𝐿𝛾( 𝑓(𝑡)) to denote the generalized derivative (𝐷γ 
𝐺𝐷) 𝑓 (𝑡). 

 

Remark 2.1. When 𝛾 =  1 we obtain the classical derivative definition 

(𝐷1 
𝐺𝐷)𝑓(𝑡) = lim

ε⟶0

𝑓 (𝑡 + ε ) –  𝑓(𝑡)

𝜀
   

 

Theorem 2.1. If 𝑓(𝑡) is a differentiable function then 𝑓(𝑡) is an 𝛾 −differentiable function, 

with 

 𝐿𝛾𝑓(𝑡) =
Γ(ρ)

Γ(𝜌 −  𝛾 + 1)
 𝑡1− γ  

𝑑 𝑓(𝑡)

𝑑𝑡
 ;  𝜌 ∈  ℝ+ 

Proof: By the definition of 𝐿𝛾𝑓(𝑡) ,we have  

𝐿𝛾  𝑓(t) = lim
ε⟶0

𝑓 (𝑡 +
Γ(𝜌)

Γ(𝜌 – 𝛾 + 1)
ε𝑡1− γ ) – 𝑓(𝑡)

𝜀
;  𝜌 ∈  ℝ+

   

 

Let ℎ =
Γ(𝜌)

Γ(𝜌 – 𝛾 + 1)
ε𝑡1− γ then 𝜀 =  

Γ(𝜌 – 𝛾 + 1)

Γ(𝜌)
ℎ 𝑡  γ−1 ,then ℎ ⟶ 0 when ε ⟶ 0 

Substituting in the definition we get 

𝐿𝛾𝑓(𝑡)  =
Γ(𝜌)

Γ(𝜌 –  𝛾 +  1)
𝑡1− γ lim

h⟶0

𝑓 (𝑡 + ℎ ) –  𝑓(𝑡)

ℎ
 

Hence,   

𝐿𝛾𝑓(𝑡) =
Γ(𝜌)

Γ(𝜌 – 𝛾 + 1)
𝑡1− γ 𝑑𝑓(𝑡)

𝑑𝑡
            □ 
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Theorem 2.2. If a function  𝑓: [𝑎, 𝑏]  ⟶  ℝ, is 𝛾 −differentiable function at  𝑧 >  0, for 

some 𝛾 ∈  (0, 1], then f is continuous at 𝑧. 

Proof: As the function is 𝛾 −differentiable function at 𝑡 = 𝑧 , the definition states  

(𝐿𝛾(𝑓(𝑧)) = lim
ε⟶0

𝑓 (𝑧 +
Γ(𝜌)

Γ(𝜌 –  𝛾 +  1)
ε𝑧1− γ ) –  𝑓(𝑧)

𝜀
 

We can look into 

𝑓 (𝑧 +
Γ(𝜌)

Γ(𝜌 –  𝛾 +  1)
ε𝑧1− γ ) –  𝑓(𝑧) =  

𝑓 (𝑧 +
Γ(𝜌)

Γ(𝜌 –  𝛾 +  1)
ε𝑧1− γ ) –  𝑓(𝑧)

𝜀
𝜀 

As 𝜀 → 0, then 

lim
ε⟶0

𝑓 (𝑧 +
Γ(𝜌)

Γ(𝜌 –  𝛾 +  1)
ε𝑧1− γ ) –  𝑓(𝑧) = 𝐿𝛾𝑓(𝑧)  ∗  (0) 

 

We assume ℎ =
Γ(𝜌)

Γ(𝜌 – 𝛾 + 1)
ε𝑧1− γ , it’s clear that ℎ → 0 as 𝜀 → 0, then 

 

lim
ℎ⟶0

𝑓 (𝑧 + ℎ ) –  𝑓(𝑧) = 0  

Or lim
ℎ⟶0

𝑓 (z + h ) =  𝑓(𝑧) 

Hence, 𝑓 is continuous at 𝑧.         □   
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Theorem 2.3.  

(i)   𝐿𝛾𝑓(𝑡) = 0, for constant functions where 𝑓(𝑡)  =  𝑐. 

(ii)    𝐿𝛾𝑓(𝑡) =  
𝛤(𝑘+1)

𝛤(𝑘 – 𝛾 + 1)
𝑡𝑘− 𝛾   , for 𝑓(𝑡) = 𝑡𝑘; 𝑘 ∈  ℝ+ . 

Proof: 

Using theorem 2.1. 

For (i) we have,  

𝐿𝛾𝑓(𝑡) =
Γ(𝜌)

Γ(𝜌 −   𝛾 +  1)
𝑡1−𝛾. 0 = 0 

For (ii) we get,  

𝐿𝛾𝑓(𝑡) =
Γ(𝜌)

Γ(𝜌 –  𝛾 +  1)
𝑡1− γ𝑘 𝑡𝑘−1 

𝐿𝛾𝑓(𝑡) =
𝑘Γ(𝜌)

Γ(𝜌 –  𝛾 +  1)
 𝑡𝑘−γ  

Taking  𝜌 = 𝑘 , we get 

𝐿𝛾𝑓(𝑡) =
𝑘Γ(𝑘)

Γ(𝑘 –  𝛾 +  1)
 𝑡𝑘−γ  

But 𝑧Γ(𝑧) =  Γ(𝑧 + 1) hence, 

𝐿𝛾𝑓(𝑡) =
Γ(𝑘+1)

Γ(𝑘 – 𝛾 + 1)
 𝑡𝑘−γ              □ 

 

Remark 2.2. Taking into consideration the 𝛾 − derivative of 𝑓(𝑡) = 𝑡𝛾 where 𝛾 =  𝑘  ,then 

𝐿𝛾(𝑡𝛾) = Γ(𝑘 + 1) = Γ(𝛾 + 1). Hence it is easy to see that 𝐿𝛾 ( 
1

Γ(𝛾+1)
𝑡𝛾  ) = 1 
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Theorem 2.4. Let 𝛾 ∈  (0, 1] , 𝑡 >  0 and 𝑓, 𝑔 be 𝛾 − differentiable functions, then 

(i) 𝐿𝛾  (𝑎 𝑓 + 𝑏 𝑔)(𝑡) =  𝑎 𝐿𝛾  (𝑓(𝑡)) +  𝑏 𝐿𝛾(𝑔(𝑡)) ;  𝑎 , 𝑏 are constants, 

 

(ii)  𝐿𝛾(𝑓 𝑔)(𝑡) =  𝑓(𝑡)𝐿𝛾(𝑔(𝑡))  +  𝑔(𝑡) 𝐿𝛾(𝑓(𝑡)), 

 

(iii) 𝐿𝛾( 
𝑓

𝑔
 ) (𝑡) =   

𝑔(𝑡) 𝐿𝛾(𝑓)(𝑡)−𝑓(𝑡) 𝐿𝛾(𝑔)(𝑡)

[𝑔(𝑡)]2
 , 

 

(iv) 𝐿𝛾  (𝑓 ∘ 𝑔)(𝑡) = 𝑓́(𝑔(𝑡) 𝐿𝛾(𝑔(𝑡)), and 𝑓́(𝑔(𝑡) exist  

  

Proof: 

Using Definition 2.1.  

for convenience sometimes we would use the substitution 

𝑢 =  𝑡 +
Γ(𝜌)

Γ(𝜌 –  𝛾 +  1)
ε𝑡1− γ 

For (i) we have, 

𝐿𝛾  (𝑎 𝑓 + 𝑏 𝑔)(𝑡) = lim
ε⟶0

(𝑎 𝑓 + 𝑏 𝑔) (𝑡 +
Γ(𝜌)

Γ(ρ –  γ +  1)
ε𝑡1− γ ) – (𝑎 𝑓 + 𝑏 𝑔)(𝑡)

𝜀
 

= lim
ε⟶0

(𝑎 𝑓) (𝑡 +
Γ(𝜌)

Γ(ρ –  γ +  1)
ε𝑡1− γ ) + (𝑏 𝑔) (𝑡 +

Γ(𝜌)
Γ(ρ –  γ +  1)

ε𝑡1− γ ) – (𝑎 𝑓)(𝑡) − (𝑏 𝑔)(𝑡)

𝜀
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= lim
ε⟶0

(𝑎 𝑓) (𝑡 +
Γ(𝜌)

Γ(ρ –  γ +  1)
ε𝑡1− γ ) – (𝑎 𝑓)(𝑡)

𝜀

+  lim
ε⟶0

(𝑏 𝑔) (𝑡 +
Γ(𝜌)

Γ(ρ –  γ +  1)
ε𝑡1− γ ) − (𝑏 𝑔)(𝑡)

ε
 

= 𝑎 𝐿𝛾(𝑓)(𝑡)  +  𝑏 𝐿𝛾(𝑔)(𝑡) 

For (ii) we have, 

𝐿𝛾(𝑓 𝑔)(𝑡) = lim
ε⟶0

(𝑓𝑔) (𝑡 +
Γ(𝜌)

Γ(ρ –  γ +  1)
ε𝑡1− γ ) – (𝑓𝑔)(𝑡)

𝜀
 

We need to add and subtract the value (𝑓)(𝑡)(𝑔)(𝑢 ) 

 

= lim
ε⟶0

(𝑓)(𝑢 )(𝑔)(𝑢 ) − (𝑓)(𝑡)(𝑔)(𝑢 ) + (𝑓)(𝑡)(𝑔)(𝑢 ) – (𝑓)(𝑡)(g)(t)

𝜀
 

                             

= lim
ε⟶0

(𝑓)(𝑢 )(𝑔)(𝑢 ) − (𝑓)(𝑡)(𝑔)(𝑢 )

𝜀
+ lim

ε⟶0

(𝑓)(𝑡)(𝑔)(𝑢 ) – (𝑓)(𝑡)(g)(t)

𝜀
 

 

= (𝐿𝛾(𝑓)(𝑡)) lim
ε⟶0

𝑔(𝑢 )  + (𝑓)(𝑡) (𝐿𝛾(𝑔)(𝑡)) 

but lim
ε⟶0

𝑔(𝑢) = 𝑔( lim
ε⟶0

𝑡 +
Γ(𝜌)

Γ(ρ – γ + 1)
ε𝑡1− γ) =  𝑔(𝑡) 

=  (𝐿𝛾(𝑓)(𝑡)) 𝑔(𝑡)  + (𝑓)(𝑡) (𝐿𝛾(𝑔)(𝑡)) 

 

For (iii) we have, 
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𝐿𝛾 ( 
𝑓

𝑔
 ) (𝑡) = lim

ε⟶0

(
𝑓
𝑔) (𝑡 +

Γ(𝜌)
Γ(ρ –  γ +  1)

ε𝑡1− γ ) – (
𝑓
𝑔)(𝑡)

𝜀
 

= lim
ε⟶0

(𝑓) (𝑡 +
Γ(𝜌)

Γ(ρ –  γ +  1)
ε𝑡1− γ )

(𝑔) (𝑡 +
Γ(𝜌)

Γ(ρ –  γ +  1)
ε𝑡1− γ )

 –
(𝑓)(𝑡)
(𝑔)(𝑡)

𝜀
 

                             

= lim
ε⟶0

(𝑓)(𝑢 ) ∗ (𝑔)(𝑡) − (𝑔) (𝑢 )(𝑓)(𝑡)
(𝑔) (𝑢 )𝑔(𝑡)

 

𝜀
 

Then its treated similarly the product case but using 𝑓(𝑡)(𝑔)(𝑡 ) 

 

= lim
ε⟶0

(𝑓)(𝑢 ) ∗ (𝑔)(𝑡) − (𝑓)(𝑡)(𝑔)(𝑡 ) + (𝑓)(𝑡)(𝑔)(𝑡 ) − (𝑔) (𝑢 )(𝑓)(𝑡) 

𝜀
  

∗ lim
ε⟶0

1

(𝑔) (𝑢 )𝑔(𝑡)
 

 

=
𝑔(𝑡) 𝐿𝛾(𝑓)(𝑡) − 𝑓(𝑡) 𝐿𝛾(𝑔)(𝑡)

[𝑔(𝑡)]2
 

For (iv) we have, 

𝐿𝛾  (𝑓 ∘ 𝑔)(𝑡) =  lim
ε⟶0

(𝑓 ∘ 𝑔) (𝑡 +
Γ(𝜌)

Γ(ρ –  γ +  1)
ε𝑡1− γ ) – (𝑓 ∘ 𝑔)(𝑡)

𝜀
 

=  lim
ε⟶0

𝑓 (𝑔 (𝑡 +
Γ(𝜌)

Γ(ρ –  γ +  1)
ε𝑡1− γ )) –  𝑓(𝑔(𝑡))

𝜀
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=  lim
ε⟶0

𝑓 (𝑔 (𝑢 )) –  𝑓(𝑔(𝑡))

𝑔(𝑢) − 𝑔(𝑡) 
lim
ε⟶0

𝑔(𝑢) − 𝑔(𝑡)

𝜀
 

 

But lim
ε⟶0

𝑔(𝑢) = 𝑔(𝑡) or lim
ε⟶0

𝑔(𝑢) − 𝑔(𝑡) = 0  

Hence, we could say 𝑔(𝑢) − 𝑔(𝑡) = ℎ  with h ⟶ 0 as ε ⟶ 0 

 

=  lim
h⟶0

𝑓 (𝑔(𝑡) + ℎ)–  𝑓(𝑔(𝑡))

ℎ 
∗ 𝐿𝛾(𝑔(𝑡)) 

                                             = 𝑓́ ((𝑔)(𝑡)) 𝐿𝛾(𝑔(𝑡))               □ 

 

Corollary 2.1. For  𝛾 ∈  (0, 1] , 𝑡 >  0 and 𝑓 being 𝛾 −differentiable function, then 

 𝐿𝛾  (
1

𝑓
) (𝑡) = −

𝐿𝛾(𝑓)(𝑡)

[𝑓(𝑡)]2  

Proof: 

Using theorem 2.4. part (iii)  

We have, 

𝐿𝛾  (
1

𝑓
 )(𝑡) =   

𝑓(𝑡) 𝐿𝛾(1) − (1) 𝐿𝛾(𝑓)(𝑡)

[𝑓(𝑡)]2
 

=  
𝑓(𝑡)  ∙  0 − 1 ∙  𝐿𝛾(𝑓)(𝑡)

[𝑓(𝑡)]2
 

=
− 𝐿𝛾(𝑓)(𝑡)

[𝑓(𝑡)]2
    □ 
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Remark 2.3. It’s easy to see that Corollary 2.1. can be generalized for the case of n power 

instead of power 1 to get    𝐿𝛾  (
1

𝑓𝑛) (𝑡) = −𝑛𝑓−𝑛−1(𝑡) ∙ 𝐿𝛾(𝑓)(𝑡) . An easy proof can be 

found by induction. 

 

Corollary 2.2. For  𝛾 ∈  (0, 1] , 𝑡 >  0 and 𝑓 being 𝛾 −differentiable function, then, 

𝐿𝛾[𝑓(𝑡)]2 = 2 𝑓(𝑡) ∙ 𝐿𝛾(𝑓)(𝑡) 

Proof: 

Using theorem 2.4. part (ii)   

We have, 

𝐿𝛾[𝑓(𝑡)]2 =  𝑓(𝑡)𝐿𝛾(𝑓(𝑡))  +  𝑓(𝑡) 𝐿𝛾(𝑓(𝑡)) 

= 2 𝑓(𝑡) ∙ 𝐿𝛾(𝑓)(𝑡)       □ 

 

Remark 2.4. It’s easy to see that Corollary 2.2 can be generalized for the case of n power 

instead of 2 to get   𝐿𝛾  [𝑓(𝑡)]𝑛  = 𝑛 𝑓𝑛−1(𝑡)  ∙ 𝐿𝛾(𝑓)(𝑡) . An easy proof can be found by 

induction. 

 

Theorem 2.5. For the function 𝑓(𝑡) = 𝑡𝑘  ; 𝑘 ∈  ℝ+, 𝐿𝛼𝐿𝛽(𝑓(𝑡)) = 𝐿𝛼+𝛽(𝑓(𝑡)) is satisfied, 

where  0 < 𝛼, 𝛼 + 𝛽, 𝛽 ≤ 1 .  

Proof: 

Using theorem 2.3. part (ii) we have, 
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For R.H.S 

𝐿𝛼+𝛽(𝑡𝑘) =
Γ(k + 1)

Γ(𝑘 −   (𝛼 + 𝛽) +  1)
𝑡(𝑘 −(𝛼+𝛽 ) 

For L.H.S  

𝐿𝛽(𝑡𝑘) =
Γ(k + 1)

Γ(𝑘 −  (𝛽)  +  1)
𝑡(𝑘 −(𝛽)) 

𝐿𝛼𝐿𝛽(𝑡𝑘) = 𝐿𝛼
Γ(k + 1)

Γ(𝑘 −   (𝛽)  +  1)
𝑡(𝑘 −(𝛽)) 

 =
Γ(k+1)

Γ(𝑘 −  (𝛽)+ 1)
𝐿𝛼(𝑡(𝑘 −(𝛽))) 

                                    =
Γ(k+1)

Γ(𝑘 −  (𝛽) + 1)
 [ 

Γ((𝑘 −(𝛽))+1)

Γ((𝑘 −(𝛽 ))−  (𝛼)+ 1)
𝑡(𝑘 −(𝛽 ))−(𝛼)] 

            =
Γ(k+1)

Γ((𝑘 −(𝛽 )) −  (𝛼) + 1)
𝑡(𝑘 −(𝛽 ))−(𝛼) 

  =
Γ(k+1)

Γ(𝑘 −  (𝛼+𝛽) + 1)
𝑡(𝑘 −(𝛼+𝛽 )) 

                                                      = R.H.S               □ 

 

Remark 2.5. For a function 𝑓(𝑡) = 𝑡2  then 𝐿1/2𝐿1/2 𝑡2 = 𝐿1/2 Γ(3)

Γ(2.5)
 𝑡3/2 =  

Γ(3)

Γ(2)
 𝑡 also 

𝐿1 𝑡2 =  
Γ(3)

Γ(2)
 𝑡 , while in case of conformable derivative 𝐷1/2

𝐶𝐷 𝐷1/2 
𝐶𝐷  𝑡2 = 𝐷1/2 

𝐶𝐷 2 𝑡3/2 =

2 
3

2
 𝑡7/6 ,but  𝐷1 

𝐶𝐷 𝑡2 =   2 𝑡. 

 

Theorem 2.6. For a differentiable function 𝑓(𝑡) that has the expansion  𝑓(𝑡)  =

∑
𝑓(𝑘)(0)

k!

∞
𝑘=0  𝑡𝑘 , then 𝐿𝛼𝐿𝛽(𝑓(𝑡)) = 𝐿𝛼+𝛽(𝑓(𝑡)).  satisfied, where  0 < 𝛼, 𝛼 + 𝛽, 𝛽 ≤ 1 .  



13 
 

   

Proof: 

Using theorem 2.4. part (i) and theorem 2.3. part (ii)we have, 

For R.H.S 

𝐿𝛼+𝛽( 𝑓(𝑡)) =  ∑
𝑓(𝑘)(0)

k!

∞
𝑘=0  𝐿𝛼+𝛽𝑡𝑘       

                                           = ∑
𝑓(𝑘)(0)

k!

∞
𝑘=0

Γ(k+1)

Γ(𝑘 −  (𝛼+𝛽) + 1)
𝑡(𝑘 −(𝛼+𝛽 ) 

For L.H.S  

𝐿𝛽(𝑓(𝑡)) =  ∑
𝑓(𝑘)(0)

k!

∞

𝑘=0

[𝐿𝛽𝑡𝑘] 

                                   = ∑
𝑓(𝑘)(0)

k!

∞
𝑘=0

Γ(k+1)

Γ(𝑘 −  (𝛽) + 1)
𝑡(𝑘 −(𝛽)) 

𝐿𝛼(𝐿𝛽𝑡𝑘 = 𝐿𝛼(∑
𝑓(𝑘)(0)

k!

∞

𝑘=0

Γ(k + 1)

Γ(𝑘 −  (𝛽)  +  1)
𝑡(𝑘 −(𝛽)) 

  = ∑
𝑓(𝑘)(0)

k!

∞
𝑘=0  

Γ(k+1)

Γ(𝑘 −  (𝛽)+ 1)
𝐿𝛼(𝑡(𝑘 −(𝛽))) 

                                = ∑
𝑓(𝑘)(0)

k!

∞
𝑘=0

Γ(k+1)

Γ(𝑘 −  (𝛽) + 1)
[ 

Γ((𝑘 −(𝛽))+1)

Γ((𝑘 −(𝛽 ))−  (𝛼)+ 1)
𝑡(𝑘 −(𝛽)) −(𝛼 )] 

             = ∑
𝑓(𝑘)(0)

k!

∞
𝑘=0

Γ(k+1)

Γ((𝑘 −(𝛽 )) −  (𝛼) + 1)
𝑡(𝑘 −(𝛽)) −(𝛼 ) 

    = ∑
𝑓(𝑘)(0)

k!

∞
𝑘=0

Γ(k+1)

Γ(𝑘 −  (𝛼+𝛽) + 1)
𝑡(𝑘 −(𝛽)) −(𝛼 ) 

                                               = R.H.S               □  
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Remark 2.6. For a function 𝑓(𝑡) = 𝑒2𝑡  𝑓(𝑘)(0) = 2𝑘 then  𝐿1𝑒2𝑡 = ∑
2𝑘

k!

∞
𝑘=0  𝐿1𝑡𝑘 =

∑
2𝑘

k!

∞
𝑘=0

Γ(k+1)

Γ(𝑘)
𝑡(𝑘 −1)  =  ∑

2𝑘

k!

∞
𝑘=0 𝑘 𝑡(𝑘 −1)  =  ∑

2𝑘

(k−1)!

∞
𝑘=0  𝑡(𝑘 −1) also 𝐿1/2𝐿 1/2 𝑒2𝑡 =

𝐿
1

2 ( ∑
2𝑘

k!

∞
𝑘=0

Γ(k+1)

Γ(𝑘+0.5)
𝑡(𝑘 −0.5))  =  ∑

2𝑘

k!

∞
𝑘=0

Γ(k+1)

Γ(𝑘 )
𝑡(𝑘 −1). 

While in case of conformable derivative   𝐷1
𝐶𝐷 𝑒2𝑡 =  ∑

2𝑘

k!

∞
𝑘=0  𝐷1 

𝐶𝐷𝑡𝑘 =

 ∑
2𝑘

k!

∞
𝑘=0 𝑘 𝑡(𝑘 −1) =  ∑

2𝑘

(k−1)!

∞
𝑘=0  𝑡(𝑘 −1)  ,but 𝐷1/2

𝐶𝐷 𝐷1/2 
𝐶𝐷  𝑒2𝑡 =  𝐷1/2

𝐶𝐷   ∑
2𝑘

(k−1)!

∞
𝑘=0  𝑡(𝑘 −

1

2
)  =

 ∑
2𝑘

(k−1)!
 ∞

𝑘=0 (k −
1

2
) 𝑡(𝑘 −1). 

 

Definition 2.2. For a function 𝑓: (0, ∞)  ⟶  ℝ that is 𝑛 −differentiable at 𝑡, the 

𝛾 −derivative of 𝑓(𝑡) at 𝑡 >  0, where 𝛾 ∈  (𝑛, 𝑛 + 1] is defined as follows  

  𝐿𝛾  𝑓(𝑡) = lim
ε⟶0

𝑓⌈𝛾⌉− 1 (𝑡+
Γ(𝜌)

Γ(ρ – γ + 1)
ε𝑡⌈𝛾⌉− γ ) – 𝑓⌈𝛾⌉− 1(𝑡)

𝜀
;  𝜌 ∈  ℝ+

   

Where ⌈𝛾⌉is the smallest integer greater than or equal to 𝛾. 

 

Remark 2.7. For function 𝑓(𝑡) which is 𝑛 −differentiable at 𝑡 >  0 with 𝛾 ∈  (𝑛, 𝑛 + 1] it 

could be seen by applying theorem 2.1. that  

𝐿𝛾  𝑓(𝑡) =  
Γ(𝜌)

Γ(ρ –  γ +  1)
𝑡⌈𝛾⌉− γ𝑓⌈𝛾⌉(𝑡). 

Example2.1. For the function 𝑓(𝑡) = 𝑡2  , ρ = k = 2 

when 𝛾 = 1.5 then   𝐿1.5 𝑡2 =
Γ(2)

Γ(3/2)
 𝑡2− 1.5𝑓(2)(𝑡) =  2 𝑡0.5 

while when 𝛾 = 2 then   𝐿2 𝑡2 =  
Γ(2)

Γ( 1)
𝑡2− 2𝑓(2)(𝑡) =  2Γ(2) = Γ(3)   
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Remark 2.8. For integer γ we have ⌈γ⌉ =  γ hence,𝐿𝛾  𝑓(𝑡) =  𝑓(𝛾)(𝑡) which is the same as 

the ordinary derivative. 

 

Theorem 2.7. (Rolle’s theorem for the generalized fractional differential function). Let 𝑎 >

 0 and 𝑓: [𝑎, 𝑏]  ⟶  ℝ be a given function which satisfies the following:  

(i) 𝑓 is continuous on [𝑎, 𝑏]  

(ii) 𝑓 is 𝛾 −differentiable on (𝑎, 𝑏) for some 𝛾 ∈  (0, 1] 

(iii) 𝑓(𝑎)  =  𝑓(𝑏) 

Then, there exists 𝑐 ∈  (𝑎, 𝑏) such that 𝐿𝛾(𝑓(𝑐))  =  0. 

 

Proof: Since 𝑓 is continuous on [𝑎, 𝑏] and 𝑓(𝑎)  =  𝑓(𝑏), there exists 𝑐 ∈  (𝑎, 𝑏), that is a 

point of local extrema by extreme value theorem, and c is assumed to be a point of local 

minimum without loss of generality. So, we have 

𝐿𝛾(𝑓(𝑐+)) = lim
ε⟶0+

𝑓 (𝑐 +
Γ(𝜌)

Γ(ρ –  γ +  1)
ε𝑐1− γ ) –  𝑓(𝑐)

𝜀
 

= 

𝐿𝛾(𝑓(𝑐−)) = lim
ε⟶0−

𝑓 (𝑐 +
Γ(𝜌)

Γ(ρ –  γ +  1)
ε𝑐1− γ ) –  𝑓(𝑐)

𝜀
 

 

However, 𝐿𝛾(𝑓(𝑐+ )) and 𝐿𝛾(𝑓(𝑐− )) have opposite signs. Hence, 𝐿𝛾(𝑓(𝑐))  =  0.             □ 
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Theorem 2.8. (Mean value theorem for the generalized fractional differential function). Let 

𝑎 >  0 and 𝑓: [𝑎, 𝑏]  ⟶  ℝ be a given function which satisfies the following:  

(i) 𝑓 is continuous on [𝑎, 𝑏]  

(ii) 𝑓 is 𝛾 −differentiable on (𝑎, 𝑏) for some 𝛾 ∈  (0, 1] 

then, there exists 𝑐 ∈  (𝑎, 𝑏) such that  

𝐿𝛾(𝑓(𝑐)) =  
𝑓(𝑏)  −  𝑓(𝑎)

ℎ 𝑏𝛾 −  ℎ 𝑎𝛾)
; ℎ =

1

Γ(𝛾 + 1)
 

Proof: Define a function 𝑔(𝑡) by 

𝑔(𝑡) = 𝑓(𝑡) − 𝑓(𝑎) − [
𝑓(𝑏) − 𝑓(𝑎)

 (ℎ 𝑏𝛾 −  ℎ𝑎𝛾)
] ( ℎ 𝑡𝛾 − ℎ 𝑎𝛾) 

With ℎ =
1

Γ(𝛾+1)
 

As 𝑔(𝑡) is continuous on the interval (𝑎, 𝑏), differentiable on the interval [𝑎, 𝑏] and 𝑔(𝑎) =

𝑔(𝑏) = 0 . 𝑔(𝑡) satisfies all conditions of roll’s theorem Then, there exists 𝑐 ∈  (𝑎, 𝑏) such 

that 𝐿𝛾(𝑔(𝑐)) = 0. 

𝐿𝛾(𝑔(𝑡)) = 𝐿𝛾(𝑓(𝑡)) − 𝐿𝛾(𝑓(𝑎)) − [
𝑓(𝑏) − 𝑓(𝑎)

 (ℎ 𝑏𝛾 −  ℎ𝑎𝛾)
] ( ℎ 𝐿𝛾( 𝑡𝛾) − ℎ 𝐿𝛾( 𝑎𝛾)) 

But we know that 𝐿𝛾(contant) = 0 and 𝐿𝛾(𝑡𝛾) = Γ(𝛾 + 1) . hence, we have 

𝐿𝛾(𝑔(𝑡)) = 𝐿𝛾(𝑓(𝑡)) − [
𝑓(𝑏)−𝑓(𝑎)

 (ℎ 𝑏𝛾− ℎ𝑎𝛾)
] ( ℎ Γ(𝛾 + 1))  

But ℎ =
1

Γ(𝛾+1)
 

𝐿𝛾(𝑔(𝑡)) = 𝐿𝛾(𝑓(𝑡)) − [
𝑓(𝑏) − 𝑓(𝑎)

 (ℎ 𝑏𝛾 −  ℎ𝑎𝛾)
] 

Applying roll’s theorem we have, 
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𝐿𝛾(𝑔(𝑐)) = 𝐿𝛾(𝑓(𝑐)) − [
𝑓(𝑏) − 𝑓(𝑎)

 (ℎ 𝑏𝛾 −  ℎ𝑎𝛾)
] = 0 

Therefore,  

𝐿𝛾(𝑓(𝑐)) = [
𝑓(𝑏) − 𝑓(𝑎)

 (ℎ 𝑏𝛾 −  ℎ𝑎𝛾)
]      □ 

 

Theorem 2.9. (Cauchy theorem for the generalized fractional differential function). Let 

𝑎 >  0 and 𝑓, 𝑔: [𝑎, 𝑏]  ⟶  ℝ be given functions which satisfy the following:  

(i) 𝑓, 𝑔 are continuous on [𝑎, 𝑏]  

(ii) 𝑓, 𝑔 are 𝛾 −differentiable on (𝑎, 𝑏) for some 𝛾 ∈  (0, 1] and 𝐿𝛾(𝑔(𝑡)) ≠

0 𝑓𝑜𝑟 𝑡 ∈  (𝑎, 𝑏) 

then, there exists 𝑐 ∈  (𝑎, 𝑏) such that  

𝐿𝛾(𝑓(𝑐))

𝐿𝛾(𝑔(𝑐))
=

𝑓(𝑏) − 𝑓(𝑎)

𝑔(𝑏) − 𝑔(𝑎)
 

Proof: Consider the function  

𝐻(𝑡) = 𝑓(𝑡) − 𝑓(𝑎) −
𝑓(𝑏) − 𝑓(𝑎)

𝑔(𝑏) − 𝑔(𝑎)
(𝑔(𝑡) − 𝑔(𝑎)) 

As 𝐻(𝑡) continuous on the interval [𝑎, 𝑏], differentiable on the interval (𝑎, 𝑏) and 𝐻(𝑎) =

  𝐻(𝑏) = 0 . 𝐻(𝑡) satisfies all conditions of roll’s theorem. Then, there exists 𝑐 ∈  (𝑎, 𝑏) 

such that 𝐿𝛾(𝐻(𝑐)) = 0. 

𝐿𝛾(𝐻(𝑡) = 𝐿𝛾(𝑓(𝑡)) − (
𝑓(𝑏) − 𝑓(𝑎)

𝑔(𝑏) − 𝑔(𝑎)
) 𝐿𝛾(𝑔(𝑡)) 

Substituting 𝑡 = 𝑐 we get 
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𝐿𝛾(𝐻(𝑐) = 𝐿𝛾(𝑓(𝑐)) − (
𝑓(𝑏) − 𝑓(𝑎)

𝑔(𝑏) − 𝑔(𝑎)
) 𝐿𝛾(𝑔(𝑐)) = 0 

or 

𝐿𝛾(𝑓(𝑐))

𝐿𝛾(𝑔(𝑐))
=

𝑓(𝑏) − 𝑓(𝑎)

𝑔(𝑏) − 𝑔(𝑎)
 

Which completes the proof. □ 

 

2.2. Generalized Fractional Integral 

 

In this section we discuss and complement the integral associated with the generalized 

definition of the fractional derivative introduced by Kaabar[3]. 

 

Definition 2.2. For a continuous function 𝑓: [𝑎, ∞) → ℝ , 𝑎 ≥ 0 and 𝛾 ∈  (0, 1] then the 

generalized fractional integral 𝐼𝛾
𝑎𝑓(𝑡) exists  

𝐼𝛾
𝑎𝑓(𝑡) =   

𝛤(𝜌 − 𝛾 + 1)

𝛤(𝜌)
∫

𝑓(𝑥)

𝑥1−𝛾 𝑑𝑥
𝑡

𝑎
  . 

 

Example 2.2 For a function  𝑓(𝑡) = 2 ,we have 

𝐼𝛾
𝑎  (2) =   

𝛤(𝜌 −  𝛾 +  1)

𝛤(𝜌)
∫

2

𝑥1−𝛾
 𝑑𝑥

𝑡

𝑎

 

=   2
𝛤(𝜌 −  𝛾 +  1)

𝛤(𝜌)
∫ 𝑥−1+𝛾 𝑑𝑥

𝑡

𝑎
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=   2
𝛤(𝜌 −  𝛾 +  1)

𝛤(𝜌)
 
𝑥𝛾

𝛾
 |

𝑡
𝑎

 

=   2
𝛤(𝜌 −  𝛾 +  1)

𝛤(𝜌)
 (

𝑡𝛾

𝛾
−

𝑎𝛾

𝛾
) □ 

 

Remark 2.9. For the case when 𝑎 = 0 and 𝜌 =  𝛾 then the fractional integral of a constant 

function 𝑓(𝑥) = 𝑐 is 𝐼𝛾
0 (𝑐) = 𝑐

1

𝛤(𝛾)
 (

𝑡𝛾

𝛾
) =  𝑐

𝑡𝛾

𝛤(𝛾+1)
 . 

 

Example 2.3 For a function  𝑓(𝑡) = 𝑡2 ,we have 

𝐼𝛾
𝑎 (𝑡2) =   

𝛤(𝜌 −  𝛾 +  1)

𝛤(𝜌)
∫

𝑥2

𝑥1−𝛾
 𝑑𝑥

𝑡

𝑎

 

=   2
𝛤(𝜌 −  𝛾 +  1)

𝛤(𝜌)
∫ 𝑥1+𝛾 𝑑𝑥

𝑡

𝑎

 

=   2
𝛤(𝜌 −  𝛾 +  1)

𝛤(𝜌)
 

𝑥2+𝛾

2 + 𝛾
 |

𝑡
𝑎

 

=   2
𝛤(𝜌 −  𝛾 +  1)

𝛤(𝜌)
 (

𝑡2+𝛾

2 + 𝛾
−

𝑎2+𝛾

2 + 𝛾
) □ 

 

Example 2.4 For the general case of 𝑓(𝑡) = 𝑡𝑛 we have 

𝐼𝛾
𝑎 (𝑡𝑛) =   

𝛤(𝜌 −  𝛾 +  1)

𝛤(𝜌)
∫

𝑥𝑛

𝑥1−𝛾
 𝑑𝑥

𝑡

𝑎

 

=   
𝛤(𝜌 −  𝛾 +  1)

𝛤(𝜌)
∫ 𝑥−1+𝛾+𝑛 𝑑𝑥

𝑡

𝑎
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=   
𝛤(𝜌 −  𝛾 +  1)

𝛤(𝜌)
 

𝑥𝛾+𝑛

𝛾 + 𝑛
 |

𝑡
𝑎

 

=   
𝛤(𝜌 −  𝛾 +  1)

𝛤(𝜌)
 (

𝑡𝛾+𝑛

𝛾 + 𝑛
−

𝑎𝛾+𝑛

𝛾 + 𝑛
) □ 

 

Remark 2.10. For the case when 𝑎 = 0 and 𝜌 =  𝛾 then fractional integral of 𝑡𝑛 function is 

𝐼𝛾
0 (𝑡𝑛) =  

1

𝛤(𝛾)
 (

𝑡𝛾+𝑛

𝛾 + 𝑛
) 

 

Theorem 2.9. Let 𝑓: [𝑎, ∞) → ℝ be continuous function such that 𝐼𝛾
𝑎𝑓(𝑡) exists, 𝑡 > 𝑎 and 

𝛾 ∈  (0, 1], then 

𝐿𝛾𝐼𝛾𝑓(𝑡) = 𝑓(𝑡) 

Proof: As 𝑓 is continuous, 𝐼𝛾
𝑎𝑓(𝑡) is differentiable. 

Hence, using theorem 2.1. we have 

 

𝐿𝛾( 𝐼𝛾𝑓(𝑡)) =
Γ(ρ)

Γ(𝜌 −   𝛾 +  1)
𝑡1−𝛾   

𝑑( 𝐼𝛾𝑓(𝑡))

𝑑𝑡
 

                                    =  
𝛤(𝜌)

𝛤(𝜌 −  𝛾 + 1)
𝑡1−𝛾  

𝑑

𝑑𝑡
(

Γ(𝜌 − 𝛾 + 1)

Γ(𝜌)
 ∫

𝑓(𝑥)

𝑥1−𝛾 𝑑𝑥
𝑡

𝑎
)  

    =  𝑡1−𝛾  
𝑑

𝑑𝑡
( ∫

𝑓(𝑥)

𝑥1−𝛾
𝑑𝑥

𝑡

𝑎
)  

                                                       = 𝑡1−𝛾    
𝑓(𝑡)

𝑡1−𝛾
 

                                                     =  𝑓(𝑡)      □ 
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Theorem 2.10. Let 𝑓: [𝑎, ∞) → ℝ be continuous function such that 𝐿𝛾𝑓(𝑡) is continuous, 

𝑡 > 𝑎 and 𝛾 ∈  (0, 1], then 

𝐼𝛾𝐿𝛾𝑓(𝑡) = 𝑓(𝑡) − 𝑓(𝑎) 

Proof: 

Using Definition 2.2. we have 

𝐼𝛾(𝐿𝛾𝑓(𝑡)) =
Γ(𝜌 −  𝛾 +  1)

Γ(𝜌)
  ∫

𝐿𝛾(𝑓(𝑥))

𝑥1−𝛾
𝑑𝑥

𝑡

𝑎

 

using theorem 2.1.  we have 

 

𝐼𝛾(𝐿𝛾𝑓(𝑡)) =
Γ(𝜌 −  𝛾 +  1)

Γ(𝜌)
  ∫

1

𝑥1−𝛾
 (

Γ(ρ)

Γ(𝜌 −   𝛾 +  1)
𝑥1−𝛾   

𝑑(𝑓(𝑥))

𝑑𝑥
) 𝑑𝑥

𝑡

𝑎

 

= ∫ (  
𝑑(𝑓(𝑥))

𝑑𝑥
) 𝑑𝑥

𝑡

𝑎

 

= 𝑓(𝑥) |
𝑡
𝑎

 

                                                     =  𝑓(𝑡) − 𝑓(𝑎)      □ 

 

Theorem 2.11.(Mean value theorem for fractional integral) 

 Let 𝑓: [𝑎, 𝑏] → ℝ be continuous function and 𝛾 ∈  (0, 1], then there exists 𝑐 ∈ [𝑎, 𝑏] such 

that  

Γ(𝜌 −  𝛾 +  1)

Γ(𝜌)
∫

𝑓(𝑥)

𝑥1−𝛾
𝑑𝑥

𝑏

𝑎

= 𝑓(𝑐) (
1

Γ(𝛾 + 1)
 𝑏𝛾 −  

1

Γ(𝛾 + 1)
𝑎𝛾) 
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Proof: As 𝑓 is continuous on [𝑎, 𝑏] then  𝐼𝛾𝑓(𝑡) is continuous on [𝑎, 𝑏] , 𝛾 −differentiable 

on (𝑎, 𝑏) by applying the mean value theorem for fractional derivative theorem 2.8. there 

exists 𝑐 ∈  (𝑎, 𝑏) such that  

𝐿𝛾(𝐼𝛾𝑓(𝑐)) =  
𝐼𝛾𝑓(𝑏)  − 𝐼𝛾𝑓(𝑎)

(
1

Γ(𝛾 + 1)
 𝑏𝛾 −  

1
Γ(𝛾 + 1)

 𝑎𝛾)
 

But from theorem 2.9. we know that  

𝐿𝛾 (𝐼𝛾𝑓(𝑐)) = 𝑓(𝑐) 

Using definition 2.2. we have 

𝐼𝛾𝑓(𝑏) =   
𝛤(𝜌 −  𝛾 +  1)

𝛤(𝜌)
∫

𝑓(𝑥)

𝑥1−𝛾
 𝑑𝑥 

𝑏

𝑎

 

And 

  

𝐼𝛾𝑓(𝑎) =   
𝛤(𝜌 −  𝛾 +  1)

𝛤(𝜌)
∫

𝑓(𝑥)

𝑥1−𝛾
 𝑑𝑥 

𝑎

𝑎

= 0 

 

Hence, we get 

𝑓(𝑐) =  
 
𝛤(𝜌 −  𝛾 +  1)

𝛤(𝜌) ∫
𝑓(𝑥)
𝑥1−𝛾  𝑑𝑥 

𝑏

𝑎

(
1

Γ(𝛾 + 1)
 𝑏𝛾 −  

1
Γ(𝛾 + 1)

 𝑎𝛾)
 

Or 
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𝛤(𝜌 −  𝛾 +  1)

𝛤(𝜌)
∫

𝑓(𝑥)

𝑥1−𝛾
𝑑𝑥

𝑏

𝑎

= (
1

Γ(𝛾 + 1)
 𝑏𝛾 −  

1

Γ(𝛾 + 1)
 𝑎𝛾) 𝑓(𝑐) □ 

2.3. Generalized Fractional Derivative of some Functions 

 

In this section we apply the generalized definition of the fractional derivative on some 

known functions.  

 

2.3.1. Fractional Derivative of the Exponential Function  

 

For a function 𝑓(𝑡) = 𝑒𝜆𝑡 , 𝜆 ∈  ℂ. 

By Taylor theorem  𝑒𝜆𝑡 =  ∑
𝜆𝑘

𝑘!

∞
𝑘=0 𝑡𝑘 

Hence, we have for 𝛾 ∈  (0, 1] 

𝐿𝛾(𝑒𝜆𝑡) = ∑
𝜆𝑘

𝑘!

∞

𝑘=0

 𝐿𝛾( 𝑡𝑘) 

                                        = ∑
𝜆𝑘

𝑘!
(

∞

𝑘=0

Γ(𝑘 + 1)

Γ(𝑘 –  𝛾 +  1)
𝑡𝑘− γ)  

= 𝐷𝛾
𝐶𝑎𝑒𝜆𝑡 □ 

 

Remark 2.11. For  𝛾 =
1

2
 , the 𝛾 – Generalized derivative of the exponential 𝑒𝜆𝑡 
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𝐿
1
2(𝑒𝜆𝑡) = ∑

𝜆𝑘

𝑘!
(

∞

𝑘=0

Γ(𝑘 + 1)

Γ (𝑘 +
1
2)

𝑡𝑘−
1
2)  

 

2.3.2. Fractional Derivative of Sine Function 

 

For a function 𝑓(𝑡)  =  𝑠𝑖𝑛 𝜔𝑡  

We know that the sine function could be written in complex as  

sin(𝜔𝑡) =
1

2𝑖
(𝑒𝑖𝜔𝑡 − 𝑒−𝑖𝜔𝑡) 

Then, we have for 𝛾 ∈  (0, 1] 

𝐿𝛾(sin(𝜔𝑡)) =
1

2𝑖
(𝐿𝛾(𝑒𝑖𝜔𝑡) − 𝐿𝛾(𝑒−𝑖𝜔𝑡)) 

                                                             =
1

2𝑖
(𝐷𝛾

𝐶𝑎(𝑒𝑖𝜔𝑡) − 𝐷𝛾
𝐶𝑎(𝑒−𝑖𝜔𝑡)) 

                                                             = 𝐷𝛾
𝐶𝑎 1

2𝑖
((𝑒𝑖𝜔𝑡) − (𝑒−𝑖𝜔𝑡)) 

                                                             = 𝐷𝐶𝑎 (sin(𝜔𝑡)) □ 

 

Remark 2.12. For  𝛾 =
1

2
 , the 𝛾 – Generalized derivative of the exponential (sin(𝜔𝑡)) 

reduces to 

𝐿
1
2 (sin(𝜔𝑡)) =

1

2𝑖
[∑

(𝑖𝜔)𝑘

𝑘!
(

∞

𝑘=0

Γ(𝑘 + 1)

Γ (𝑘 +
1
2)

𝑡𝑘−
1
2) − ∑

(−𝑖𝜔)𝑘

𝑘!
(

∞

𝑘=0

Γ(𝑘 + 1)

Γ (𝑘 +
1
2)

𝑡𝑘−
1
2)]   
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2.3.3. Fractional Derivative of Cosine Function 𝒇(𝒕)  =  𝒄𝒐𝒔 𝝎𝒕 

 

We know that the cosine function could be written in complex as  

cos(𝜔𝑡) =
1

2
(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡) 

Then, we have for 𝛾 ∈  (0, 1] 

𝐿𝛾(cos(𝜔𝑡)) =
1

2
(𝐿𝛾(𝑒𝑖𝜔𝑡) + 𝐿𝛾(𝑒−𝑖𝜔𝑡)) 

                                                             =
1

2
(𝐷𝛾

𝐶𝑎(𝑒𝑖𝜔𝑡) + 𝐷𝛾
𝐶𝑎(𝑒−𝑖𝜔𝑡)) 

                                                             = 𝐷𝛾
𝐶𝑎 1

2
((𝑒𝑖𝜔𝑡) + (𝑒−𝑖𝜔𝑡)) 

                                                             = 𝐷𝛾
𝐶𝑎 (cos(𝜔𝑡)) □ 

 

Remark 2.13. For  𝛾 =
1

2
 , the 𝛾 – Generalized derivative of the exponential (cos(𝜔𝑡)) 

reduces to 

𝐿
1
2 (cos(𝜔𝑡)) =

1

2
[∑

(𝑖𝜔)𝑘

𝑘!
(

∞

𝑘=0

Γ(𝑘 + 1)

Γ (𝑘 +
1
2)

𝑡𝑘−
1
2) + ∑

(−𝑖𝜔)𝑘

𝑘!
(

∞

𝑘=0

Γ(𝑘 + 1)

Γ (𝑘 +
1
2)

𝑡𝑘−
1
2)] 

 

Remark 2.14. We can find the fractional derivative of hyperbolic functions since its related 

to the trigonometric ones as  sinh(𝑡)) =  −𝑖 𝑠𝑖𝑛(𝑖𝑡) and cosh(𝑡)) =  𝑐𝑜𝑠(𝑖𝑡) . it’s easy to 

see that the fractional derivative is as follows: 

  𝐿𝛾  ( 𝑐𝑜𝑠ℎ(𝑡)) = 𝐿𝛾  (𝑐𝑜𝑠(𝑖𝑡))  



26 
 

  𝐿𝛾  (sinh(𝑡)) = 𝐿𝛾(−𝑖 𝑠𝑖𝑛(𝑖𝑡)) 

For  𝛾 =
1

2
, we have 

𝐿𝛾  ( 𝑐𝑜𝑠ℎ(𝑡)) =
1

2
[∑

(−1)𝑘

𝑘!
(∞

𝑘=0
Γ(𝑘+1)

Γ(𝑘+
1

2
)

𝑡𝑘−
1

2) + ∑
1

𝑘!
(∞

𝑘=0
Γ(𝑘+1)

Γ(𝑘+
1

2
)

𝑡𝑘−
1

2)]   

 𝐿𝛾  (sinh(𝑡)) =
1

2𝑖
[∑

(−1)𝑘

𝑘!
(∞

𝑘=0
Γ(𝑘+1)

Γ(𝑘+
1

2
)

𝑡𝑘−
1

2) − ∑
1

𝑘!
(∞

𝑘=0
Γ(𝑘+1)

Γ(𝑘+
1

2
)

𝑡𝑘−
1

2)]  
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Chapter three 

Generalized Fractional Differential Equations 

 

In this chapter we solve many types of fractional differential equations using the generalized 

derivative operator. 

 

3.1. Generalized First Order Fractional Differential Equations 

 

In this section we take in consideration some types of first order fractional differential 

equations. 

 

3.1.1. Generalized Linear Fractional Differential Equations 

 

In this section we solve some linear 𝛾 −Order fractional differential by first transforming 

the fractional equation to ordinary differential equation. Many different examples are used 

to demonstrate the ideas.  
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3.1.1.1. General Solution of Linear Equation 

 

Theorem 3.1. For the linear first order fractional differential equation of the form as follows, 

𝐿𝛾𝑦(𝑥) + 𝑔(𝑥)𝑦(𝑥) = ℎ(𝑥)  

with 𝛾 ∈  (0, 1] and 𝑔(𝑥), ℎ(𝑥) 𝑦(𝑥) are differentiable functions has the general solution  

𝑦(𝑥) =
1

𝑠(𝑥)
 [∫ 𝑠(𝑥) ∗ 𝐻(𝑥)𝑑𝑥 + 𝑐]  

where 𝑠(𝑥) = 𝑒∫ 𝐺(𝑥)𝑑𝑥 ,  

𝐺(𝑥) =
Γ(𝜌 −  𝛾 + 1)

Γ(𝜌 )
𝑥𝛾−1 ∗ 𝑔(𝑥)    ,  

𝐻(𝑥) =
Γ(𝜌 −   𝛾 +  1)

Γ(𝜌 )
𝑥𝛾−1 ∗ ℎ(𝑥)  

Proof: First we use the theorem 2.1. to get 

𝐿𝛾𝑦(𝑥) + 𝑔(𝑥)𝑦(𝑥) = ℎ(𝑥)  

Γ(ρ)

Γ(𝜌 −  𝛾 + 1)
𝑥1−𝛾  

𝑑 𝑦(𝑥)

𝑑𝑥
+ 𝑔(𝑥)𝑦(𝑥) = ℎ(𝑥)  

Multiplying both sides with 
Γ(𝜌 −  𝛾 + 1)

Γ(𝜌 )
𝑥𝛾−1 we get, 

𝑑 𝑦(𝑥)

𝑑𝑥
+ 𝐺(𝑥)𝑦(𝑥) = 𝐻(𝑥)  

Where 𝐺(𝑥)  =
Γ(𝜌 −  𝛾 + 1)

Γ(𝜌 )
𝑥𝛾−1 ∗ 𝑔(𝑥)  ,   

𝐻(𝑥) =
Γ(𝜌 −   𝛾 +  1)

Γ(𝜌 )
𝑥𝛾−1 ∗ ℎ(𝑥) 

Multiplying both sides with 𝑠(𝑥) = 𝑒∫ 𝐺(𝑥)𝑑𝑥  we get, 
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𝑠(𝑥) ∗
𝑑 𝑦(𝑥)

𝑑𝑥
+ 𝑠(𝑥) ∗ 𝐺(𝑥)𝑦(𝑥) = 𝑠(𝑥) ∗ 𝐻(𝑥) 

which can be written as 

𝑑

𝑑𝑥
[𝑠(𝑥) ∗ 𝑦(𝑥)] = 𝑠(𝑥) ∗ 𝐻(𝑥)  

By integrating both sides, we get 

[𝑠 ∗ 𝑦(𝑥)] = ∫ 𝑠 ∗ 𝐻(𝑥)  +  𝑐 

Hence, it is easy to see that, 

𝑦(𝑥) =
1

𝑠
 [∫ 𝑠 ∗ 𝐻(𝑥)𝑑𝑥 + 𝑐]  □ 

 

Remark 3.1: In case of an initial value problem with initial condition 𝑦(𝑎) = 𝑏. The 

constant 𝑐 is calculated based on the initial condition  

 

Example 3.1: Let’s consider the initial value problem  

𝐿
1
2𝑦(𝑥) + 𝑦(𝑥) = 1 ,          𝑦(0) = 0. 

Solution: Using theorem 2.1. we get 

𝐿
1
2𝑦(𝑥) + 𝑦(𝑥) = 1 

Γ(ρ)

Γ(𝜌 +  
1
2)

𝑥
1
2  

𝑑 𝑦(𝑥)

𝑑𝑥
+ 𝑦(𝑥) = 1 

For ρ = γ = 0.5 we have, 
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Γ(
1

2
)

Γ(1)
𝑥

1

2  
𝑑 𝑦(𝑥)

𝑑𝑥
+ 𝑦(𝑥) = 1  

Or  

  
𝑑 𝑦(𝑥)

𝑑𝑥
+

𝑥
−1
2

Γ(
1

2
)

𝑦(𝑥) =
𝑥

−1
2

Γ(
1

2
)
 

The integrating factor 𝑠(𝑥) = 𝑒

1

Γ(
1
2

)
∫ 𝑥

−1
2 𝑑𝑥

= 𝑒

2

Γ(
1
2

)
𝑥0.5

 

Hence, 

𝑦(𝑥) =
1

𝑒

2

Γ(
1
2

)
𝑥0.5

 [∫ 𝑒

2

Γ(
1
2

)
𝑥0.5

∗ 1𝑑𝑥 + 𝑐] 

= 𝑒

−2

Γ(
1
2

)
𝑥0.5

 [𝐼 + 𝑐] 

 

𝐼 = ∫ 𝑒

2

Γ(
1
2

)
𝑥0.5

𝑑𝑥 = ∫ 𝑒

2

Γ(
1
2

)
𝑢

∗ 2𝑢 𝑑𝑢 

using the substitution 𝑢 = 𝑥0.5 , 𝑑𝑢 = 0.5 𝑥−0.5𝑑𝑥 = 0.5 𝑢−1𝑑𝑥  

 

Using the integration by parts method, we get 

𝐼 =
2𝑢

2/Γ (
1
2)

 𝑒

2

Γ(
1
2

)
𝑢

−  
2

[2/Γ (
1
2)]2

 𝑒

2

Γ(
1
2

)
𝑢

 

=
2𝑥0.5

2/Γ (
1
2)

 𝑒

2

Γ(
1
2

)
𝑥0.5

−  
2

[2/Γ (
1
2)]2

 𝑒

2

Γ(
1
2

)
𝑥0.5
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Hence, 

𝑦(𝑥) = 𝑒

−2

Γ(
1
2

)
𝑥0.5

 [𝑥0.5 Γ (
1

2
) 𝑒

2

Γ(
1
2

)
𝑥0.5

−  
[Γ (

1
2)]

2

2
 𝑒

2

Γ(
1
2

)
𝑥0.5

+ 𝑐] 

= [𝑥0.5 Γ (
1

2
)  −  

[Γ (
1
2)]

2

2
 + 𝑐𝑒

−2

Γ(
1
2

)
𝑥0.5

] 

The constant 𝑐 is calculated based on the initial condition 𝑦(0) = 0  

𝑦(0) = 0 = [ − 
[Γ(

1

2
)]

2

2
 + 𝑐] then  𝑐 =

[Γ(
1

2
)]2

2
 

Hence   𝑦(𝑥) = 𝑥0.5 Γ (
1

2
)  −  

[Γ(
1

2
)]

2

2
 +

[Γ(
1

2
)]2

2
𝑒

−2

Γ(
1
2

)
𝑥0.5

□ 

Example 3.2: Solve the differential equation 

𝐿
1
2𝑦(𝑥) + 𝑦(𝑥) = 𝑥2 +

2

Γ(2.5)
𝑥3/2  

Solution: Using theorem 2.1. we get 

𝐿
1
2𝑦(𝑥) + 𝑦(𝑥) = 𝑥2 +

2

Γ(2.5)
𝑥3/2 

Γ(ρ)

Γ(𝜌+ 
1

2
)

𝑥
1

2  
𝑑 𝑦(𝑥)

𝑑𝑥
+ 𝑦(𝑥) = 𝑥2 +

2

Γ(2.5)
𝑥3/2  

For ρ = γ = 0.5 we have, 

Γ(
1
2)

Γ(1)
 𝑥

1
2  

𝑑 𝑦(𝑥)

𝑑𝑥
+ 𝑦(𝑥) = 𝑥2 +

2

Γ(2.5)
𝑥3/2 

 or 
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𝑑 𝑦(𝑥)

𝑑𝑥
+

𝑥
−1
2

Γ(
1

2
)

𝑦(𝑥) =
𝑥

3
2

Γ(
1

2
)

+
2

Γ(
1

2
)∗Γ(2.5)

𝑥 

The integrating factor 𝑠(𝑥) = 𝑒

1

Γ(
1
2

)
∫ 𝑥

−1
2 𝑑𝑥

= 𝑒

2

Γ(
1
2

)
𝑥0.5

 

Hence, 

𝑦(𝑥) =
1

𝑒

2

Γ(
1
2

)
𝑥0.5

 [∫ 𝑒

2

Γ(
1
2

)
𝑥0.5

∗ (
𝑥

3
2

Γ (
1
2)

+
2𝑥

Γ (
1
2) ∗ Γ(2.5)

) 𝑑𝑥 + 𝑐] 

= 𝑒 

−2

Γ(
1
2

)
𝑥0.5

 [𝐼 + 𝑐] 

To find the value of I, substituting 𝑢 = 𝑥1/2  , 𝑑𝑢 = 0.5𝑥−0.5𝑑𝑥 = 0.5𝑢−1𝑑𝑥  we get, 

𝐼 = ∫ 𝑒

2

Γ(
1
2

)
 𝑢

(
𝑢3

Γ (
1
2)

+
2𝑢2

Γ (
1
2) ∗ Γ(2.5)

) 2𝑢 𝑑𝑢 

Which is easily solved using integrating by parts method to get, known that Γ (
1

2
) =

√𝜋 𝑎𝑛𝑑 Γ (
5

2
) =

3

4
√𝜋 , 

𝐼 = 𝑒
2

√𝜋
 𝑢

(𝑢4 − 2√𝜋 𝑢3 + 3𝜋𝑢2 − 3𝜋3/2𝑢 +
3

2
𝜋2)

+ 𝑒
2

√𝜋
 𝑢

(
8

3
𝜋

3
2𝑢3 − 4𝜋2𝑢2 + 4𝜋

5
2𝑢 − 2𝜋3 ) 

 and write in terms of x to get, 

 𝑦(𝑥) = (𝑥2 − 2√𝜋 𝑥3/2 + 3𝜋𝑥 − 3𝜋3/2√𝑥 +
3

2
𝜋2)

+ (
8

3
𝜋

3
2𝑥3/2 − 4𝜋2𝑥 + 4𝜋

5
2√𝑥 − 2𝜋3 ) + 𝑐𝑒 

−2

Γ(
1
2

)
𝑥0.5

□ 
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3.1.1.2. Using Taylor series  

 

Another way to simplify the way to find the solution of the fractional differential equation 

is to substitute the function with its Taylor series expansion. 

 

Example 3.3: Solve the initial value problem 𝐿
1

2𝑦(𝑥) =  𝑒𝑘𝑥 ,          𝑦(0) = 0. 

Solution: As 𝑒𝑘𝑥 =  ∑
𝑘𝑛

𝑛!
∞
𝑛=0 𝑥𝑛.The fractional differential equation can be simplified 

using theorem 2.1. we get 

𝐿
1
2𝑦(𝑥) =  𝑒𝑘𝑥 

Γ(ρ)

Γ(𝜌 +  
1
2)

𝑥
1
2  

𝑑 𝑦(𝑥)

𝑑𝑥
=  ∑

𝑘𝑛

𝑛!

∞

𝑛=0

𝑥𝑛 

𝑑 𝑦(𝑥)

𝑑𝑥
=

Γ(𝜌 +  
1
2)

Γ(ρ)
∑

𝑘𝑛

𝑛!

∞

𝑛=0

𝑥𝑛−
1
2 

∫ 𝑑𝑦(𝑥) =
Γ(𝜌+ 

1

2
)

Γ(ρ)
 ∑

𝑘𝑛

𝑛!
∞
𝑛=0 ∫ 𝑥𝑛−

1

2 𝑑𝑥  

𝑦(𝑥) =
Γ(𝜌 +  

1
2)

Γ(ρ)
∑

𝑘𝑛

𝑛!

∞

𝑛=0

 ( 
𝑥𝑛+

1
2

𝑛 +
1
2

) + 𝑐 

𝑦(𝑥) = ∑
𝑘𝑛

𝑛!

∞

𝑛=0

 
Γ(𝜌 +  

1
2)

Γ(𝜌)
( 

𝑥𝑛+
1
2

𝑛 +
1
2

) + 𝑐 

Letting 𝜌 =  𝑛 +
1

2
, we get 
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𝑦(𝑥) = ∑
𝑘𝑛

𝑛!

∞

𝑛=0

 
Γ(𝑛 +  1)

Γ(𝑛 +
1
2)

( 
𝑥𝑛+

1
2

𝑛 +
1
2

) + 𝑐 

𝑦(𝑥) = ∑
𝑘𝑛

Γ(𝑛 +
3
2)

∞

𝑛=0

 𝑥𝑛+
1
2 + 𝑐 

𝑦(0) = 0 implies that 𝑐 = 0 , we get 

𝑦(𝑥) = ∑
𝑘𝑛

Γ(𝑛 +
3
2)

∞

𝑛=0

 𝑥𝑛+
1
2    □ 

 

Example 3.4: Solve the initial value problem 𝐿
1

2𝑦(𝑥) =  𝑥2sin (𝑥) ,          𝑦(0) = 0. 

Solution: As sin (𝑥) =  ∑
𝑥2𝑛+1

(2𝑛+1)!
∞
𝑛=0  .The fractional differential equation can be simplified 

using theorem 2.1. we get 

𝐿
1
2𝑦(𝑥) = 𝑥2sin (𝑥) 

Γ(ρ)

Γ(𝜌 +  
1
2)

𝑥
1
2  

𝑑 𝑦(𝑥)

𝑑𝑥
=  ∑

𝑥2𝑛+3

(2𝑛 + 1)!

∞

𝑛=0

 

𝑑 𝑦(𝑥)

𝑑𝑥
=

Γ(𝜌 + 
1
2)

Γ(ρ)
 ∑

𝑥2𝑛+
5
2

(2𝑛 + 1)!

∞

𝑛=0

 

∫ 𝑑𝑦(𝑥) =
Γ(𝜌+ 

1

2
)

Γ(ρ)
 ∑ ∫

𝑥
2𝑛+

5
2

(2𝑛+1)!
 𝑑𝑥∞

𝑛=0   

𝑦(𝑥) = ∑
Γ(𝜌 + 

1
2)

Γ(ρ)

∞

𝑛=0

 ( 
𝑥2𝑛+

7
2

(2𝑛 +
7
2)(2𝑛 + 1)!

) + 𝑐 
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Letting 𝜌 = 2 𝑛 +
7

2
, we get 

𝑦(𝑥) = ∑
Γ(2 𝑛 + 4)

Γ(2 𝑛 +
7
2)

∞

𝑛=0

 ( 
𝑥2𝑛+

7
2

(2𝑛 +
7
2)(2𝑛 + 1)!

) + 𝑐 

𝑦(𝑥) = ∑
(2𝑛 + 3)!

Γ(2 𝑛 +
9
2)

∞

𝑛=0

 ( 
𝑥2𝑛+

7
2

(2𝑛 + 1)!
) + 𝑐 

𝑦(𝑥) = ∑
(2𝑛 + 3)(2𝑛 + 2)

Γ(2 𝑛 +
9
2)

∞

𝑛=0

 𝑥2𝑛+
7
2 + 𝑐 

𝑦(0) = 0 implies that 𝑐 = 0 , we get 

𝑦(𝑥) = ∑
(2𝑛 + 3)(2𝑛 + 2)

Γ(2 𝑛 +
9
2)

∞

𝑛=0

 𝑥2𝑛+
7
2    □ 

 

3.1.2. Generalized non-Linear Riccati Fractional Differential Equations 

 

In this section we look into some non-linear Riccati fractional differential equation by first 

transforming the fractional equation to non-linear ordinary differential equation. Many 

different examples are used to demonstrate the ideas.   

This section is dedicated not to how the equations are solved but rather comparing the 

solution at different values of 𝑥 with the conformable derivative results. 

The general form of Riccati equation is 

𝐿𝛾𝑦(𝑥) = 𝑎(𝑥) + 𝑏(𝑥) ∗ 𝑦 + 𝑐(𝑥) ∗ 𝑦2 
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Where 𝑎(𝑥), 𝑏(𝑥), 𝑐(𝑥) are continuous γ −differentiable functions, with 𝛾 ∈  (0, 1].  

If one particular solution 𝑦1 can be found, then the general solution of the Riccati equation 

is obtained as 

 𝑦 = 𝑦1 + 𝑢   with 𝑢́ = [𝑏(𝑥) + 2𝑐(𝑥) 𝑦1]𝑢 + 𝑐(𝑥) 𝑢2   

which is a Bernoulli equation and is easily solved with the substitution 𝑢 =
1

𝑆
 

 

Example 3.5: Solve the fractional Riccati differential equation 

𝐿𝛾𝑦(𝑥) + 𝑦(𝑥)2 =  1 ,          𝑦(0) = 0 , 0 < 𝛾 ≤ 1. 

 

Solution: Using theorem 2.1. we get 

𝐿𝛾𝑦(𝑥) + 𝑦2(𝑥) =  1 

Γ(ρ)

Γ(𝜌 − 𝛾 + 1)
𝑥1−𝛾  

𝑑 𝑦(𝑥)

𝑑𝑥
+ 𝑦2(𝑥) =  1 

 

For 𝜌 = 𝛾 = 0.75 the equation becomes 

Γ(0.75)

Γ(1)
 𝑥0.25  

𝑑 𝑦(𝑥)

𝑑𝑥
+ 𝑦2(𝑥) =  1, 𝑦(0) = 0  

As Γ(0.75) = 1.2254167, Γ(1) = 1 using MATLAB we get the solution 

𝑦(𝑥) =  tanh ( 
4 ∗ 107

36762501
𝑥0.75) 

 

https://en.wikipedia.org/wiki/Bernoulli_differential_equation
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For 𝛾 = 𝜌 = 0.9 the equation becomes 

Γ(0.9)

Γ(1)
 𝑥0.1  

𝑑 𝑦(𝑥)

𝑑𝑥
+ 𝑦2(𝑥) =  1, 𝑦(0) = 0  

As Γ(0.9) = 1.0686287, Γ(1) = 1 using MATLAB we get the solution 

𝑦(𝑥) = tanh ( 
108

96176583
𝑥0.9) 

 

Using the conformable derivative definition, we get 

𝑥1−𝛾  
𝑑 𝑦(𝑥)

𝑑𝑥
+ 𝑦2(𝑥) =  1, 𝑦(0) = 0 

For 𝜌 = 𝛾 = 0.75 the equation becomes 

𝑥0.25  
𝑑 𝑦(𝑥)

𝑑𝑥
+ 𝑦2(𝑥) =  1, 𝑦(0) = 0  

Using MATLAB, we get the solution 

𝑦(𝑥) = tanh (
4

3
𝑥0.75) 

For 𝜌 = 𝛾 = 0.9 the equation becomes 

  𝑥0.1  
𝑑 𝑦(𝑥)

𝑑𝑥
+ 𝑦2(𝑥) =  1, 𝑦(0) = 0  

Using MATLAB, we get the solution 

𝑦(𝑥) = tanh (
10

9
𝑥0.9) 
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X GD CD 

0 0 0 

0.1 0.191109 0.232758 

0.2 0.314388 0.378887 

0.3 0.414521 0.493351 

0.4 0.498470 0.585395 

0.6 0.630212 0.720640 

0.8 0.726082 0.810287 

1 0.796171 0.870062 

 

Table1: comparison of GD results with CD at 𝛾 = 0.75  

 

X BPM [17] EHPM [9] 

0 0 0 

0.2 0.30996891 0.3214 

0.4 0.48162749 0.5077 

0.6 0.59777979 0.6259 

0.8 0.67884745 0.7028 

1 0.73684181 0.7542 

 

Table 2: comparison of the results of different methods at 𝛾 = 0.75   
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Remark 3.2: We could easily see from Tables 1 and 2 that the values obtained from (GD) 

method are in good agreement with the results from the Bernstein polynomial method 

(BPM) and enhanced homotopy perturbation method (EHPM). 

 However, the conformable (CD) method although easier to use than the previous methods 

its results are less accurate than the (GD) method. 

 

X GD CD 

0 0 0 

0.1 0.130155 0.138975 

0.2 0.239518 0.255255 

0.3 0.338002 0.359213 

0.4 0.426664 0.451906 

0.6 0.576062 0.605387 

0.8 0.691369 0.720626 

1 0.777791 0.804455 

 

Table 3: comparison of GD results with CD at 𝛾 = 0.9    □ 

 

Example 3.4: Solve the fractional Riccati differential equation 

𝐿𝛾𝑦(𝑥) − 2 ∗ 𝑦(𝑥)  +  𝑦2(𝑥) =  1 ,          𝑦(0) = 0 , 0 < 𝛾 ≤ 1. 
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Solution: Using theorem 2.1. we get 

𝐿𝛾𝑦(𝑥) − 2 ∗ 𝑦(𝑥) +  𝑦2(𝑥) =  1 

Γ(ρ)

Γ(𝜌 − 𝛾 + 1)
 𝑥1−𝛾  

𝑑 𝑦(𝑥)

𝑑𝑥
− 2 ∗ 𝑦(𝑥) +  𝑦2(𝑥) =  1 

 

For 𝜌 = 𝛾 = 0.75 the equation becomes 

Γ(0.75)

Γ(1)
𝑥0.25  

𝑑 𝑦(𝑥)

𝑑𝑥
− 2 ∗ 𝑦(𝑥) +  𝑦2(𝑥) =  1, 𝑦(0) = 0  

As Γ(0.75) = 1.2254167, Γ(1) = 1 using MATLAB we get the solution 

𝑦(𝑥) = √2 ∗ tanh (√2
4 ∗ 107

36762501
𝑥

3
4 − tanh−1(

1

√2
)) + 1 

 

Using the conformable derivative definition, we get 

𝑥1−𝛾  
𝑑 𝑦(𝑥)

𝑑𝑥
− 2 ∗ 𝑦(𝑥) +  𝑦2(𝑥) =  1, 𝑦(0) = 0 

For 𝜌 = 𝛾 = 0.75 the equation becomes 

𝑥0.25  
𝑑 𝑦(𝑥)

𝑑𝑥
− 2 ∗ 𝑦(𝑥) +  𝑦2(𝑥) =  1, 𝑦(0) = 0  

using MATLAB, we get the solution 

𝑦(𝑥) = √2 ∗ tanh (√2
4

3
𝑥

3
4 − tanh−1(

1

√2
)) + 1 
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X GD CD 

0 0 0 

0.1 0.232741 0.296344 

0.2 0.437253 0.565564 

0.3 0.643518 0.835261 

0.4 0.848667 1.09467 

0.6 1.23489 1.5423 

0.8 1.56165 1.86687 

1 1.81546 2.07957 

 

Table 4: comparison of GD results with CD at 𝛾 = 0.75     □ 

 

3.2. Generalized Second Order Fractional Differential Equations 

 

In this section we briefly look into second order fractional differential equations. We also 

study the solution to the homogeneous fractional equation with constant coefficient. 

 

Defention3.2 The general form of the linear second order fractional differential equation is 

as follows, 

𝐿𝛾𝐿𝛾𝑦 + 𝐴(𝑥) 𝐿𝛾𝑦 + 𝐵(𝑥) 𝑦 = 𝐶(𝑥)  

With 𝐴(𝑥), 𝐵(𝑥), 𝐶(𝑥) are 𝛾 − differential functions, with 𝛾 ∈  (0, 1].  
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Defention3.3 The fractional Wronskian of two functions 𝑓(𝑥) and 𝑔(𝑥) is defined by  

𝑊𝛾(𝑓(𝑥), 𝑔(𝑥)) = |
𝑓(𝑥) 𝑔(𝑥)

𝐿𝛾(𝑓(𝑥)) 𝐿𝛾(𝑔(𝑥))
| 

                                                       = 𝑓(𝑥) ∗ 𝐿𝛾(𝑔(𝑥)) − 𝑔(𝑥) ∗ 𝐿𝛾(𝑓(𝑥)) 

 

Remark 3.3 Two functions 𝑓(𝑥), 𝑔(𝑥) are linearly dependent if and only if their fractional 

Wronskian is identically zero. 

 

We are going to study the case of Homogeneous fractional equation with constant 

coefficient which has the general form  

𝐿𝛾𝐿𝛾𝑦 + 𝑎 𝐿𝛾𝑦 + 𝑏 𝑦 = 0 

With 𝑎, 𝑏 being constants. 

We start with considering the function 𝑒
𝑐 (

1

Γ(𝛾+1)
𝑥𝛾)

 because this exponential function has the 

𝛾 fractional derivative is a constant multiple of the exponential itself. We consider the 

solution 

𝑦 = 𝑒
𝑐 (

1
Γ(𝛾+1)

𝑥𝛾)
 

Which has the 𝛾 −derivative below 

𝐿𝛾 (𝑒
𝑐 (

1
Γ(𝛾+1)

𝑥𝛾)
) = 𝑐𝑒

𝑐 (
1

Γ(𝛾+1)
𝑥𝛾)

 

and 

𝐿𝛾𝐿𝛾 (𝑒
𝑐 (

1
Γ(𝛾+1)

𝑥𝛾)
) = 𝑐2𝑒

𝑐 (
1

Γ(𝛾+1)
𝑥𝛾)
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Substituting these values in the equation we get, 

[𝑐2 + 𝑐𝑎 + 𝑏]𝑒
𝑐 (

1
Γ(𝛾+1)

𝑥𝛾)
= 0 

But we know that the exponential function is never zero then  

𝑐2 + 𝑐𝑎 + 𝑏 = 0 

Case 1: The roots 𝑐1, 𝑐2 of this equation are distinct reals if 𝑎2 − 4𝑏 > 0 

In this case the two solutions  

𝑦1 = 𝑒
𝑐1 (

1
Γ(𝛾+1)

𝑥𝛾)
, 𝑦2 = 𝑒

𝑐2 (
1

Γ(𝛾+1)
𝑥𝛾)

 

Since the ratio  

𝑦1

𝑦2
=

𝑒
𝑐1 (

1
Γ(𝛾+1)

𝑥𝛾)

𝑒
𝑐2 (

1
Γ(𝛾+1)

𝑥𝛾)
= 𝑒

(𝑐1−𝑐2) (
1

Γ(𝛾+1)
𝑥𝛾)

≠ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑠 (𝑐1 − 𝑐2) ≠ 0 

Hence the two solutions are linearly independent and the general solution in this case is as 

follows  

𝑦 = 𝑠1𝑒
𝑐1 (

1
Γ(𝛾+1)

𝑥𝛾)
+ 𝑠2𝑒

𝑐2 (
1

Γ(𝛾+1)
𝑥𝛾)

 

𝑠1 , 𝑠2 are arbitrary constants. 

Case 2: The roots 𝑐1, 𝑐2  are equal reals then we have  

𝑦1 = 𝑒
𝑐1 (

1
Γ(𝛾+1)

𝑥𝛾)
 

And we can find a second linearly independent solution in the form of  

𝑦2 =
1

Γ(𝛾 + 1)
𝑥𝛾𝑒

𝑐1 (
1

Γ(𝛾+1)
𝑥𝛾)
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The general solution in this case is 

𝑦 = (𝑠1 + 𝑠2  
1

Γ(𝛾 + 1)
𝑥𝛾  )  𝑒

𝑐1 (
1

Γ(𝛾+1)
𝑥𝛾)

 

Case 3: The roots 𝑐1, 𝑐2  are distinct complex numbers which can be written as 𝑚 ± 𝑖 𝑛  

then we have the two real solutions  

𝑦1 = 𝑒
𝑚 (

1
Γ(𝛾+1)

𝑥𝛾)
cos (𝑛 

1

Γ(𝛾 + 1)
𝑥𝛾) 

𝑦2 = 𝑒
𝑚 (

1
Γ(𝛾+1)

𝑥𝛾)
sin (𝑛 

1

Γ(𝛾 + 1)
𝑥𝛾) 

With the general solution being  

𝑦 =  𝑠1𝑦1 +  𝑠2𝑦2 

 

Example 3.4 Solve the following homogeneous fractional equation  

𝐿𝛾𝐿𝛾𝑦 + 4 𝐿𝛾𝑦 + 3 𝑦 = 0 

 

Solution: The equation 𝑐2 + 4𝑐 + 3 = 0 has the two distinct solutions  

𝑐 = −1, −3  

 Then the general solution is 

𝑦 = 𝑠1𝑒
−1 (

1
Γ(𝛾+1)

𝑥𝛾)
+ 𝑠2𝑒

−3 (
1

Γ(𝛾+1)
𝑥𝛾)

 □ 
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Example 3.5 Solve the following homogeneous fractional equation  

𝐿𝛾𝐿𝛾𝑦 + 4 𝐿𝛾𝑦 + 4 𝑦 = 0 

 

Solution: The equation 𝑐2 + 4𝑐 + 4 = 0 has one solution 

𝑐 = −2 

 Then the general solution is 

𝑦 = (𝑠1 + 𝑠2  
1

Γ(𝛾 + 1)
𝑥𝛾  )  𝑒

−2 (
1

Γ(𝛾+1)
𝑥𝛾)

□ 

 

Example 3.6 Solve the following homogeneous fractional equation  

𝐿𝛾𝐿𝛾𝑦 + 2 𝐿𝛾𝑦 + 2 𝑦 = 0 

 

Solution: The equation 𝑐2 + 2𝑐 + 2 = 0 has the two complex solutions   

𝑐 = −1 ± 𝑖  

 the general solution is 

𝑦 =  𝑠1𝑒
−1 (

1
Γ(𝛾+1)

𝑥𝛾)
cos ( 

1

Γ(𝛾 + 1)
𝑥𝛾) +  𝑠2𝑒

−1 (
1

Γ(𝛾+1)
𝑥𝛾)

sin ( 
1

Γ(𝛾 + 1)
𝑥𝛾) □ 
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Defention3.4. The general form of the linear nth order fractional differential equation is as 

follows, 

(𝐿𝛾)𝑛𝑦 + 𝐴𝑛(𝑥)(𝐿𝛾)𝑛−1𝑦 … + 𝐴2(𝑥) 𝐿𝛾𝑦 + 𝐴1(𝑥) 𝑦 = 𝐴0(𝑥)  

With 𝐴𝑛, 𝐴𝑛−1, … , 𝐴0 are 𝛾 − differential functions. 

Which is treated after transforming the fractional equation to ordinary differential equation. 
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Chapter four 

Fractional Newtonian Mechanics 

 

In this chapter we study the Newtonian Mechanics in a new light based on the new 

generalized definition of the fractional derivative. We look into different topics for the one-

dimensional case including the equations of motion at constant velocity and constant 

acceleration, free falling objects, linear momentum and fractional kinetic energy. We also 

looked into the two-dimensional motion. 

 

4.1. Introduction 

 

A possible mechanical interpretation of the half-derivative can be given in terms of Abel's 

solution to the classical tautochrone problem. A tautochrone or isochrone curve which is a 

Greek term that means equal time is the curve for which the time that an object take sliding 

disregarding friction to the lowest point in the curve is independent of the object starting 

point on the curve. 

 

Motion of an object involves its displacement from one place in space and time to another. 

The displacement ∆𝑥 is defined as the change in position, and is given by 

∆𝑥 = 𝑥𝑓 − 𝑥𝑖 

Whereas the average velocity 𝑣̅ during a time interval ∆𝑡 is given by 
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𝑣̅ =
∆𝑥

∆𝑡
=

𝑥𝑓 − 𝑥𝑖

𝑡𝑓 − 𝑡𝑖
 

And when we take the limit of the average velocity as the time interval ∆𝑡 becomes infinitely 

small we get the instantaneous velocity 𝑣 and is given by 

𝑣 = lim
∆𝑡→0

∆𝑥

∆𝑡
= 𝑥́ 

While the instantaneous acceleration 𝑎 is given by 

𝑎 = lim
∆𝑡→0

∆𝑣

∆𝑡
=  𝑣́ 

For a known physical value 𝑠 we denote the fractional one as 𝑠̂. 

Looking into these values considering the generalized fractional derivative in theorem 2.1. 

with 𝛾 ∈ (0,1] it is easy to see that the 𝛾 −velocity  

𝑣(𝑡) = 𝐿𝛾(𝑥(𝑡)) =
Γ(ρ)

Γ(𝜌 −   𝛾 +  1)
𝑡1−𝛾   

𝑑 𝑥(𝑡)

𝑑𝑡
 

While the 𝛾 − acceleration 

𝑎̂(𝑡) = 𝐿𝛾(𝑣(𝑡)) =
Γ(ρ)

Γ(𝜌 −   𝛾 +  1)
𝑡1−𝛾    

𝑑 𝑣(𝑡)

𝑑𝑡
 

Or  

𝑎̂(𝑡) = 𝐿𝛾(𝐿𝛾(𝑥(𝑡)) =
Γ(ρ)

Γ(𝜌 −   𝛾 +  1)
𝑡1−𝛾    

𝑑 

𝑑𝑡
(

Γ(ρ)

Γ(𝜌 −   𝛾 +  1)
𝑡1−𝛾  

𝑑 𝑥(𝑡)

𝑑𝑡
) 

= (
Γ(ρ)

Γ(𝜌 −   𝛾 +  1)
)

2

𝑡2−2𝛾   ( 
𝑑 2𝑥(𝑡)

𝑑𝑡2
) 

we are only interested in the case where ρ =  γ. 
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4.2. One-dimensional motion 

 

We will discuss the motion of objects in one dimension in the light of the generalized 

fractional derivative. We will discuss the case when  𝜌 =   𝛾 

Newtons second law states that 𝐹 = 𝑚 ∗ 𝑎 which becomes  

𝐹̂ = 𝑚 ∗ 𝑎̂ = 𝑚 ∗ Γ(𝛾 ) 𝑡1−𝛾    
𝑑 𝑣(𝑡)

𝑑𝑡
 

or 

𝐹̂ = Γ(𝛾 ) 𝑡1−𝛾 (𝑚 ∗  
𝑑 𝑣(𝑡)

𝑑𝑡
) = Γ(𝛾 ) 𝑡1−𝛾(𝐹) 

 

Let us consider the case where the fractional force is constant for example (𝐹̂ = 3𝑁) for an 

object with 1𝑘𝑔 mass 

3

Γ(𝛾 )
 𝑡−1+𝛾 =     

𝑑 𝑣(𝑡)

𝑑𝑡
 

or 

𝑣(𝑡) = ∫
3

Γ(𝛾 )
 𝜏−1+𝛾 𝑑𝜏

𝑡

0

=  
3

Γ(𝛾 )
 
𝑡𝛾

γ
=  

3 𝑡𝛾

Γ(𝛾 + 1 )
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Figure 1: Graph of 𝑣(𝑡) vs. 𝑡 for different values of gamma 

 

We can see from the figure that for gamma = 1 the constant force yields a constant 

acceleration.  

 

 4.2.1. Constant velocity motion 

 

An object is moving with constant velocity, it means that the instantaneous velocity at any 

point (𝑡 = 𝑐 ) in a time interval say [𝑎, 𝑏] is the same value as the average velocity over the 

entire time interval. In other words, the acceleration is equal to zero. 

From the definition of the fractional velocity, we have 

𝑣(𝑡) = 𝐿𝛾(𝑥(𝑡)) 
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Multiplying both side by 𝐼𝛾 from the left then using theorem 2.10 and remark 2.8, we have 

                                                𝑥̂(𝑡) − 𝑥̂(0) = 𝑣
𝑡𝛾

Γ(𝛾+1)
                                                      4.1 

Example 4.1 Let us consider an object moving with constant velocity  𝑣  =  3 from a 

starting point (assume 𝑥(0) = 0), then the equation of motion for this case 

𝑥̂(𝑡) = 3
𝑡𝛾

Γ(𝛾 + 1)
 

 

Values of 𝛾 𝑥̂(𝑡) 

0.25 
3

𝑡0.25

Γ(1.25)
 

1/3 
3

𝑡1/3

Γ(4/3)
 

0.5 
3

𝑡0.5

Γ(1.5)
 

2/3 
3

𝑡2/3

Γ(5/3)
 

0.75 
3

𝑡0.75

Γ(1.75)
 

1 3𝑡 

 

Table 5:  𝑥̂(𝑡) at different values of 𝛾 
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Figure 2(a): Graph of 𝑥̂(𝑡) vs 𝑡 for 𝛾 =  0.25,
1

3
, 0.5    

 

 

 

Figure 2(b): Graph of 𝑥̂(𝑡) vs 𝑡 for 𝛾 = 0.5,
2

3
, 0.75, 1.    
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We can see from the figure that for gamma = 1 is the classical case. □ 

 

4.2.2. Constant acceleration motion 

 

An object is moving with constant acceleration, it means that the instantaneous acceleration 

at any point (𝑡 = 𝑐 ) in a time interval say [𝑎, 𝑏] is the same value as the average acceleration 

over the entire time interval. In other words, the velocity increases or decreases at the same 

rate throughout the motion. 

The plot of the normal 𝑎 versus 𝑡 gives a horizontal line while the plot of normal 𝑣 versus 𝑡 

gives a straight line with either positive, zero, or negative slope.  

Because the average acceleration equals the instantaneous acceleration when a is constant, 

we can write  𝑎 = 𝑎̅ ,we can choose initial time to be zero for convenience.  

This case is actually the generalization of constant velocity  

From the definition of the fractional acceleration, we have 

𝑎̂(𝑡) = 𝐿𝛾(𝑣(𝑡)) 

Multiplying both side by 𝐼𝛾 from the left then using theorem 2.10 and remark 2.8, we have 

                                    𝑣(𝑡) − 𝑣(0) = 𝑎̂
𝑡𝛾

Γ(𝛾+1)
                                               4.2 

Remark 4.1. When 𝛾 = 1 the equation 4.2 reduces to the known newton equation  

𝑣(𝑡) − 𝑣(0) = 𝑎𝑡 
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Applying the definition of the fractional velocity to equation 4.2, we have 

𝑣(𝑡) = 𝐿𝛾(𝑥(𝑡)) = 𝑣(0) + 𝑎̂
𝑡𝛾

Γ(𝛾 + 1)
 

Multiplying both side by  𝐼𝛾 from the left then using theorem 2.10 and remark2.9, we have 

                               𝑥̂(𝑡) − 𝑥̂(0) = 𝑣(0)
𝑡𝛾

Γ(𝛾 + 1)
+

𝑎̂

Γ(𝛾 + 1)

1

Γ(𝛾)

𝑡2𝛾

2𝛾
                            4.3 

 

Remark 4.2. When 𝛾 = 1, equation 4.2 reduces to the known newton equation  

𝑥(𝑡) − 𝑥(0) = 𝑣(0)𝑡 + 𝑎
𝑡2

2
 

Remark 4.3. We can see that when we substitute 𝑎 = 0 in equation 4.3 then we would get 

equation 4.1. 

 

Now if we want to Solve for 𝑣(𝑡)  from 𝑥̂ and 𝑎̂  without knowing the time it needed we 

first solve the equation 4.2 for 𝑡  we get 

𝑣(𝑡) − 𝑣(0)

𝑎̂
Γ(𝛾 + 1) = 𝑡𝛾 

then we substitute it in equation 4.3 

𝑥̂(𝑡) − 𝑥̂(0) = 𝑣(0)
1

Γ(𝛾 + 1)
(

𝑣(𝑡) − 𝑣(0)

𝑎̂
Γ(𝛾 + 1))

+
𝑎̂

Γ(𝛾 + 1)

1

Γ(𝛾)

1

2𝛾
(

𝑣(𝑡) − 𝑣(0)

𝑎̂
Γ(𝛾 + 1))

2
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         𝑥̂(𝑡) − 𝑥̂(0) = 𝑣(0) (
𝑣(𝑡) − 𝑣(0)

𝑎̂
) +

Γ(𝛾 + 1)

â

1

Γ(𝛾)

1

2𝛾
(𝑣(𝑡) − 𝑣(0))

2
              4.4 

For the case when 𝛾 = 1 we get the 

𝑥(𝑡) − 𝑥(0) = 𝑣(0) (
𝑣(𝑡) − 𝑣(0)

𝑎
) +

1

a

1

2
(𝑣(𝑡) − 𝑣(0))

2
 

Or 

2𝑎(𝑥(𝑡) − 𝑥(0)) = 𝑣(𝑡)2 − 𝑣(0)2 

Which coincides with newtons thirds law. 

 

Example 4.2 Let us consider an object moving from rest (zero initial velocity) with constant 

𝛾 −acceleration of 3 from a starting point (assume 𝑥̂(0) = 0), then the equations of motion 

for this case 

𝑣(𝑡) = 3
𝑡𝛾

Γ(𝛾 + 1)
 

𝑥̂(𝑡) =
3

Γ(𝛾 + 1)

1

Γ(𝛾)

𝑡2𝛾

2𝛾
 

𝛾 𝑣(𝑡) 𝑥̂(𝑡) 

0.5 
3

𝑡0.5

Γ(1.5)
 

3

Γ(1.5)Γ(0.5)
𝑡 

0.75 
3

𝑡0.75

Γ(1.75)
 

2

Γ(1.75)Γ(0.75)
𝑡1.5 

1 3𝑡 3

2
𝑡2 

 

Table 6:  𝑥̂(𝑡) , 𝑣(𝑡) at different values of 𝛾 
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Figure 3(a): Graph of 𝑣(𝑡) vs 𝑡 for 𝛾 = 0.5, 0.75, 1   

 

  

Figure 3(b): Graph of 𝑥̂(𝑡) vs 𝑡 for 𝛾 = 0.5, 1, 2  □  
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4.2.3. Free fall motion 

 

A freely falling object is any object moving freely under the influence of gravity only, 

regardless of its initial motion (whether it has initial velocity or not), also we neglect the air 

resistance. Objects thrown upward or downward and those released from rest are all 

considered freely falling. 

 

This is a special case of constant downward acceleration motion of 9.8 𝑚/𝑠2 . 

 

The equations of motion for this case are 

                                                  𝑣(𝑡) − 𝑣(0) = −9.8
𝑡𝛾

Γ(𝛾 + 1)
                                              4.5 

                             𝑥̂(𝑡) − 𝑥̂(0) = 𝑣(0)
𝑡𝛾

Γ(𝛾 + 1)
−

9.8

Γ(𝛾 + 1)

1

Γ(𝛾)

𝑡2𝛾

2𝛾
                              4.6 

 

Example 4.3 Let us consider an object thrown upward with initial velocity 𝑣(0) = 15𝑚/𝑠 

.We can assume the hand of the person as a reference point (assume 𝑥̂(0) = 0), then the 

equations of motion for this case 

𝑣(𝑡) = −9.8
𝑡𝛾

Γ(𝛾 + 1)
+ 15 

𝑥̂(𝑡) = 15
𝑡𝛾

Γ(𝛾 + 1)
−

9.8

Γ(𝛾 + 1)

1

Γ(𝛾)

𝑡2𝛾

2𝛾
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𝛾 𝑣(𝑡) 𝑥̂(𝑡) 

0.5 
−9.8

𝑡0.5

Γ(1.5)
+ 15 15

𝑡0.5

Γ(1.5)
−

9.8

Γ(1.5)Γ(0.5)
𝑡 

0.75 
−9.8

𝑡0.75

Γ(1.75)
+ 15 15

𝑡0.75

Γ(1.75)
−

19.3

3 Γ(1.75)Γ(0.75)
𝑡1.5 

1 −9.8𝑡 + 15 
15𝑡 −

9.8

2
𝑡2 

  

Table 7:  𝑥̂(𝑡) , 𝑣(𝑡) at different values of 𝛾 

 

 

Figure 4(a): Graph of 𝑣(𝑡) vs 𝑡 for 𝛾 = 0.5, 0.75,1  
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Figure 4(b): Graph of 𝑥̂(𝑡) vs 𝑡 for 𝛾 = 0.5, 0.75, 1□ 

 

4.3. Linear momentum, Work and Kinetic energy 

 

Linear momentum is a physical quantity that is directly proportional to the object’s mass 

(𝑚) and velocity (𝑣). Therefore, the greater an object’s mass or its velocity, the greater its 

momentum.  

Linear momentum (𝑝) is defined as follows  

𝑝 = 𝑚 ∗ 𝑣 

We can define the fractional linear momentum as 
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𝑝̂ = 𝑚 ∗ (Γ(𝛾) 𝑡1−𝛾   
𝑑 𝑥(𝑡)

𝑑𝑡
) 

 

Work (𝑤) is a measure of energy transfer that occurs when an external force is applied over 

an object hence it moves a certain distance. In the case where the force is constant, work is 

easily computed by multiplying the length of the path (𝑠) by the component of the force 

acting along the path.  

The work is defined as follows  

𝑤 = 𝐹 ∗ 𝑠 ∗ 𝑐𝑜𝑠𝜃 

Where 𝜃 is the angle between the objects path and the applied force. 

We can define the fractional work as  

𝑤̂ = (𝐹̂ ) ∗ 𝑠 ∗ 𝑐𝑜𝑠𝜃 

Or 

𝑤̂ = (Γ(𝛾 ) 𝑡1−𝛾   𝐹) ∗ 𝑠 ∗ 𝑐𝑜𝑠𝜃 

  

Example 4.4 let us consider an object being pulled through a path 5𝑚 long with a constant 

force 𝐹 = 50𝑁 that is inclined at an angle 𝜃 = 30°. Then the fractional work applied by this 

force is 

𝑤̂ = (50 Γ(𝛾 ) 𝑡1−𝛾  ) ∗ 6 ∗ 𝑐𝑜𝑠30   □ 
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Kinetic energy (𝑘) is a form of energy that an object has as a consequence of its motion. If 

work is done on an object by applying a net force, the object speeds up hence it gains kinetic 

energy. Kinetic energy is a property depends on the object motion and its mass and is defined 

as follows 

𝑘 = 0.5 𝑚 𝑣2  

We can define the fractional Kinetic energy as 

𝑘̂ = 0.5 𝑚  (  𝑣 )2  

or 

𝑘̂ = 0.5 𝑚  ( Γ(𝛾) 𝑡1−𝛾   
𝑑 𝑥(𝑡)

𝑑𝑡
)2 

It’s also known that linear momentum and kinetic energy are related as follows  

𝑘 =
𝑝2

2𝑚
 

It still holds for the fractional relation. 

 

Example 4.5 In example 4.1 if the object has a 1𝑘𝑔 mass, we have  

𝑝̂ = (3 Γ(𝛾) 𝑡1−𝛾  ) 

𝑘̂ = 0.5 (3 Γ(𝛾) 𝑡1−𝛾 )2  □ 

  

Remark 4.4 The case where 𝛾 = 1 we get the classical Newtonian formulas. 
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4.4. Two-dimensional motion 

 

In this section we study the motion of objects in both the x- and y-directions simultaneously 

under a constant acceleration. An important special case of this two-dimensional motion is 

called projectile motion. We neglect the effects of air resistance and the rotation of Earth, 

the path of a projectile in Earth’s gravity field is curved in the shape of a parabola. 

An important fact about projectile motion is that the horizontal and vertical motions don’t 

affect each other (they’re independent). 

Constant acceleration motion equations developed in section 4.2.2. can be applied separately 

for the x-direction motion and the y-direction motion. With the difference that the initial 

velocity has two components, not just one as seen in figure 5.  

We assume that at 𝑡 =  0 the projectile leaves the origin with an initial velocity 𝑣0. If the 

velocity vector makes an angle 𝜃 (the projection angle) with the horizontal line, we have 

𝑣𝑥0  =  𝑣0 𝑐𝑜𝑠 𝜃    𝑎𝑛𝑑   𝑣𝑦0  =  𝑣0 𝑠𝑖𝑛 𝜃 

where 𝑣𝑥0 is the initial velocity in the 𝑥 −direction and 𝑣𝑦0 is the initial velocity in the 

𝑦 −direction. 

 

 

 

 

Figure 5: The parabolic trajectory of a particle that leaves the origin with a velocity of 𝑣0 
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Because we neglected air resistance this means that acceleration component in the x-

direction is zero (𝑎𝑥 =  0), hence the projectile’s velocity component along the 

𝑥 −direction remains constant. The acceleration component in the 𝑦 −direction is the 

acceleration of gravity   (𝑎𝑥 = − 𝑔). 

We look into 4.2,4.3,4.4 equation in section 4.2.2. 

For the equation of the horizontal motion (in 𝑥 −direction), we have   

𝑣𝑥(𝑡) − 𝑣𝑥0 = 0 

𝑥(𝑡) − 𝑥0 = 𝑣𝑥0

𝑡𝛾

Γ(𝛾 + 1)
 

For the equation of the vertical motion (in 𝑦 −direction), we have 

𝑣𝑦(𝑡) − 𝑣𝑦0 = −9.8
𝑡𝛾

Γ(𝛾 + 1)
 

𝑦(𝑡) − 𝑦0 = 𝑣𝑦0

𝑡𝛾

Γ(𝛾 + 1)
−

9.8

Γ(𝛾 + 1)

1

Γ(𝛾)

𝑡2𝛾

2𝛾
 

𝑦(𝑡) − 𝑦0 = 𝑣𝑦0 (
𝑣𝑦(𝑡) − 𝑣𝑦0

9.8
) −

Γ(𝛾 + 1)

9.8

1

Γ(𝛾)

1

2𝛾
(𝑣𝑦0(𝑡) − 𝑣𝑦0)

2
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مع تطبيقات في ميكانيكا نيوتن  كسريال لاشتقاقتعريف معمم ل  

 

 إعداد: سماح موسى خلف بجالي

  إشراف: الدكتور إبراهيم الغروز  

 ملخص الرسالة

 مؤشر(، والذي يوضح أن قانون الGD)  كسري ال  المعمم للاشتقاق  يدرس هذا العمل التعريف الجديد 

𝐷𝛼𝐷𝛽𝑓(𝑡)  =  𝐷𝛼+𝛽𝑓(𝑡);  0 <  𝛼, 𝛽 ≤ قابلة للتفاضل ال  نطبق على جميع الاقترانات ت  1 

تطبيق يتم  تايلور.  بواسطة سلسلة  الا  (GD)  موسعة  بعض  مشتق  قترانات على  مع  النتائج    ة ومقارنة 

Caputo    الكسرية. يتم الحصول على حلول بعض المعادلات التفاضلية الكسرية عبر عامل التشغيل

(GD)  تعريفمع    نتائجمناقشة ال . كما تمت  (CD)  ا نيوتنتمت مناقشة ميكانيك   كما .كسري للاشتقاق ال  

 في ضوء حساب التفاضل والتكامل الكسري.

 

 

 

 

 

 


