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A B S T R A C T   

The objective of this study was to develop models to predict the formation of HANs under uniform formation 
conditions (UFC) in chlorinated, choraminated, and perchlorinated/chloraminated waters of different origins. 
Model equations were developed using multiple linear regression analysis to predict the formation of dichlor-
oacetonitrile (DCAN), HAN4 (trichloroacetonitrile [TCAN], DCAN, bromochloroacetonitrile [BCAN], and 
dibromoacetonitrile [DBAN]) and HAN6 (HAN4 plus monochloroacetonitrile, monobromoacetonitrile). The in-
dependent variables covered a wide range of values, and included ultraviolet absorbance,(UV254) dissolved 
organic carbon (DOC), dissolved organic nitrogen (DON), specific UV absorbance at 254 (SUVA254), bromide 
(Br-), pH, oxidant dose, contact time, and temperature. The regression coefficients (r2) of HAN4 and HAN6 
models for natural organic matter (NOM), algal organic matter (AOM), and effluent organic matter (EfOM) 
impacted waters were within the range of 60–88%, while the r2 values of HAN4 and DCAN models for both 
groundwater and distribution systems were lower, in the range of 41–66%. The r2 values for the DCAN model 
were mostly higher in the individual types as compared to the cumulative analysis of all source water data 
together. This was attributed to differences in HAN precursor characteristics. For chlorination, among all vari-
ables, pH was found to be the most significant descriptor in the model equations describing the formation of 
DCAN, HAN4, and HAN6, and it was negatively correlated with HAN formation in the distribution system, 
groundwater, AOM, and NOM samples, while it showed an inverse relationship with HAN6 formation in EfOM 
impacted waters. During chloramination, pH was the most influential model descriptor for DCAN formation in 
the NOM. Prechlorination dose was the most predominant parameter for prechlorination/chloramination, and it 
was positively correlated with HAN4 formation in AOM impacted waters.   

1. Introduction 

One unintended consequence of water disinfection is the formation 
of halogenated disinfection byproducts (DBPs) as a result of reactions 
between oxidants and organic (i.e., natural organic matter [NOM], algal 
organic matter [AOM], and effluent organic matter [EfOM]), and inor-
ganic (i.e., bromide [Br− ] and iodide [I− ]) precursors (Rook, 1974; 
Trehy and Bieber, 1981; Oliver, 1983; Ersan et al., 2019a; Liu et al., 
2019). Although the regulated carbonaceous DBPs (C-DBPs), tri-
halomethanes (THMs), and haloaceticacids (HAAs), are commonly re-
ported in distribution systems and they are of concern due to their health 
impacts and regulatory considerations, unregulated nitrogenous hal-
oacetonitriles (HANs) have also been detected following chlorination or 

chloramination (Bougeard et al., 2010; Krasner et al., 2006; Krasner 
et al., 2008; Obolensky et al., 2007; Sfynia et al., 2017). The measured 
molar concentration of HANs is usually one order of magnitude lower 
than the regulated THMs and HAAs; nevertheless, toxicology studies 
have shown that HANs pose up to three orders of magnitude higher cyto- 
and genotoxicity than C-DBPs (Muellner et al., 2007; Plewa et al., 2008). 
Four HANs species (HAN4: dichloroacetonitrile (DCAN), tri-
chloroacetonitrile (TCAN), bromochloroacetonitrile (BCAN), and 
dibromoacetonitrile (DBAN)), are the most commonly detected species 
in the treated waters (Krasner et al., 1989a,b). Among them, DCAN has 
been the most prevalent HAN species, which has been detected in the 
distribution system up to 9 µg/L following chlorination (Obolensky 
et al., 2007; Yang et al., 2008; Chen and Westerhoff, 2010). Several 
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parameters including UV absorbance (UV254), specific UV absorbance at 
254 (SUVA254), dissolved organic matter (DOC), dissolved organic ni-
trogen (DON), Br− , pH, oxidant type and dose, reaction time, and tem-
perature can play a role in the formation of HANs (Ersan et al., 2019a, 
2019b; Liu et al., 2018). 

The ability to predict the DBP formation is valuable to water utilities 
as solely relying on chemical analyses can be expensive and time- 
consuming. Several researchers have been proposed different empir-
ical models for DBP formation, as seen in Table S1 (in the Supporting 
Information [SI] Section). Most of these models were derived from linear 
and non-linear regression analysis. Compared to multiple linear 
regression (MLR) analysis, the nonlinear approach (i.e., especially using 
modern learning algorithms) is more accurate for the prediction of DBP 
formation, when a wide range of datasets is available (Milot et al., 2002; 
Platikanov et al., 2012; Ike et al., 2020), whereas the linear regression 
analysis is more appropriate for the much narrower DBP datasets (Ike 
et al., 2020). In previous studies, MLR models have been developed to 
predict the formation of DBPs under different range of environmental 
and water treatment conditions (Bergier et al., 2017; Engerholm and 
Amy, 2017; Feungpean et al., 2015; Chowdhury et al., 2009, 2010; Uyak 
et al., 2005; Sohn et al., 2004; Westerhoff et al., 2000; Morrow and 
Minear, 1987. In addition to their prediction capabilities, these models 
can also provide insights into the factors affecting DBP formation. To 
date, numerous models have been developed for predicting C-DBP for-
mation in water (Table S1 in the SI section), whereas limited number of 
modeling studies, under formation potential (FP) test conditions or the 
samples were collected and analyzed from distributions systems, are 
available (Table 1) to predict DCAN and HAN4 formation in the pres-
ence of free chlorine (Bergier et al., 2017; Chen and Westerhoff, 2010; 
Chhipi-Shrestha et al., 2018; Guilherme and Rodriguez, 2017; Kolla, 
2004; Mian et al., 2020) and chloramine (Line et al., 2018). FP test 
employs high concentrations of oxidants to assess the precursor levels of 
DBPs in water. We recently showed that measuring HANs under FP 
conditions has limitations because of the decomposition of HANs at 
elevated free chlorine concentrations. This may cause an underestima-
tion of HAN precursors in water (Kanan and Karanfil, 2020). There is 
currently no HAN model in the literature under the uniform formation 
conditions (UFC), a test method developed for the representative con-
ditions of distribution systems in the United States (Summers et al., 

1996). 
To the best of our knowledge, this study is the first comprehensive 

modeling effort for the formation of DCAN, HAN4, and HAN6 (mono-
chloroacetonitrile [MCAN], monobromoacetonitrile [MBAN], TCAN, 
DCAN, BCAN, and DBAN) during chlorination, chloramination, and 
prechlorination under UFC conditions. Multivariable predictive models 
were developed including several parameters such as UV254, DOC, DON/ 
DOC, SUVA254, Br− , oxidant dose, pH, contact time, and temperature for 
different water matrices (e.g., NOM, AOM, EfOM impacted waters, 
distribution system, and groundwater). Furthermore, this study evalu-
ated the impact of pH on the correlation of HAN4/HAN6 vs. THM4 
formation during chlorination process. 

2. Materials and methods 

2.1. Data compilation 

A comprehensive HAN database under UFC was collected from the 
existing literature in addition to our own laboratory results. The corre-
lation matrix of independent variables was performed after the log 
transformation of variables for model development, since the log 
transformation can reduce or remove the skewness of the original 
dataset. The water quality parameters for chlorination, chloramination, 
and prechlorination data sets are presented in Tables S2, S3, and S4. 

The formation dataset under chlorination conditions for DCAN 
(sample number, n = 216), HAN4 (n = 208) and HAN6 (n = 142) 
samples covered a range of UV254 (0.014–1.472 cm− 1), DOC (0.3–9.8 
mg/L), Br− concentration (0.0015–9 mg/L), pH (5.5–9), chlorine dose 
(0.5–10 mg/L), contact time (0.5–72 h), and temperature (16.5–21 ◦C). 
The database included the results for samples from different water 
sources including distribution systems (n = 30), groundwater sources (n 
= 29), EfOM samples from secondary effluents of different WWTPs (n =
54), laboratory-grown AOMs samples (n = 38) from different algal 
species, and isolated/natural NOMs samples (n = 57). Among all water 
sources, DON concentrations were only available for EfOM samples 
(ranging from 1.5 to 30.7 mg/L as N) (Table S2 in the SI section). 

Because of the limited number of available chloramination and 
prechlorination datasets in the literature, the chloramine dataset only 
included isolated/natural NOMs samples (n = 35) with a range of DOC 

Table 1 
Literature review on predictive models for formation of HANs.  

No Source Type Oxidant Type Testing Condition DBPs n Bromide 
range (mg/ 

L) 

Modeling Approach References 

1 

Distribution systems Chlorination 
Samples were colleted 
from the distribution 
system and analyzed 

HAN4 
300 

NR 

Linear Mixed Regression 
Guilherme and 

Rodriguez, 2017 DCAN 

2 
HAN4 

NRNR 

Linear Mixed and Generalized 
Linear Mixed Models 

Chhipi-Shrestha 
et al., 2018 DCAN 

3 DCAN Multivariate Linear Regression Mian et al., 2020 

4 Raw water 

Chlorination 

FP 

DCAN 40 0–0.25 Pearson Correlation Kolla, 2004 

5 
WWTP, DWTP, 

Groundwater, River and jar 
test samples 

DCAN 190 
0 − 1 

F-test, Student’s T-test, and 
Multiple Linear Regression 

Chen and 
Westerhoff, 2010 HAN4 166 

6 2 WTPs HAN4 154 0.3 - 0.6 Multiple Linear Regression, 
Backward Stepwise Regression, 

Pearson Correlation and 
Sensitivity Analysis 

Bergier et al., 2017 

7 Reservoir, River and Lake Chloramination 
DCAN 32 

0–0.4 Multiple Linear Regression Lin et al., 2018 HAN4 33 

8 

Distribution systems, 
Groundwater, EfOM and 

AOM impacted, and NOM 
Chlorination 

UFC 

DCAN 216 
0 − 10 

Multiple Linear Regression This study 
HAN4 208 
HAN6 142 

NOM Chloramination DCAN 35 
0 - 0.4 AOM impacted water Prechlorination HAN4 51 

FP: Formation Potential, UFC: Uniform Formation Condition, n: number of samples used in model development, NR: Not Reported, WWTP:Wastewater treatment 
plants, DWTP:Drinking water treatment plants, EfOMs:Effluent organic matters, AOMs:algal organic matters, NOMs:natural organic matters. 
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(2–5.4 mg/L), Br− (0–0.5 mg/L), pH (4–7.5), chloramine dose (2.3–8 
mg/L as Cl2), contact time (5–72 h), and temperature (10–30 ◦C). On the 
other hand, the dataset for chlorination followed by chloramination 
(Cl2–NH2Cl process: prechlorination followed by ammonia addition) 
for AOM impacted waters, is obtained from Liu et al., 2019. Prechlori-
nation dataset only included formation of HAN4 (n = 56) from 
laboratory-grown AOMs samples at room temperature (21 ◦C) and a 
range of DOC (0.5–4 mg/L), Br− (0–0.4 mg/L), pH (6.5–8), prechlori-
nation time (0.5–30 mins) and dose (1.3–7 mg/L as Cl2), and 
temperature. 

2.2. Predictive model equations 

A multivariable equation (Equation, eq. 1), which includes water 
quality (UV254, DOC, and Br− ) and operational parameters (pH, oxidant 
dose, contact time, and temperature), was employed for statistical pre-
diction of HAN formation. The predictive model has the following form: 

logHANs = a(logUV254) + b(logDOC) + c(logBr− ) + d(logpH)

+ e(logOxidant dose) + f(logTime) + g(logTemperature) + h
(1) 

In this model, UV254 (cm− 1), DOC (mg/L), Br− (mg/L), pH, oxidant 
dose (mg/L), time (hour) and temperature (◦C) are the independent 

variables, while HANs (mg/L) is the dependent variable. The coefficients 
“a”, “b”, “c”, “d”, “e”, “f”, and “g” are the regression coefficients, and “h” 
is the regression constant. Eq. (1) was employed for the prediction of 
HAN formation in all tested water sources (except EfOM and AOM 
during chlorination). For the EfOM model, the ratio of DON/DOC term 
was used in the predictive model formula instead of only DOC because 
the DON data was available. For the AOM impacted waters, SUVA254 
term was used in the model, instead of UV254 and DOC, due to the 
constant DOC concentrations (2 mg/L) in the AOM dataset. The co-
efficients “i” and “j” are the regression coefficients of DON/DOC and 
SUVA254, respectively. 

The equation terms considered water quality and operational pa-
rameters that have been shown to influence the formation of HANs 
during chlorination, chloramination, and prechlorination (Liu et al., 
2019; Bond et al., 2011; Dotson et al., 2009). Previous experimental 
studies showed that increasing DOC, Br− , oxidant dose, contact time, 
and temperature positively correlate with HAN formation, while pH 
negatively correlates and decreases the formation of HANs (Chu et al., 
2010; Glezer et al., 1999; Hua et al., 2006; Liu et al., 2018; Xue et al., 
2014; Yang et al., 2008). In a study conducted by Lee et al. (2007), 
authors reported that wastewater sources (with high DON contents 
[0.18–0.27 mg/L]) containing amino sugars (0.22 nmol/mg of DOC) 
and proteins (0.82 nmol/mg of DOC) showed higher DCAN yields upon 
chlorination. Likewise, Huo et al. (2013) showed that more than 80% of 

Fig. 1. Effect of water sources on the prediction models for DCAN, HAN4 and HAN6 formation in the presence of free chlorine. `EfOMs:Effluent organic matters, 
AOMs:algal organic matters, NOMs:natural organic matters. 
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DON in wastewater effluents contains hydrophilic moieties (low 
SUVA254).Therefore DON is expected to serve as potential precursors for 
HAN formation, and it was included in the EfOM model. 

2.3. Statistical data analysis 

The development of model equations was accomplished by per-
forming MLR analysis. All statistical analysis results were conducted by 
SAS v.9.3 software. The generalized linear model (GLM) procedure of 
SAS was applied for parameter selection. The MLR analysis was used to 
develop correlations between water quality and operational parameters, 
and HAN formation. Regression assumption was evaluated with a linear 
relationship for describing a straight-line relationship between inde-
pendent and dependent variables. Therefore, the linear relationship 
between the independent variables (water quality and operational pa-
rameters) and the dependent variable (HAN formation) was examined 
side-by-side. 

The linearity of the model equations was examined by the coefficient 
of determination (r2). The regression models were checked by p-values, 
assessed with the analysis of variance (ANOVA). A small p-value (≤.05) 
indicates strong evidence that at least one of the independent variables 

of the developed equation is significantly important to predict the 
dependent variable. The intercorrelations of independent variables were 
controlled by the variation inflation factor (VIF). VIF value is the 
reciprocal of the tolerance value, and their small values (VIF<4) indi-
cate low correlation among variables under ideal conditions. As VIF 
values higher than 10, this may suggest that there is a problem with 
multicollinearity (Hair et al., 2010). The predictive performance of 
models was also estimated with percent difference between measured 
and predicted values (Mian et al., 2020). While root mean squared error 
(RMSE) was used as a measure of external validation data, the predictive 
precision for models evaluated by prediction error sum of squares 
(PRESS). A detailed explanation of the multiple regression modeling 
technique can be found in our previous publications (Ersan et al., 2016; 
2019; Apul et al., 2020; Croue and Roux, 2011) 

3. Results and discussion 

3.1. The prediction of HAN formation during chlorination 

Since the mass- and molar-based models developed for DCAN, 
HAN4, and HAN6 were mostly in agreement, the mass-based model 
results were presented and discussed in this manuscript. The modeling 
variables (UV254, DOC, Br− , pH, oxidant dose, contact time, and tem-
perature) for DCAN, HAN4, and HAN6 during chlorination under UFC 
are presented in Table S2 in the SI section. 

To examine the model correlations in different types of waters, HANs 
models were developed for each water type. The equations obtained for 
HAN4 formation in five different water sources are shown in Eqs. (2)–7. 
The coefficient of determinations (r2) is the key output of regression 
analysis to evaluate the developed models for HANs formation. The r2 

values of the HANs model were, in general, higher in the individual 
types as compared to the cumulative analysis of the data eq (2)–((7). The 
r2 values of HAN4 models of NOM, AOM, and EfOM impacted waters 
were within the range of 74–81%, which indicated the suitability of 
models for predicting HAN formation. On the other hand, the r2 values 
of HAN4 models for both groundwater and distribution systems were 
lower than those of other waters (52 and 41%, respectively). The lowest 
r2 value observed for distribution systems may be attributed to varying 
water quality conditions and complex operating conditions. Besides, 
when all water types were included in the prediction model, the r2 value 
was lower than individual water types (except distribution systems). The 
cumulative models developed including only NOM, AOM and EfOM data 
still resulted lower r2 values (DCAN model r2: 0.59, HAN4 model r2: 
0.62, HAN6 model r2: 0.70) (data is not shown). This indicated that the 
characteristics of HAN precursors vary among these different type of 
organic matter. Therefore, the prediction modeling for individual water 
types has been shown to be more reliable than cumulative analysis of the 
HAN data in this study. 

logHAN4(NOM) = − (0.11 ± 0.05)logUV254 + (0.37 ± 0.41)logDOC 

+(0.48 ± 0.05)logBr− − (0.84 ± 0.39)logpH + (0.6 ± 0.46)logChlorineDose

+ (0.19 ± 0.12)logTime − (19.23 ± 3.29)logTemperature + 23.2 ± 4.34  

(
n : 57, r2 : 0.8, p values :< .0001

)
(2)  

logHAN4(AOM) = (0.11 ± 0.17)logSUVA254 + (0.28 ± 0.04)logBr−

− (1.01 ± 0.41)logpH + (0.63 ± 0.35)logChlorineDose

+ (0.35 ± 0.05)logTime − 2.19 ± 0.43  

(
n : 39, r2 : 0.79, p values :< .0001

)
(3)  

logHAN4(EfOM) = − (0.73 ± 0.37)logUV254 + (0.09 ± 0.05)logDON
/

DOC 
+(0.39 ± 0.06) logBr− + (0.76 ± 0.71)logpH − 2.19 ± 0.43 

Fig. 2. Modeling data vs. measured data of HAN4 and HAN6 formation in 
different water sources. 
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(
n : 54, r2 : 0.74, p values :< .0001

)
(4)  

logHAN4(Distribution Systems) = (0.03±0.2)logUV254 

+(0.44±0.3)logDOC+(0.01±0.29)logBr− − (2.91±3.63)logpH

+(0.41±0.39)logTemperature − 0.51±3.34  

(
n : 30, r2 : 0.52, p values : 0.01

)
(5)  

logHAN4(Groundwater)=(1.3±0.61)logUV254 − (0.6±0.79)logDOC+(0.26±0.13)
logBr− − (12.16±5.62)logpH+10.64±5.22  

(
n : 29, r2 : 0.41, p values : 0.03

)
(6)  

logHAN4(All water sources) = (0.24 ± 0.05)logUV254 + (0.14 ± 0.3)logDOC 

+(0.38 ± 0.04)logBr− − (0.52 ± 0.45)logpH

+ (0.62 ± 0.26)logChlorineDose + (0.36 ± 0.08)logTime

− (19.21 ± 3.73)logTemperature + 22.94 ± 4.84  

(
n : 208, r2 : 0.62, p values :< .0001

)
(7) 

Table 2 summarizes all the model parameter coefficients along with 
statistical comparisons of DCAN, HAN4, and HAN6 formation in five 
different water sources. The impact of water source type on r2 of models 
for DCAN, HAN4, and HAN6 formations are presented in Fig. 1. The r2 

values of the DCAN model were, in general, higher in the individual 
water types as compared with all water sources collectively. The r2 

values of HAN4 and HAN6 models of NOM, AOM, and EfOM impacted 
waters were within the range of 60–88%, while the r2 values of HAN4 
and DCAN models for both groundwater and distribution systems were 
lower, in the range of 41–66% (Fig. 1). When the predicted and 
measured data of HAN4 and HAN6 formation for different water sources 
was compared, the predicted HAN4 and HAN6 formation fitted well 
with their measured data in all water sources (especially for water 
sources with the highest r2 values) (Fig. 2). Besides, the average 

percentage difference (⍙) values between measured and predicted 
values from all models were less than 35% for each DCAN, HAN4 and 
HAN6 formations in the different water sources (Table 2). 

The values for all the model parameter coefficients of DCAN, HAN4, 
and HAN6 formation from different water sources are shown in Fig. 3. 
Among all variables, pH parameter was negatively correlated with HAN 
formation in the distribution system, groundwater, AOM, and NOM 
samples. Previous studies showed increasing pH decreased the forma-
tion of HANs due to base-catalyzed hydrolysis (Singer et al., 1995; 
Heller-Grossman et al., 1999; Reckhow et al., 2001; Na and Olson, 
2004). However, pH showed an inverse relationship in the EfOM 
impacted water, resulting in an increased formation of HANs with 
increasing pH. The calculated pH coefficients for EfOM impacted water 
model were consistent with a previous study, where chlorination of 
secondary effluent waters at high pH led to an increased formation of 
some of the HANs, while an opposite trend was observed for the other 
water sources (Doederer et al., 2013). The observed positive correlation 
may be associated with the characteristics of EfOM impacted water 
samples, which may contain a mixture of precursors including NOM, 
AOM, and soluble microbial products (SMP) excreted during biological 
wastewater treatment processes as well as other anthropogenic com-
pounds. Further data for the formation of HAN in wastewater effluents 
under UFC conditions is needed . 

Due to the lack of available temperature data for different water 
sources in the literature, the temperature impacts on HAN formation 
were only examined for distribution systems and NOM waters. Tem-
perature showed a positive correlation in the chlorinated humic acid 
samples, when temperature were increased from 4 to 15 ◦C. On the other 
hand, DCAN formation decreased with increasing temperature from 25 
to 50 ◦C (Zhang et al., 2013). However, the formation of HANs in the 
NOM water samples exhibited a different behavior; the absolute value of 
temperature for NOM water was the most predominant descriptor and 
was negatively correlated with HAN formation (Fig. 3). The formation 
rates of DCAN, HAN4, and HAN6, and their decomposition rates could 
be enhanced with increasing temperature during chlorination of NOM 
waters. Another study concluded that increasing temperature enhanced 

Fig. 3. The regression coefficients (UV254, DOC concentration, bromide, pH, chlorine dose, time, and temperature) of the models developed for formation of DCAN, 
HAN4 and HAN6 in the presence of free chlorine in different water sources. `Value: the regression coefficients value of each variable, All sources: sum of the all water 
sources, EfOMs: Effluent organic matters, AOMs: Algal organic matters, NOMs: Natural organic matters. 
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the decomposition rates of DCAN (Nikolaou et al., 2004). 
When more brominated species were included within the models, the 

impact of Br− and chlorine dose on the model equations increased for all 
water sources (Fig. 3). When the HAN speciation shifted from chlori-
nated to chloro/bromo and/or brominated HANs, as a result of an in-
crease in Br− concentration, (i.e., from DCAN to BCAN and DBAN), the 
Br− contribution in the model equation became more apparent (DCAN to 
HAN6 in Table 2). Therefore, the model results clearly showed that 
increasing Br− concentration shifted the speciation to more brominated 
HANs, and increasing chlorine dose increased the decomposition of 
HANs (Chow et al., 2011; Soyluoglu et al., 2020; Hua et al., 2006). For 
the UV254, a negative correlation was only observed in EfOM impacted 
waters. The SUVA254 parameter within the DCAN, HAN4, and HAN6 
model equations of AOM impacted showed a positive correlation with 
HAN formation. On the other hand, DOC parameter showed different 
impact on the model equations for different water sources (Table 2). 
DON/DOC ratios in EfOM impacted waters were positively correlated 
with DCAN, HAN4, and HAN6 modelings supporting that DON can be a 
significant source of HAN precursors (Westerhoff and Mash, 2002; Lee 
et al., 2007). On the other hand, increasing contact time during chlori-
nation increased HAN formation in both NOM and AOM impacted wa-
ters. It should be noted that the dataset for HAN6 under UFC conditions 
is much smaller as compared to DCAN and HAN4 in the literature. When 
all data were modeled together, the prediction strength of each regres-
sion coefficients (r2) decreased (Table 2). This is due to weaker corre-
lations of distribution systems and groundwater systems as well as the 
difference in the nature of HAN precursors in different waters. 

Overall, in the presence of free chlorine, the r2 values, which is the 
indicator of the prediction model strenghts, highly depends on the 
availability of HAN formation dataset, including the number of DCAN, 
HAN4, and HAN6, independent variables (UV254, DOC, Br, pH, dose, 
contact time and temperature) and type of water sources. Reporting 
complete HAN6 speciation data sets with several water quality param-
eters (especially including DON and DOC together) will be valuable to 
further advance the HAN modeling efforts. Furthermore, DON values 
will be valuable for modeling of other nitrogeneous DBPs that may be 
measured during the same studies. 

3.2. The prediction of HAN formation during chloramination 

The modeling variables (DOC, pH, oxidant dose, contact time, and 
temperature) that are used for developing a predictive model for DCAN 
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Fig. 4. Effect of oxidant types on the prediction models for DCAN formation in 
NOM waters. `value: the regression coefficients value of each variable, n: the 
sample number. 
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in the presence of chloramine under UFC are compiled in Table S3 in the 
SI section. Due to limited number of studies in the literature, which 
includes all the investigated model parameters in this study, the pre-
dictive modeling for chloramination was only evaluated for DCAN for-
mation in the NOM water samples. 

logDCAN = − (0.91 ± 1.21)logDOC − (2.06 ± 1.52)logpH

+ (0.75 ± 0.39)logChloramineDose + (1.06 ± 0.34)logTime

+ (0.59 ± 1.29)logTemperature − 0.93 ± 2.49  

(
n : 35, r2 : 0.49, p values : 0.0011

)
(5) 

The r2 value of model variables and coefficients for DCAN formation 
in NOM water samples are given in Eq. (5) and shown in Fig. 4. Among 
all descriptors, the pH term has a negative correlation in the chlorami-
nation model due to the base-catalyzed decomposition of DCAN (Roux 
and Croue, 2012; Croue and Roux, 2011; Yu and Reckhow, 2015). 
Increasing pH enhanced the degradation rates of DCAN, which has been 
observed in previous studies (Ersan et al., 2019b; Lee and Westerhoff, 
2009; Yang et al., 2007). On the other hand, except the DOC term, 
chloramine dose, contact time, and temperature terms for DCAN for-
mation showed positive correlations, which is in agreement with 

previous studies where the formation of DCAN increased with increasing 
chloramine dose, contact time, and temperature (Nikolaou et al., 2004; 
Reckhow et al., 2001; Yang et al., 2007). 

In terms of the impact of oxidant type (chlorine vs. chloramine) on 
the modeling of DCAN formation, the r2 value of DCAN formation 
modeling under chloramination (r2=0.49, n = 35) was lower than 
during chlorination (r2=0.88, n = 68). This was attributed to narrower 
independent variable ranges for chloramination dataset, shown in 
Fig. S3, which impacted the prediction strength of the model. The values 
for all model parameter coefficients of DCAN formation in NOM water 
are presented in Fig. 4. The trends of regression coefficient values (DOC, 
pH, oxidant dose, time, and temperature) for both chlorination and 
chloramination datasets were slightly different. Among all variables in 
Fig. 4, the pH parameter for both oxidants showed negative correlation 
with DCAN formation in surface waters. On the other hand, temperature 
term was also negatively correlated with DCAN formation under chlo-
rination, which may be due to enhanced decomposition rates of DCAN at 
increasing temperatures (Nikolaou et al., 2004; Reckhow et al., 2001). 
For the chloramination dataset, the temperature parameter showed a 
positive correlation in the NOM samples. It should be noted that the 
temperature parameter for chloramination dataset (10–25 ◦C) was much 
narrower than chlorination (4–50 ◦C) (Table S2 and S3 in the SI section); 
thus the modeling of DCAN formation under varying temperature con-
ditions warrants further investigation during chloramination process. It 
has been also shown that increasing DOC concentration, oxidant dose, 
and contact time in chlorination and chloramination increased DCAN 
formation. However, the regression coefficients of the chlorination 
dataset are less impacted than the chloramination dataset, when each 
parameter was compared according to the oxidant type. This difference 
can be attributed to the less stability of DCAN in the presence of free 
chlorine versus monochloramine. The modeling of HAN formation 
under UFC warrants further investigation when more chloramination 
data becomes available in the literature. 

To better visualize the multicollinearity, the change in VIF values 
during HAN formation modeling for chlorination and chloramination is 
shown by using a radar chart in Fig. 5 and Fig. S1. Among all variables, 
while the VIF value for DOC term in chlorination (VIF=1.95) was higher, 
during chloramination VIF value was higher for the oxidant dose 
(VIF=1.4) as compared to other variables. Besides, the VIF value for 
temperature term was higher during chlorination (VIF=1.66) than 
chloramination (VIF=1). But, multicollinearity (VIF>10) was not 
observed for both chlorine and chloramine datasets (Fig. S5-S6 in the SI 
section). 

Fig. 5. The variation inflation factor (VIF) values for model of DCAN formation during chlorination and chloramination.  

Fig. 6. Comparision of prechlorination and chlorination process for the pre-
diction models of HAN4 formation in AOMs impacted waters. `value: the 
regression coefficients value of each variable, n: the sample number. 
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3.3. The prediction of HAN formation during prechlorination/ 
chloramination 

The modeling variables (DOC, pH, Br− concentration, prechlorina-
tion time and prechlorination dose) for prechlorination/chloramination 
that were used for developing a predictive model for HAN4 under UFC 
were compiled in Table S4 in the SI section. Due to the limited number of 
prechlorination/chloramination datasets with all parameter values for 
HAN4 formation in the literature, predictive modeling was only exam-
ined for AOM impacted waters. The r2 value of model variables and 
coefficients for HAN4 formation during prechlorination/chloramination 
in AOM impacted water samples were given in Eq. 6. 

logHAN4 = − (0.80 ± 0.95)logDOC + (0.75 ± 0.39)logBr

+ ( − 0.03 ± 0.78)logpH

+ (0.56 ± 0.05)logPrechlorinationTime

+ (1.90 ± 1.12) logPrechlorinationDose − 1.49 ± 0.67  

(
n : 51, r2 : 0.83, p values :< .0001

)
(6) 

Among all independent variables, prechlorination dose was the most 
influential parameter (p-values <0.0001), and positively correlated with 
HAN formation in the AOM impacted waters. While DOC and pH terms 
were negatively correlated in the prechlorination process, as shown in 
Fig. 6., Br− and prechlorination contact time for HAN4 formation 
showed positive correlations. This suggests that the formation of HAN4 

increased with increasing prechlorination dose, contact time and initial 
Br− concentration, which agrees well with previous research (Tian et al., 
2013). 

Since there is no full dataset available for HANs formation during 
chloramination in AOM impacted waters, the prechlorination/chlor-
amination process was compared with only the chlorination model in 
AOM impacted waters. The model prediction of HAN4 during pre-
chlorination/chloramination (r2=0.83, n = 51) was slightly higher than 
chlorination process (r2=0.76, n = 38). With increasing chlorine contact 
times in both prechlorination/chloramination and chlorination pro-
cesses, the formation of HAN4 declined with increasing pH due to lower 
stability of HANs under alkaline conditions (Yu and Reckhow et al., 
2015; Liu et al., 2018). In contrast to chlorination, a lesser pH impact 
was observed on the HAN4 model in prechlorination/chloramination 
(Fig. 6). This may be due to narrower pH ranges used in the prechlor-
ination/chloramination dataset (Table S4 in the SI section), which may 
have influenced the prediction strength of the model. Meanwhile, the 
formation of HAN4 in the prechlorination/chloramination process 
increased with increasing Br− concentration (Fig. 6). This finding was in 
agreement with HAN4 formation results reported by Tian et al. (2013) 
and Liu et al. (2019). 

3.4. HANs vs. THMs correlations 

Since THM data was available for the HAN datasets, the correlations 
between HAN and THM formation were also examined. However, pH is 
an important parameter in this analysis because with increasing pH, the 
formation of THMs is enhanced due to the base-catalyzed reactions, 
whereas at high pH conditions (i.e., pH> 8) HANs undergo base- 
catalyzed hydrolysis (Reckhow et al., 2001; Yu and Reckhow, 2015; 
Ersan et al., 2019a; Hua and Reckhow, 2006; Reckhow et al., 1990). 

Among all pH ranges, HAN4 vs. THM4 (y = 0.1047x+0.0014, 
r2:0.72, n:103), and HAN6 vs. THM4 (y = 0.1118x+0.002, r2:0.80, n =
71) was found highly correlated in the pH range of 7 to 8 of chlorination 
(Fig. 7). At higher pH levels (pH> 8.0), the correlations between HANs 
and THMs decreased (Table S8 in the SI section) which was attributed to 
hydrolysis of HANs (Singer et al., 1994; Reckhow 2001). When THMs vs. 
HANs correlations were performed in individual water sources (distri-
bution systems, groundwater, EfOM, AOM, and NOM waters) under 
similar pH ranges (7–8), THMs highly correlated with HANs in distri-
bution system, EfOM and AOM impacted waters (r2:0.62–0.91) 
(Table S9 in the SI section). Due to the limited data sets for each water 
sources, pH impacts on the correlation between HAN4/HAN6 vs. THM4 
was not individually evaluated in this study. On the other hand, when 
the data for all pH values analyzed together, the correlation coefficient 
(r2) was 0.52 for both HAN4 vs. THM4, HAN6 vs. THM4 correlations 
(Table S8 in the SI section). Therefore, these results show that pH is an 
important parameter for both HAN formation prediction as well as 
developing THM vs. HAN correlations. At pH 7–8 range, HAN formation 
on a mass basis was approximately 10% of THM formation. 

4. Conclusions 

Poly-parameter (UV254, DOC, DON/DOC, SUVA254, Br− , oxidant 
dose, pH, contact time, and temperature ) model equations were 
developed for the prediction of HANs formation in distribution system 
conditions during chlorination, chloramination, and prechlorination/ 
chloramination processes. This comprehensive analysis showed that:  

• The type of water source during chlorination influenced the linearity 
(r2) of the model equations. The r2 values for the DCAN model were 
mostly higher in the individual types (except distribution systems) as 
compared to the cumulative analysis of the data. This was attributed 
to differences in HAN precursor characteristics. The r2 values of 
HAN4 and HAN6 models of NOM, AOM, and EfOM impacted waters 
were within the range of 60–88%, which indicated the success of the 

Fig. 7. The correlation of HANs vs. THMs during chlorination process at 
pH 7–8. 
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models in predicting HAN formations. On the other hand, the r2 

values of HAN4 models for both groundwater and distribution sys-
tems were within the range of 41–66%.  

• Among all variables, pH was the most significant descriptor (p-values 
<.0001) for DCAN, HAN4, and HAN6 in the chlorination process, 
and inversely affected the HAN formation in the distribution system, 
groundwater, AOM, and NOM waters. On the contrary, increasing 
pH positively affected the formation of HAN in the EfOM impacted 
water.  

• A positive correlation between DON/DOC term and DCAN, HAN4 
and HAN6 models observed in EfOM impacted waters indicated the 
role of organic nitrogen species in wastewater effluent. However, 
DON concentrations has not been reported for other types of waters. 
Therefore, reporting both DOC and DON in DBP studies is important 
for future modeling efforts of nitrogeneous DBPs.  

• For chloramination, pH was the significant parameter, and it was 
negatively correlated with DCAN formation in NOM waters.  

• The model prediction of DCAN during chlorination was higher 
(r2=0.88, n = 68) than chloramination (r2=0.49, n = 35), which is 
attributed to the higher HAN stability in the presence of chloramine.  

• For prechlorination/chloramination, prechlorination dose was the 
most influential parameter (p-values <.0001), which was positively 
correlated with HAN formation in the AOM impacted waters. The 
model prediction of HAN4 formation in prechlorination/chlorami-
nation (r2=0.83, n = 51) was higher than chlorination (r2=0.76, n =
38). 

• pH is an important parameter while examining THM vs. HAN cor-
relations. Among all pH ranges, the pH range of 7 to 8 showed the 
highest correlation between HAN4 and THM4 (r2:0.72), and HAN6 
and THM4 (r2:0.80) during chlorination. At this pH range, HAN 
formation was approximately 10% of HAN4 and HAN6 formation on 
a mass basis. 

• Future papers providing the values for all model parameters (espe-
cially DON and DOC) listed above along with HAN formation and 
speciation will help to create larger and more complete datasets, and 
advance the predictive modeling of HANs as well as other nitro-
geneous DBPs. 
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