Deanship of Graduate Studies Al-Quds University

Contributions on Fading Channel Estimation for 5G Mobile Systems

Moataz Hussein Ali Qaroush

M.Sc. Thesis

Jerusalem-Palestine

1440-2018

Contributions on Fading Channel Estimation for 5G Mobile Systems

Prepared By:

Moataz Hussein Ali Qaroush

B.Sc.: Electrical Engineering/Birziet

University-Palestine

Supervisor: Dr. Ali Jamoos

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Electronic and Computer Engineering/Department of Electronic and Computer Engineering/ Faculty of Engineering/ Graduate Studies

Jerusalem-Palestine

1440-2018

Al-Quds University Deanship of Graduate Studies Electronics and Computer Engineering Faculty of Engineering

Thesis Approval

Contributions on Fading Channel Estimation for 5G

Mobile Systems

Prepared By: Moataz Hussein Ali Qaroush Registration No: 21411608

Supervisor: Dr. Ali Jamoos

Master thesis submitted and accepted, Date: 18/12/2018 . The name and signatures of examining committee members are as follows:

	- the	a ps to
1- Head of the committee	Dr. Ali Jamoos	Signature:
2- Internal Examiner	Dr. Ahmed Abdou	Signature:
3- External Examiner	Dr. Murad abu Subaih	Signature:

Jerusalem-Palestine

1440-2018

Declaration

I certify that this thesis submitted for the degree of Master, is the result of my own research, except where otherwise acknowledged, and that this study (or any part of the same) has not been submitted for a higher degree to any other university or institution.

Signed by: Marchaz

Moataz Hussein Ali Qaroush

Date: 18/12/2018

Acknowledgments

I would like to bless my God for everything.

I would like to express my deepest gratefulness to my family especially my parents, my wife, my children for the endless care they have provided advice, support, patience, and me.

Special thanks go out to my supervisor, Dr. Ali Jamoos, whose give me more knowledge and skills in the communication field. In addition, his guidance helped me in all the time of research and writing of this thesis.

My sincere thanks also go to the electronics and computer department at Al-Quds University for helping me in topics that are related to digital signal processing.

I would like to express my thanks to president of Al-Quds Open University Prof. Younes Amro and President Assistant for technology and production at Al-Quds Open University Dr. Islam Amro for their encouragement to complete higher education.

I would like to express my thankfulness to all those who helped me during the period of my study and give me motivation and encouragement.

Abstract

Universal filtered multi-carrier (UFMC) modulation is a very powerful candidate to be employed for future 5G mobile systems. It overcomes the limitations and restrictions in current modulation techniques employed in 4G mobile systems such as orthogonal frequency division multiplexing (OFDM) and Filter bank multicarrier (FBMC). In addition, UFMC can support future applications like machine-to-machine (M2M), device-to-device (D2D), and vehicle-to-vehicle (V2V) communications.

In this thesis, we address the estimation of UFMC fading channels based on the comb-type pilot arrangement in the frequency domain. The basic solution is to estimate the fading channel based on the mean square error (MSE) or least square (LS) criteria with adaptive implementation using least mean square (LMS) or recursive least square (RLS) algorithms. However, these adaptive filters seem not effective, as they cannot fully exploit fading channel statistics. To take advantage of these statistics, the time-variations of the fading channel is modelled by an autoregressive process (AR) and tracked by an H_{∞} filter. Nevertheless, this requires the AR model parameters, which are estimated by solving the Yule-Walker equation (YWE), based on the Bessel autocorrelation function (ACF) of the fading channel with known Doppler rate.

The results of MATLAB simulations show the effectiveness of the proposed H_{∞} filter based channel estimator as compared with Kalman filter, and conventional adaptive filters such as RLS and LMS algorithms. Furthermore, the low pass interpolation is confirmed to outperform both spline and linear interpolation.

Keywords: fading channel, channel estimation, autoregressive model, 5G, UFMC, H_{∞} filter, Kalman filter, LMS Filter, RLS Filter.

Table of Contents

Declaration	1
Acknowledgments	2
Abstract	
Table of Contents	4
List of Figures	б
Chapter 1	
Introduction	
1.1 Evolution of Mobile Generation	
1.1.1 Zero Generation (0G)	8
1.1.2 First Generation (1G)	9
1.1.3 Second Generation (2G)	9
1.1.4 Third generation (3G)	9
1.1.5 Fourth generation (4G)	
1.1.6 Fifth Generation (5G)	
1.2 Global Mobile Data Traffic Forecast Update	
1.3 Multicarrier Modulation Systems (MCM)	14
1.3.1 Orthogonal Frequency Division Multiplexing multi-carrier (OFDM)16
1.3.2 Filter Bank Multi-carrier (FBMC)	
1.3.3 Universal Filter Multi-carrier (UFMC)	
1.4 Literature review and contribution	
Chapter 2	
	21
UFMC Wireless System Model	
2.1 Overview	
2.2 Windowing Function	
2.2.1 Rectangular window	
2.2.2 Triangular window	
2.2.3 Raised Cosine window	24
2.2.4 Adjustable window	
2.2.5 Dolph Chebyshev vs Hanning and Hamming	
2.3 UFMC Transceiver Model and Channel	
2.3.1 UFMC Transmitter	
2.3.2 Channel Model	

2.3.3 UFMC Receiver	
2.4 UFMC vs OFDM and FBMC	
Chapter 3	
Fading Channel Estimation and Equalizing	
3.1 State of the art	
3.2 Pilot pattern	41
3.2.1 Block type pilot Arrangement	
3.2.2 Rectangular Pilot Arrangement	
3.2.3 Comb Pilot Arrangement	
3.3 Nyquist Condition	
3.4 Autoregressive (AR) Channel Modeling	
3.5 Channel estimation	
3.5.1 Fading process estimation at pilot symbol positions	
3.5.2 Interpolation techniques	53
3.5.3 Fading channel equalization	54
Chapter 4	55
Simulation Results	55
4.1 Simulation environment	55
4.2 QAM Modulation	55
4.3 UFMC Channel Envelope and Phase	
4.4 BER performance versus SNR	
Chapter 5	61
	61
Conclusion and Future Work	61
5.1 Conclusion	61
5.2 Future Work	
Acronyms and Abbreviation	63
Notations	67
Bibliography	71
من أنظمة الاتصالات الخليوية(5G)مشاركة حول تقدير القنوات المضمحلة للجيل الخامس	
الملخص	
Appendix: Published paper in IEEE Xplore Digital Library	

List of Figures

Figure 1. 1: The number of Smartphones in 2005 [6]11
Figure 1. 2: The growth of the number of Smartphones in 2013 [6]12
Figure 1. 3: Growth of Traffic between (2016 and 2021) [7]12
Figure 1. 4: The Mobile traffic share between (2016 and 2021) [7]13
Figure 1. 5: Global Growth of smart devices and Connections between (2016-2021) [7]13
Figure 1. 6: Effect of Smart and non-smart mobile Devices and Connections Growth on
Traffic [7]
Figure 2. 1: Rectangular window in time and frequency domain for $L= 64$
Figure 2. 2: Triangular window in time and frequency domain for <i>L</i> =6423
Figure 2. 3: Hanning window in time and frequency domain for <i>L</i> =6424
Figure 2. 4: Hanning window in time and frequency domain for <i>L</i> =6425
Figure 2. 5: Gaussian Window in Time and frequency domain for <i>L</i> =6426
Figure 2. 6: Dolph Chebyshev window in time and frequency for <i>L</i> =6427
Figure 2. 7: Dolph Chebyshev window vs Hamming and Hanning
Figure 2. 8: UFMC signal in the frequency domain [43]
Figure 2. 9: UFMC Transceiver block diagram
Figure 2. 10: Multipath fading channel [45]
Figure 2. 11: Channel Model block diagram
Figure 2. 12: Rayleigh envelope of <i>hkn</i> along the <i>nth</i> UFMC symbol
Figure 2. 13: Rayleigh phase of <i>hkn</i> along the <i>nth</i> UFMC symbol
Figure 2. 14: PSD of <i>hkn</i> along <i>nth</i> UFMC symbol
Figure 2. 15: Autocorrelation function of hkn along n^{th} UFMC symbol
Figure 2. 16: Power Spectral Density for UFMC System
Figure 2. 17: Power Spectral Density for OFDM System
Figure 2. 18: Power Spectral Density for FBMC System
Figure 3. 1: Block type pilot arrangement
Figure 3. 2: Comb type Pilot Arrangement

Figure 4: 1: BER vs SNR for UFMC QAM Modulation.	56
Figure 4: 2: Envelope of estimated fading process using the various estimators	57
Figure 4: 3: Phase of estimated fading process using the various estimators	57

Figure 4: 4: BER performance vs SNR for UFMC system with various channel estimators.
$f dT s = 0.1111 \dots 58$
Figure 4: 5: BER performance vs SNR for UFMC system with various channel estimators.
f dT s = 0.0741
Figure 4: 6: BER performance vs SNR for UFMC system with various channel estimators.
f dT s = 0.03759
Figure 4: 7: BER performance vs SNR for UFMC system with the various using
interpolation methods. $M = 2048$, $Np = 256$, and $fdTs = 0.0741$
Figure 4: 8: BER performance vs SNR for UFMC system with different numbers of pilot
symbols various when using $H\infty$ interpolation methods. $M = 2048$, $Np = 256$, and
f dT s = 0.0741

Chapter 1

Introduction

In wireless communication systems, 1G refers to the first generation of the mobile wireless communication system. To this date, there are main fourth mobile generation named (1G-4G). Since 1G was introduced in the early 1979s, a new wireless mobile telecommunications technology has been released roughly every 10 years. All of them refer to the technology used by the mobile carrier and device itself. They have different speeds and features that improve on the previous generation. The next generation is 5G, which is scheduled to launch in 2020-2030.

1.1 Evolution of Mobile Generation

1.1.1 Zero Generation (0G)

OG is also known as mobile radio telephone systems. It was invented before 1979. This system was analog in nature. Generally, OG provides half-duplex communications. These mobile telephones were placed in ships, trains and vehicles. In addition, it was very costly [1].

1.1.2 First Generation (1G)

In 1979, the first mobile generation (1G) was launched. The main growth that differentiated the 1G from the previous generation was the use of multiple cell sites and the capability to move calls from one site to the next as the user moved between cells during a conversation [1]. Each base station (cell site) supporting service to a specific area (cell). The cell sites would be set up such that cells partially overlapped. In a cellular system, a signal between a base station (cell site) and a terminal (phone) only require be strong enough to reach between them, so the same channel can be employed simultaneously for individual conversations in another cells.

1.1.3 Second Generation (2G)

In the1990s, the second generation (2G) mobile phone systems was launched. The main difference of the 2G from the previous generation was the use of digital transmission instead of analog transmission. The rise in mobile phone usage as a result of 2G was explosive and this era also saw the advent of prepaid mobile phones. The 2G introduced a new different to communication, as SMS text messaging became possible, initially on GSM networks and eventually on all digital networks [1-2]. Several advantages of 2G were digital signals need use less battery power, so it betters mobile batteries to keep long. Digital coding betters the voice clarity and decreases noise in the line. Digital encryption has granted secrecy and safety to the data and voice calls.

1.1.4 Third generation (3G)

3G was launched in 2000. As the usage of 2G phones became more widespread and people began to use mobile phones in their daily lives, it became clear that demand for data services

like web browsing, sending emails, media streaming and stream radio was growing. The major technological difference that distinguishes 3G technology from 2G technology is the use of packet switching rather than circuit switching for data transmission [3].

1.1.5 Fourth generation (4G)

4G is the current mobile generation. It is basically the expansion in the 3G technology with more bandwidth and services offers in the 3G. The main service for the 4G technology is high quality audio/video streaming over end to end internet protocol [4]. One of the major ways in which 4G differed technologically from 3G was employing an all internet protocol network instead of circuit switching.

1.1.6 Fifth Generation (5G)

5G is the fifth generation of cellular mobile communication, offering high data rate, faster speeds, higher connection density, energy saving. 5G development is under research, 5G networks are expected to launch across the world by 2020-2030.

Table (1.1) summarizes the main differences between the mobile generations (1G to 5G) in a wireless communication system [5].

Technology	1G	2G	2.5G	3G	4G	5G
Period	1980-1990	1990-2000	1995	2000-2010	2010-2020	2020-2030
Services	Analog	Digital Voice,	Higher Capacity,	Higher	Higher Capacity	Dynamic information
	Voice	Short messages	Packetized Data	Capacity	complementary	access,
				broadband	IP-Oriented,	Wearable devices
				data 2Mbps	Multimedia Data	
Standards	AMPS	TDMA	GPRS	WCDMA	LTE	WWWW
	TACS	CDMA	EDGE	CDMA2000	WIFI	
	NMT	GSM	1xRTT	UMTS	WiMAX	

Table 1. 1: Comparison of 1G to 5G technology [5]

		PDC				
Data Rate	1.9Kbps	14.4Kbps	384Kbps	2Mbps	200Mbps	1Gbps-10Gbps
Bandwidth	900MHz	900MHz	100MHz	100MHz	100MHz	-
Channel	30KHz	200Khz	200Khz	5Mhz	200Mhz	
Band width						
Multiplexing	FDMA	TDMA	TDMA	CDMA	OFDMA	
		CDMA	CDMA			
Core	PSTN	PSTN	PSTN,	Packet	Internet	Internet
Network			Packet Network	Network		
Handover	Horizontal	Horizontal	Horizontal	Horizontal	Horizontal	Horizontal
					And	And
					Vertical	Vertical
	1					

1.2 Global Mobile Data Traffic Forecast Update

In this section, we will introduce some figures for mobile data traffic and growth of owned smart devices. Figures (1.1, 1.2) [6], shows the growth of a number of smart devices between (2005-2013). In Peter's square in 2005 when Pope greeted the public, we notice a few persons had a smartphone. While in 2013 for the same occasion in Peter's square, most of the people have owned smartphones, which clearly shows that there is an increasing number of owned devices and connected devices to the internet in the future.

Figure 1. 1: The number of Smartphones in 2005 [6]

Figure 1. 2: The growth of the number of Smartphones in 2013 [6] Figure (1.3) shows the expectation of growing traffic to (49) Exabyte per month at 2021, while the data traffic was (7) Exabyte at 2016 [7].

Figure 1. 3: Growth of Traffic between (2016 and 2021) [7]

Figure (1.4) shows cisco estimated mobile video traffic between 2016 and 2021. While mobile video represented more than half of global mobile data traffic beginning at 2012, the