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Abstract 

In regression, the objective is to explain the variation in one or more response variables, 

by associating this variation with proportional in one or more explanatory variables. If 

there is no linear relationship between these explanatory variables, they are said to be 

orthogonal. If the variables is not orthogonal then several of the explanatory variables 

will vary in rather similar ways. This problem is called multicollinearity, which is a 

commonly occurring problem in regression analysis. It is the situation in which two or 

more explanatory variables are highly (but not perfectly ) correlated to one another, 

making it difficult to interpret the strength of the effect of each variable. Handling 

multicollinearity problem in regression analysis is very important because the least 

squares estimatiors assume that the predictors are not correlated. A number of 

procedures have been developed for finding biased estimators of regression parameters. 

Some of these procedures are ridge regression (RR), principal component regression 

(PCR) and partial least squares regression (PLSR). 

In this thesis, we consider ridge regression, including the ridge estimator (ordinary and 

generalized) and their properties. Since the creative work of Hoerl and Kennard ridge 

regression has proven to be a useful technique to tackle the multicollinearity problem in 

the linear regression model. Different approaches are investigated with different criteria 

for estimating the ridge parameter . In this thesis a comparison between well-known 

approaches for selecting the ridge parameter . Under the normality assumptions, the 

mean squared error (MSE) criterion is used to examine the performance of these 

estimators when compared with the ordinary least squared estimator (OLS).  

The simulation studies and the analysis of real data demonstrate that under certain 

conditions, at least one of the considered estimators (HKa, KS, HK, FK) have a smaller 

MSE than the ordinary least squared estimator (OLS), and other approaches. 
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 الملخص

لحل مشكلة  في ايجاد معاملات المتغيرات المستقلة ) Ridge Regression(ما يسمى  في هذه الرسالة  قمنا بدراسة طريقة

تؤثر على طريقة تفسير أي علاقة بين  ة هذه المشكلبين المتغيرات المستقلة، حيث ان )  الازدواج الخطي( الارتباط الخطي

 .التابعوالمتغير  المتغيرات المستقلة

  ومن اجل ذلك قمنا بما يلي

قمنا بدراسة ومراجعة خصائص تحليل الانحدار الخطي، من خلال دراسة الانحدار الخطي البسيط والمتعدد وآذلك دراسة ما 

  ومعرفة خصائصه ومدى فعاليته في إيجاد معاملات المتغيرات المستقلة  Ordinary least squares) ( يسمى

قمنا بدراسة مشكلة الارتباط الخطي بين المتغيرات ومراجعة احدث الأبحاث المنشورة عن هذه المشكلة حيث تعرفنا طرق  ثم

  .اآتشاف هذه المشكلة ومدى تأثير هذه المشكلة على تفسير العلاقة بين المتغير المستقل والمتغير التابع

من خلال هذه الأوراق المنشورة في مجلات  ، )Ridge Regression(قمنا بدراسة احدث الأوراق والأبحاث  المنشورة عن 

  .  ridge parameter kعالمية تعرفنا على الكثير من الطرق في إيجاد ما يسمى 

 ما يسمىقمنا بعمل مقارنة بين و 

(Mean squared error of OLS  وآذلك mean squared error of ridge estimators) 

 معتمدا على

parameters , , , ). 

توليد مجموعات مختلفة من البيانات تحوي الارتباط الخطي المتعدد بدرجات مختلفة وأظهرنا مدى  فاعلية وذلك من خلال 

 ridgeالتي اعتمد   kقيم وآذلك التمييز بين Ordinary least squares) (على   )Ridge Regression(طريقة 

estimators  

 ridge parametersبالاعتماد على ) Ridge Regression(قمنا بتطبيق بيانات حقيقية على طريقة  وآذلك

 , , , . 
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Chapter one 

INTRODUCTION 

1.1    Introduction   

  Researchers are often interested in the relationships between one variable and several 

other variables. Often in applied statistics, after the data had been collected the purpose of 

analysis is to construct a statistical model. Regression analysis consists of techniques for 

modeling the relationships between a dependent variable (known as response variable) and 

one or more independent variables (known as explanatory variables or predictors). In 

regression the dependent variable is modeled as a function of independent variables,  

corresponding regression parameter, and a random error term which represents the variation 

in the dependent variable unexplained by the function of the independent variables in 

symbol we denote the response variable by  and the set of predictor variables by 

, , … ,   where  denotes the number of predictor variables. The relation between 

Y and the set of independent variable  , , … ,  can be approximated by the regression 

model 

, , … ,  

Where  ε is assumed to be a random error (noise weight) representing the discrepancy in the 

approximation. It accounts for the failure of the model to fit the data exactly. The function 

, , … ,  describes the relationship between Y and , , … , .  can be linear or 

nonlinear function. The term linear (nonlinear) doesn’t describe the relationship between  

and  , , … , . It is related to the fact that the regression parameters enter the equation 
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linearly (nonlinearly). Linear regression requires that the model is linear in regression 

parameters. Regression analysis is the method to discover the relationship between one or 

more response variables and the predictors. There are three types of regression. The first is 

simple linear regression. The simple linear regression is for models the linear relationship 

between two variables one of them is the dependent variable and the other is the 

independent variable. The second type in regression is the multiple linear regression which 

is linear regression model with one dependent variable and more than one independent 

variables. The third type of regression is nonlinear regression, which assumes that the 

relationship between the dependent variable and the independent variable is not linear in 

regression parameters. Nonlinear regression model is more complicated than linear 

regression model in term of estimation the model parameters, model selection, model 

diagnosis, variable selection, outlier observation. When we deal only with one response 

variable, regression analysis is called univariate regression and in case we have two or 

more response variables regression is called multivariate regression.  

1.2     The Problem of Multicollinearity 

The problem of multicollinearity has remained the center of attraction in the literature of 

linear regression analysis for a long time. It arises when the explanatory variables in a 

linear regression model are highly correlated, and thus one or more columns of the (design 

matrix) form a near linear combination with other columns. This problem can cause the 

value of the least squares estimated regression coefficients to be conditional upon the 

correlated predictor variables in the model. As defined by Bowerman and O’Connell (1990) 

the presence of multicollinearity in the data is a numerical issue as well as a statistical 

issue. It a is statistical issue because it inflates (being large) the variance of ordinary least 
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square estimator and a numerical issue in the sense that the small errors in input may cause 

large errors in the output.                                                    

According to Neter et al. (1996), there are two types of multicollinearity: perfect 

multicollinearity (or extreme multicollinearity) and high multicollinearity (or near extreme 

multicollinearity).  

Perfect multicollinearity means that at least two of the independent variables in a regression 

equation are perfectly related by a linear function. When perfect multicollinearity is 

present, there is no perfect solution. Perfect multicollinearity occurs when: 

1. Independent variables are linear functions of each other, for example; age and year 

of birth.  

2. Dummy variables are created for all values of a categorical variable. 

3. There are fewer observations than variables.  

High multicollinearity means that there are strong (but not perfect) linear relationship 

among the independent variables. If the regression model has only two independent 

variables, high multicollinearity occurs if the two variables have a correlation that is close 

to 1 or –1. Therefore, the closer it gets to 1 or –1, the greater is the association between the 

independent variables. When there is high but imperfect multicollinearity, a solution is still 

possible but as the independent variables increase in correlation with each other, the 

standard errors of the regression coefficients will become inflated. 
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  1.3      Purpose and Objectives of the Thesis 

A recent alternative to least squares regression is ridge regression (Darlington, 1978; 

Dempster, Schatzoff & Wermuth, 1977; Hoerl & Kennard, 1970; Prince, 1977). Ridge 

regression was developed expressly for the purpose of circumventing the weakness of least 

squares regression with regard to highly overlapping predictors, and as such, applying ridge 

regression would appear to be very appropriate.  

It is important to realize that the resulting ridge regression equation is a biased estimate and 

not reflective of population parameters. As such, ridge regression is of little use in 

theoretical modeling (Darlingon, 1978). The main advantage of ridge regression is in 

prediction, and as this is the specific purpose of using regression equations in selection, 

ridge regression would appear to be a particularly useful tool when multicollinearity is 

presented.  

The purpose of this thesis is to examine the improvement in prediction of the ridge 

regression procedure over the least squares regression procedure when applied to 

multicollinearity data. Improvement of prediction was defined in terms of the value of ridge 

parameters , ,  and,  of the multiple correlation coefficients obtained when 

the regression equations were applied on different samples. Further, as it has been 

demonstrated that the best choice of  gives better maximum prediction. It was expected 

that the ridge regression procedure would result in less MSE than the least squares 

procedure. 
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The objectives of this thesis can be summarized as: 

1. To study and investigate the univariate and multivariate linear regression and their 

properties.   

2.  To present the ridge estimator (ordinary and generalized) and its properties for 

handling multicollinearity problem. 

3. To review the relevant literature on published work done recently concerning the 

problems of multicollinearity. 

4. To compare the mean squared error of OLS and the mean squared error of ridge 

estimators depend on the ridge parameters , , ,  

 

1.4   Scope of the Thesis 

This thesis consists of five chapters. The first chapter is an introductory chapter in which 

the definition of regression analysis, multicollinearity and the importance of the ridge 

regression are mentioned. 

In the second chapter, some background information about the linear regression is 

presented. In addition, some common estimate tasks and techniques are explained, and the 

main steps of the Ordinary Least Square Estimation (OLSE) process are mentioned. At the 

end of this chapter, some popular approaches of statistical inferences of the (OLSE) are 

presented.  

The main part of this thesis contains three chapters, which cover research related to this 

study. In the third chapter a comprehensive literature review on multicollinearity problem is 

introduced. Besides the effect, the source, the diagnostics, and the remedies of 
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multicollinearity are presented. A detailed explanation of ridge regression, selection of 

variables, general ridge regression and ridge parameters will be presented in chapter four. A 

comparison study through a simulation study  and real data analysis followed by conclusion 

of this study and the possible works that can be done in the future are presented in the final 

chapter. 
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Chapter two 

Linear Regression 

 

This chapter expands on the analysis of simple linear regression models and discusses the 

analysis of multiple linear regression models in matrix form. 

Numerous procedures have been developed for parameter estimation and inference in linear 

regression. These methods differ in computational simplicity of algorithms, presence of a 

closed-form solution, robustness with respect to heavy-tailed distributions, and theoretical 

assumptions needed to validate desirable statistical properties such as consistency and 

asymptotic efficiency. One of the most common estimation techniques for linear regression 

is the Ordinary Least Squares (OLS). Discussion and properties of the (OLS) also are 

presented in this chapter.  

2.1 Simple Linear Regression 

The general form of simple linear regression consists of the mean function and the variance 

function 

|  

                         |  
2.1

The parameters in model (2.1) are the intercept   which is the value of |  when 

 is equals zero and  is the slope which is the rate of change in |  for a unit 

change in . As this parameter changes we get different straight lines. In most applications 

parameters are unknown and must be estimated.  is constant that is usually unknown. 

The observed value of the response variable   will be typically not equal to the expected 
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value |  since 0. The difference between the observed value and the 

expected value is called statistical error or , that is 

  | , 1,2, … ,  

The errors  depend on the unknown parameter in the mean function and so are not 

observable quantities. They are random variables and correspond to vertical distance 

between   and  | . 

2.1.1   Assumptions on which simple linear regression is based  

Quantitative models always rest on assumptions about the way the world works, and 

regression models are no exception. There are four principal assumptions which justify the 

use of linear regression models for purposes of prediction: 

1. The mean value of the dependent variable  increases or decreases linearly as the 

value of the independent variable   increases or decreases. To put it simply there is 

a linear relationship between  and . 

2. For given value of independent variable   the corresponding values of the 

dependent variable   are distributed normally. The mean value of this distribution 

falls on the regression line. 

3. The standard deviation of the values of the dependent variable  at any given value 

of independent variable   is the same for all values of  . 

4. The errors are uncorrelated (i.e. Independent) and are distributed  normally  as 

 ~ 0,  
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2.1.2   Ordinary Least Square Estimation 

There are many methods for estimating the parameters in the model (2.1). Here we will 

discuss the ordinary least squares method (OLS), in which parameter estimates are chosen 

to minimize the residual sums of squares. Estimates of parameters are computable functions 

of data and therefore statistics, we estimate  by , and  by  and thus the model (2.1) 

is estimated as 

|  

The best linear model minimizes the sum squared error (RSS): 

   ,  

Estimation of a simple linear regression relationship involves finding estimated or predicted 

values of the intercept and slope of the linear regression line. 

The estimated regression line is:  

|    , 1,2, … ,  

The least squares estimates can be derived in many ways. And they are given by the 

expressions: 

   And      , 

 where   ∑  
√

  And  ∑
√
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2.1.3    Properties of least square method  

With the  assumptions on the error that assumed to be independent random quantities and  

Normally distributed with mean zero and variance  the fitted line pass through the point 

( , . The quantities  and  are unbiased estimates of    and     respectively. Their 

variances are: 

 
 

∑      and      ∑  

And they are correlated, with covariance  

,
 

∑  

Furthermore, the sampling distribution of the least squares estimates  and   are Normal 

with means   and    and variances that given above respectively. 

The variances of   and    depend on the unknown parameter 
 
 from the data. An 

unbiased estimate of 
 
 is given by 

∑
2  

2.1.4 Analysis of Variance  

Analysis of variance provides a convenient method of comparing the fit of two or more 

mean functions for the same set of data. The total sum of squared deviations in  can be 

decomposed into the sum of two quantities the first, SSR, measures the quality of   as a 
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predictor of  , and the second, SSE, measures the error in this prediction. This is explained 

in the following points:   

• Our observed variable  will always have some variability associated with it. We 

break this into the variability related to our predictor and the variability unrelated to 

our predictor.  

• SSTO=Total sums of squares= ∑   is the total variability in . It has 1 

degrees of freedom associated with it.     

• SSR=regression sum of square =∑  is the variability of   accounted for 

our regression model. Since we are using one predictor  it has one degree of 

freedom associated with it.    

• SSE=Error sums of squares =∑  is the variability in Y that is not 

accounted by for our regression model. It has 2 degree of freedom associated 

with it. 

• The fundamental equality is given by  

 

2.1.5    Tests of hypotheses  

To test whether there is a linear relationship between two variables we can perform a 

hypothesis test on the slope parameter in the corresponding simple linear regression model. 

The general form for test statistic is 
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2.1.5.1    Test of    

In order to test  , we consider the following point : 

• Point estimate ( ) =least squares estimate=  

• E(point estimate )=  

• Standard deviation = . ∑    

• The resulting test statistic ,  follows a  distribution with 2  degree of 

freedom. 

2.1.5.2   Explanation for testing   

An appropriate test statistic for testing the null hypothesis : =0 against the 

alternative  : 0 in the t-test, 

.
 

The statistic  is distributed as Student's t-distribution with ( 2 degrees of freedom. 

The test is carried out by comparing this observed value with the appropriate critical value 

obtained from the t-table which is  ,  where  is specified significance level. 

Accordingly  is be rejected at the significance level α if  

| | ,  2.2

Where | | denotes the absolute value of . A criterion equivalent to that in (2.2) is to 

compare the value for the -test with ,  and we reject  if  
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| |  

2.1.5.3 Test of    

In order to test   we consider the following point:  

• Point estimate =least squares estimate= β  

• E(point estimate )= β  

• Standard deviation=  s. e β Var β σ
  

∑    

• The resulting test statistic  
.

, follows a  distribution with n 2 degrees 

of freedom. 

2.1.6   Confidence Interval 

Point estimate tell us about the central tendency of a distribution while confidence intervals 

tell us about both the central tendency and the spread of the distribution. 

The general form of the confidence interval is  

Point estimate (critical value)(standard error of point estimate) 

The general 1  confidence interval for β  is given by: 

,  .  

We can perform significance test using confidence intervals. If your interval contains the 

value of the parameter under the null hypothesis you fall to reject the null. If the value 

under the null hypothesis falls outside of your confidence interval then you reject the null. 
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2.1.7 Coefficient of determination 

The Coefficient of determination , indicate the percentage of variation in  that is 

explained by all predictor in the equation. The Coefficient of determination can be 

calculated as 

1  

Properties of  summarized as follows:  

• 0 1 

• Higher of leads to more useful model. 

• Unaffected if the units of the measurement are changed.   

• The Coefficient of determination  is a measure of how well the least square   

model perform as a predictor of  . 

• The Coefficient of determination  measures the relative size of   . 

2.3      Multiple linear regression 

A multiple linear regression model can be expressed as: 

 2.3

Model (2.3) can be written in matrix form as 

 2.4

Where  is  1  vector of the variable to be explained,   is an   matrix of 

explanatory variables where  is the number of observations and  is the number of the 
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explanatory variable.  is an 1 vector of disturbances distributed as ~ 0, . The  

1 parameter vector  is assumed unknown and to be estimated by the data  and   

Where  

1   
   

1   

 …   
 …  
 …   

, 

, … , , 

, … ,  

And 

β , β , … , β  

2.3.1     Estimation of regression coefficients  

The least squares criterion is generalized for general linear regression model as 

 

The least squares estimators are those values of , ,…,  that minimize the sum square 

error. Denote the vector of least squares estimated by  

.

.
 

In matrix form the ordinary least squares written as 
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2
 

Taking the derivative with respect to   gives, 

 0 2 2  

Setting this equal to zero implies  

  

This is called the normal equation  

Assuming that  not ill-conditioned matrix thus we have the unique linear solution  

 

Thus the predicted model is given by 

 

2.3.2     Proprieties of the ordinary least estimator 

• The Gauss-Markov theorem tells us that the OLS estimator is the best unbiased 

linear Estimator (BUE). 

• Unbiased means that the expected value of   , . 

• The estimator is linear function of the dependent variable observation once we have 

fixed the model matrix . 

• The least squares estimator is under the assumption, the best such estimator because 

it is the most efficient (minimum variance).  
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• The OLS is attractive because it is Maximum likelihood estimator. 

2.3.3      Distribution of    

Since  ,  the distribution of   is based on the distribution of   

Since ~ ,   and by multivariate theorem we have  

  

 

Thus 

~ ,  2.5

We can generalize what we mentioned in section (2.1.4 ) as following:  

• SSTO=∑ , and it has 1 degrees of freedom associated with it.     

• SSR =∑ ,  and it has 1 degree of freedom associated with it.    

• SSE =∑ , and it has  degree of freedom associated with it. 

And the mean squares: 

1
∑

1  

MSE
SSE

n p
∑ Y Y   

n p  

1
∑   

1  
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2.3.4  Tests for  

The test for significance of regression is to test to determine whether a linear relationship 

exists between the response variable and the independent variable. The appropriate 

hypotheses are 

 : 0 

 : 0 for at least one 1, … , 1 

The test statistic for   : 0 is 

 

Under  , ~ ,  

We Reject  if F is greater than critical value  , . If    is rejected, we conclude 

that at least one of the regression coefficients is non zero hence at least ones of the   

variable is useful in predicting . If  is not rejected, then we cannot conclude that any of 

the  variables is useful in predicting . 

2.3.5 Confidence interval for  

We can construct confidence intervals for a particular coefficient . The 1  confidence 

interval is given by 

,   

From (2.5) we get that 
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Thus                                       s b s  

2.4   Correlation transformation  

The Correlation transformation is a simple function of the standardized variables, the 

Correlation transformation of the dependent and independent variables is given by 

1
√ 1

, 1,2, . . , 1 

1
√ 1

, 1,2, . . ,   

The regression model with transformed variables as defined by the correlation 

transformation is called a standardized regression model and defined as follows : 

̃  

The  matrix for the transformed variables (without the intercept term) is 

 …   
 …  
 …   

 

Then   , where   is the correlation matrix of the X variables which contains 

the element of coefficients of simple correlation between all pairs of X variables. That is, 

1
1

1
 

Similar to the algebraic definition of  matrix 



20 
 

 

Where  

.

.

.
 

 The normal equation for the standardized multiple regression is given by 

 

Where  

.

.

.

 

The parameters , , … ,  in the standardized regression model and the original 

parameters , , … ,  in the ordinary multiple regression model are related as follows : 

  , 1,2, . . , 1 
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Chapter three 

Multicollinearity  

If there is no linear relation between the predictors, then they are said to be orthogonal. 

When the predictors are orthogonal, prediction of dependent variable and estimation of the 

parameters coefficient and selection an appropriate predictor in the model can be made 

relatively easily. Unfortunately, in most application on linear regression the independent 

variables are not orthogonal that is there are approximate linear relationships between two 

or more independent variables in a multiple regression model. When there are near linear 

dependencies between predictors multicollinearity exists. The condition of severe 

nonorthogonality is also referred to as the problem of collinear data, or multicollinearity.  

Elimination of multicollinearity is not possible completely but the degree of 

multicollinearity can be decreased. In this chapter our study will be focused on explaining 

multicollinearity problem. And discusses several methods for detection this problem such 

as variance inflation factor VIF, correlation matrix, condition number, and tolerance. Some 

of the popular methods for decreasing the degree of multicollinearity such as principal 

component regression, adding additional data or new data, model respecification will be 

discussed in this chapter. The most popular method for handling multicollinearity problem 

is ridge regression, this method will be discussed in details in chapter four.  
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3.1  Explanation of Multicollinearity  

In most applications perfect multicollinearity is unlikely but near multicollinearity is more 

likely to analyst. Let  column of the matrix  … …  denoted by , 

multicollinearity can be defined as the linear dependence of the column of . The vectors 

are linearly dependent if there is a constant , , …  not all equal zero such that  

0  
3.1

If (3.1) holds for a subset of columns of   then the rank of    is less than  and 

  doesn't exist, and if (3.1) holds approximately for some subsets of  , then there 

will be a near linear dependency in   and the problem of multicollinearity exists. It is to 

be noted that the multicollinearity is a form of ill-conditioning in the   matrix. 

Furthermore, the problem is one of the degrees, that is, every data set will suffer from 

multicollinearity to some extent unless the columns of  are orthogonal.  

The presence of multicollinearity can make the usual least squares analysis of the 

regression model dramatically inadequate. In some cases, multiple regression results may 

seem paradoxical. Even though the overall P value is very low, all of the individual P 

values are high. This means that the model fits the data well, even though none of the  

variables has a statistically significant impact in predicting . How is this possible? When 

two   variables are highly correlated, they both convey essentially the same information. 

In this case, neither may contribute significantly to the model after the other one is 

included. But together they contribute a lot. If both variables are removed from the model, 

the fit would be much worse. So the overall model fits the data well, but neither  variable 
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makes a significant contribution when its added to the model. When this happens, the  

variables are collinear and the results show multicollinearity. 

3.2 Effects of multicollinearity  

If the goal is simply to predict  from a set of   variables, then multicollinearity is not a 

problem. The predictions will be still accurate, and the overall  (or adjusted  ) 

quantifies how well the model predicts the  values. If the goal is to understand how the 

various  variables impact , then multicollinearity is a big problem.  

The effects of multicollinearity can be listed as follows: 

1. For variables that are highly related to one another but not perfectly related the 

ordinary least squares estimators have large variances and covariances making 

precise estimation difficult. 

2. Confidence intervals tend to be much wider, the confidence interval may be include 

zero, leading to the acceptance of the null hypothesis more readily which means one 

can't even be confident whether an increase in the   value  is associated with an 

increase, or a decrease, in . Because the confidence intervals are so wide, 

excluding a subject (or adding a new one) can change the coeffictients dramatically 

and may even change their signs.  

3. Although the    ratio of one or more of the coefficients is more likely to be 

insignificant with multicollinearity, the  value for the model can still be relatively 

high. 

4. The ordinary least squares estimators and their standard errors can be sensitive to 

small changes in the data. In other words, the results will not be robust.   
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5. The individual P values can be misleading (a  P value can be high, even though the 

variable is important).      

6. Roundoff error in normal equation calculation 

The results from normal equations calculations can be sensitive to rounding of data in 

intermediate stage of calculation.  The roundoff errors tend to enter least squares 

calculations when the inverse of   is taken. It may be serious when   has a 

determinant that is close to 0, in which case   almost does not exist. This results in 

inaccurate values of least squares estimated regression coefficients   . Roundoff error may 

also exist when the element of   differ substantially in terms of magnitude, that is when 

the data in   variables cover large range.   

Correlation transformation helps with controlling roundoff error because it makes all 

entries in the   matrix for the transformed variable to fall between –1 and +1 inclusive. 

Hence, the calculation of the inverse matrix becomes much less subjected to roundoff error 

due to dissimilar orders of magnitudes than with the original variables. 

3.3    Source of multicollinearity  

There are four primary sources of multicollinearity: 

1. The data collection method employed. This method can lead to multicollinearity 

when the analyst samples only a subspace of the  region of the regressors defined in 

equation  2.4 . 

2. Constraints on the model or the population. Constraints of the model or in the 

population being sampled can cause multicollinearity. For example of constraints 
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physical constraints such as the unit of the regressors. And other constraints that the 

researchers added to the model.   

3. Model specification. Multicollinearity may be induced by the choice of model. We 

know that adding a polynomial term to a regression model causes ill conditioning of 

the   matrix. 

4. An over defined model. An over defined model has more regressor variables than 

number of observations. These models are sometimes uncounted in medical and 

behavioral research, where there may be only small number of subjects available, 

and information is collected for a large number of regressors on each subject.   

3.4  Multicollinearity diagnostics 

Multicollinearity is a matter of degree, not a matter of presence or absence. The higher 

degree of multicollinearity, the greater the likelihood of the disturbing consequences of 

multicollinearity. 

There are several techniques that have been proposed for detecting multicollinearity: 

3.4.1  Informal Diagnostics  

A variety of informal diagnostics can be used to detect multicollinearity problems. These 

informal diagnostics can be listed as follows: 

1. A very simple measure of multicollinearity is inspection of the off-diagonal 

elements  in . If regressors  and  are nearly dependent, then    will be 

near unity. 
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2. The determinant of  can be use as an index of multicollinearity, the possible 

range of values of the determinant  is  0 | | 1. If  | | 1, the regressors 

are orthogonal, will if | | 0, there is an exact linear dependence among 

regressors. The degree of multicollinearity become more severe as | | approaches 

is zero. While this measure of multicollinearity is easy to apply, it doesn't provide 

any information on the source of the multicollinearity. 

3. The  statistics for significance of regression and individual   statistics can 

sometimes indicate the presence of multicollinearity. Specifically, if the overall  

statistic is significant but the individual   statistics are all non significant, 

multicollinearity is present. Unfortunately, many data sets that have significant 

multicollinearity will not exhibit this behavior, and so the usefulness of this measure 

is questionable. 

4. The sign and magnitude of the regression coefficients will sometimes provide an 

indication that multicollinearity is present. In particular if adding or removing a 

regressor produces large changes in the estimates of the regression coefficients, 

multicollinearity is indicated. If the deletion of one or more data points results in 

large changes in the regression coefficients, there may be multicollinearity present. 

Finally if the signs or magnitude of the regression coefficients in the regression 

model are contrary to the prior expectation, we should be alert to possible 

multicollinearity. 

5. The wide confidence intervals for regression coefficients of  important predictor 

variables is also another sign that multicollinearity is present in the regression 

analysis. 
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6. Multicollinearity can also cause large changes in the least squares estimated 

regression coefficients when a predictor variable is added or deleted or when 

observation is altered or deleted. 

The informal methods just described have important limitations. They don’t provide 

quantitative measurements of the impact of multicollinearity and they may not identify the 

nature of the multicollinearity. Also sometime the observed behavior may occur without 

multicollinearity being present.   

3.4.2 Formal Diagnostics 

The development of formal methods for detecting multicollinearity problem is to determine 

how serious the problem affects the analysis and to know the details of which variables are 

correlated and need to be omitted or deleted. 

3.4.2.1 Variance inflation factor (VIF) 

Variance Inflation Factors is the measure of the speed with which variances and 

covariances increase and it is most commonly used method for detecting multicollinearity 

problem. Variance inflation factors is a measure of multicollinearity in a regression design 

matrix (that is, independent variables) in a scaled version of the multiple correlation 

coefficient between an independent variable, and the rest of the independent variable. The 

measure shows the number of times the variances of the corresponding parameter estimate 

is increased due to multicollinearity as compared to as what it would be if there were no 

multicollinearity. Therefore, this diagnostic is designed to indicate the strength of the linear 

dependencies and how much the variances of each regression coefficient is inflated above 

ideal (Myers, 1986). 
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The diagonal elements of the inverse of the   matrix are very useful for detecting 

multicollinearity. The  diagonal element of    matrix can be written as 

1 , where  is the coefficient of determination obtained when  is 

regressed on the remaining  1 regressors. If  is nearly orthogonal to the remaining  

1 regressors,  is small and  is close to unity, while if   is nearly linearly 

dependent on some subset of the remaining regressors,  is near unity and  is large. 

Since the variance of the  regression coefficient is  , we can view   as the factor 

by which the variance of the  is increased due to near linear dependences among the 

regressors. We call this variance inflation factor or VIF and denoted for each 1, … , , 

1  

There is no formal cutoff value to use with the VIF for determining the presence of  

multicollinearity  but, Neter et al. (1996) recommended looking at the largest VIF value. A 

value greater than 10 is often used as an indication of potential multicollinearity problem. 

The cutoff value of VIF that should be used to determine whether collinearity is a problem 

is shown as follows 
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Figure 3.1 The choice of VIF value against the R-square value. 

 

 3.4.2.2 Tolerance  

Tolerance is an index (set of indices) of linear dependence among the independent variables 

, , … ,  in the intercept model. It is the inverse of variance inflation factors which a 

value of near 1 indicates the independence of the predictors while a value of close to 0 

indicates the variables are multicollinear. Therefore, tolerance have a range from 0 to 1 and 

the closer the tolerance value is to 0, the higher the level of multicollinearity exists. It is 

calculated as follows : 

1  

3.4.2.3 Eigenvalues, Condition Number (CN) 

The characteristic roots or eigenvalues of  , say  λ , λ , … , λ , can be used to measure 

the extent of the multicollinearity in the data. If there are one or more near-linear 



30 
 

dependences in the data, then one or more characteristic roots will be small. One or more 

small eigenvalues imply that there are near-linear dependences among the columns of . 

Some analyst prefer to examine the condition number of  , defined as  CN  λ  
λ

 . This 

is just a measure of the spread in the eigenvalues spectrum of  . Generally if the 

condition number is less than 100, there is no serious problem with multicollinearity. 

Condition number between 100 and 1000 imply moderate to strong multicollinearity, and if 

exceeds 1000 this indicates presence of severe multicollinearity. 

3.5   Remedies of multicollinearity 

Several approaches for handling multicollinearity problem have been developed such as 

Model Respecification, Use Additional or New Data , Principal Component Regression and 

Ridge Regression. Ridge regression will be discussed in details in the next chapter. 

3.5.1   Model respecification   

Multicollinearity is often caused by the choice of the model, such as when two highly 

correlated regressors are used in the regression equation. In these situations some 

respecification of the regression equation may lessen the impact of multicollinearity. One 

approach to model respecification is to redefine the regressors. For example, if , ,  

are nearly linearly dependent, it may be possible to find some function such as  

or ⁄  that preserves the information content in the original regressors but 

reduces the ill conditioning. Another widely used approach to model respecification is 

variable elimination. That is, if , ,  are nearly linearly dependent, eliminating one 

regressor may be helpful in combating multicollinearity. Variable elimination is often a 
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highly effective technique. However, it may not provide  a satisfactory solution if the 

regressors dropped from the model have significant explanatory power relative to the 

response variable , that is eliminating regressor to reduce multicollinearity may damage 

the predictive power of the model. Care must be exercised in variables selection because 

many of the selection procedures are seriously distorted by the multicollinearity, and there 

is no assurance that the final model will exhibit any lesser degree of multicollinearity than 

was present in the original data. 

3.5.2  Use additional or new data 

Since multicollinearity is a sample feature, it is possible that the other sample involving the 

same variables collinearity may be not as serious as in the first sample. Sometimes simply 

increasing the size of the sample may attenuate the collinearity problem. If one uses more 

data, or increase the sample size, the effects of multicollinearity on the standard errors will 

decrease. This because the standard errors are based on the both the correlation between 

variables and the sample size. The larger the sample size, the smaller in the standard error. 

Unfortunately, collecting additional data is not always possible because of economic 

constraints or because of the process being studied is no longer available for sampling. 

Even when the additional data are available it may be inappropriate to use if the new data 

extend the range of the regressor variable far beyond the analyst's region of interest. Of 

course collecting additional data is not a viable solution to the multicollinearity problem 

when the multicollinearity is due to constraints on the model or on the population. 
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3.5.3 Principal component regression  

Biased estimators of regression coefficients can be obtained by using a procedure known as 

principal components regression.  

Consider the model in (2.4), let , where , , … ,  is    

diagonal matrix of the eigenvalues of   and  is   orthogonal matrix whose 

columns are the eigenvectors associated with , , … , . Then the above model can be 

written as 

 ,   

or    can be written as 

       

Where   , and , 

and we have 

 

the columns of , which define a new set of orthogonal regressors, such as 

, , … , , 

are referred to as principle components. 

The least square estimator of   is  

 

And the covariance matrix of    is given by 
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Thus a small eigenvalues  means that the variance of the corresponding regression 

coefficient will be large. Since . We often refer to the eigenvalue  as the variance 

of the  principle component. If all  equal to unity, the original regressors are 

orthogonal, while if a  is exactly to zero, this implies a perfect linear relationship between 

the original regressors. One or more    near to zero implies that multicollinearity is 

present. 

The principle components regression approach combats multicollinearity by using less than 

the full set of principle components in the model. To obtain the principle components 

estimator, assume  the regressors are arranged in order of  decreasing eigenvalues, 

0 suppose that the last s of these eigenvalues are approximately equal to 

zero.  In principle components regression the principal components corresponding to near 

zero eigenvalues are removed from the analysis and the least squares applied to the 

remaining components that is 

, 

Where 

, , … ,  and 1   and   0 

Thus the principle components estimator is  

   …   0  0 …  0  

Thus the original vector  can be obtained by reverse transformation  and the 

variance covariance matrix of  is given by 
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The steps in PCR can be summarized in the following algorithm. 

STEP 1 : convert data to correlation form 

1
√ 1

,
1

√ 1
 

STEP 2 : Compute the correlation matrix for centered and scaled data 

,   

STEP 3 : compute the eigenvalues, and the eigenvectors  of 
correlation matrix 

STEP 4 : Compute the  component  

 

STEP 5 : Compute eigenvalues of the components. The component 
associated with the smallest eigenvalue will be deleted. 

 

STEP 6 : Compute the coefficient estimate for the component after 
deletion 

STEP 7 : Transform back the coefficient estimate to the original 
standardized Variables 

 

STEP 7: Compute the coefficients of the natural variables 

,  , 1,2, . . ,  

where ; r : component eliminated. 

STEP 8: The constant term is estimated by 

 

Figure3.2  : Steps in Principal Components Regression algorithm 
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Chapter four 

Ridge Regression 

 

Ridge regression is the modifications of the least squares method that allow biased 

estimators of the regression coefficients. Although it has biased estimators, it only has a 

small biased substantially more precise than an unbiased estimator. Therefore the estimator 

will be prefered since it will have a larger probability of being close to the true parameter 

value. In this chapter we will make an explanation of ridge regression and reviews the 

relevant literature on published work done recently concerning the problems of 

multicollinearity and for choosing the ridge parameter  when multicollinearity among the 

columns of the design matrix exists. 

4.1 Ridge regression estimator  

When the method of least squares method is applied to nonorthogonal data, very poor 

estimates of the regression coefficients can be obtained. The problem with the method of 

least squares is the requirement that  be unbiased estimator of . To motivate the ridge 

estimator, we take a look at the mean squared error, of least squares estimator 

of . which can break into two parts the variance plus the squared bias 

  

The Gauss-Markov property assures that the least squares estimator has minimum variance 

in the class of unbiased linear estimators. This however does not necessarily guarantee the 

minimum MSE. 
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One way to alleviate this problem is to drop the requirement that the estimator of  be 

unbiased.  

Suppose that a biased estimator of  is found say  that has smaller variance than the 

unbiased estimator . The mean square error of  is defined as  

                               

or 

   

By allowing a small amount of bias in , the variance of  can be made small such that 

the MSE of  is less than the variance of the unbiased estimator . 

A number of procedures have been developed biased estimators of regression coefficients. 

One of these procedures is ridge regression, which is regression estimator has been 

introduced as an alternative to the ordinary least square estimator (OLS) in the presence of 

multicollinearity. This estimator originally proposed by Hoerl and Kennard (1970). 

Specifically the ridge estimator is defined as the solution to 

, 

 or 

, 

where  is a positive number known as ridge parameter. The procedure is called ridge 

regression. An equivalent way is to write the ridge problem in the penalized or constrained 

least squares form by 

Minimizing , subject to , for some constant . 
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In the case of orthogonal predictors, the ridge estimates are just a scaled version of OLS, 

that is 

1 1⁄  

Besides, the intercept   is automatically suppressed as 0 when working with standardized 

data. It is to be noted that when 0 then the ridge estimator is the least square estimator.  

The ridge estimator is linear transformation of the least squares estimator since  

If we denote  , then 

 

Therefore, since  ,  is a biased estimator of  . The constant  is 

usually referred to the biasing parameter. The covariance matrix of   is  

   

The total mean square error of the ridge estimator can be derived as 

    

   

1
.

 

where , , … ,  are the eigenvalues of . If  increases then the bias in   increases. 

However, the variance decreases as  increases. 
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As  continues to increase without bound, the regression estimates all tends toward zero, 

because the ridge method tends to shrink the estimates of ridge coefficients toward zero. 

The idea of ridge regression is to pick a value of  for which the reduction in the total 

variance is not exceeded by the increase in the bias. If this can be done, the mean square 

error of the ridge estimator   will be less than the variance of the least square 

estimator . 

Hoerl and Kennard (1976) proved that there exists a non zero  positive value of  such that 

 

In other words, the ridge estimator can outperform the OLS in terms of providing a smaller 

MSE. Nevertheless, in practice the choice of  is yet to be determined and hence there is no 

guarantee that a smaller MSE always be attained by ridge regression. 

The residual sum of squares of   is given by: 

  
 

(4.1) 

Since the first term in the right hand side of equation 4.1  in the residual sum of squares 

for the least squares estimates , it is clear that as  increase, the residual sum of squares 

increases. Consequently, because the total sum of squares is fixed,  decreases as  

increases. Therefore, the ridge estimates will not necessary provide the best fit to the data, 

but this should not be more concerned since the interest is in obtaining a stable set of 

parameter estimates. 
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4.2 Selection of variables in ridge regression by ridge trace 

Variable selection procedure often do not perform well when the predictor variables are 

highly correlated Marguardt and Snee (1970) point out that when the data is highly 

multicollinear, the maximum variance inflation completely destabilizes all the criteria 

obtained from the least squares estimates. Hoerl and Kennard suggest that the ridge trace 

can be used as a guide for variable selection. They propose the following procedure for 

eliminating predictor variables from the full model. 

1. Eliminate predictor variables that are stable but have small predicting power that is 

those with small standardized regression coefficient. 

2. Eliminate predictor variables with unstable coefficients that do not hold their 

predicting power because the coefficients tend to zero as  increases. 

3. Eliminate one or more of the remaining predictor variables that have small 

coefficients. The subset of remaining predictor variable is used in the final model.  

4.3  General ridge regression.  

In general ridge regression  ridge parameters have to be determined, but in ridge 

regression we need to find one ridge parameter. To discuss the properites of genreral ridge 

regression estimator we usually tansform the linear regression model 2.4  to a canonical 

form. It is clear that for  positive definite matrix  , there exists a  orthogonal 

matrix  such that  , where , , … ,  and  

are the orderd eigenvalues of   matrix. We may write 2.4  as  
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The ordenary least squares estimator of  is  

 4.2

Where,  ,    and     

In scalar notation we can write 4.2   as 

 , 1,2, … ,  

And so we can write the ridge estimator as  

 4.3

In scalar notation we can write 4.3   as 

 , 1,2, … ,  

In this study two type of general ridge regression will be considered 

4.3.1 General ridge regression . 

The general ridge regression can be written as  

 4.4

Where K= , , … ,  and  is a positive number for each 1,2 … , , equation 

4.4  is called the general form of ridge regression (GR)which is propsed by Hoerl and 

Kennard, 1970; in scalar notation 4.4  can be writtin as 

 , 1,2, … ,  
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In ridge regression all eigenvalues of   are treated equally, while in general ridge 

regression, the determination of   ridge parameters , , … ,  is required. 

It follows from Hoerl and Kennard, 1970; that the value of  which minmizes the 

, where 

 
4.5  

 

is  

 4.6  

Where  is the error variance of model 2.3  and α  is the  element of  

Equation 4.6  gives a value of   that fully depends on the unknown   and  and must 

be estimated from the observed data. Hoerl and Kennard, 1970; suggest the replacement of 

 and  by their corresponding unbiased estimators, that is  

                     

Where ∑ ⁄  is the residual mean square estimate, which is unbiased 

estimator of , and   is the element of  , which is unbiased estimator . They found 

that the best method for achieving a better estimate  is to use   for each  and they 

suggest  to be  where  
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If   and  are known, then  is sufficient to give ridge estimators having smaller mean 

square error than the ordinary least square estimators. 

4.3.2  Superiority of the GRR   over OLS   

J.S. Chawla, (1989); gave a sufficient condition for  such that the general ridge 

regression,   given in (4.4) is better than the  ordinary least square  given in (4.2) 

relative to the mean square error.  

In the following theorem a sufficient condition for   will be considered. The proof of the 

theorem requires the following two lemmas: 

Lemma (4.1)  

.  

Proof. 

. . .  

where  

  and  .  

Now, 

  

Thus we have 
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.

     

1⁄ 1 ⁄ 1 1⁄  

Lemma  (4.2) 

   is a monotonically decreasing function if 0 ⁄ . 

Proof.  Let    

Therefore, 

2 2 ⁄ . 

If 

⁄ , then 0 

That is,     is a monotonically decreasing. 

Theorem (4.1) 

 . )  ) if the largest ; where   ⁄ 1,2, … ,   

Proof. 

From lemma (4.2) 
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 0  

or                                         

 ⁄  

If  0 ⁄ . Hence  

 

If largest  ⁄ 1,2, … , . Equivalently, . )  ), if the 

largest . 

4.3.3  General ridge regression . 

Farebrother, (1978); proposed an estimator of  in model 2.4  given by  

, 4.7

Where  is a positive number and   is  positive semi-definite matrix. 

If  is a biased estimator of , then the  matrix of mean square error of  is defined as  

  

Chawla, 1988; found that 

  4.8

 If  and  are two competing estimators of   and  

∆    
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is positive definite, then  is preferred to . 

4.3.4  Superiority of   over the ordinary least square  

General ridge estimator excels the least square estimator under a necessary and sufficient 

condition, using the matrix mean square error criterion. 

The following theorem gives these necessary and sufficient conditions, the proof of this 

theorem requires the following lemma.  

Lemma  (4.3): Let  be a  matrix of rank m such that , then 

 
 

 (4.9) 

Where 

2⁄ 1⁄  (4.10) 

Proof. 

Substitute     and equation  4.8  into  4.9  we get 

    
2  

2⁄
    1⁄

.   

  

Theorem . :  A necessary and sufficient condition for  
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to be positive definite is  

0 2 | |⁄                       

Where  is the smallest negative eigenvalue of  

1⁄  (4.11) 

 If all the eigenvalues of  4.11  are nonnegative, then  is positive definite for all values of  

0. 

 

Proof. 

  is positive definite if and only if 4.10  is positive definite. Let , , … ,  be the 

eigenvalues of 4.11  therefore the eigenvalues of 4.10  are 

 2⁄ , 2⁄ , … , 2⁄ . 

If all 0, 1,2, … , , then 4.10  is positive definite for all values 0. If some 

0, then  is the least value of , 1,2, … , , therefore 4.10  is positive definite if 

and only if 2⁄ 0. This equivalent to 0 2 | |⁄ .  

4.4 Ridge parameter  

  Hoerl and Kennard (1976) have suggested that an appropriate value of  may be 

determined by the ridge trace. The ridge trace is a plot of the elements of   versus  for 

values of  usually in the interval 0,1 . If the multicollinearity is severe, the instability in 

the regression coefficients will be obvious from the ridge trace. As  is increased, some of 

the ridge estimates will vary dramatically. At some value of , the ridge estimates  will 
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stabilize. The objective is to select a reasonable small value of  at which the ridge 

estimates   are stable.  

Several author have proposed several procedures for choosing the value of  .  Hoerl and 

Kennard (1970a) proposed   to estimate the ridge parameter , also they have 

suggested in (1975)  that an appropriate choice of  is ⁄  ,   where  and  are 

found by least squares solution and  is the number of parameter.  

Hoerl and Kennard recommended  as general rule where the parameters are 

estimated from the full equation least squares fit. Their studies suggest that the resulting 

ridge estimator yields coefficient estimates with smaller means squared error than the 

obtained from least squares. In a latter paper Hoerl and Kennard (1975) suggest an iterative 

procedure where  where . Farebrother (1975) suggested   , 

which for the Gonman-Toman data, yield 0.003  with this formula. Marquardt and 

Snee (1970) suggested value of  for which the maximum variance inflation factor is 

between one and ten.   Mallows (1973) extended the concept of  plots to plots, 

which may be used to determine  Specifically, he suggested plotting ,versus  where 

2⁄  

1  

And  

 



49 
 

Here  is the residual sum of squares as a function of   the suggestion is to choose  to 

minimize . And other several methods for estimating  have been proposed by 

Galarneau, 1975; Lawless and Wang, 1976; Hocking et al. 1976; Wichern and Churchill, 

1978; Nordberg, 1982; Saleh and Kibria, 1993; Singh and Tracy, 1999; Wencheko, 2000; 

Kibria, 2003; Alkhamisi et al., 2006; and Alkhamisi and Shukur, 2007; Alkhamisi and 

Shukur, 2007;  proposed some new estimators by adding 1⁄  to some will known 

estimator, where  is the largest eigenvalue of  . 

Khalf and Shukur, 2005; suggested  an estimator based on  named as , where  

 

Hocking et al., 1976; suggest an estimator  depend on (4.2) estimator named as , or 

(HSL) for   

Where 

∑
∑

 

Mahdi ALkamisi, Ghadban Khalaf and Ghazi Shukur 2006; proposed Some Modifications 

for Choosing Ridge Parameters as follows: 

, 1,2, … ,  
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, 1,2, . .  

1
 

M. A. ALkhamis  and  G. Shukur,2007 presented a new method based on    

These estimators is presented as follows: 

1
 

1
 

1
, 1,2, … ,  

1 1
 

1
, 1,2, … ,  

∑
1

 

Yazid M. AL-Hassan, 14 December 2010; apply the modification mentioned in Alkhamisi 

and Shukur, 2007; to the estimator proposed by Hocking et al.1976, , to obtain new 

estimator named , or (NHSL) 
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Where  

∑ ∑
∑

∑
∑

1 1
 

Since  0,   is grater than . 

Yazid M. AL-Hassan, 2010; used Monte Carlo simulation to investigate the properties of 

OLS, HK, HSL and NHSL. And he  made a comparsion between these estimators based on 

the MSE criterion. That is, he compared OLS, HK and HSL estimators with NHSL. He 

found that his modified estimator NHSL  uniformly dominantes the other estimators OLS, 

HK, and HSL. 

In this study we will make a comparison  between the OLS and other approach for 

choosing the ridge parameter  , these approach is listed in the following table  

 

Table 4.1 Ridge parameters which we made a comparison between them. 

 
Name  

HKa  

KS  

HK  

FK  
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Chapter five 

Applications  

The early stages of this thesis are discussed how the chosen methods perform in regression 

analysis to handle multicollinearity problems. In the last stage of this thesis specially in this  

chapter we will evaluate the performance of ridge regression approaches by conducting a 

simulation studies to examine the feasibility and the properties of OLS, HKa, KS , HK and 

KF . We investigate how will the regression  parameters can be estimated in terms of bias 

and converge rate, and then a comparison is made based on the MSE criterion.  Also we 

study how the following factors affect the performance of these approaches:  the sample 

size , the number of regressors  , and degree of correlation. Moreover, a real data set also 

will be examined. 

5.1 Simulated data  

5.1.1 Generating Simulated Data Sets   

The more number of regressors involved, the more chances to have multicollinearity 

problems in the analysis. A number of factors can affect the properties of OLS and the 

ridge parameters such as the sample size ,  degree of correlation between the explanatory 

variables  , and the number of regressors  . The numbers of independent variables and the 

number of observations is generated randomly to test the performance of ridge parameters. 

The different degree of correlation between the variables included in the model has been 

used. We put these values equals to 0.7, 0.8, 0.9, 0.95, and 0.998. These values will cover a 

wide range of moderate and strong correlation between the variables. All these values show 
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that the correlations between all variables within different sets of regressors are very high. 

So, multicollinearity problems exist in the simulated data.  

The response variable that is considered in this simulation study is univariate. The 

regression condition for this study is shown in Table 5.1. 

Table 5.1 Factors and levels for the simulated data sets 

Factors Levels 

Number of regressor variables 2, 5,6,10,12, 15,20,30,40, 60, 70 

Number of observations  15, 30, 50,  80, 100 

 High correlation between regressors   0.998, 0.95, 0.9, 0.8, 0.7 

 

The observations   were generated according to the model 

 , 1, 2, … ,  

Where  is generated from 0,Σ  distribution as shown in tables 5.2, 5.3 and 5.4.  For 

the purpose of obtaining collinearity in each set of data, the , were generated according 

to ∆ , and the columns of the noise matrix  ∆   are independently distributed 

according to  0, c , where values of c determine the correlation between the regressors, 

we note that as  increases the correlation between the regressors decreases.  Three 

different groups of data  were generated  as shown in tables 5.2, 5.3, 5.4. 

For each set of the simulated data, the distribution of the random error for every set of  

observations is 0,1 , the number of replications,  is set to 1000 data sets. The value of 

(  = 1000) is chosen because it is enough to show a consistent results for each generated 

data sets. 
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Table 5.2  Group one  of simulated data 

   

2 15, 30, 50, 80 0,1  

0, .1),  2 

5 30 0,1  

0, .1), 2, 3, 4, 5 

10 15, 30, 50, 80 0,1  

0, .1), 2, 3, … , 10 

15 30 0,1  

0, .1), 2,3, … ,15 

20 50,80 0,1  

0, .1), 2,3, … ,20 

30 50 0,1  

0, .1), 2,3, … ,30 

40 80 0,1  

0, .1), 2,3, … ,40 

60 80 0,1  

0, .1), 2,3, … ,60 

0,1) 
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Table 5.3 Group two of simulated data 

   

 6 0,1  

0, ), 2,3 … ,6 

0.5, 1 

100 12 0,1  

0, ), 2,3, … ,12 

0.5, 1 

 20 0,1  

0, ), 2,3, … ,20 

0.5, 1 

 50 

 

0,1  

0, ), 2,3, … ,50 

0.5, 1 

 70 0,1  

0, ), 2,3, … ,70 

0.5, 1 

0,1  

 

Table 5.4  Group three of simulated data 

   

 

2 

 

15,30,50,80,100 

0,1  

0, ), 2 

0.4, 0.5,0.9,1 

0,1  
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5.1.2  Performance of Ridge Regression to simulated data  

Afifi and Clark (1984) stated that when two or more variables are highly correlated (greater 

than 0.95), it may be simplest to use only one of them, since one variable conveys 

essentially all of the information contained in the other. However, Wesolowsky (1976) 

stated that when an independent variable that is correlated with others in the regression is 

not included and the regression parameter of this variable is not zero, the remaining 

coefficients will be biased estimators, but even if the omitted variable is not correlated (in 

the sample) with the remaining variables the estimators for the variances of the remaining 

coefficients , will tend to be too large. This occurs because the ‘explanatory’ power of 

the missing variable is removed, causing a larger sum of squared residuals, which, in turn, 

swells the variances of the regression coefficients.  As a results, it becomes more difficult 

to show the significance of coefficients. Thus, in this study Ridge regression, will be used 

to handle these problems rather than using omitted variables approach. 

Figure 5.1  and  5.2 illustrates how the performances of ridge regression. 
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 Yes   
 

                                             
                               
 

 
     No    

 

 

 

Figure 5.1  Flowchart summarizing performance of RR. 
 

 

 

 

STEP 1 : Convert data into correlation form  

1
√ 1

 

 

1
√ 1

 

STEP 3 : Compute the ridge parameter  for the values 

, , ,  

STEP 4 : Compute the ridge regression estimators for the values of  

 

STEP 5: Compute the MSE( ∑  for each value of . 

STEP 6 : Choose the model with least MSE of   

Figure 5.2 : Steps in Ridge Regression algorithm used in this thesis 
 

 

 

Do the sets of 
data have 

multicollinearity 
problems? 

Handle the 
multicollinearity 
problems using 
ridge regression 

MSE test 

The classical Multiple 
regression Approach 
using OLS 



58 
 

5.1.3 Simulation results 

Our primary interest lies in the investigating the properties of well  known approach to 

minimize the MSE, In this section we present the results of  simulated data for each group 

of the three groups  concerning the properties of these approach for choosing the ridge 

parameter , when multicollinearity among the columns of the design matrix exists. Our 

primary interest lies in comparing the MSEs of these methods for choosing the ridge 

parameter  that are used in this study, i.e., the  HKa,  KS,  HK,  and  KF. To compare the 

performances of the considered estimators, we calculate the MSEs of each one. We 

consider the estimator that leads to the minimum MSE to be the best. It is worth mentioning 

here in that we used the Matlab 10 program to simulate the data and to do all calculations 

that were made in this thesis. The program that we are based on to generate simulated data 

is sited in appendix A.                    

The problem of multicollinearity can also be seen through correlation matrix between 

regressors. The value close to 1 shows a strong relation among the regressors. The 

correlation results  of group one are shown in Tables 5.5 –5.12 specifically for  = 15, 30, 

50, 80 observations and for  = 2, 5,10. For group one of simulations data The smallest and 

the highest correlation values are vary  between 0.98 and 0.9988. the higher  correlation  of 

group two are shown in tables 5.15.  The estimated MSEs  for the three groups of simulation 

data are shown  in tables 5.14, 5.15, 5.16. 
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Table 5.5 The value of correlation for 10, 15

10         
  1 
  0.99595  1 
  0.99581  0.99473  1 
  0.99808  0.99646  0.9979  1 
  0.99669  0.99416  0.99179  0.99448  1 
  0.99465  0.98792  0.98955  0.99125  0.99323  1 
  0.99415  0.99313  0.98877  0.9943  0.99082  0.98794  1 
  0.99719  0.9951  0.99386  0.99733  0.99238  0.9851  0.99215  1 
  0.99695  0.99488  0.99139  0.99462  0.9925  0.98692  0.99461  0.99619  1 
  0.99645  0.99258  0.9897  0.99466  0.9927  0.98673  0.99111  0.99696  0.99384  1 

 

Table 5.6  The value of correlation for 10, 30   

10         
  1   
  0.99548  1   
  0.99612  0.99497  1  
  0.99548  0.99011  0.99164 1  
  0.99672  0.99582  0.9923 0.99293 1  
  0.99668  0.99297  0.99242 0.99355 0.9936 1  
  0.99506  0.99152  0.99254 0.99128 0.99093 0.99051 1   
  0.99606  0.98997  0.99212 0.99262 0.99352 0.99201 0.99234  1   
  0.99529  0.99254  0.98888 0.99006 0.99582 0.98986 0.99177  0.99198  1
  0.99404  0.991  0.99078 0.98625 0.9933 0.99228 0.99026  0.99096  0.99052 1

 

Table 5.7 The value of correlation for 10, 50 

10         
  1 
  0.99633  1 
  0.99471  0.98884  1 
  0.99572  0.99183  0.99179  1
  0.99642  0.99302  0.99001  0.99202 1
  0.99416  0.99052  0.98914  0.99073 0.99188 1
  0.99505  0.99233  0.99053  0.99167 0.98995 0.98745 1 
  0.99461  0.9915  0.99053  0.99005 0.99244 0.99137 0.99006  1 
  0.99584  0.99187  0.991  0.99353 0.99239 0.99057 0.98888  0.98895  1
  0.9955  0.99195  0.99052  0.99164 0.99139 0.99145 0.98843  0.98712  0.99294 1
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Table 5.8 The value of correlation for 10, 80 

10         
  1 
  0.99583  1 
  0.99431  0.99122  1 
  0.9962  0.99284  0.98995  1
  0.9958  0.99183  0.98803  0.99355 1
  0.99558  0.99049  0.99217  0.992 0.98928 1
  0.99649  0.9947  0.99056  0.99321 0.99326 0.99176 1 
  0.99468  0.99056  0.98981  0.99178 0.99128 0.98966 0.99134  1 
  0.99603  0.99004  0.98925  0.99236 0.99108 0.99192 0.99253  0.99068  1
  0.99667  0.99277  0.99067  0.99354 0.99172 0.99326 0.99313  0.99174  0.99217 1

 

Table 5.9 The value of correlation for 5, 30 

5 
 

 
1

 
0.99592 1

 
0.99634 0.99052 1

 
0.99612 0.99141 0.99341 1

 
0.99702 0.99352 0.99002 0.99366 1 

 

 

Table 5.10 The value of correlation for 2, 15 
2 
  1 
  0.99745  1 

 

 

Table 5.11 The value of correlation for 2, 30 
2 
  1 
  0.99411  1 
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Table 5.12 The value of correlation for 2, 50 
2 
  1 
  0.99701  1 

 

These are the simulation results for the MSE values for the three groups shown  in tables 

5.2, 5.3, 5.4.  

 

 

 

 

 

 

 Table 5.13 Estimated MSE  for group one of simulated data .
  OLS HKa KS HK KF Least 

MSE 
15 2 16.986 6.3381 6.2758 6.3278 5.763 KF 

10 468.65 244.49 244.49 290.53 232.75 KF 
 

30 2 7.4152 2.8663 2.8063 2.8607 2.6027 KF 
5 33.936 15.557 15.56 15.844 16.701 HKa 
10 95.501 50.803 50.809 53.717 56.031 HKa 
15 202.92 117.1525 117.1538 133.2 124.03 HKa 

 
50 2 4.2688 1.6641 1.6155 1.6609 1.5105 KF 

10 46.496 24.901 24.914 25.96 27.618 HKa 
20 133.69 80.005 80.01 89.129 86.498 HKa 
30 304.6 183.011 183.028 215.87 197.13 HKa 

 
80 2 2.6138 0.97105 0.93951 0.96955 0.88261 KF 

10 26.097 14.232 14.248 14.798 16.033 HKa 
20 64.895 39.413 39.422 42.124 42.984 HKa 
40 199.77 124.83 124.83 140.68 136.14 HKa 
60 631.14 409.381 409.381 486.53 419.02 HKa 



62 
 

Table 5.14 Estimated  MSE for group two of simulated data 

n  c  p  OLS HKa KS HK KF 
Higher 

correlation 
100 1 6 0.17108 0.084923 0.12992 0.083226 0.10201 0.71272 

12 0.38877 0.2166 0.26115 0.21579 0.27373 0.74028 
20 0.72207 0.42804 0.46427 0.41937 0.54714 0.74471 
50 3.0193 2.004 2.0146 2.0911 2.4056 0.7914 
70 8.3383 5.4145 5.4172 6.2204 6.4362 0.80601 

100 0.5 6 0.49183 0.2472 0.28801 0.25125 0.28152 0.89703 
12 1.1491 0.64544 0.67227 0.65693 0.75272 0.91057 
20 2.1568 1.3315 1.3471 1.3559 1.5142 0.92589 
50 9.0569 6.0566 6.0612 6.7555 6.6275 0.93661 
70 29.432 19.047 19.048 22.463 20.767 0.93716 

 

Table 5.15 Estimated MSE for group three of simulated data 
Number of 
observation 

Correlation  
Between and  OLS HKa KS HK KF 

15 0.95 2.063 0.7927 0.77804 0.77624 0.71493 
 0.9 0.49203 0.20409 0.23834 0.18742 0.17964 
 0.8 0.40028 0.17699 0.21265 0.1609 0.15586 
 0.7 0.31725 0.13881 0.18424 0.12487 0.12263 

30 0.95 0.6661 0.2665 0.2918 0.2066 0.2408 
 0.9 0.36352 0.14457 0.1872 0.13735 0.1291 
 0.8 0.22678 0.095918 0.13951 0.088443 0.084853
 0.7 0.14291 0.06181 0.10466 0.055694 0.055365

50 0.95 0.52658 0.21188 0.24313 0.20884 0.19193 
 0.9 0.21006 0.087371 0.13054 0.083856 0.078623
 0.8 0.12667 0.056689 0.093066 0.052756 0.050665
 0.7 0.083119 0.036533 0.068304 0.032283 0.032143

80 0.95 0.2658 0.10415 0.14896 0.10202 0.094022
 0.9 0.1278 0.054566 0.091562 0.052062 0.048805
 0.8 0.078712 0.033553 0.063701 0.030799 0.029751
 0.7 0.05141 0.022254 0.045328 0.019814 0.019812

100 0.95 0.20773 0.083295 0.12621 0.081379 0.075124
 0.9 0.10266 0.043203 0.077243 0.040924 0.038397
 0.8 0.052756 0.023722 0.045886 0.021714 0.021128
 0.7 0.052617 0.022578 0.045734 0.020669 0.020116
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Results in Table 5.13 ,  when the correlation is too high i.e., when  =0.998  indicating  that  

KF estimator  perform better than the other estimators when the number of observations is 

small i.e when  15, and for each set of  2. But HKa perform  better for all 15 

and   2 of group one. Also we note that as ,  increases HKa and KS perform the 

same. Moreover, it is observed that for given  and , the MSEs for all estimators increase 

as the number of  explanatory variables increases. 

Results in Table 5.14 ,  indicating  that HK perform better  when the correlation is between 

0.7 and .81 and for small , i.e when 6, 12, 20. But for the same range of correlation 

we note that HKa perform better for large , i.e when 50, 70. When the correlation is 

between 0.89 and 0.94,  we  note that HKa perform better than the other estimators for all 

number of regressors. 

Result in Table 5.15, indicating that HKa, KS, HK and KF  perform extremely better than 

the OLS, and KF perform better than the other estimators.  Moreover, it is observed that for 

the given  and , the MSEs for all estimators decrease as the correlation between 

regressors decreases. 

5.2 Real data 

5.2.1  Data base 

In order to illustrate the use of ridge regression analysis and assess the potentials of the 

multiplicative competitive interaction model in the study of shopping behavior. We 

consider a data set from Leinhardt and Wassermann (1979) which was used in Fox (1997) 

and is available in the SPSS package. 
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 An automotive industry group keeps track of the sales for a variety of personal motor 

vehicles. In an effort to be able to identify over and underperforming models, a relationship 

between vehicle sales and vehicle characteristics need to be established. Data concerning 

different makes and models of cars is contained in car_sales.sav, see Appendix B for more 

information. The aim of this application is to use linear regression to identify models that 

are not selling well.  

Nine predictor variables selected for the study are listed in Table 5.16. The response 

variable is the Sales in thousands (for linearity purpose the Log(Sales) will be considered). 

Table 5.16 The selected variables of the vehicle characteristics. 

Variable Variable Name Description 
 Ln(sales) Sales in thousands 
 Price Price in thousands 
 engine_s Engine size 
 Horsepow Horsepower 
 Wheelbase Wheelbase 
 Width Width 
 Length Length 
 curb_wgt Curb weight 
 fuel_cap Fuel capacity 
 Mpg Fuel efficiency 

5.2.2  Data analysis 

To start the analysis we shall assume that the standard assumptions of the linear regression 

model hold. A histogram with normal probability plot and  P-P plot of the residuals were 

considered in figures 5.3 and 5.4. The shape of the histogram should approximately follow 

the shape of the normal curve. This histogram is acceptably close to the normal curve.  The 

P-P plotted residuals should follow the 45-degree line. Neither the histogram nor the P-P 

plot indicates that the normality assumption is violated.   
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Figure 5.3: Histogram with normal probability plot of the residuals 

 

Figure 5.4: Normal P-P Plot of Regression Standardized Residual 

As can be expected from the nature of the variables, some of them are highly correlated 

with each other, results are shown in Table 5.17. 
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Table 5.17. Correlation Coefficients between deferent variables. 

          

 1         

 .649** 1        

 .853** .862** 1       

 .067 .410** .226* 1      

 .301** .672** .507** .676** 1     

 .183* .537** .401** .854** .743** 1    

 .511** .743** .599** .676** .736** .684** 1   

 .406** .617** .480** .659** .672** .563** .848** 1  

 -.480** -.725** -.596** -.471** -.600** -.466** -.819** -.809** 1

 

A regression model were fit to the data set. The results were presented in the following 

tables.  The ANOVA table 5.18 reports a significant F statistic (Sig = 0.000), indicating that 

using the model is better than guessing the mean. A whole, the regression does a good job 

of modeling sales. Nearly half the variation in sales is explained by the model 471  

table 5.19.  

Table 5.18: Checking the Model Fit (ANOVA) 
Model Sum of Squares Df Mean Square F Sig. 

1 Regression 83.285 9 9.254 7.964 .000a

Residual 124.333 107 1.162   
Total 207.618 116    

 

 

Table 5.19: Model Summary 

Model R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate 

1 .684a .467 .431 1.07796 
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The initial OLS results from fitting a linear model to the data are given in Table 5.20. 

Although the model fit looks positive. There are several non-significant coefficients, 

indicating that these variables do not contribute much to the model. 

Table 5.20: Model Coefficients 

Model parameter 

Unstandardized 
Coefficients 

Standardized 
Coefficients

T Sig. 

Collinearity 
Statistics 

B Std. Error Beta Tolerance VIF 

(Constant) -1.301 3.125  -.416 .678   
Price in thousands -.046 .017 -.489 -2.793 .006 .182 5.487 
Engine size .323 .256 .255 1.264 .209 .138 7.268 
Horsepower -.003 .006 -.124 -.497 .620 .091 11.030
Wheelbase .092 .030 .553 3.108 .002 .177 5.657 
Width -.027 .052 -.071 -.516 .607 .300 3.337 
Length -.017 .017 -.175 -.968 .335 .171 5.847 
Curb weight .317 .460 .141 .689 .493 .133 7.536 
Fuel capacity -.062 .060 -.176 -1.027 .307 .190 5.258 
Fuel efficiency .029 .048 .095 .599 .551 .223 4.481 

 

The next part of this analysis is to check for multicollinearity.  Results in table 5.21 shows 

that there might be a problem with multicollinearity.  For most predictors, the values of the 

partial and part correlations drop sharply from the zero-order correlation. This means, for 

example, that much of the variance in sales that is explained by price is also explained by 

other variables. In collinearity statistics columns, the tolerance is the percentage of the 

variance in a given predictor that cannot be explained by the other predictors. Thus, the 

small tolerances show that 70%-90% of the variance in a given predictor can be explained 

by the other predictors. When the tolerances are close to 0, there is high multicollinearity 

and the standard error of the regression coefficients will be inflated. A variance inflation 



68 
 

factor greater than 2 is usually considered problematic, and the smallest VIF in table 5.21 is 

3.337.  

The collinearity diagnostics confirm that there are serious problems with multicollinearity.  

Several eigenvalues are close to 0, indicating that the predictors are highly intercorrelated 

and that small changes in the data values may lead to large changes in the estimates of the 

coefficients.  The condition indices are computed as the square roots of the ratios of the 

largest eigenvalue to each successive eigenvalue. Values greater than 15 indicate a possible 

problem with collinearity; greater than 30, a serious problem. Six of these indices are larger 

than 30, suggesting a very serious problem with collinearity. 

 

Table 5.21: Collinearity Diagnostics 

 
Correlations 

Collinearity 
Statistics 

Collinearity Diagnostics 

 
Zero-order Partial Part Tolerance VIF Eigenvalue 

Condition 
Index 

Price in thousands -.552 -.290 -.217 .187 5.337 .259 6.193 

Engine size -.135 .156 .113 .162 6.159 .050 14.051 

Horsepower -.389 -.043 -.031 .112 8.896 .019 22.589 

Wheelbase .292 .149 .108 .200 4.997 .008 35.942 

Width .037 -.057 -.041 .313 3.193 .005 44.275 

Length .215 .087 .062 .178 5.605 .003 58.480 

Curb weight -.041 .038 .027 .131 7.644 .002 76.175 

Fuel capacity -.016 -.101 -.073 .189 5.303 .001 130.747 

Fuel efficiency .121 .168 .122 .217 4.604 .000 148.267 
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5.2.3   performance of Ridge Regression to real data 

Now, ridge regression will be implemented to fix the collinearity problems. Figure 5.5 

illustrates the steps used for finding the best Model for the real data.  This  Figure shows the 

steps in ridge regression algorithm that  used in this study.   

  

 

STEP 1 : Center and scale the data 

√
   ,   

√
 

STEP 2 : Compute the correlation matrix for centered and scaled data 

,  

STEP 3 : Compute the ridge parameter  for the values 

, , ,  

STEP 4 : Compute the ridge regression estimators for the values of  

 

STEP 5 : Compute the coefficients of the natural variables 

, 1,2, . . ,  

STEP 6 : Compute The constant term  

 

STEP 7 : Choose the model with least mean square 

FIGURE 5.5 : Steps in Ridge Regression algorithm 
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The estimated MSE for the considered ridge method and the OLS is summarized in table 5.22 

and the ridge coefficients is listed in table 5.23 

 
5.22  estimated MSEs for real data

OLS HKa KS HK FK 
0.31001 0.22499 0.2393 0.18389 0.26346

Table 5.22 indicating that HKa, KS, HK and FK perform better than the OLS and HK perform 

extremely better  than HKa, KS and  FK. Thus our preferred Model that represent the real data is 

 

Or  

sales Exp  1.50425 0.039 price   0.211037 Engine size

0.00356  Horsepower   0.066371  Wheelbase   0.01497  Width  

0.00282  Length   0.161929  Curb weight   0.0346  Fuel capacity  

0.019482  Fuel ef iciency   

5.23 estimated ridge coefficient for real data 

HKa KS HK FK 
-1.34806 -1.33246 -1.50425 -1.31321
-0.04364 -0.04422 -0.039 -0.04502
0.290408 0.298967 0.211037 0.310012
-0.00323 -0.00316 -0.00356 -0.00305
0.082317 0.084451 0.066371 0.087431
-0.02332 -0.02418 -0.01497 -0.02529
-0.01131 -0.01253 -0.00282 -0.01425
0.252012 0.265456 0.161929 0.284838
-0.05136 -0.05371 -0.0346 -0.05704
0.025217 0.025976 0.019482 0.027027
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5.3 Summary and Conclusions 

In this thesis, we studied a comprehensive linear regression models, focusing on the use of 

ridge regression models performed in a population-based highly correlated data . Analyzes 

involving such data are quite common in medical,  trading, industrial, and various sciences  

research. The primary goal of such studies may be to simultaneously study the effect of one 

variable or variables  on other variable, but secondary objectives, such as understanding the 

within variables patterns of correlation, or the relationship between the marker’s profiles 

and the occurrence of the event of interest.  

In this research we have studied the properties of a well known approach for choosing the 

ridge parameter , when multicollinearity among the columns of the design matrix exists. 

The investigation has been done using simulated data sets generated from Normal 

distribution using MatLab v10 software package, also a real data set were considered.  In 

addition to different multicollinearity levels, the number of observation and the number of 

regressors have been varied. For each combination, we have used 1000 replications. The 

evaluation of ridge regression approaches has been done by comparing the MSEs among 

different approaches.  

 The simulation studies  and the analysis of real data set demonstrate that when the 

correlation is too high i.e., when  =0.998 , KF estimator  perform better than the other 

estimators when the number of observations is small i.e when  15, and for each set 

with number of observation (15,30 , 50, 80) of  2. But HKa perform  better for all 

15 and   2 of group one. Also we note that as ,  increases HKa and KS perform 
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the same. Moreover, it is observed that for given  and , the MSEs for all estimators 

increase as the number of  explanatory variables increases. 

For group 2 HK perform better  when the correlation is between 0.7 and .81 and for small 

, i.e when 6, 12, 20. But for the same range of correlation, we note that HKa perform 

better for large , i.e when 50, 70. When the correlation is between 0.89 and 0.94,  we  

note that HKa perform better than the other estimators for all number of regressors. 

For group 3 HKa, KS, HK and KF  perform extremely better than the OLS, and KF 

perform better than the other estimators.  Moreover, it is observed that for the given  and 

, the MSEs for all estimators decrease as the correlation between regressors decreases. 
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APPENDIX A 

This is the data generating function for simulation the three groups (chapter 5) 

 m=1000; ms=zeros(m,5); 
  
for i=1:m, 
  
    n= ;p= ; 
z=zeros(n,p);x=zeros(n,p);y=zeros(n,1);mse_all=zeros(n,1); Ms_ols=0; 
MS_hk=0; 
  
z(:,1)=randn(n,1); 
for j=2:p, 
    z(:,j)=z(:,1)+randn(n,1)*c;    
 end 
z; 
for j=1:p, 
    x(:,j)=(z(:,j)-mean(z(:,j)))/(((n-1)^(1/2))*std(z(:,j)));  
end 
for j=1:p, 
y1=(sum(z(:,j))')'+randn(n,1); 
end 
y=(y1-mean(y1))/(((n-1)^(1/2))*std(y1)); 
  
rx=x'*x; 
ry=x'*y; 
b=inv(rx)*ry; 
q=(y-x*b)'*(y-x*b)/(n-p); 
ei=eig(rx); 
sumei=0; 
for j=1:p' 
    sumei=sumei+(1/ei(j)); 
end 
Ms_OLS=q*sumei; 
k1=q/(max(b)^2); 
e=eig(rx); 
  
sume=0; 
for s=1:p' 
    sume=sume+(e(s)/(e(s)+k1)^2); 
end 
  
MS_HKa=q*sume+k1^2*b'*inv(rx+k1*eye(p,p))*inv(rx+k1*eye(p,p))*b; 
b1=inv(rx+k1*eye(p,p))*ry; 
  
k2=(q*max(ei))/((max(ei)*(max(b))^2)+(q*(n-p))); 
w=eig(rx); 
  
sumw=0; 
for d=1:p' 
    sumw=sumw+(w(d)/(w(d)+k2)^2); 
end 
b1=inv(rx+k2*eye(p,p))*ry; 
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MS_KS=q*sumw+(k2^2)*b'*inv(rx+k2*eye(p,p))*inv(rx+k2*eye(p,p))*b; 
  
K3=(p*q/(b'*b)); 
e=eig(rx); 
  
sume=0; 
for s=1:p' 
    sume=sume+(e(s)/(e(s)+k3)^2); 
end 
  
MS_HK=q*sume+(k3^2)*b'*inv(rx+k3*eye(p,p))*inv(rx+k3*eye(p,p))*b; 
b1=inv(rx+k3*eye(p,p))*ry; 
k4=(q/(b'*b)); 
e=eig(rx); 
  
sume=0; 
for s=1:p' 
    sume=sume+(e(s)/(e(s)+k4)^2); 
end 
  
MS_FK=q*sume+(k4^2)*b'*inv(rx+k4*eye(p,p))*inv(rx+k4*eye(p,p))*b; 
b1=inv(rx+k4*eye(p,p))*ry; 
  
ms(i, 1)=Ms_ols; ms(i, 2)=MS_HKa;   ms(i, 3)=MS_KS; 
 ms(i, 4)=MS_HK; ms(i, 5)=MS_KF; 
end    
  
for j=1:5' 
means = mean(ms(:,j)) 
  
end 
MM=([mean(ms(:,1)) mean(ms(:,2))  mean(ms(:,3))  mean(ms(:,4)) 
mean(ms(:,5)) ]) 
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APPENDIX  B 

Table of real data  
Ln(sales) Price engine_s horsepow wheelbas width Length curb_wgt fuel_cap mpg

2.83 21.5 1.8 140 101.2 67.3 172.4 2.639 13.2 28 
3.67 28.4 3.2 225 108.1 70.3 192.9 3.517 17.2 25 
2.15 42 3.5 210 114.6 71.4 196.6 3.85 18 22 
3.02 23.99 1.8 150 102.6 68.2 178 2.998 16.4 27 
2.93 33.95 2.8 200 108.7 76.1 192 3.561 18.5 22 
0.32 62 4.2 310 113 74 198.2 3.902 23.7 21 
2.22 33.4 2.8 193 107.3 68.5 176 3.197 16.6 24 
2.86 38.9 2.8 193 111.4 70.9 188 3.472 18.5 25 
4.52 21.975 3.1 175 109 72.7 194.6 3.368 17.5 25 
3.67 25.3 3.8 240 109 72.7 196.2 3.543 17.5 23 
3.33 31.965 3.8 205 113.8 74.7 206.8 3.778 18.5 24 
4.42 27.885 3.8 205 112.2 73.5 200 3.591 17.5 25 
4.15 39.895 4.6 275 115.3 74.5 207.2 3.978 18.5 22 
1.88 39.665 4.6 275 108 75.5 200.6 3.843 19 22 
2.41 31.01 3 200 107.4 70.3 194.8 3.77 18 22 
4.98 13.26 2.2 115 104.1 67.9 180.9 2.676 14.3 27 
4.91 16.535 3.1 170 107 69.4 190.4 3.051 15 25 
3.2 18.89 3.1 175 107.5 72.5 200.9 3.33 16.6 25 
3.75 19.39 3.4 180 110.5 72.7 197.9 3.34 17 27 
3.27 24.34 3.8 200 101.1 74.1 193.2 3.5 16.8 25 
2.89 45.705 5.7 345 104.5 73.6 179.7 3.21 19.1 22 
3.48 13.96 1.8 120 97.1 66.7 174.3 2.398 13.2 33 
3.08 9.235 1 55 93.1 62.6 149.4 1.895 10.3 45 
2.06 19.84 2.5 163 103.7 69.7 190.9 2.967 15.9 24 
3.49 24.495 2.5 168 106 69.2 193 3.332 16 24 
3.44 22.245 2.7 200 113 74.4 209.1 3.452 17 26 
3.48 16.48 2 132 108 71 186 2.911 16 27 
2.6 28.34 3.5 253 113 74.4 207.7 3.564 17 23 
4.33 12.64 2 132 105 74.4 174.4 2.567 12.5 29 
1.55 19.045 2.5 163 103.7 69.1 190.2 2.879 15.9 24 
4.27 20.23 2.5 168 108 71 186 3.058 16 24 
-0.09 69.725 8 450 96.2 75.7 176.7 3.375 19 16 
5.43 19.46 5.2 230 138.7 79.3 224.2 4.47 26 17 
2.82 21.315 3.9 175 109.6 78.8 192.6 4.245 32 15 
3.44 18.575 3.9 175 127.2 78.8 208.5 4.298 32 16 
4.71 16.98 2.5 120 131 71.5 215 3.557 22 19 
5.2 19.565 2.4 150 113.3 76.8 186.3 3.533 20 24 
4.25 12.07 2 110 98.4 67 174.7 2.468 12.7 30 
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4.73 21.56 3.8 190 101.3 73.1 183.2 3.203 15.7 24 
3.56 17.035 2.5 170 106.5 69.1 184.6 2.769 15 25 
5.5 17.885 3 155 108.5 73 197.6 3.368 16 24 
4.15 22.195 4.6 200 114.7 78.2 212 3.908 19 21 
5.62 31.93 4 210 111.6 70.2 190.7 3.876 21 19 
5.05 21.41 3 150 120.7 76.6 200.9 3.761 26 21 
4.83 36.135 4.6 240 119 78.7 204.6 4.808 26 16 
5.4 12.05 2.5 119 117.5 69.4 200.7 3.086 20 23 
6.29 26.935 4.6 220 138.5 79.1 224.5 4.241 25.1 18 
5.3 12.885 1.6 106 103.2 67.1 175.1 2.339 11.9 32 
5.44 15.35 2.3 135 106.9 70.3 188.8 2.932 17.1 27 
4.29 20.55 2 146 103.2 68.9 177.6 3.219 15.3 24 
2.55 26.6 3.2 205 106.4 70.4 178.2 3.857 21.1 19 
4.33 26 3.5 210 118.1 75.6 201.2 4.288 20 23 
3.72 9.699 1.5 92 96.1 65.7 166.7 2.24 11.9 31 
4.2 11.799 2 140 100.4 66.9 174 2.626 14.5 27 
3.38 14.999 2.4 148 106.3 71.6 185.4 3.072 17.2 25 
3.17 29.465 3 227 108.3 70.2 193.7 3.342 18.5 25 
4.02 14.46 2.5 120 93.4 66.7 152 3.045 19 17 
4.39 21.62 4 190 101.4 69.4 167.5 3.194 20 20 
5.06 26.895 4 195 105.9 72.3 181.5 3.88 20.5 19 
3.18 31.505 3 210 105.1 70.5 190.2 3.373 18.5 23 
2.54 37.805 3 225 110.2 70.9 189.2 3.638 19.8 23 
1.85 54.005 4 290 112.2 72 196.7 3.89 22.5 22 
2.62 39.08 4.6 275 109 73.6 208.5 3.868 20 22 
3.89 43.33 4.6 215 117.7 78.2 215.3 4.121 19 21 
3.27 13.987 1.8 113 98.4 66.5 173.6 2.25 13.2 30 
3.75 19.047 2.4 154 100.8 68.9 175.4 2.91 15.9 24 
4.02 17.357 2.4 145 103.7 68.5 187.8 2.945 16.3 25 
1.74 24.997 3.5 210 107.1 70.3 194.1 3.443 19 22 
-2.21 25.45 3 161 97.2 72.4 180.3 3.131 19.8 21 
2.43 31.807 3.5 200 107.3 69.9 186.6 4.52 24.3 18 
3.67 22.527 3 173 107.3 66.7 178.3 3.51 19.5 20 
2.66 16.24 2 125 106.5 69.1 184.8 2.769 15 28 
3.28 16.54 2 125 106.4 69.6 185 2.892 16 30 
4.22 19.035 3 153 108.5 73 199.7 3.379 16 24 
4.4 22.605 4.6 200 114.7 78.2 212 3.958 19 21 
3.32 27.56 4 210 111.6 70.2 190.1 3.876 21 18 
3.01 22.51 3.3 170 112.2 74.9 194.7 3.944 20 21 
2.91 31.75 2.3 185 105.9 67.7 177.4 3.25 16.4 26 
3.32 49.9 3.2 221 111.5 70.8 189.4 3.823 21.1 25 
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2.82 69.7 4.3 275 121.5 73.1 203.1 4.133 23.2 21 
1.2 82.6 5 302 99 71.3 177.1 4.125 21.1 20 
3.75 13.499 1.8 126 99.8 67.3 177.5 2.593 13.2 30 
4.48 20.39 2.4 155 103.1 69.1 183.5 3.012 15.9 25 
4.38 26.249 3 222 108.3 70.3 190.5 3.294 18.5 25 
3.31 26.399 3.3 170 112.2 74.9 194.8 3.991 20 21 
3.75 29.299 3.3 170 106.3 71.7 182.6 3.947 21 19 
0.11 18.145 3.1 150 107 69.4 192 3.102 15.2 25 
2.69 36.229 4 250 113.8 74.4 205.4 3.967 18.5 22 

3 31.598 4.3 190 107 67.8 181.2 4.068 17.5 19 
3.19 25.345 3.4 185 120 72.2 201.4 3.948 25 22 
3.49 12.64 2 132 105 74.4 174.4 2.559 12.5 29 
1.66 16.08 2 132 108 71 186.3 2.942 16 27 
3.18 18.85 2.4 150 113.3 76.8 186.3 3.528 20 24 
3.94 21.61 2.4 150 104.1 68.4 181.9 2.906 15 27 
4.88 19.72 3.4 175 107 70.4 186.3 3.091 15.2 25 
2.99 25.31 3.8 200 101.1 74.5 193.4 3.492 16.8 25 
4.53 21.665 3.8 195 110.5 72.7 196.5 3.396 18 25 
3.58 23.755 3.8 205 112.2 72.6 202.5 3.59 17.5 24 
2.2 41.43 2.7 217 95.2 70.1 171 2.778 17 22 
0.25 71.02 3.4 300 92.6 69.5 174.5 3.032 17 21 
0.62 74.97 3.4 300 92.6 69.5 174.5 3.075 17 23 
4.39 10.685 1.9 100 102.4 66.4 176.9 2.332 12.1 33 
3.2 12.535 1.9 100 102.4 66.4 180 2.367 12.1 33 
1.65 14.29 1.9 124 102.4 66.4 176.9 2.452 12.1 31 
4.96 13.108 1.8 120 97 66.7 174 2.42 13.2 33 
5.51 17.518 2.2 133 105.2 70.1 188.5 2.998 18.5 27 
4.16 25.545 3 210 107.1 71.7 191.9 3.417 18.5 26 
3.5 16.875 1.8 140 102.4 68.3 170.5 2.425 14.5 31 
4.43 11.528 2.4 142 103.3 66.5 178.7 2.58 15.1 23 
3.22 16.888 2 127 94.9 66.7 163.8 2.668 15.3 27 
4.23 22.288 2.7 150 105.3 66.5 183.3 3.44 18.5 23 
2.29 51.728 4.7 230 112.2 76.4 192.5 5.115 25.4 15 
2.28 14.9 2 115 98.9 68.3 163.3 2.767 14.5 26 
4.43 16.7 2 115 98.9 68.3 172.3 2.853 14.5 26 
3.93 21.2 1.8 150 106.4 68.5 184.1 3.043 16.4 27 
2.26 19.99 2 115 97.4 66.7 160.4 3.079 13.7 26 
1.72 17.5 2 115 98.9 68.3 163.3 2.762 14.6 26 
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APPENDIX C 

 

This is the Matlab code performed on real data  

z=A; 
y1=B; 
p=9; 
n=117 
for j=1:9, 
    x(:,j)=(z(:,j)-mean(z(:,j)))/(((116)^(1/2))*std(z(:,j)));  
end 
x; 
y=(y1-mean(y1))/(((116)^(1/2))*std(y1)); 
rx=x'*x; 
ry=x'*y; 
b=inv(rx)*ry; 
q=(y-x*b)'*(y-x*b)/(n-p); 
ei=eig(rx); 
sumei=0; 
for j=1:9' 
    sumei=sumei+(1/ei(j)); 
end 
Ms_ols=q*sumei; 
k1=q/(max(b)^2); 
e=eig(rx); 
  
sume=0; 
for s=1:9' 
    sume=sume+(e(s)/(e(s)+k1)^2); 
end 
  
MS_HKa=q*sume+k1^2*b'*inv(rx+k1*eye(9,9))*inv(rx+k1*eye(9,9))*b; 
b1=inv(rx+k1*eye(9,9))*ry; 
  
k2=(q*max(ei))/((max(ei)*(max(b))^2)+(q*(108))); 
w=eig(rx); 
  
sumw=0; 
for d=1:p' 
    sumw=sumw+(w(d)/(w(d)+k2)^2); 
end 
b2=inv(rx+k2*eye(9,9))*ry; 
MS_KS=q*sumw+(k2^2)*b'*inv(rx+k2*eye(9,9))*inv(rx+k2*eye(9,9))*b; 
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K3=(p*q/(b'*b)); 
e=eig(rx); 
  
sume=0; 
for s=1:p' 
    sume=sume+(e(s)/(e(s)+k3)^2); 
end 
  
MS_HK=q*sume+(k3^2)*b'*inv(rx+k3*eye(p,p))*inv(rx+k3*eye(p,p))*b; 
b3=inv(rx+k3*eye(p,p))*ry; 
k4=(q/(b'*b)); 
e=eig(rx); 
  
sume=0; 
for s=1:p' 
    sume=sume+(e(s)/(e(s)+k4)^2); 
end 
  
MS_hk2=q*sume+(k4^2)*b'*inv(rx+k4*eye(p,p))*inv(rx+k4*eye(p,p))*b; 
b4=inv(rx+k4*eye(p,p))*ry; 
  
M=[Ms_OLS  MS_HKa  MS_KS  MS_HK MS_FK]   
 
where 
A=matrix of regressors . 

B=vector of dependent variable. 

M=vector of MSEs 

 

 




