Deanship of Graduate Studies
Al-Quds University

An Evaluation of Ridge Regression in the Presence of
Multicollinearity

Suliman Sameir Al-Faqeih

M.Sc. Thesis

Jerusalem-Palestine

1432/2011



An Evaluation of Ridge Regression in the Presence of
Multicollinearity

By
Suliman Sameir AL-Faqgeih

B.Sc.: College of Science and Technology
Al-Quds University/Palestine

Supervisor: Khaled A. Sallah, PhD.

This thesis is submitted in Partial fulfillment of requirements of the degree
of Master of Science , Department of Mathematics / Program of Graduate
studies.

Al-Quds University
2011

il



The Program of Graduate Studies /Department of Mathematics

Deanship of Graduate Studies

An Evaluation of Ridge Regression in the Presence of
Multicollinearity

By

Student Name: Suliman Al-Fageih
Registration Number: 20820196
Supervisor: Dr. Khaled A. Sallah

Master thesis submitted and accepted date:

The names and signatures of the examining committee members are as
follows

1. Dr. Khaled A. Sallah Head of Committee, Signatures........
2. Dr. Tahseen Almograbi Internal Examiner, Signatures........

3. Dr. Fesal Awartani External Examiner, Signatures........

Al-Quds University

1432/2011



Declaration

I certify that the thesis, submitted for the degree of master, is the
result of my own research except where otherwise acknowledged,
and that the thesis (or any part of the same) has not been
submitted for a higher degree to any other university or

institution.

Suliman Al-Faqeh

Date :

v



Dedication

To my mother , Sameha

To my father , Sameir

To my brothers , Samer, Mohammed

To my sisters, San’a, Suheir, Suhad, Samya, Sajeda
To my friend

To my colleagues "teachers"



Acknowledgments

This work in this thesis has been carried out at the Department of
Mathematics at Al-Quds university. I cannot fully express my gratitude to
my supervisor Dr. Khaled A. Sallah. He is an exceptional academic
advisor, supporting, extraordinary leader and ready any time to devote his
time and efforts to help his students. In the same time he set an example for
me by being just, open and honest, kind and gentle person, devoted and
caring constant source of wisdom and experience. I really appreciate his

patience, encouragement and valuable suggestions.

I am grateful to all the following doctors who taught me during the MA
degree: Dr. Yousif Zahalqgia, Dr. Ibrahem Qrouz, Dr .Jameel jamal, Dr.
Taha Abu kaf, Dr. Abedulhakeem Eidah, Dr. Mohammed Kaleel, Dr.

Yousif Bedar, Dr.Tahseen Almougrabi.

vi



Abstract

In regression, the objective is to explain the variation in one or more response variables,
by associating this variation with proportional in one or more explanatory variables. If
there is no linear relationship between these explanatory variables, they are said to be
orthogonal. If the variables is not orthogonal then several of the explanatory variables
will vary in rather similar ways. This problem is called multicollinearity, which is a
commonly occurring problem in regression analysis. It is the situation in which two or
more explanatory variables are highly (but not perfectly ) correlated to one another,
making it difficult to interpret the strength of the effect of each variable. Handling
multicollinearity problem in regression analysis is very important because the least
squares estimatiors assume that the predictors are not correlated. A number of
procedures have been developed for finding biased estimators of regression parameters.
Some of these procedures are ridge regression (RR), principal component regression

(PCR) and partial least squares regression (PLSR).

In this thesis, we consider ridge regression, including the ridge estimator (ordinary and
generalized) and their properties. Since the creative work of Hoerl and Kennard ridge
regression has proven to be a useful technique to tackle the multicollinearity problem in
the linear regression model. Different approaches are investigated with different criteria
for estimating the ridge parameter k. In this thesis a comparison between well-known
approaches for selecting the ridge parameter k. Under the normality assumptions, the
mean squared error (MSE) criterion is used to examine the performance of these

estimators when compared with the ordinary least squared estimator (OLS).

The simulation studies and the analysis of real data demonstrate that under certain
conditions, at least one of the considered estimators (HKa, KS, HK, FK) have a smaller

MSE than the ordinary least squared estimator (OLS), and other approaches.
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Chapter one

INTRODUCTION

1.1 Introduction

Researchers are often interested in the relationships between one variable and several
other variables. Often in applied statistics, after the data had been collected the purpose of
analysis is to construct a statistical model. Regression analysis consists of techniques for
modeling the relationships between a dependent variable (known as response variable) and
one or more independent variables (known as explanatory variables or predictors). In
regression the dependent variable is modeled as a function of independent variables,
corresponding regression parameter, and a random error term which represents the variation
in the dependent variable unexplained by the function of the independent variables in
symbol we denote the response variable by Y and the set of predictor variables by
X1,X3, .., Xp where p denotes the number of predictor variables. The relation between
Y and the set of independent variable X, X5, ..., X}, can be approximated by the regression

model
Y = f(XI’XZ' ...,Xp) + ¢

Where ¢ is assumed to be a random error (noise weight) representing the discrepancy in the
approximation. It accounts for the failure of the model to fit the data exactly. The function
f(X1,X3, ..., Xp) describes the relationship between Y and X;, X5, ..., Xp,. f can be linear or
nonlinear function. The term linear (nonlinear) doesn’t describe the relationship between Y

and Xi, X, ..., X,. It is related to the fact that the regression parameters enter the equation



linearly (nonlinearly). Linear regression requires that the model is linear in regression
parameters. Regression analysis is the method to discover the relationship between one or
more response variables and the predictors. There are three types of regression. The first is
simple linear regression. The simple linear regression is for models the linear relationship
between two variables one of them is the dependent variable and the other is the
independent variable. The second type in regression is the multiple linear regression which
is linear regression model with one dependent variable and more than one independent
variables. The third type of regression is nonlinear regression, which assumes that the
relationship between the dependent variable and the independent variable is not linear in
regression parameters. Nonlinear regression model is more complicated than linear
regression model in term of estimation the model parameters, model selection, model
diagnosis, variable selection, outlier observation. When we deal only with one response
variable, regression analysis is called univariate regression and in case we have two or

more response variables regression is called multivariate regression.

1.2 The Problem of Multicollinearity

The problem of multicollinearity has remained the center of attraction in the literature of
linear regression analysis for a long time. It arises when the explanatory variables in a
linear regression model are highly correlated, and thus one or more columns of the (design
matrix) form a near linear combination with other columns. This problem can cause the
value of the least squares estimated regression coefficients to be conditional upon the
correlated predictor variables in the model. As defined by Bowerman and O’Connell (1990)
the presence of multicollinearity in the data is a numerical issue as well as a statistical
issue. It a is statistical issue because it inflates (being large) the variance of ordinary least

2



square estimator and a numerical issue in the sense that the small errors in input may cause
large errors in the output.
According to Neter et al. (1996), there are two types of multicollinearity: perfect
multicollinearity (or extreme multicollinearity) and high multicollinearity (or near extreme
multicollinearity).
Perfect multicollinearity means that at least two of the independent variables in a regression
equation are perfectly related by a linear function. When perfect multicollinearity is
present, there is no perfect solution. Perfect multicollinearity occurs when:

1. Independent variables are linear functions of each other, for example; age and year

of birth.

2. Dummy variables are created for all values of a categorical variable.

3. There are fewer observations than variables.
High multicollinearity means that there are strong (but not perfect) linear relationship
among the independent variables. If the regression model has only two independent
variables, high multicollinearity occurs if the two variables have a correlation that is close
to 1 or —1. Therefore, the closer it gets to 1 or —1, the greater is the association between the
independent variables. When there is high but imperfect multicollinearity, a solution is still
possible but as the independent variables increase in correlation with each other, the

standard errors of the regression coefficients will become inflated.



1.3 Purpose and Objectives of the Thesis

A recent alternative to least squares regression is ridge regression (Darlington, 1978;
Dempster, Schatzoff & Wermuth, 1977; Hoerl & Kennard, 1970; Prince, 1977). Ridge
regression was developed expressly for the purpose of circumventing the weakness of least
squares regression with regard to highly overlapping predictors, and as such, applying ridge

regression would appear to be very appropriate.

It is important to realize that the resulting ridge regression equation is a biased estimate and
not reflective of population parameters. As such, ridge regression is of little use in
theoretical modeling (Darlingon, 1978). The main advantage of ridge regression is in
prediction, and as this is the specific purpose of using regression equations in selection,
ridge regression would appear to be a particularly useful tool when multicollinearity is

presented.

The purpose of this thesis is to examine the improvement in prediction of the ridge
regression procedure over the least squares regression procedure when applied to
multicollinearity data. Improvement of prediction was defined in terms of the value of ridge
parameters Kyxq, Kis, ki and, kg of the multiple correlation coefficients obtained when
the regression equations were applied on different samples. Further, as it has been
demonstrated that the best choice of k gives better maximum prediction. It was expected
that the ridge regression procedure would result in less MSE than the least squares

procedure.



The objectives of this thesis can be summarized as:

1. To study and investigate the univariate and multivariate linear regression and their
properties.

2. To present the ridge estimator (ordinary and generalized) and its properties for
handling multicollinearity problem.

3. To review the relevant literature on published work done recently concerning the
problems of multicollinearity.

4. To compare the mean squared error of OLS and the mean squared error of ridge

estimators depend on the ridge parameters {kyxq, Kxcs, Kui, Kric}

1.4 Scope of the Thesis

This thesis consists of five chapters. The first chapter is an introductory chapter in which
the definition of regression analysis, multicollinearity and the importance of the ridge

regression are mentioned.

In the second chapter, some background information about the linear regression is
presented. In addition, some common estimate tasks and techniques are explained, and the
main steps of the Ordinary Least Square Estimation (OLSE) process are mentioned. At the
end of this chapter, some popular approaches of statistical inferences of the (OLSE) are

presented.

The main part of this thesis contains three chapters, which cover research related to this
study. In the third chapter a comprehensive literature review on multicollinearity problem is

introduced. Besides the effect, the source, the diagnostics, and the remedies of

5



multicollinearity are presented. A detailed explanation of ridge regression, selection of
variables, general ridge regression and ridge parameters will be presented in chapter four. A
comparison study through a simulation study and real data analysis followed by conclusion
of this study and the possible works that can be done in the future are presented in the final

chapter.



Chapter two

Linear Regression

This chapter expands on the analysis of simple linear regression models and discusses the
analysis of multiple linear regression models in matrix form.

Numerous procedures have been developed for parameter estimation and inference in linear
regression. These methods differ in computational simplicity of algorithms, presence of a
closed-form solution, robustness with respect to heavy-tailed distributions, and theoretical
assumptions needed to validate desirable statistical properties such as consistency and
asymptotic efficiency. One of the most common estimation techniques for linear regression
is the Ordinary Least Squares (OLS). Discussion and properties of the (OLS) also are

presented in this chapter.

2.1 Simple Linear Regression

The general form of simple linear regression consists of the mean function and the variance

function

EY|X =x) = o+ Br1x
(2.1)
Var(Y|X = x) = ¢?
The parameters in model (2.1) are the intercept [, which is the value of E(Y|X = x) when
x is equals zero and fS; is the slope which is the rate of change in E(Y|X = x) for a unit
change in X. As this parameter changes we get different straight lines. In most applications

parameters are unknown and must be estimated. o2 is constant that is usually unknown.

The observed value of the response variable y; will be typically not equal to the expected



value E(Y|X = x) since 02 > 0. The difference between the observed value and the

expected value is called statistical error or g;, that is
g=y—EYIX=x), i=12.,n

The errors €; depend on the unknown parameter in the mean function and so are not
observable quantities. They are random variables and correspond to vertical distance

between y; and E(Y|X = x).

2.1.1 Assumptions on which simple linear regression is based

Quantitative models always rest on assumptions about the way the world works, and
regression models are no exception. There are four principal assumptions which justify the

use of linear regression models for purposes of prediction:

1. The mean value of the dependent variable Y increases or decreases linearly as the
value of the independent variable X increases or decreases. To put it simply there is
a linear relationship between X and Y.

2. For given value of independent variable X the corresponding values of the
dependent variable Y are distributed normally. The mean value of this distribution
falls on the regression line.

3. The standard deviation of the values of the dependent variable Y at any given value
of independent variable X is the same for all values of X.

4. The errors are uncorrelated (i.e. Independent) and are distributed normally as

& ~N(0,02)



2.1.2 Ordinary Least Square Estimation

There are many methods for estimating the parameters in the model (2.1). Here we will
discuss the ordinary least squares method (OLS), in which parameter estimates are chosen

to minimize the residual sums of squares. Estimates of parameters are computable functions
of data and therefore statistics, we estimate 8; by fB;, and B, by B, and thus the model (2.1)

is estimated as
E(Y|X =x) =Py + pix

The best linear model minimizes the sum squared error (RSS):

n n
RSS(Bo, B1) = Z g’ = Z()’i = Bo — P1x:)?
i=1 i=1
Estimation of a simple linear regression relationship involves finding estimated or predicted
values of the intercept and slope of the linear regression line.
The estimated regression line is:
P, =EY|X=x))=Bg+frx; ,i=12,..,n

The least squares estimates can be derived in many ways. And they are given by the

expressions:

A S A A _
Blzﬂ And By =y —-pi %,

Sxx

— —_ .—\2
Where SXY = —Z (xl;;fi_(lyi_y) And SXX = Z—(x,—;‘_j)



2.1.3 Properties of least square method

With the assumptions on the error that assumed to be independent random quantities and

2
Normally distributed with mean zero and variance ¢ the fitted line pass through the point

(X, 7). The quantities f, and B, are unbiased estimates of B, and B; respectively. Their

variances are:

1 .')Z'Z 2

A~ 2 A
Var(ﬁo) =0 [; + m] and Var(,Bl) =

g

X (xi—%)?
And they are correlated, with covariance

s A o 72
o) =S —r

Furthermore, the sampling distribution of the least squares estimates 8, and 5; are Normal

with means f§; and f[; and variances that given above respectively.

A A 2
The variances of [, and f; depend on the unknown parameter ¢ from the data. An

. . 2. .
unbiased estimate of ¢ is given by

~2 i —9)?
[e) e
n—2

2.1.4 Analysis of Variance

Analysis of variance provides a convenient method of comparing the fit of two or more
mean functions for the same set of data. The total sum of squared deviations in Y can be

decomposed into the sum of two quantities the first, SSR, measures the quality of X as a

10



predictor of Y, and the second, SSE, measures the error in this prediction. This is explained

in the following points:

e Our observed variable Y will always have some variability associated with it. We
break this into the variability related to our predictor and the variability unrelated to
our predictor.

e SSTO=Total sums of squares=Y.(y; — y)? is the total variability in Y. It has n — 1
degrees of freedom associated with it.

e SSR=regression sum of square =Y.(§; — ¥)? is the variability of Y accounted for
our regression model. Since we are using one predictor X it has one degree of
freedom associated with it.

e SSE=Error sums of squares =Y.(y; — 9;)? is the variability in Y that is not
accounted by for our regression model. It has n — 2 degree of freedom associated
with it.

e The fundamental equality is given by

SSTO = SSE + SSR

2.1.5 Tests of hypotheses

To test whether there is a linear relationship between two variables we can perform a

hypothesis test on the slope parameter in the corresponding simple linear regression model.
The general form for test statistic is

point estimate — E (point estimate)

standard deviation of point estimate

11



2.15.1 Testof B4

In order to test 81 , we consider the following point :

e Point estimate (f;) =least squares estimate= 3,

e E(point estimate )= f;

o2

e Standard deviation = s. e(,l?l) = \/VCIT‘(BO = \/Z(X'—f)z

e The resulting test statistic t; = i 1([:33)1, follows a t distribution with n — 2 degree of
1

freedom.

2.1.5.2 Explanation for testing 4

An appropriate test statistic for testing the null hypothesisHy: ;=0 against the

alternative H; :f8; # 0 in the t-test,

[ = P

s.e(By)

The statistic t; is distributed as Student's t-distribution with (n — 2)degrees of freedom.
The test is carried out by comparing this observed value with the appropriate critical value

obtained from the t-table which is tn-2,2/,) where a is specified significance level.

Accordingly H, is be rejected at the significance level a if

|t1] = tn—zay,) (2.2)
Where |t;| denotes the absolute value of't;. A criterion equivalent to that in (2.2) is to

compare the p —value for the t;-test with «, and we reject H if

12



r(ti) < a

2.1.5.3 Test of B,

In order to test B, we consider the following point:

e Point estimate =least squares estimate= B

e E(point estimate )= B,

e Standard deviation= s.e(f%o) = JVar(ﬁO) = \/0‘2 E+ Z(x)-_(ii)z]

e The resulting test statistic t; = SB z(}f 0), follows at distribution with n — 2 degrees
. 0

of freedom.

2.1.6 Confidence Interval

Point estimate tell us about the central tendency of a distribution while confidence intervals

tell us about both the central tendency and the spread of the distribution.
The general form of the confidence interval is
Point estimate +(critical value)(standard error of point estimate)

The general (1 — @) confidence interval for 3, is given by:

A~

pr + <t(n_2,1_2) ) s.e{p}

2

We can perform significance test using confidence intervals. If your interval contains the
value of the parameter under the null hypothesis you fall to reject the null. If the value

under the null hypothesis falls outside of your confidence interval then you reject the null.

13



2.1.7 Coefficient of determination

The Coefficient of determination 72, indicate the percentage of variation in Y that is
explained by all predictor in the equation. The Coefficient of determination can be

calculated as

_ SSR SSE

2 7 1 — —
SSTO SSTO

Properties of 72 summarized as follows:

e 0<r2<1

e Higher of r2leads to more useful model.

e Unaffected if the units of the measurement are changed.

e The Coefficient of determination r2 is a measure of how well the least square
model perform as a predictor of Y.

e The Coefficient of determination % measures the relative size of SSTO and SSE.

2.3 Multiple linear regression

A multiple linear regression model can be expressed as:

Y = Bo + BiXun + BoXiy + o+ Bp1 Xy T & (2.3)
Model (2.3) can be written in matrix form as
y=Xp+¢ (2.4)

Wherey is n X 1 vector of the variable to be explained, X is an n X p matrix of

explanatory variables where n is the number of observations and p is the number of the

14



explanatory variable. £ is ann X 1 vector of disturbances distributed as e~N (0, 52I). The

p X 1 parameter vector f is assumed unknown and to be estimated by the data y and X

Where
1 x11 xlp_l
X=(; A )
1 xnl xnp—l
y=0 - %)
e=(&, en)t
And

B = (BoBi, ) Bp1)

2.3.1 Estimation of regression coefficients

The least squares criterion is generalized for general linear regression model as
n
SSE = ) (¥ = Bo = B = BaXe, =+ = BypXiy )’
i=1

The least squares estimators are those values of By, By, B,—1 that minimize the sum square

error. Denote the vector of least squares estimated by

In matrix form the ordinary least squares written as
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SSE = (y—-XB)'(y—XB)
yyt — y'Xb — b*X'y + b X' Xb
= yy'—2y'Xb + bX'Xb

Taking the derivative with respect to b gives,

J0SSE
W = 0-— Zth + 2XtXb

Setting this equal to zero implies
X‘Xb = X'y
This is called the normal equation
Assuming that X*X not ill-conditioned matrix thus we have the unique linear solution
b=(X'X)"1X'y
Thus the predicted model is given by
y =Xb =X(X'X)"1Xty
2.3.2 Proprieties of the ordinary least estimator

e The Gauss-Markov theorem tells us that the OLS estimator is the best unbiased
linear Estimator (BUE).

e Unbiased means that the expected value of b, E(b) = .

e The estimator is linear function of the dependent variable observation once we have
fixed the model matrix X.

e The least squares estimator is under the assumption, the best such estimator because

it is the most efficient (minimum variance).
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e The OLS is attractive because it is Maximum likelithood estimator.

2.3.3  Distribution of b
Since b = (XX)~1X%y, the distribution of b is based on the distribution of y
Since y~N(XB,0%I) and by multivariate theorem we have

E(b) = (X'X)"'X'Ey = X' X)"'X'XB =B

a%{b} = cov{b} = c?(X*X) !
Thus

b~N(B,d*(X'X)™1) (2.5)

We can generalize what we mentioned in section (2.1.4 ) as following:

e SSTO=Y(Y; — Y)?, and it has n — 1 degrees of freedom associated with it.
e SSR=Y(Y; —Y)?, and it has p — 1 degree of freedom associated with it.

e SSE =X(Y; — ¥))?, and it has n — p degree of freedom associated with it.
And the mean squares:

SSR XY, —Y)?

MSR = =
p—1 p—1
SSE Y: — ¥,)?2

MSE — =Z(1 i)
n—p n—p
SSTO Y, —¥)2

MST — XY -0

n—-1  n—-1
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2.3.4 Tests for By,

The test for significance of regression is to test to determine whether a linear relationship
exists between the response variable and the independent variable. The appropriate

hypotheses are

Hy:p, # 0 foratleastonek =1,..,p—1

The test statistic for H,: 8 = B, = - = B,—1 = 01is
o MSR
~ MSE

Under H, , F~ Fy_1 n—p

We Reject H, if F is greater than critical value F,_;,_,. If H, is rejected, we conclude

that at least one of the regression coefficients is non zero hence at least ones of the X
variable is useful in predicting Y. If H, is not rejected, then we cannot conclude that any of

the X variables is useful in predicting Y.

2.3.5 Confidence interval for g,

We can construct confidence intervals for a particular coefficient ;.. The 1 — a confidence

interval is given by

by + Hn-pa-9) s{by}

From (2.5) we get that
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s2{b}yxp = MSE x (X‘X)™

Thus s{bi} = V/[s?{b}kxk

2.4 Correlation transformation

The Correlation transformation is a simple function of the standardized variables, the

Correlation transformation of the dependent and independent variables is given by

By = — (X”‘_X">k=1z p—1
ik m é_\X ) )&y iy

7 1 <Yl-—17
' Vn—1

>,i=1,2,..,n

The regression model with transformed variables as defined by the correlation

transformation is called a standardized regression model and defined as follows :
Y, =.§1Xi1+.§2)? +- +:8p 1sz &
The X matrix for the transformed variables (without the intercept term) is
X1-1 X1;?—1
X;n an;—l
Then X!X = ryy , where Ty is the correlation matrix of the X variables which contains

the element of coefficients of simple correlation between all pairs of X variables. That is,

1 T12 v Tip—1
Txx = : 1
"p-1 T2p-1 1

Similar to the algebraic definition of X*X matrix
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XtY = rxy

Where

rxy =| . |

\o s/

The normal equation for the standardized multiple regression is given by

b = (ryx) tryy

Where

.Bp—l
The parameters Sy, 35, ...,ﬁp_l in the standardized regression model and the original

parameters S, S, ..., Bp—1 in the ordinary multiple regression model are related as follows :
Ov\ 5 .
Bi = (T)Birl = 1,2,..,p -1
Ox

Bo = Y - ,31)?1 - 32)?2 -t .Bp—l)?p—l
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Chapter three

Multicollinearity

If there is no linear relation between the predictors, then they are said to be orthogonal.
When the predictors are orthogonal, prediction of dependent variable and estimation of the
parameters coefficient and selection an appropriate predictor in the model can be made
relatively easily. Unfortunately, in most application on linear regression the independent
variables are not orthogonal that is there are approximate linear relationships between two
or more independent variables in a multiple regression model. When there are near linear
dependencies between predictors multicollinearity exists. The condition of severe

nonorthogonality is also referred to as the problem of collinear data, or multicollinearity.

Elimination of multicollinearity is not possible completely but the degree of
multicollinearity can be decreased. In this chapter our study will be focused on explaining
multicollinearity problem. And discusses several methods for detection this problem such
as variance inflation factor VIF, correlation matrix, condition number, and tolerance. Some
of the popular methods for decreasing the degree of multicollinearity such as principal
component regression, adding additional data or new data, model respecification will be
discussed in this chapter. The most popular method for handling multicollinearity problem

is ridge regression, this method will be discussed in details in chapter four.
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3.1 Explanation of Multicollinearity

In most applications perfect multicollinearity is unlikely but near multicollinearity is more
likely to analyst. Let j* column of the matrix X = [X1 X, .. X; ...Xp] denoted by X;,
multicollinearity can be defined as the linear dependence of the column of X. The vectors

are linearly dependent if there is a constant ¢y, ¢y, ... ¢, not all equal zero such that

14
j=1

If (3.1) holds for a subset of columns of X then the rank of X!X is less than p and

(3.1)

(XtX)~1 doesn't exist, and if (3.1) holds approximately for some subsets of X, then there
will be a near linear dependency in X!X and the problem of multicollinearity exists. It is to
be noted that the multicollinearity is a form of ill-conditioning in the X‘X matrix.
Furthermore, the problem is one of the degrees, that is, every data set will suffer from

multicollinearity to some extent unless the columns of X are orthogonal.

The presence of multicollinearity can make the usual least squares analysis of the
regression model dramatically inadequate. In some cases, multiple regression results may
seem paradoxical. Even though the overall P value is very low, all of the individual P
values are high. This means that the model fits the data well, even though none of the X
variables has a statistically significant impact in predicting Y. How is this possible? When
two X variables are highly correlated, they both convey essentially the same information.
In this case, neither may contribute significantly to the model after the other one is
included. But together they contribute a lot. If both variables are removed from the model,

the fit would be much worse. So the overall model fits the data well, but neither X variable
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makes a significant contribution when its added to the model. When this happens, the X

variables are collinear and the results show multicollinearity.

3.2 Effects of multicollinearity

If the goal is simply to predict Y from a set of X variables, then multicollinearity is not a
problem. The predictions will be still accurate, and the overall R? (or adjusted R?)
quantifies how well the model predicts the Y values. If the goal is to understand how the

various X variables impact Y, then multicollinearity is a big problem.
The effects of multicollinearity can be listed as follows:

1. For variables that are highly related to one another but not perfectly related the
ordinary least squares estimators have large variances and covariances making
precise estimation difficult.

2. Confidence intervals tend to be much wider, the confidence interval may be include
zero, leading to the acceptance of the null hypothesis more readily which means one
can't even be confident whether an increase in the X value is associated with an
increase, or a decrease, in Y. Because the confidence intervals are so wide,
excluding a subject (or adding a new one) can change the coeffictients dramatically
and may even change their signs.

3. Although the t ratio of one or more of the coefficients is more likely to be
insignificant with multicollinearity, the R? value for the model can still be relatively
high.

4. The ordinary least squares estimators and their standard errors can be sensitive to

small changes in the data. In other words, the results will not be robust.
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5. The individual P values can be misleading (a P value can be high, even though the
variable is important).

6. Roundoff error in normal equation calculation

The results from normal equations calculations can be sensitive to rounding of data in
intermediate stage of calculation. The roundoff errors tend to enter least squares
calculations when the inverse of X‘X is taken. It may be serious when X*X has a
determinant that is close to 0, in which case (X*X)™! almost does not exist. This results in
inaccurate values of least squares estimated regression coefficients b . Roundoff error may
also exist when the element of X*X differ substantially in terms of magnitude, that is when
the data in X variables cover large range.

Correlation transformation helps with controlling roundoff error because it makes all
entries in the X¢X matrix for the transformed variable to fall between —1 and +1 inclusive.
Hence, the calculation of the inverse matrix becomes much less subjected to roundoff error

due to dissimilar orders of magnitudes than with the original variables.

3.3 Source of multicollinearity

There are four primary sources of multicollinearity:

1. The data collection method employed. This method can lead to multicollinearity
when the analyst samples only a subspace of the region of the regressors defined in
equation (2.4).

2. Constraints on the model or the population. Constraints of the model or in the

population being sampled can cause multicollinearity. For example of constraints
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physical constraints such as the unit of the regressors. And other constraints that the
researchers added to the model.

3. Model specification. Multicollinearity may be induced by the choice of model. We
know that adding a polynomial term to a regression model causes ill conditioning of
the X*X matrix.

4. An over defined model. An over defined model has more regressor variables than
number of observations. These models are sometimes uncounted in medical and
behavioral research, where there may be only small number of subjects available,

and information is collected for a large number of regressors on each subject.

3.4 Multicollinearity diagnostics

Multicollinearity is a matter of degree, not a matter of presence or absence. The higher
degree of multicollinearity, the greater the likelihood of the disturbing consequences of

multicollinearity.

There are several techniques that have been proposed for detecting multicollinearity:

3.4.1 Informal Diagnostics

A variety of informal diagnostics can be used to detect multicollinearity problems. These
informal diagnostics can be listed as follows:

1. A very simple measure of multicollinearity is inspection of the off-diagonal

clements 7;; in ryy. If regressors X; and X; are nearly dependent, then |ri ]-| will be

near unity.
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The determinant of ryy can be use as an index of multicollinearity, the possible
range of values of the determinant is 0 < |ryx| < 1. If |ryxx| = 1, the regressors
are orthogonal, will if |ryxyx| = 0, there is an exact linear dependence among
regressors. The degree of multicollinearity become more severe as |ryx| approaches
is zero. While this measure of multicollinearity is easy to apply, it doesn't provide
any information on the source of the multicollinearity.

The F statistics for significance of regression and individual ¢t statistics can
sometimes indicate the presence of multicollinearity. Specifically, if the overall F
statistic is significant but the individual ¢t statistics are all non significant,
multicollinearity is present. Unfortunately, many data sets that have significant
multicollinearity will not exhibit this behavior, and so the usefulness of this measure
is questionable.

The sign and magnitude of the regression coefficients will sometimes provide an
indication that multicollinearity is present. In particular if adding or removing a
regressor produces large changes in the estimates of the regression coefficients,
multicollinearity is indicated. If the deletion of one or more data points results in
large changes in the regression coefficients, there may be multicollinearity present.
Finally if the signs or magnitude of the regression coefficients in the regression
model are contrary to the prior expectation, we should be alert to possible
multicollinearity.

The wide confidence intervals for regression coefficients of important predictor
variables is also another sign that multicollinearity is present in the regression

analysis.
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6. Multicollinearity can also cause large changes in the least squares estimated
regression coefficients when a predictor variable is added or deleted or when
observation is altered or deleted.

The informal methods just described have important limitations. They don’t provide
quantitative measurements of the impact of multicollinearity and they may not identify the
nature of the multicollinearity. Also sometime the observed behavior may occur without

multicollinearity being present.

3.4.2 Formal Diagnostics

The development of formal methods for detecting multicollinearity problem is to determine
how serious the problem affects the analysis and to know the details of which variables are

correlated and need to be omitted or deleted.

3.4.2.1 Variance inflation factor (VIF)

Variance Inflation Factors is the measure of the speed with which variances and
covariances increase and it is most commonly used method for detecting multicollinearity
problem. Variance inflation factors is a measure of multicollinearity in a regression design
matrix (that is, independent variables) in a scaled version of the multiple correlation
coefficient between an independent variable, and the rest of the independent variable. The
measure shows the number of times the variances of the corresponding parameter estimate
is increased due to multicollinearity as compared to as what it would be if there were no
multicollinearity. Therefore, this diagnostic is designed to indicate the strength of the linear
dependencies and how much the variances of each regression coefficient is inflated above
ideal (Myers, 1986).
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The diagonal elements of the inverse of the 7yyx matrix are very useful for detecting
multicollinearity. The j** diagonal element of C = (rxx)~! matrix can be written as
=1 —Rjz)‘l, where Rjz is the coefficient of determination obtained when X; is
regressed on the remaining p — 1 regressors. If X; is nearly orthogonal to the remaining
p — 1 regressors, Rjz is small and Cj; is close to unity, while if X; is nearly linearly
dependent on some subset of the remaining regressors, Rjz is near unity and Cj; is large.
Since the variance of the j" regression coefficient is G jaz, we can view Cj; as the factor

by which the variance of the ﬁj is increased due to near linear dependences among the

regressors. We call this variance inflation factor or VIF and denoted for each j = 1, ..., p,
VIF,=(1-R*™

There is no formal cutoff value to use with the VIF for determining the presence of
multicollinearity but, Neter et al. (1996) recommended looking at the largest VIF value. A
value greater than 10 is often used as an indication of potential multicollinearity problem.

The cutoff value of VIF that should be used to determine whether collinearity is a problem

is shown as follows
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Figure 3.1 The choice of VIF value against the R-square value.

3.4.2.2 Tolerance

Tolerance is an index (set of indices) of linear dependence among the independent variables
X1, X3, s Xp in the intercept model. It is the inverse of variance inflation factors which a
value of near 1 indicates the independence of the predictors while a value of close to 0
indicates the variables are multicollinear. Therefore, tolerance have a range from 0 to 1 and
the closer the tolerance value is to 0, the higher the level of multicollinearity exists. It is
calculated as follows :

— 2
(Tolerance); = 1 —R;

3.4.2.3 Eigenvalues, Condition Number (CN)

The characteristic roots or eigenvalues of X'X, say A, Ay, ..., Xp, can be used to measure

the extent of the multicollinearity in the data. If there are one or more near-linear
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dependences in the data, then one or more characteristic roots will be small. One or more

small eigenvalues imply that there are near-linear dependences among the columns of X.

Some analyst prefer to examine the condition number of XX, defined as CN = bmax Tpig
min

is just a measure of the spread in the eigenvalues spectrum of X'X. Generally if the

condition number is less than 100, there is no serious problem with multicollinearity.

Condition number between 100 and 1000 imply moderate to strong multicollinearity, and if

exceeds 1000 this indicates presence of severe multicollinearity.
3.5 Remedies of multicollinearity

Several approaches for handling multicollinearity problem have been developed such as
Model Respecification, Use Additional or New Data , Principal Component Regression and

Ridge Regression. Ridge regression will be discussed in details in the next chapter.

3.5.1 Model respecification

Multicollinearity is often caused by the choice of the model, such as when two highly
correlated regressors are used in the regression equation. In these situations some
respecification of the regression equation may lessen the impact of multicollinearity. One
approach to model respecification is to redefine the regressors. For example, if X;, X,, X3
are nearly linearly dependent, it may be possible to find some function such as X = X; X, X;
or X = (X; + X,)/X; that preserves the information content in the original regressors but
reduces the ill conditioning. Another widely used approach to model respecification is
variable elimination. That is, if X;, X5, X3 are nearly linearly dependent, eliminating one

regressor may be helpful in combating multicollinearity. Variable elimination is often a

30



highly effective technique. However, it may not provide a satisfactory solution if the
regressors dropped from the model have significant explanatory power relative to the
response variable y, that is eliminating regressor to reduce multicollinearity may damage
the predictive power of the model. Care must be exercised in variables selection because
many of the selection procedures are seriously distorted by the multicollinearity, and there
is no assurance that the final model will exhibit any lesser degree of multicollinearity than

was present in the original data.

3.5.2 Use additional or new data

Since multicollinearity is a sample feature, it is possible that the other sample involving the
same variables collinearity may be not as serious as in the first sample. Sometimes simply
increasing the size of the sample may attenuate the collinearity problem. If one uses more
data, or increase the sample size, the effects of multicollinearity on the standard errors will
decrease. This because the standard errors are based on the both the correlation between
variables and the sample size. The larger the sample size, the smaller in the standard error.
Unfortunately, collecting additional data is not always possible because of economic
constraints or because of the process being studied is no longer available for sampling.
Even when the additional data are available it may be inappropriate to use if the new data
extend the range of the regressor variable far beyond the analyst's region of interest. Of
course collecting additional data is not a viable solution to the multicollinearity problem

when the multicollinearity is due to constraints on the model or on the population.
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3.5.3 Principal component regression

Biased estimators of regression coefficients can be obtained by using a procedure known as

principal components regression.

Consider the model in (2.4), let X‘X = TAT®, where A = diag(4,,2,,...,4,) is pxp
diagonal matrix of the eigenvalues of X'X and T is p X p orthogonal matrix whose
columns are the eigenvectors associated with 44,45, ...,4,. Then the above model can be

written as

y=XTT'B+¢, TT' =1
or y can be written as

y=Za+¢
Where Z = XT , and a = T'p,
and we have
Z'Z = T'X'XT =T'TAT'T = A
the columns of Z, which define a new set of orthogonal regressors, such as
Z=1[2,2,,..,2,],

are referred to as principle components.
The least square estimator of « is

a=(2'2)12ty = A7y
And the covariance matrix of @ is given by

V@) =o0%(Z'2)"t = 0?2471
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Thus a small eigenvalues X*X means that the variance of the corresponding regression

coefficient will be large. Since Z*Z = A. We often refer to the eigenvalue A; as the variance
of the jth principle component. If all A; equal to unity, the original regressors are
orthogonal, while if a 4; is exactly to zero, this implies a perfect linear relationship between
the original regressors. One or more A; near to zero implies that multicollinearity is

present.

The principle components regression approach combats multicollinearity by using less than
the full set of principle components in the model. To obtain the principle components
estimator, assume the regressors are arranged in order of decreasing eigenvalues, 4; >
Ay = -+ = A, = 0 suppose that the last s of these eigenvalues are approximately equal to

zero. In principle components regression the principal components corresponding to near
zero eigenvalues are removed from the analysis and the least squares applied to the

remaining components that is
a,. = Ba,
Where
B =|by, by, ..,b,]and by = b, = =b, =1 and by_g4q =bp_g43 =-+=b, =0
Thus the principle components estimator is
Apc =[ay @y ... @5 00 ... 0]

Thus the original vector B can be obtained by reverse transformation B = Ta,, and the

variance covariance matrix of 8 is given by

V(B) = TV(@,.)T"
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The steps in PCR can be summarized in the following algorithm.

STEP 1 : convert data to correlation form

7 1 <X—)?> 7 1 <Y—7>
_Vn—l ox )’ _Vn—l Oy

STEP 2 : Compute the correlation matrix for centered and scaled data

)?t)? = rxx, Xt? = T‘Xy

STEP 3 : compute the eigenvalues, 1;and the eigenvectors T of
correlation matrix

STEP 4 : Compute the component

Z =XT

STEP 5 : Compute eigenvalues of the components. The component
associated with the smallest eigenvalue will be deleted.
a=(Z2t2)zty

STEP 6 : Compute the coefficient estimate for the component after
deletion

STEP 7 : Transform back the coefficient estimate to the original
standardized Variables

ﬁpc = Tapc

STEP 7: Compute the coefficients of the natural variables
o9y\ 5 .
b; = (—)ﬂi'pc,l =12,..,p—71
Ox

where ; I : component eliminated.

STEP 8: The constant term is estimated by

bo = Y - bl)?l - bz)?z — e bp—rXp—r

Figure3.2 : Steps in Principal Components Regression algorithm
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Chapter four

Ridge Regression

Ridge regression is the modifications of the least squares method that allow biased
estimators of the regression coefficients. Although it has biased estimators, it only has a
small biased substantially more precise than an unbiased estimator. Therefore the estimator
will be prefered since it will have a larger probability of being close to the true parameter
value. In this chapter we will make an explanation of ridge regression and reviews the
relevant literature on published work done recently concerning the problems of
multicollinearity and for choosing the ridge parameter k when multicollinearity among the

columns of the design matrix exists.

4.1 Ridge regression estimator

When the method of least squares method is applied to nonorthogonal data, very poor

estimates of the regression coefficients can be obtained. The problem with the method of

least squares is the requirement that B be unbiased estimator of B. To motivate the ridge

= 2
estimator, we take a look at the mean squared error, E || B — [2” of least squares estimator
of . which can break into two parts the variance plus the squared bias
— —~ 2 - = 2
MSE(B) = E||B - B|" = v(B) + [E(B) - B]
The Gauss-Markov property assures that the least squares estimator has minimum variance

in the class of unbiased linear estimators. This however does not necessarily guarantee the

minimum MSE.
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One way to alleviate this problem is to drop the requirement that the estimator of f8 be

unbiased.

Suppose that a biased estimator of B is found say B* that has smaller variance than the

unbiased estimator 8. The mean square error of * is defined as

MSE(B?) = E|B" - B =v(B") + [E(B") - B]’

or
MSE(B*) = V(B*) + [bias inB’]"

By allowing a small amount of bias in B*, the variance of B* can be made small such that

the MSE of B* is less than the variance of the unbiased estimator f8.

A number of procedures have been developed biased estimators of regression coefficients.
One of these procedures is ridge regression, which is regression estimator has been
introduced as an alternative to the ordinary least square estimator (OLS) in the presence of
multicollinearity. This estimator originally proposed by Hoerl and Kennard (1970).
Specifically the ridge estimator is defined as the solution to
(XX + kDB = X'y,

or

Br = (XX + kI)7'X'y,
where k is a positive number known as ridge parameter. The procedure is called ridge
regression. An equivalent way is to write the ridge problem in the penalized or constrained
least squares form by

Minimizing ||y — XB]|?, subject to ||B]|? < s, for some constant s.
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The sampling distribution are illustrated as follows (Neter, et. al., 1985).

Sampling distribution of
biased estimator by

Sampling distribution of
unbiased estimator b

7 E<Ib> E(lm N Statistic

13 Parameter

||
_t——b Bias of by

Figure 4.1 The sampling distribution of biased and unbiased estimator

Figure 4.1 illustrates the ordinary least square estimator b as being unbiased but imprecise,
while estimator by is much more precise but has a small bias. Thus, the probability that by
falls near the true value f is much greater than that for the unbiased estimator b.
The ridge solution is not invariant under scaling of the inputs. Thus we should standardize
both the inputs and the response before computing the ridge estimator With the
standardized variables, the matrices X*X and Xty become

X'X = ryx and X'y =1y,
Where ryx denotes the correlation matrix among X; and ry,, denotes the correlation vector

between y and all X;. Hence the ridge estimator becomes
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Br = (ryx + kD) ™'ry,
In the case of orthogonal predictors, the ridge estimates are just a scaled version of OLS,

that is

Br=(Q1/1+k)PB

Besides, the intercept B is automatically suppressed as 0 when working with standardized
data. It is to be noted that when k = 0 then the ridge estimator is the least square estimator.
The ridge estimator is linear transformation of the least squares estimator since
If we denote Z = (I + k(X*X)™1)71, then

BR = ZB
Therefore, since E (?R) =F (Z ﬁ) = ZB, By is a biased estimator of B. The constant k is

usually referred to the biasing parameter. The covariance matrix of Bj is
cov( Bg) = 02Z(X'X)1Z¢
The total mean square error of the ridge estimator can be derived as

MSE(Bg) = V(Br)+|bias in Bz]"
= tr (cov(Br)) + (E(Br) — B (E(Br) — B
= o2tr(Z(X'X)™1Z%) + Bt - 2)t(I - Z)B
= o2tr((X'X)"1ZZ") + k2B (X'X + kI)"2B

p
12
_ JZZI.—@ SRR Y DR
=AW

(4
A;
= GZZ—M. -|—]k)2 +k2BE(XX + kD) 72B
j=1

where 14, 1,, ..., A, are the eigenvalues of X*X. If k increases then the bias in By increases.

However, the variance decreases as k increases.
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As k continues to increase without bound, the regression estimates all tends toward zero,
because the ridge method tends to shrink the estimates of ridge coefficients toward zero.
The idea of ridge regression is to pick a value of k for which the reduction in the total
variance is not exceeded by the increase in the bias. If this can be done, the mean square
error of the ridge estimator B will be less than the variance of the least square

estimator f.

Hoerl and Kennard (1976) proved that there exists a non zero positive value of k such that

MSE(Br) < MSE(B)

In other words, the ridge estimator can outperform the OLS in terms of providing a smaller
MSE. Nevertheless, in practice the choice of k is yet to be determined and hence there is no
guarantee that a smaller MSE always be attained by ridge regression.

The residual sum of squares of B is given by:

SSRes(ﬁR) = ()’ - X’BR)t - X?R)
=(y-XB)' (y—XB) + (Br - B)'Xx'X(Br - B)
= SSges(B) + (Br — B)tXtX( Br - E) 4.1)

Since the first term in the right hand side of equation (4.1) in the residual sum of squares
for the least squares estimates B, it is clear that as k increase, the residual sum of squares
increases. Consequently, because the total sum of squares is fixed, R? decreases as k
increases. Therefore, the ridge estimates will not necessary provide the best fit to the data,
but this should not be more concerned since the interest is in obtaining a stable set of

parameter estimates.
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4.2 Selection of variables in ridge regression by ridge trace

Variable selection procedure often do not perform well when the predictor variables are
highly correlated Marguardt and Snee (1970) point out that when the data is highly
multicollinear, the maximum variance inflation completely destabilizes all the criteria
obtained from the least squares estimates. Hoerl and Kennard suggest that the ridge trace
can be used as a guide for variable selection. They propose the following procedure for

eliminating predictor variables from the full model.

1. Eliminate predictor variables that are stable but have small predicting power that is
those with small standardized regression coefficient.

2. Eliminate predictor variables with unstable coefficients that do not hold their
predicting power because the coefficients tend to zero as k increases.

3. Eliminate one or more of the remaining predictor variables that have small

coefficients. The subset of remaining predictor variable is used in the final model.

4.3 General ridge regression.

In general ridge regression p ridge parameters have to be determined, but in ridge
regression we need to find one ridge parameter. To discuss the properites of genreral ridge
regression estimator we usually tansform the linear regression model (2.4) to a canonical
form. It is clear that for p X p positive definite matrix XX , there exists a p X p orthogonal
matrix T such that T* X*XT = A, where A = diag(44,2;,...,A,) and 1, 24, = - > 1,

are the orderd eigenvalues of XtX matrix. We may write (2.4) as

y=Ha+¢&
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The ordenary least squares estimator of & is

a=A"c (4.2)

Where, H=XT ,a =T'f and c¢=H'y

In scalar notation we can write (4.2) as

And so we can write the ridge estimator as

@k = (A + kD" 'H'y (4.3)

In scalar notation we can write (4.3) as

In this study two type of general ridge regression will be considered

4.3.1 General ridge regression L.

The general ridge regression can be written as

a‘R = (A+ kD 'H'y (4.4)
Where K=diag(kq, kz, ..., kp) and k; is a positive number for each i = 1,2 ..., p, equation
(4.4) is called the general form of ridge regression (GR)which is propsed by Hoerl and

Kennard, 1970; in scalar notation (4.4) can be writtin as
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In ridge regression all eigenvalues of X!X are treated equally, while in general ridge

regression, the determination of p ridge parameters k4, k,, ..., k,, is required.

It follows from Hoerl and Kennard, 1970; that the value of k; which minmizes the

MSE (@®R), where

P
A k:2a.? (4.5)

MSE(@‘R) = GZZ =+ —

(A + k) L (A +k)?

is

0.2
.2
i

k; = (4.6)

Q

Where o2 is the error variance of model (2.3) and o; is the i element of &

Equation (4.6) gives a value of k; that fully depends on the unknown o2 and a; and must
be estimated from the observed data. Hoerl and Kennard, 1970; suggest the replacement of

02 and q; by their corresponding unbiased estimators, that is

. 6%
ki=—
a;
Where 62 =Y",&2/n—p is the residual mean square estimate, which is unbiased

estimator of 62, and @; is the element of @, which is unbiased estimator @. They found
that the best method for achieving a better estimate @ is to use k; = k for each i and they

suggest k to be k. where

g = —
HE ™ max (&;)
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If 02 and a are known, then kj; is sufficient to give ridge estimators having smaller mean

square error than the ordinary least square estimators.

4.3.2 Superiority of the GRR @R over OLS @

J.S. Chawla, (1989); gave a sufficient condition for k; such that the general ridge
regression, @°R given in (4.4) is better than the ordinary least square @ given in (4.2)

relative to the mean square error.

In the following theorem a sufficient condition for k; will be considered. The proof of the

theorem requires the following two lemmas:

Lemma (4.1)

GRY _
MSE(@™) = “Z@ +k)2+2(/1 Tk

Proof.

MSE(@®) =E@® - )'(@a* - a) = E(Za - &)t (Z& — a)
=E(Za—-Za)'(Za—Za) + (Za — a)'(Za — a)

where
Z=U+A"K)" and a°F = Za
Now,

E(Za —Za)'(Za — Za) = trace[E(Zad — Za)(Za — Za)']
= trace[ZE(@ — a)(@ — a)'Z!]
= trace[Zo?A™1Z"]
Thus we have
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MSE(@°®) = o%trace[ZA~'Z] + a'(Z - D'(Z - Da
= o?trace[(I + A7'K)71A7Y (I + A71K)™1]
+al[I+AK) = 1[I+ AK) ! = Ta
p

14
= 02 Y (/) +ki/2) 2]+ ) [+ ki/2) ™ = 1%a?

~.
|
=

p 2
2
/1l' ki a;

_ + _
(i +k)? - & (A + k)?

I
Q
[\S)
M=1

~
1l
[y

Lemma (4.2)

2 /11' kzaiz
(Aj+k)? (Aj+k)?

is a monotonically decreasing function if 0 < k < 02 /a;2.

Ai kzaiz

Proof. Let fi(k) =0 Ai+k)2  (A+k)?

Therefore,
U9 = (—2022; + 2a24d0) /(A + k).
If
k <o?/a;?, then%(k) <0
kZa;?

. 2_ A
That is, o e T Gz

is a monotonically decreasing.
Theorem (4.1)
MSE (@ °®) < MSE (@) if the largest k; < 2; where 2 = min {02/a;%i = 1,2, ...,p}

Proof.

From lemma (4.2)
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filk) < £i(0)

or

2 Ai kzaiz
Aitk)2  (Ai+k)?

< 0'2//1l'

If 0 <k <o?/a;*. Hence

p p
2 Z A k al Z /A
L A + kl-)2 (/1 + k;)?

If largestk; < min {o2/a;?i = 1,2, ..., p}. Equivalently, MSE (@& %) < MSE(@), if the

largest k; < (2.
4.3.3 General ridge regression(II).

Farebrother, (1978); proposed an estimator of # in model (2.4) given by

a' = (XX + kA)"'Xty, (4.7

Where k is a positive number and A4 is p X p positive semi-definite matrix.

If b is a biased estimator of 8, then the p X p matrix of mean square error of b is defined as
Mtx MSE(b) = E(b— B)(b — B)*

Chawla, 1988; found that

Mtx MSE@") = (X'X + kA) 1 [62X'X + k2ABBAI(X'X + kA)™? (4.8)

If b; and b, are two competing estimators of f and

A= Mtx MSE(b,) — Mtx MSE(b,)
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is positive definite, then b, is preferred to b,.

4.3.4 Superiority of @* over the ordinary least square 8

General ridge estimator excels the least square estimator under a necessary and sufficient

condition, using the matrix mean square error criterion.

The following theorem gives these necessary and sufficient conditions, the proof of this

theorem requires the following lemma.

Lemma (4.3): Let R be a p X m matrix of rank m such that A = RR?, then

S = Mtx MSE(B) — Mtx MSE(&")

4.9
= k202(X'X + kA) 'RQR!(X'X + kA)™? *5)

Where

Q=Q2/k)IL,+R‘X'X)"*R - (1/6*)R* BB'R (4.10)

Proof.
Substitute Mtx MSE (E) = 02(X*X)™! and equation (4.8) into (4.9) we get

S =0?(X* X)) — (X*X + kA) 02X X + k2ABBLAI (XX + kA)~!
= (X' X + kA) Ho? (X' X + kA) (X' X)L (XX + kA)
—0%(XtX) — k2ABBLA] x (XtX + kA)™?
(XX + kA)"[20%kA + 02k?A(X'X) 1A — k2ABBA] (XtX + kA) ™!
= 02k?(X*X + kA)"R[(2/K)I,, + R*(X*X)"1R
—(1/0®)R* BB*R]IR (X' X + kA)™!
=k%0%(X*X + kA)"RQR*(X'X + kA)™.. =

Theorem (4.2): A necessary and sufficient condition for
S = Mtx MSE(B) — Mtx MSE(@")
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to be positive definite is
0< k<2/|9|
Where @ is the smallest negative eigenvalue of

R'(X'X)™'R — (1/6®)R* BB'R (4.11)
If all the eigenvalues of (4.11) are nonnegative, then S is positive definite for all values of

k> 0.

Proof.

S is positive definite if and only if (4.10) is positive definite. Let 74,75, ..., T, be the

eigenvalues of (4.11) therefore the eigenvalues of (4.10) are
2/k) + 1, 2/k) + 15, ..., 2/k) + Ty

Ifall 7; >0, i = 1,2,...,m, then (4.10) is positive definite for all values k > 0. If some
T; < 0, then @ is the least value of 7;,i = 1,2, ..., m, therefore (4.10) is positive definite if

and only if (2/k) + @ > 0. This equivalentto 0 < k < 2/|@|. m
4.4 Ridge parameter k

Hoerl and Kennard (1976) have suggested that an appropriate value of k may be
determined by the ridge trace. The ridge trace is a plot of the elements of By versus k for
values of k usually in the interval [0,1]. If the multicollinearity is severe, the instability in
the regression coefficients will be obvious from the ridge trace. As k is increased, some of

the ridge estimates will vary dramatically. At some value of k, the ridge estimates B will

47



stabilize. The objective is to select a reasonable small value of k at which the ridge

estimates By are stable.

Several author have proposed several procedures for choosing the value of k. Hoerl and

62

EZ

Kennard (1970a) proposed kyxq, = to estimate the ridge parameter k, also they have

suggested in (1975) that an appropriate choice of k is k = p62/B!B, where B and 62 are

found by least squares solution and p is the number of parameter.

=2
Hoerl and Kennard recommended kyy = % as general rule where the parameters are
estimated from the full equation least squares fit. Their studies suggest that the resulting

ridge estimator yields coefficient estimates with smaller means squared error than the

obtained from least squares. In a latter paper Hoerl and Kennard (1975) suggest an iterative

=2 —~ o~ =2
”fﬁ where B; = Br(k;). Farebrother (1975) suggested k = % ,

procedure where k =

=)

which for the Gonman-Toman data, yield k = 0.003 with this formula. Marquardt and
Snee (1970) suggested value of k for which the maximum variance inflation factor is
between one and ten. Mallows (1973) extended the concept of C,, — plots to Cj —plots,

which may be used to determine k Specifically, he suggested plotting Cj.,versus V;, where

C. = (RRS,/6%) —n + 2 + Tr(XL)

Vi =14 Tr(XtXLL?)

And

L= (XX + kD)Xt
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Here RRS, is the residual sum of squares as a function of k the suggestion is to choose k to
minimize C,. And other several methods for estimating k have been proposed by
Galarneau, 1975; Lawless and Wang, 1976; Hocking et al. 1976; Wichern and Churchill,
1978; Nordberg, 1982; Saleh and Kibria, 1993; Singh and Tracy, 1999; Wencheko, 2000;
Kibria, 2003; Alkhamisi et al., 2006; and Alkhamisi and Shukur, 2007; Alkhamisi and
Shukur, 2007; proposed some new estimators by adding 1/A4,,4, to some will known

estimator, where A, is the largest eigenvalue of X¢X.
Khalf and Shukur, 2005; suggested an estimator based on kyx, named as kyg, where

~2
Amaxo-

Amax,ézmax + (Tl - p)62

kys =

Hocking et al., 1976; suggest an estimator depend on (4.2) estimator named as kg, or

(HSL) for k
Where

5 P (a)?
., 2,@;%)?

kHSL -

Mahdi ALkamisi, Ghadban Khalaf and Ghazi Shukur 2006; proposed Some Modifications

for Choosing Ridge Parameters as follows:

~ 1,62
kxsmax = max ) ~
Aipi + (n—p)éG?
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~ . A;6? ,
Kxsmpp = median — ,i=12,..p
Aipi + (n—p)éG?

P
R 1 1,62
kksartn == ~ 2 ~
P \LB: + (n—p)é

L

M. A. ALkhamis and G. Shukur,2007 presented a new method based on ky

These estimators is presented as follows:

ke = i + 1
“ ﬁzmax max
- pé? 1
k = —+
NHKB BB P,
k M <62 + 1> 1,2
=Max | % — ), =14 ..,p
NAS Bzi 1
14
; 1 <62 N 1>
ARITH = - -
P Bzi A

62 1
i

knmep = Median <ﬁ7 + /1—> i=12,..,p
i

- p6? 1

NIW S o 5 Ay T
i=1/1i:8 i /1max

Yazid M. AL-Hassan, 14 December 2010; apply the modification mentioned in Alkhamisi
and Shukur, 2007; to the estimator proposed by Hocking et al.1976, ky;, to obtain new

estimator named kyys;, or (NHSL)
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Where

oy Amax Zoeq (i8)? + (Th_, 28,2

ENHSL =0 N
/’lmax (Z?:l Aiaiz)z
P IGL SPE S S
CP 8% Amax Amax

1

Since > 0, kyysy, is grater than kg, .

max

Yazid M. AL-Hassan, 2010; used Monte Carlo simulation to investigate the properties of
OLS, HK, HSL and NHSL. And he made a comparsion between these estimators based on
the MSE criterion. That is, he compared OLS, HK and HSL estimators with NHSL. He
found that his modified estimator NHSL uniformly dominantes the other estimators OLS,

HK, and HSL.

In this study we will make a comparison between the OLS and other approach for

choosing the ridge parameter k, these approach is listed in the following table

Table 4.1 Ridge parameters which we made a comparison between them.

Name k
6'2
HKa 32
max
KS _ /1max6'2
Amaxﬁzmax + (n - p)52
~2
HK b7
B‘B
5'2
FK =
BB
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Chapter five

Applications

The early stages of this thesis are discussed how the chosen methods perform in regression
analysis to handle multicollinearity problems. In the last stage of this thesis specially in this
chapter we will evaluate the performance of ridge regression approaches by conducting a
simulation studies to examine the feasibility and the properties of OLS, HKa, KS , HK and
KF . We investigate how will the regression parameters can be estimated in terms of bias
and converge rate, and then a comparison is made based on the MSE criterion. Also we
study how the following factors affect the performance of these approaches: the sample
size n, the number of regressors p, and degree of correlation. Moreover, a real data set also

will be examined.

5.1 Simulated data

5.1.1 Generating Simulated Data Sets

The more number of regressors involved, the more chances to have multicollinearity
problems in the analysis. A number of factors can affect the properties of OLS and the
ridge parameters such as the sample size n, degree of correlation between the explanatory
variables 7, and the number of regressors p. The numbers of independent variables and the
number of observations is generated randomly to test the performance of ridge parameters.
The different degree of correlation between the variables included in the model has been
used. We put these values equals to 0.7, 0.8, 0.9, 0.95, and 0.998. These values will cover a

wide range of moderate and strong correlation between the variables. All these values show
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that the correlations between all variables within different sets of regressors are very high.
So, multicollinearity problems exist in the simulated data.

The response variable that is considered in this simulation study is univariate. The
regression condition for this study is shown in Table 5.1.

Table 5.1 Factors and levels for the simulated data sets

Factors Levels
Number of regressor variables 2,5,6,10,12, 15,20,30,40, 60, 70
Number of observations 15,30, 50, 80, 100
High correlation between regressors 0.998, 0.95, 0.9, 0.8, 0.7

The observations X; were generated according to the model
Vi=XipBp+&,i=12,..,n

Where X;,, is generated from N(0,X) distribution as shown in tables 5.2, 5.3 and 5.4. For
the purpose of obtaining collinearity in each set of data, the X,,, were generated according
to X, = X; +4,, and the columns of the noise matrix A, are independently distributed

according to N (O, c), where values of c determine the correlation between the regressors,
we note that as ¢ increases the correlation between the regressors decreases. Three

different groups of data were generated as shown in tables 5.2, 5.3, 5.4.

For each set of the simulated data, the distribution of the random error for every set of n
observations is N(0,1), the number of replications, m is set to 1000 data sets. The value of
(m = 1000) is chosen because it is enough to show a consistent results for each generated

data sets.
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Table 5.2 Group one of simulated data

D n Xip
15, 30, 50, 80 X, = N(0,1)
X, =X, +N(0,.1), p = 2
5 30 X, = N(O,1)
X, =X, +N(0,.1), p=2,3,45
10 15, 30, 50, 80 X, =N(0,1)
X, =X, +N(0,.1),p =2,3,..,10
15 30 X, = N(0,1)
X, =X, + N(0,.1),p = 2,3,...,15
20 50,80 X, = N(0,1)
X, =X, + N(0,.1),p = 2,3, .. 20
30 50 X, = N(O,1)
X, =X, + N(0,.1),p = 2,3,...,30
40 80 X, = N(O,1)
X, =X, + N(0,.1),p = 2,3, ... 40
60 80 X, = N(0,1)
X, = X, + N(0,.1),p = 2,3, ...,60

y =X, + X, + -+ X, + N(O,1)
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Table 5.3 Group two of simulated data

n 14 Xip
X, =N(0,1)
X, =X, +N(0,¢),p=23..,6
c= 05,1
100 12 X, =N(0,1)
Xp=X1+N(0,¢),p=23,..,12
c= 05,1
20 X1 =N(0,1)
Xp=X1+N(0,0),p=23,..,20
c= 05,1
50 X, =N(01)
X, =X1+N(0,¢0),p=23,..,50
c= 05,1
70 X, =N(0,1)
Xp =X +N(0,¢c),p=23,..,70
c= 05,1

y:X]_ +X2+"'+Xp+N(O,1)

Table 5.4 Group three of simulated data

D n Xip
X, = N(O,1)
2| 15,30,50,80,100 X, =X, + N(0,c),p = 2
¢ =04,05,091

y=X1 +X2+"‘+XP+N(0,1)
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5.1.2 Performance of Ridge Regression to simulated data

Afifi and Clark (1984) stated that when two or more variables are highly correlated (greater
than 0.95), it may be simplest to use only one of them, since one variable conveys
essentially all of the information contained in the other. However, Wesolowsky (1976)
stated that when an independent variable that is correlated with others in the regression is
not included and the regression parameter of this variable is not zero, the remaining
coefficients will be biased estimators, but even if the omitted variable is not correlated (in
the sample) with the remaining variables the estimators for the variances of the remaining
coefficients S? b;» Will tend to be too large. This occurs because the ‘explanatory’ power of
the missing variable is removed, causing a larger sum of squared residuals, which, in turn,
swells the variances of the regression coefficients. As a results, it becomes more difficult
to show the significance of coefficients. Thus, in this study Ridge regression, will be used
to handle these problems rather than using omitted variables approach.

Figure 5.1 and 5.2 illustrates how the performances of ridge regression.
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Do the sets of Handle the
data have multicollinearity
multicollinearity problems using

? - ;
problems? ridge regression

No
The classical Multiple
regression Approach

using OLS

\ 4

MSE test

Figure 5.1 Flowchart summarizing performance of RR.

STEP 1 : Convert data into correlation form

1 <X—)?>_X 1 <y—7>_
vn—1\ O0x Bl Vvn—1\ 0y B

STEP 3 : Compute the ridge parameter k for the values

kHKa' kKS' kHK! kKF

STEP 4 : Compute the ridge regression estimators for the values of k

B s (TXX + kI)_erY

STEP 5: Compute the MSE(b) = Tlooz;gqo(B - b)‘ (b — b) for each value of k.

STEP 6 : Choose the model with least MSE of b

Figure 5.2 : Steps in Ridge Regression algorithm used in this thesis
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5.1.3 Simulation results

Our primary interest lies in the investigating the properties of well known approach to
minimize the MSE, In this section we present the results of simulated data for each group
of the three groups concerning the properties of these approach for choosing the ridge
parameter k, when multicollinearity among the columns of the design matrix exists. Our
primary interest lies in comparing the MSEs of these methods for choosing the ridge
parameter k that are used in this study, i.e., the HKa, KS, HK, and KF. To compare the
performances of the considered estimators, we calculate the MSEs of each one. We
consider the estimator that leads to the minimum MSE to be the best. It is worth mentioning
here in that we used the Matlab 10 program to simulate the data and to do all calculations
that were made in this thesis. The program that we are based on to generate simulated data
is sited in appendix A.

The problem of multicollinearity can also be seen through correlation matrix between
regressors. The value close to 1 shows a strong relation among the regressors. The
correlation results of group one are shown in Tables 5.5 —5.12 specifically for n = 15, 30,
50, 80 observations and for p = 2, 5,10. For group one of simulations data The smallest and
the highest correlation values are vary between 0.98 and 0.9988. the higher correlation of

group two are shown in tables 5.15. The estimated MSEs for the three groups of simulation

data are shown 1in tables 5.14, 5.15, 5.16.
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Table 5.5 The value of correlation for p = 10,n = 15

p

=10 X, X, X5 X, X: Xe X, Xg Xq X0
X1 1
X, | 0.99595 1
X3 10.99581 0.99473 1
X4 |0.99808 0.99646 0.9979 1
Xs | 0.99669 0.99416 0.99179 0.99448 1
Xe |0.99465 0.98792 0.98955 0.99125 0.99323 1
X; 10.99415 0.99313 0.98877 0.9943 0.99082 0.98794 1
Xg 099719 0.9951 0.99386 0.99733 0.99238 0.9851 0.99215 1
X9 |0.99695 0.99488 0.99139 0.99462 0.9925 0.98692 0.99461 0.99619 1
Xi0 | 0.99645 0.99258 0.9897 0.99466 0.9927 0.98673 0.99111 0.99696 0.99384 1
Table 5.6 The value of correlation for p = 10, n = 30
p
=10 X, X, X3 X, Xs Xe X, Xg Xq X10
X1 1
X2 | 0.99548 1
X3 | 0.99612 0.99497 1
X4 | 0.99548 0.99011 0.99164 1
Xs | 0.99672 0.99582 0.9923 0.99293 1
Xs | 0.99668 0.99297 0.99242 0.99355  0.9936
X; | 0.99506 0.99152 0.99254 0.99128 0.99093 0.99051 1
Xs | 0.99606 0.98997 0.99212 0.99262 0.99352 0.99201 0.99234 1
X9 | 0.99529 0.99254 0.98888 0.99006 0.99582 0.98986 0.99177 0.99198 1
Xi0 | 0.99404  0.991 0.99078 0.98625 0.9933 0.99228 0.99026 0.99096 0.99052 1
Table 5.7 The value of correlation for p = 10,n = 50
p
=10 X, X, Xs X, Xs Xe X, Xg Xo X10
X1 1
X, | 0.99633 1
X3 |0.99471 0.98884 1
X4 | 0.99572 0.99183 0.99179 1
Xs | 0.99642 0.99302 0.99001 0.99202 1
X6 | 0.99416 0.99052 0.98914 0.99073 0.99188 1
X; | 0.99505 0.99233 0.99053 0.99167 0.98995 0.98745 1
Xg | 0.99461 0.9915 0.99053 0.99005 0.99244 0.99137 0.99006 1
X9 | 0.99584 0.99187 0.991 0.99353 0.99239 0.99057 0.98888 0.98895 1
Xi0 | 0.9955 0.99195 0.99052 0.99164 0.99139 0.99145 0.98843 0.98712 0.99294
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Table 5.8 The value of correlation for p = 10,n = 80

i 10 X, X, X5 X, X X X, Xg X X10
X1 1

X2 | 0.99583 1

X3 | 099431 0.99122 1

X4 0.9962 0.99284 0.98995 1

Xs 0.9958 0.99183 0.98803 0.99355 1

Xe¢ | 0.99558 0.99049 0.99217 0.992 0.98928 1

X7 1099649 0.9947 0.99056 0.99321 0.99326 0.99176 1

Xg | 0.99468 0.99056 0.98981 0.99178 0.99128 0.98966 0.99134 1

X9 | 0.99603 0.99004 0.98925 0.99236 0.99108 0.99192 0.99253 0.99068 1
X10 | 0.99667 0.99277 0.99067 0.99354 0.99172 0.99326 0.99313 0.99174 0.99217 1

Table 5.9 The value of correlation for p = 5, n = 30

p=>5
X, X, X, X, Xs
X, .
Xz 0.99592 1
X3
0.99634 0.99052 1
X4 0.99612 0.99141 0.99341 1
Xs 0.99702 0.99352 0.99002 0.99366 1

Table 5.10 The value of correlation for p = 2,n = 15

p=2 X, X,
X1 1
X 0.99745 1

Table 5.11 The value of correlation for p = 2,n = 30

p=2 X, X,
X1 1
X 0.99411 1
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Table 5.12 The value of correlation for p = 2,n = 50

p=2 X, X,
X; 1
X, 0.99701 1

These are the simulation results for the MSE values for the three groups shown in tables

52,53,54.
Table 5.13 Estimated MSE for group one of simulated data .

n 14 OLS HKa KS HK KF Least
MSE

15 2 16.986 | 6.3381 6.2758 6.3278 5.763 KF

10 468.65 | 244.49 24449 | 290.53 | 232.75 KF

30 2 7.4152 | 2.8663 2.8063 | 2.8607 | 2.6027 KF

5 33.936 15.557 15.56 15.844 | 16.701 HKa
10 95.501 | 50.803 50.809 | 53.717 | 56.031 HKa
15 202.92 | 117.1525 | 117.1538 | 133.2 | 124.03 HKa

50 2 42688 | 1.6641 1.6155 | 1.6609 | 1.5105 KF
10 46.496 | 24.901 24914 25.96 | 27.618 HKa
20 133.69 | 80.005 80.01 89.129 | 86.498 | HKa
30 304.6 183.011 | 183.028 | 215.87 | 197.13 HKa

80 2 2.6138 | 0.97105 | 0.93951 | 0.96955 | 0.88261 KF
10 26.097 14.232 14.248 14.798 | 16.033 HKa
20 64.895 | 39.413 39.422 | 42.124 | 42984 | HKa
40 199.77 124.83 124.83 140.68 | 136.14 HKa
60 631.14 | 409.381 | 409.381 | 486.53 | 419.02 | HKa
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Table 5.14 Estimated MSE for group two of simulated data

Higher
n p OLS HKa KS HK KF correlation
100 6 0.17108 | 0.084923 | 0.12992 | 0.083226 | 0.10201 0.71272
12 0.38877 | 0.2166 | 0.26115 | 0.21579 | 0.27373 0.74028
20 0.72207 | 0.42804 | 0.46427 | 0.41937 | 0.54714 0.74471
50 3.0193 2.004 2.0146 | 2.0911 | 2.4056 0.7914
70 8.3383 5.4145 | 54172 | 6.2204 | 6.4362 0.80601
100 | 0.5 6 0.49183 | 0.2472 |0.28801 | 0.25125 | 0.28152 0.89703
12 1.1491 | 0.64544 | 0.67227 | 0.65693 | 0.75272 0.91057
20 2.1568 1.3315 | 1.3471 | 1.3559 | 1.5142 0.92589
50 9.0569 6.0566 | 6.0612 | 6.7555 | 6.6275 0.93661
70 29.432 19.047 | 19.048 | 22.463 | 20.767 0.93716
Table 5.15 Estimated MSE for group three of simulated data
Number of Correlation
observation Between X;and X, | OLS HKa KS HK KF
15 0.95 2.063 0.7927 | 0.77804 | 0.77624 | 0.71493
0.9 0.49203 | 0.20409 | 0.23834 | 0.18742 | 0.17964
0.8 0.40028 | 0.17699 | 0.21265 | 0.1609 | 0.15586
0.7 0.31725 | 0.13881 | 0.18424 | 0.12487 | 0.12263
30 0.95 0.6661 0.2665 0.2918 0.2066 0.2408
0.9 0.36352 | 0.14457 | 0.1872 | 0.13735 | 0.1291
0.8 0.22678 | 0.095918 | 0.13951 | 0.088443 | 0.084853
0.7 0.14291 | 0.06181 | 0.10466 | 0.055694 | 0.055365
50 0.95 0.52658 | 0.21188 | 0.24313 | 0.20884 | 0.19193
0.9 0.21006 | 0.087371 | 0.13054 | 0.083856 | 0.078623
0.8 0.12667 | 0.056689 | 0.093066 | 0.052756 | 0.050665
0.7 0.083119 | 0.036533 | 0.068304 | 0.032283 | 0.032143
80 0.95 0.2658 | 0.10415 | 0.14896 | 0.10202 | 0.094022
0.9 0.1278 | 0.054566 | 0.091562 | 0.052062 | 0.048805
0.8 0.078712 | 0.033553 | 0.063701 | 0.030799 | 0.029751
0.7 0.05141 | 0.022254 | 0.045328 | 0.019814 | 0.019812
100 0.95 0.20773 | 0.083295 | 0.12621 | 0.081379 | 0.075124
0.9 0.10266 | 0.043203 | 0.077243 | 0.040924 | 0.038397
0.8 0.052756 | 0.023722 | 0.045886 | 0.021714 | 0.021128
0.7 0.052617 | 0.022578 | 0.045734 | 0.020669 | 0.020116
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Results in Table 5.13 , when the correlation is too high i.e., when r =0.998 indicating that
KF estimator perform better than the other estimators when the number of observations is
small i.e when n = 15, and for each set of p = 2. But HKa perform better for all n # 15
and p # 2 of group one. Also we note that as n,p increases HKa and KS perform the
same. Moreover, it is observed that for given n and p, the MSEs for all estimators increase
as the number of explanatory variables increases.

Results in Table 5.14 , indicating that HK perform better when the correlation is between
0.7 and .81 and for small p, i.e when p = 6,12,20. But for the same range of correlation
we note that HKa perform better for large p, i.e when p = 50,70. When the correlation is
between 0.89 and 0.94, we note that HKa perform better than the other estimators for all
number of regressors.

Result in Table 5.15, indicating that HKa, KS, HK and KF perform extremely better than
the OLS, and KF perform better than the other estimators. Moreover, it is observed that for
the given n and p, the MSEs for all estimators decrease as the correlation between

regressors decreases.

5.2 Real data

5.2.1 Data base

In order to illustrate the use of ridge regression analysis and assess the potentials of the
multiplicative competitive interaction model in the study of shopping behavior. We
consider a data set from Leinhardt and Wassermann (1979) which was used in Fox (1997)

and is available in the SPSS package.
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An automotive industry group keeps track of the sales for a variety of personal motor
vehicles. In an effort to be able to identify over and underperforming models, a relationship
between vehicle sales and vehicle characteristics need to be established. Data concerning
different makes and models of cars is contained in car sales.sav, see Appendix B for more
information. The aim of this application is to use linear regression to identify models that

are not selling well.

Nine predictor variables selected for the study are listed in Table 5.16. The response

variable is the Sales in thousands (for linearity purpose the Log(Sales) will be considered).

Table 5.16 The selected variables of the vehicle characteristics.

Variable Variable Name Description
Y Ln(sales) Sales in thousands
X, Price Price in thousands
X, engine s Engine size
X3 Horsepow Horsepower
X, Wheelbase Wheelbase
Xs Width Width
X Length Length
X, curb_wgt Curb weight
Xg fuel cap Fuel capacity
Xq Mpg Fuel efficiency

5.2.2 Data analysis

To start the analysis we shall assume that the standard assumptions of the linear regression
model hold. A histogram with normal probability plot and P-P plot of the residuals were
considered in figures 5.3 and 5.4. The shape of the histogram should approximately follow
the shape of the normal curve. This histogram is acceptably close to the normal curve. The
P-P plotted residuals should follow the 45-degree line. Neither the histogram nor the P-P

plot indicates that the normality assumption is violated.
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Dependent Variable: Log-transformed sales

30 Mean =-1.80E-15
Std. Dev. =0.96
N=117

N
g

Frequency
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Figure 5.3: Histogram with normal probability plot of the residuals

Dependent Variable: Log-transformed sales
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Figure 5.4: Normal P-P Plot of Regression Standardized Residual

As can be expected from the nature of the variables, some of them are highly correlated
with each other, results are shown in Table 5.17.
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Table 5.17. Correlation Coefficients between deferent variables.

X; X, X3 X, X Xe X; | Xg | Xo
X1 1
X, 649" 1
X3 853" 862" 1
X, .067 4107|2267 1
Xs 3017 6727 507" 676" 1
X, 183 5377 401" 854" 7437 1
X, 5117 7437 599" 676" 7367 .684" 1
Xg 406" 6177 480" 659" 6727 .5637| .848" 1
Xo -480°(  -7257| -5967  -4717|  -6007| -.4667( -.8197[ -.809" 1

A regression model were fit to the data set. The results were presented in the following

tables. The ANOVA table 5.18 reports a significant F statistic (Sig = 0.000), indicating that
using the model is better than guessing the mean. A whole, the regression does a good job

of modeling sales. Nearly half the variation in sales is explained by the model (R? = 471)

table 5.19.
Table 5.18: Checking the Model Fit (ANOVA)
Model Sum of Squares Df Mean Square F Sig.
1 Regression 83.285 9 9.254 7.964 | .000°
Residual 124.333 107 1.162
Total 207.618 116
Table 5.19: Model Summary
Adjusted R Std. Error of the
Model R R Square Square Estimate
1 .684° 467 431 1.07796
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The initial OLS results from fitting a linear model to the data are given in Table 5.20.
Although the model fit looks positive. There are several non-significant coefficients,

indicating that these variables do not contribute much to the model.

Table 5.20: Model Coefficients

Unstandardized Standardized Collinearity
Coefficients Coefficients Statistics

Model parameter B Std. Error Beta T Sig. |Tolerance| VIF
(Constant) -1.301 3.125 -416 | .678

Price in thousands -.046 017 -.489 -2.793 | .006 182 5.487
Engine size 323 256 255 1.264 | .209 138 7.268
Horsepower -.003 .006 -.124 -.497 .620 .091 11.030
Wheelbase .092 .030 553 3.108 | .002 177 5.657
Width -.027 .052 -.071 -516 | .607 .300 3.337
Length -.017 .017 -.175 -.968 335 171 5.847
Curb weight 317 460 141 .689 493 133 7.536
Fuel capacity -.062 .060 -.176 -1.027 | .307 190 5.258
Fuel efficiency .029 .048 .095 .599 551 223 4.481

The next part of this analysis is to check for multicollinearity. Results in table 5.21 shows
that there might be a problem with multicollinearity. For most predictors, the values of the
partial and part correlations drop sharply from the zero-order correlation. This means, for
example, that much of the variance in sales that is explained by price is also explained by
other variables. In collinearity statistics columns, the tolerance is the percentage of the
variance in a given predictor that cannot be explained by the other predictors. Thus, the
small tolerances show that 70%-90% of the variance in a given predictor can be explained
by the other predictors. When the tolerances are close to 0, there is high multicollinearity

and the standard error of the regression coefficients will be inflated. A variance inflation
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factor greater than 2 is usually considered problematic, and the smallest VIF in table 5.21 is

3.337.

The collinearity diagnostics confirm that there are serious problems with multicollinearity.
Several eigenvalues are close to 0, indicating that the predictors are highly intercorrelated
and that small changes in the data values may lead to large changes in the estimates of the
coefficients. The condition indices are computed as the square roots of the ratios of the
largest eigenvalue to each successive eigenvalue. Values greater than 15 indicate a possible
problem with collinearity; greater than 30, a serious problem. Six of these indices are larger

than 30, suggesting a very serious problem with collinearity.

Table 5.21: Collinearity Diagnostics

Collinearity Collinearity Diagnostics
Correlations Statistics
Condition
Zero-order | Partial | Part | Tolerance | VIF [ Eigenvalue Index

Price in thousands -.552 -290 [-.217 187 5.337 259 6.193
Engine size -.135 A56 ] .113 162 6.159 .050 14.051
Horsepower -.389 -.043 |-.031 112 8.896 .019 22.589
Wheelbase 292 .149 ] .108 200 4.997 .008 35.942
Width .037 -.057 |-.041 313 3.193 .005 44.275
Length 215 .087 ].062 178 5.605 .003 58.480
Curb weight -.041 .038 |.027 131 7.644 .002 76.175
Fuel capacity -.016 -.101 |-.073 .189 5.303 .001 130.747
Fuel efficiency 121 168 | .122 217 4.604 .000 148.267
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5.2.3 performance of Ridge Regression to real data

Now, ridge regression will be implemented to fix the collinearity problems. Figure 5.5
illustrates the steps used for finding the best Model for the real data. This Figure shows the

steps in ridge regression algorithm that used in this study.

STEP 1 : Center and scale the data
1 X-X ~ 1 Yy-Y ~
—=()=% . = (g—y) =Y

STEP 2 : Compute the correlation matrix for centered and scaled data

Xt)? = Txx, XtY = Txy

STEP 3 : Compute the ridge parameter k for the values

Kika Ks) Kui ke

STEP 4 : Compute the ridge regression estimators for the values of k

E = (T‘XX + kI)_ery

STEP 5 : Compute the coefficients of the natural variables

b —(GY)E [ =1,2
i — O'X ill_ ;:--1p

STEP 6 : Compute The constant term b,

bO = 7 - bl)?l - bz)?z —_ bp)?p

STEP 7 : Choose the model with least mean square

FIGURE 5.5 : Steps in Ridge Regression algorithm

69



The estimated MSE for the considered ridge method and the OLS is summarized in table 5.22
and the ridge coefficients is listed in table 5.23
5.22 estimated MSEs for real data

OLS HKa KS
0.31001 | 0.22499 | 0.2393

HK
0.18389

FK
0.26346

Table 5.22 indicating that HKa, KS, HK and FK perform better than the OLS and HK perform

extremely better than HKa, KS and FK. Thus our preferred Model that represent the real data is
y = bygX

Or

sales=Exp [—1.50425 — 0.039(price) + 0.211037(Engine size) —
0.00356 (Horsepower) + 0.066371( Wheelbase) — 0.01497 (Width) —
0.00282 (Length) + 0.161929 (Curb weight) — 0.0346 (Fuel capacity) +

0.019482 (Fuel efficiency)]

5.23 estimated ridge coefficient for real data

HKa KS HK FK
-1.34806 | -1.33246 | -1.50425 -1.31321
-0.04364 | -0.04422 -0.039 -0.04502
0.290408 | 0.298967 | 0.211037 | 0.310012
-0.00323 | -0.00316 | -0.00356 -0.00305
0.082317 | 0.084451 | 0.066371 | 0.087431
-0.02332 | -0.02418 | -0.01497 -0.02529
-0.01131 | -0.01253 | -0.00282 -0.01425
0.252012 | 0.265456 | 0.161929 | 0.284838
-0.05136 | -0.05371 | -0.0346 -0.05704
0.025217 | 0.025976 | 0.019482 | 0.027027

70




5.3 Summary and Conclusions

In this thesis, we studied a comprehensive linear regression models, focusing on the use of
ridge regression models performed in a population-based highly correlated data . Analyzes
involving such data are quite common in medical, trading, industrial, and various sciences
research. The primary goal of such studies may be to simultaneously study the effect of one
variable or variables on other variable, but secondary objectives, such as understanding the
within variables patterns of correlation, or the relationship between the marker’s profiles

and the occurrence of the event of interest.

In this research we have studied the properties of a well known approach for choosing the
ridge parameter k, when multicollinearity among the columns of the design matrix exists.
The investigation has been done using simulated data sets generated from Normal
distribution using MatLab v10 software package, also a real data set were considered. In
addition to different multicollinearity levels, the number of observation and the number of
regressors have been varied. For each combination, we have used 1000 replications. The
evaluation of ridge regression approaches has been done by comparing the MSEs among

different approaches.

The simulation studies and the analysis of real data set demonstrate that when the
correlation is too high i.e., whenr =0.998 , KF estimator perform better than the other
estimators when the number of observations is small i.e when n = 15, and for each set
with number of observation (15,30 , 50, 80) of p = 2. But HKa perform better for all

n # 15and p # 2 of group one. Also we note that as n, p increases HKa and KS perform
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the same. Moreover, it is observed that for given n and p, the MSEs for all estimators

increase as the number of explanatory variables increases.

For group 2 HK perform better when the correlation is between 0.7 and .81 and for small
p, i.e when p = 6,12, 20. But for the same range of correlation, we note that HKa perform
better for large p, i.e when p = 50, 70. When the correlation is between 0.89 and 0.94, we

note that HKa perform better than the other estimators for all number of regressors.

For group 3 HKa, KS, HK and KF perform extremely better than the OLS, and KF
perform better than the other estimators. Moreover, it is observed that for the given n and

p, the MSEs for all estimators decrease as the correlation between regressors decreases.
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APPENDIX A

This is the data generating function for simulation the three groups (chapter 5)
m=1000; ms=zeros(m,5);
for 1=1:m,

n= ;p= ;
z=zeros(n,p);x=zeros(n,p);y=zeros(n,1l);mse_all=zeros(n,1l); Ms_ols=0;
MS_hk=0;

z(:,1)=randn(n,1);
for j=2:p,
z(:,1)=z(:,D+randn(n,1l)*c;

end
Z,
for j=1:p,

g x(:,3)=(z(:,5)-mean(z(:,§)))/ (((n-1)"(1/2))*std(z(:,1)));
en
for j=1:p,
yl=(sum(z(:,j)) ") "+randn(n,1);
end
y=(yl-mean(y1))/(((n-1)"(1/2))*std(y1));

rX=x"*X;

ry=x"*y;

b=inv(rx)*ry;

a=Cy-x*b) **(y-x*b)/(n-p);

ei=eig(rx);

sumei=0;

for j=1:p-©
sumei=sumei+(1/ei(j));

end

Ms_OLS=g*sumei;

k1=g/(max(b)"2);

e=eig(rx);

sume=0;

for s=1:p-°
sume=sume+(e(s)/(e(s)+k1)"2);

end

MS_HKa=g*sume+k172*b**inv(rx+kl*eye(p,p))*inv(rx+kl*eye(p,p))*b;
bl=inv(rx+kl*eye(p,p))*ry;

k2=(g*max(ei))/((max(ei)*(max(b))"2)+(q*(n-p)));
w=eig(rx);

sumw=0;
for d=1:p*
sumw=sumw+(w(d)/ (w(d)+k2)"2);
end
bl=inv(rx+k2*eye(p,p))*ry;
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MS_KS=g*sumw+(k2"2)*b**inv(rx+k2*eye(p,p))*inv(rx+k2*eye(p,p))*b;

K3=(p*q/(b™*b));
e=eig(rx);

sume=0;

for s=1:p~
sume=sume+(e(s)/(e(s)+k3)"2);

end

MS_HK=g*sume+(k3"2)*b " *inv(rx+k3*eye(p,p))*inv(rx+k3*eye(p,p))*b;
bl=inv(rx+k3*eye(p,p))*ry;

k4=(q/(b"*b));

e=eig(rx);

sume=0;

for s=1:p~
sume=sume+(e(s)/(e(s)+kd)"2);

end

MS_FK=g*sume+(k4"2)*b™*inv(rx+kd*eye(p,p))*inv(rx+k4*eye(p,p))*b;
bl=inv(rx+k4*eye(p,p))*ry;

ms(i, 1)=Ms ols; ms(i, 2)=MS_HKa; ms(i, 3)=MS_KS;
ms(i, 4)=MS_HK; ms(i, 5)=MS_KF;
end

for j=1:5°
means = mean(ms(:,j))

end

MM=([mean(ms(:,1)) mean(ms(:,2)) mean(ms(:,3)) mean(ms(:,4))
mean(ms(:,5)) D
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Table of real data

APPENDIX B

Ln(sales) | Price | engine s | horsepow | wheelbas | width | Length | curb wgt | fuel cap | mpg
2.83 21.5 1.8 140 101.2 67.3 172.4 2.639 13.2 28
3.67 28.4 32 225 108.1 70.3 192.9 3.517 17.2 25
2.15 42 3.5 210 114.6 71.4 196.6 3.85 18 22
3.02 23.99 1.8 150 102.6 68.2 178 2.998 16.4 27
293 33.95 2.8 200 108.7 76.1 192 3.561 18.5 22
0.32 62 4.2 310 113 74 198.2 3.902 23.7 21
2.22 334 2.8 193 107.3 68.5 176 3.197 16.6 24
2.86 38.9 2.8 193 111.4 70.9 188 3.472 18.5 25
4.52 21.975 3.1 175 109 72.7 194.6 3.368 17.5 25
3.67 253 3.8 240 109 72.7 196.2 3.543 17.5 23
3.33 31.965 3.8 205 113.8 74.7 206.8 3.778 18.5 24
4.42 27.885 3.8 205 112.2 73.5 200 3.591 17.5 25
4.15 39.895 4.6 275 1153 74.5 207.2 3.978 18.5 22
1.88 39.665 4.6 275 108 75.5 200.6 3.843 19 22
241 31.01 3 200 107.4 70.3 194.8 3.77 18 22
4.98 13.26 22 115 104.1 67.9 180.9 2.676 14.3 27
491 16.535 3.1 170 107 69.4 190.4 3.051 15 25
32 18.89 3.1 175 107.5 72.5 200.9 3.33 16.6 25
3.75 19.39 3.4 180 110.5 72.7 197.9 3.34 17 27
3.27 24.34 3.8 200 101.1 74.1 193.2 3.5 16.8 25
2.89 45.705 5.7 345 104.5 73.6 179.7 3.21 19.1 22
3.48 13.96 1.8 120 97.1 66.7 174.3 2.398 13.2 33
3.08 9.235 1 55 93.1 62.6 149.4 1.895 10.3 45
2.06 19.84 2.5 163 103.7 69.7 190.9 2.967 15.9 24
3.49 24.495 2.5 168 106 69.2 193 3.332 16 24
3.44 22.245 2.7 200 113 74.4 209.1 3.452 17 26
3.48 16.48 2 132 108 71 186 2911 16 27
2.6 28.34 3.5 253 113 74.4 207.7 3.564 17 23
4.33 12.64 2 132 105 74.4 174.4 2.567 12.5 29
1.55 19.045 2.5 163 103.7 69.1 190.2 2.879 15.9 24
4.27 20.23 2.5 168 108 71 186 3.058 16 24
-0.09 69.725 8 450 96.2 75.7 176.7 3.375 19 16
5.43 19.46 52 230 138.7 79.3 224.2 4.47 26 17
2.82 21.315 3.9 175 109.6 78.8 192.6 4.245 32 15
3.44 18.575 3.9 175 127.2 78.8 208.5 4.298 32 16
4.71 16.98 2.5 120 131 71.5 215 3.557 22 19
52 19.565 24 150 1133 76.8 186.3 3.533 20 24
4.25 12.07 2 110 98.4 67 174.7 2.468 12.7 30
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4.73 21.56 3.8 190 101.3 73.1 183.2 3.203 15.7 24
3.56 17.035 2.5 170 106.5 69.1 184.6 2.769 15 25
5.5 17.885 3 155 108.5 73 197.6 3.368 16 24
4.15 22.195 4.6 200 114.7 78.2 212 3.908 19 21
5.62 31.93 4 210 111.6 70.2 190.7 3.876 21 19
5.05 21.41 3 150 120.7 76.6 200.9 3.761 26 21
4.83 36.135 4.6 240 119 78.7 204.6 4.808 26 16
54 12.05 2.5 119 117.5 69.4 200.7 3.086 20 23
6.29 26.935 4.6 220 138.5 79.1 224.5 4.241 25.1 18
53 12.885 1.6 106 103.2 67.1 175.1 2.339 11.9 32
5.44 15.35 23 135 106.9 70.3 188.8 2.932 17.1 27
4.29 20.55 2 146 103.2 68.9 177.6 3.219 15.3 24
2.55 26.6 3.2 205 106.4 70.4 178.2 3.857 21.1 19
4.33 26 3.5 210 118.1 75.6 201.2 4.288 20 23
3.72 9.699 1.5 92 96.1 65.7 166.7 2.24 11.9 31
4.2 11.799 2 140 100.4 66.9 174 2.626 14.5 27
3.38 14.999 24 148 106.3 71.6 185.4 3.072 17.2 25
3.17 29.465 3 227 108.3 70.2 193.7 3.342 18.5 25
4.02 14.46 2.5 120 93.4 66.7 152 3.045 19 17
4.39 21.62 4 190 101.4 69.4 167.5 3.194 20 20
5.06 26.895 4 195 105.9 72.3 181.5 3.88 20.5 19
3.18 31.505 3 210 105.1 70.5 190.2 3.373 18.5 23
2.54 37.805 3 225 110.2 70.9 189.2 3.638 19.8 23
1.85 54.005 4 290 112.2 72 196.7 3.89 22.5 22
2.62 39.08 4.6 275 109 73.6 208.5 3.868 20 22
3.89 43.33 4.6 215 117.7 78.2 2153 4.121 19 21
3.27 13.987 1.8 113 98.4 66.5 173.6 2.25 13.2 30
3.75 19.047 24 154 100.8 68.9 175.4 291 15.9 24
4.02 17.357 24 145 103.7 68.5 187.8 2.945 16.3 25
1.74 24.997 3.5 210 107.1 70.3 194.1 3.443 19 22
-2.21 25.45 3 161 97.2 72.4 180.3 3.131 19.8 21
243 31.807 3.5 200 107.3 69.9 186.6 4.52 24.3 18
3.67 22.527 3 173 107.3 66.7 178.3 3.51 19.5 20
2.66 16.24 2 125 106.5 69.1 184.8 2.769 15 28
3.28 16.54 2 125 106.4 69.6 185 2.892 16 30
4.22 19.035 3 153 108.5 73 199.7 3.379 16 24
4.4 22.605 4.6 200 114.7 78.2 212 3.958 19 21
3.32 27.56 4 210 111.6 70.2 190.1 3.876 21 18
3.01 22.51 33 170 112.2 74.9 194.7 3.944 20 21
291 31.75 23 185 105.9 67.7 177.4 3.25 16.4 26
3.32 49.9 3.2 221 111.5 70.8 189.4 3.823 21.1 25
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2.82 69.7 4.3 275 121.5 73.1 203.1 4.133 23.2 21
1.2 82.6 5 302 99 71.3 177.1 4.125 21.1 20
3.75 13.499 1.8 126 99.8 67.3 177.5 2.593 13.2 30
4.48 20.39 24 155 103.1 69.1 183.5 3.012 15.9 25
4.38 26.249 3 222 108.3 70.3 190.5 3.294 18.5 25
3.31 26.399 3.3 170 112.2 74.9 194.8 3.991 20 21
3.75 29.299 3.3 170 106.3 71.7 182.6 3.947 21 19
0.11 18.145 3.1 150 107 69.4 192 3.102 15.2 25
2.69 36.229 4 250 113.8 74.4 205.4 3.967 18.5 22

3 31.598 4.3 190 107 67.8 181.2 4.068 17.5 19
3.19 25.345 3.4 185 120 72.2 201.4 3.948 25 22
3.49 12.64 2 132 105 74.4 174.4 2.559 12.5 29
1.66 16.08 2 132 108 71 186.3 2.942 16 27
3.18 18.85 24 150 113.3 76.8 186.3 3.528 20 24
3.94 21.61 24 150 104.1 68.4 181.9 2.906 15 27
4.88 19.72 3.4 175 107 70.4 186.3 3.091 15.2 25
2.99 25.31 3.8 200 101.1 74.5 193.4 3.492 16.8 25
4.53 21.665 3.8 195 110.5 72.7 196.5 3.396 18 25
3.58 23.755 3.8 205 112.2 72.6 202.5 3.59 17.5 24
2.2 41.43 2.7 217 95.2 70.1 171 2.778 17 22
0.25 71.02 3.4 300 92.6 69.5 174.5 3.032 17 21
0.62 74.97 3.4 300 92.6 69.5 174.5 3.075 17 23
4.39 10.685 1.9 100 102.4 66.4 176.9 2.332 12.1 33
3.2 12.535 1.9 100 102.4 66.4 180 2.367 12.1 33
1.65 14.29 1.9 124 102.4 66.4 176.9 2.452 12.1 31
4.96 13.108 1.8 120 97 66.7 174 242 13.2 33
5.51 17.518 2.2 133 105.2 70.1 188.5 2.998 18.5 27
4.16 25.545 3 210 107.1 71.7 191.9 3.417 18.5 26
3.5 16.875 1.8 140 102.4 68.3 170.5 2.425 14.5 31
4.43 11.528 24 142 103.3 66.5 178.7 2.58 15.1 23
3.22 16.888 2 127 94.9 66.7 163.8 2.668 15.3 27
4.23 22.288 2.7 150 105.3 66.5 183.3 3.44 18.5 23
2.29 51.728 4.7 230 112.2 76.4 192.5 5.115 254 15
2.28 14.9 2 115 98.9 68.3 163.3 2.767 14.5 26
4.43 16.7 2 115 98.9 68.3 172.3 2.853 14.5 26
3.93 21.2 1.8 150 106.4 68.5 184.1 3.043 16.4 27
2.26 19.99 2 115 97.4 66.7 160.4 3.079 13.7 26
1.72 17.5 2 115 98.9 68.3 163.3 2.762 14.6 26
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APPENDIX C

This is the Matlab code performed on real data

z=A;

y1=B;

p=9;

n=117

for j=1:9,
X(2,))=(2(:,j)-mean(z(:.))))/(((116)*(1/2))*std(z(:.))));

end

X;

y=(y1l-mean(y1))/(((116)"(1/2))*std(y1));

rx=x'*x;

ry=x'"*y;

b=inv(rx)*ry;

q=(y-x*b)"*(y-x*b)/(n-p);

ei=eig(rx);

sumei=0;

for j=1:9'
sumei=sumei+(1/ei(j));

end

Ms_ols=q*sumei;

k1=q/(max(b)"2);

e=eig(rx);

sume=0;

for s=1:9'
sume=sume-+(e(s)/(e(s)+k1)"2);

end

MS HKa=qg*sume+k1/2*b"*inv(rx+k1*eye(9,9))*inv(rx+k1*eye(9,9))*b;
bl=inv(rx+kl1*eye(9,9))*ry;

k2=(q*max(ei))/((max(ei)*(max(b))"2)+(q*(108)));
w=eig(rx);

sumw=0;
for d=1:p'
sumw=sumw-+(w(d)/(w(d)+k2)"2);
end
b2=inv(rx+k2*eye(9,9))*ry;
MS KS=qg*sumw+(k2"2)*b"*inv(rx+k2*eye(9,9))*inv(rx+k2*eye(9,9))*b;
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K3=(p*q/(b"*D));
e=eig(rx);

sume=0;

for s=1:p'
sume=sume-+(e(s)/(e(s)*+k3)"2);

end

MS HK=g*sume+(k3"2)*b"*inv(rx+k3*eye(p,p))*inv(rx+k3*eye(p,p))*b;
b3=inv(rx+k3*eye(p,p))*ry;

k4=(q/(b™*b));

e=eig(rx);

sume=0;
for s=1:p'

sume=sume-+(e(s)/(e(s)+k4)"2);
end

MS_hk2=qg*sume+(k4"2)*b"*inv(rx+tk4*eye(p,p))*inv(rx+kd*eye(p,p))*b;
b4=inv(rx+k4*eye(p,p))*ry;

M=[Ms_OLS MS HKa MS KS MS HK MS_FK]

where
A=matrix of regressors .

B=vector of dependent variable.

M=vector of MSEs
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