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Abstract

We generalized the fractional calculus in the complex plane C to new fractional calculus
operators, namely we defined the integral and differential fractional operators. Several
properties of these new operators are proved such as the boundedness and compactness.
Moreover, we discussed these fractional calculus operators on the special families S, the
set of normalized univalent function, and K, the set of convex function, and derived
several properties on it. Finally, we derived the relations between the proposed fractional

calculus operators and the Gauss hypergeometric functions for some functions.
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Introduction

The traditional integral and derivative are, to say the least, a staple for the technology
professional, essential as a means of understanding and working with natural and artificial
systems [12]. Fractional calculus is a branch of mathematical analysis deals with integrals
and derivatives of arbitrary orders. In the recent years a lot of attention has been given to
fractional integral and differential operators in geometric function theory, the study of
geometric properties of analytic functions, univalent functions and Riemann Mapping
Theorem, etc. In fact, fractional calculus asserts that orders of integral or derivative

operators can be arbitrary numbers, for instance, one could calculate the 1/2-th order

integral or /3 -th order derivative of an analytic function ([1],[19]).

This thesis consists of three chapters. In the first chapter, we give the history of the
fractional calculus, and we present some basic definitions and properties that are used in
this theory. We define Gauss hyper-geometric function and give some examples about it.
In the second chapter, we concentrate on fractional integral and fractional derivative
where we present definitions and some basic properties and the relation between
fractional integral and fractional derivative. The third chapter presents fractional calculus
operators: we provide some definitions and give some related results, and prove some
properties of there operators and show that the operators represent some special functions.
Furthermore, we consider one special function in geometric function theory, that is also
known as Gauss hyper-geometric function and study some of its properties in the unit

disk D.



CHAPTER ONE

Introduction to Fractional

Calculus

In the last few decades, fractional calculus has become an important research due to its

applications appear in science, engineering, economics and applied mathematics [1].

In Section 1.1, we present the historical foreword of fractional calculus. Then, in Section
1.2, we consider some important special functions such as Gamma function and Beta

function. Then, In Section 1.3, we define an analytic function and a univalent function.

1.1 Historical foreword

Most authors on this topic will cite a particular date as the birthday of Fractional Calculus.

In a letter dated September 30th, 1695 L'Hopital wrote to Leibniz asking him about a
particular notation he had used in his publications for the nth-derivative g—:f of the

function f(x) = x. L'Hopital's posed the question to Leibniz, what would the result be if
n =1/2. Leibniz's response: "An apparent paradox, from which one day useful

consequences will be drawn.” Thus, fractional calculus was born [12].

In the following years, some famous mathematicians, such as Euler, Lagrange, Lacroix,
Fourier, Liouville and Riemann, developed the theory of fractional calculus and the
mathematical consequences [1]. Many found, using their own notation and methodology,
definitions that fit the concept of a non-integer order integral or derivative. The most
famous of these definitions that have been popularized in the world of fractional calculus

are the Riemann-Liouville and Grunwald-Letnikov definition.

In recent years considerable interest in fractional calculus has been stimulated by the

applications it finds in different areas of applied sciences like physics and engineering,
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possibly including fractal phenomena. Now there are more books of proceedings and
special issues of journals published that refer to the applications of fractional calculus in
several scientific areas including special functions, control theory, chemical physics,
stochastic processes, anomalous diffusion. Several special issues appeared in the last
decade which contain selected and improved papers presented at conferences and
advanced schools, concerning various applications of fractional calculus. Already since
several years, there exist two international journals devoted almost exclusively to the
subject of fractional calculus: Journal of Fractional Calculus (Editor-in-Chief: K.
Nishimoto, Japan) started in 1992, and Fractional Calculus and Applied Analysis
(Managing Editor: V. Kiryakova, Bulgaria) started in 1998. Recently the new journal
Fractional Dynamic Systems has been announced to start in 2010.The authors believe that
the volume of research in the area of fractional calculus will continue to grow in the
forthcoming years and that it will constitute an important tool in the scientific progress of

mankind [13].

1.2 Special Functions of Fractional Calculus

In this section, we concentrate on some fundamental special functions which are
important in the study of the theory of fractional calculus. First, we recall Gamma
function and some basic properties of this function. Second, we talk about Beta function

and what is the relation between Gamma and Beta functions.

1.2.1 Gamma Function
In [19], Gamma function is a special transcendental function denoted by I'(«) (the Euler:
an Integral of the second Kind), and was first introduced by Euler to generalize the

factorial to non- integer values. For @ > 0, it is defined as:

r(a)= fooo t@ 1 e tdt. (1.1)



It follows that the Gamma function I'( x ) is well defined and is analytic for x > 0, and

has the following properties

r'(x) >0.

Forx>1,I'(x+1)=["t*etdt

b b

b
= lim | t*e 'dt= lim[—t*e”*]| .+ lim[x f t*~1 e~tdt]
b—oo 0 b—oo 0 b—oo 0

=x f t*1e~tdt = xI'( x).
0

I'(n) = (n— 1)! for all positive integer n > 2. Also,
we have, (1) = [“e‘dt=1 (1.2)
Example 1.2.2

[(5)=r(4+1) =4 =432.1=24
r(1)= NS

2

r(3=5

Proof: By definition 2.1 we have,

© 1

1 ® 1
r ( —) = f t2 le—tdt = f t72 e~tdt
2 0 0

Let t = u? then dt = 2udu , then

1 ® -2 *® T
F(—)z f uTe‘”ZZUdu=2f e‘uzdt=2g=ﬁ
0 0



1.2.2 Beta Function

Also known as the Euler Integral of the First Kind, the Beta Function is important

relationship in fractional calculus. Its solution not is only defined through the use of

multiple Gamma Functions, but furthermore shares a form that is characteristically

similar to the Fractional Integral and Fractional Derivative of many functions. It is defined

as

1
B(p,q) = f uP~1(1 —w)? 1 du, wherep,q ER
0

Another property
a
B(p,q) = (a-— b)_p_q“f (t—b)P " Y(a—t)7"1dt, wherep,q€R,
b

A key property of the Beta function is its relationship to the Gamma function as

_Ir'(priq)

B(P;Q)—m—

B(q,p)

when p and q are positive integers [12].

1.3 Univalent Function and Analytic Function

(1.3)

In this section we define the analytic function and the univalent function in open unit

disk around z ( the set of points whose distance from z is less than 1).

Let D < C be a domain, that is, an open and connected non-empty subset of the complex

plane. A function f: D — C is analytic at z, if it is complex differentiable at every point

in some neighbourhood of z, € D . We say that f is analytic on D if f is analytic at z,

for every z, € D. Also, an analytic function f has a Taylor series expansion



o)

f@=) aG-n), a

n=0

_ ™ (@)

n!

)

for all z in some open disk centered at z, [4].

Definition 1.3.1

A function f: D — C is said to be univalent (or schlicht or one-to-one) in a domain D c
C if f(zy) # f(zy) for all points z,,z, € D with z; # z,. The function f is said to be
locally univalent at a point z € D if it is univalent in some neighborhood of z. By
Rouche's theorem if f is analytic on D, then f'(z) # 0 if and only if f is locally

univalent at z [4].

Definition 1.3.2 (convex function)

If [a, b] is an interval in the real line, a function f: [a, b] = R is convex if for any two

points x; and x, in [a, b]

fltx, + (1= 0)x1) < tf(x2) + (1 —6)f(x1)

whenever 0 <t < 1. A subset A c C is convex if whenever z and w are in A4, tz +
(1-twisinAfor0 <t < 1;thatis, A is convex when for any two points in A the line

segment joining the two points is also in A.

Proposition 1.3.3

A function f:[a, b] = R is convex if and only if the set

A={(x,y)la<x <band f(x) <y} isconvex [3].

Theorem 1.3.4 [3]

A function f is univalentin D if and only if Re f'(z) > 0, V z € D.



Now. In [4], we shall be concerned with the class S of functions f analytic and univalent
in the unit disk D = {z: |z| < 1}, normalized by the conditions f(0) = 0and f'(0) =1

. Thus each f € S has a Taylor series expansion of the form
f(2) =z+ayz*+azz3+ -, |z] < 1.
The following simple examples of functions in S:

f(z) = z, the identity mapping. Clearly f is analytic in D and since Re f'(z) > 0,V z €
D, then f is univalent in D. Also f(0) = 0 and f'(0) = 1.

Hence, f(z) € S.

Some transformations for the class S

ii.  Conjugation: if f €S and g(z) = f(2) = z+ a,z*> + azz>+ -, then g€ S. To

show this, let w(z) = Z so that w: C — C is clearly one-to-one. Since g(z) = f(2) =
(wo fow)(2) is a composition of one-to-one mappings, we conclude that g is

univalent on D. Note that w(z) is not analytic on D, the Taylor series for f is
zZ+ z a,z"
n=2

Has radius of convergence 1. That is, the Taylor series converges to f(z) forall |z] < 1

with the convergence uniform on every closed disk |z| < r < 1. It then follows that
F(2) =7+ Z a, 7"
n=2

and

\H
~
N
—/

Il
N
+

s
Q|
R

Nl
S

Il

N
+

s
Q|
S

N

3

S
U
N
S
Il
N



Which is define an analytic function on D, has radius of convergence 1. Hence, we

conclude that

9@ =f@) =724+ a,7%2 +a3z% + - =z + @yz* + a3z + -
Is analytic on D with g(0) = 0 and g'(0) = 1. Thus, g € S.

Rotation: if f € Sand g(z) = e f(e®®z), then g € S. To show this, letR(z) = €'z
and T(z) = ez so that R: C — C and T: C — C are clearly one-to-one. Since g(z) =
e~0 f(e“’z) = (T o f o R)(z) is a composition of one-to-one mappings, we conclude
that g is univalent on D. Since

g'(2)=e"¥ e f'(e%2) = f'(e®2)
We see that g is analytic on D. Furthermore, g(0) = f(0) = 0and g'(0) = f'(0) =1
so that g € S as required.
We also note that the Taylor expansion of g is given by

9(@) =e ez + aye?z? + azed923 + - ) = 2+ aye'?2? + a;e?9z% + ..

Range transformation: if f € S and y is a function analytic and univalent on the range

of f(D), with 1(0) = 0 and

_@e @) = $(0)
o

then g € S. To show this, lety: f(D) — C be analytic and univalent on f (D). If

9(z)

_ W H@ = ()
O

9(z)

Then g is clearly univalent on D with g(0) = 0. Furthermore,

f'@Y'(f(2)
¥'(0)

g9'(z) =



So that g is analytic on D with g’(0) = 1. Thus, g € S as required.

We now have a subclass of S which is the class of close-to-convex functions.

A function f analytic in the unit disk is said to be close-to-convex if there is a convex

function g such that

Rl wen
9'(2)
Let K be the set of all close-to-convex function in . If feK and f(z) =z+

Ym0z (|z] < 1),then |a,| <1 (n=23,..)[7]

For example let

f@=tmZ+1-p)L andtake g(z) ==

1-z

1.4 Gauss Hypergeometric Functions
We focus in this section on computing the two most commonly used hyper-geometric
functions, the confluent hyper-geometric function ;F;(a; b; z) and the Gauss hyper-

geometric function ,F;(a, b; c; z).

In [16]. A hypergeometric function ,F, is defined as follows for a,, ..., a,, by, ..., by,

z € C:

o (ay)) - (ay); 20
F.(a4,..,a,; by, .., b, 2z) = —_——
p Q( 1 14 1 q ) T (bl)j (bq)j ]!

Where, for some parameter > 0 , the Pochhammer symbol (u); is defined as

Woe=1 W;=pu+)..(u+j-1, j=12,..

9



We use the basic fact about hypergeometric functions, forn € N,

_I(u+n)
(Wn = BN

Definition 1.4.1

In [5]. The confluent hypergeometric function ,F;(a; b; z) , is defined as
1Fi(a; bz) = ) ——= — (1.4)

which converges for any z € C, and is defined foranyae C,b e C\ Z;.

In [6]. It should be noted that ;F;(a; b;0) = 1. If Re b>Re a> 0, then ,F,(a; b;z)

can be represented as an integral

A ©)) Lot e ae
Fi(a; b;2) = - J;) e?t ta 1 (1 — )b d¢ (1.5)

I'(a)'(b

Proof. For Re b > Re a > 0, then

This implies that
1 ® (Z)j 1 ]
f ta—l (1 _ t)b—a—lezt dt — z - f t}+a—1 (1 _ t)b—a—l dt
0 = Yo
The latter integral is a beta integral which equals

et o beae1 gt — Brs L _Tg+are-ao
jotf 1-1 dt=B(j+ab—a)= G 1b)

Now, we use the fact that

10



I'G+a)
I'(a)

=ala+1).(a+j—-1) = (@)j, j=0,12,..

To obtain

r'(b) 1 r() TG +a) 2/

- -z a-1 _ #\b—a-1,zt —
NORCEDL A @& TG+b)

The confluent hypergeometric function is related to various elementary and special

functions using Eq.(1.4) as follows

[o9] . oo .
(a); 2 zJ

T4
(@) gt =)

— zZ

Fila; a;2) =

Definition 1.4.2

Let,b,c € R,ce C\ Z, and for all z € D . Define Gauss hypergeometric function by

L N @),
.Fi(a,b; ¢;z) = 2, ©; i (1.6)

a.b a(a+Dbb+1) ,

—1+ +
c1 27 cerD).21

(1.7)

In particular, if a = 1, b = c, then the series in Eq.(1.7 ) takes the form

1+ z+2z%+ -

11



In which cases we have a polynomial as follow.

Examples 1.4.3

1) Ifb=c=1anda=%,then

(0]

2F1(%»1; 1;2) =sz
7=

s (D); !
1 13
— 2,,2°2 2
—1+1z+21z+
—1+Z+322+ —(1-2)2
2" 42 ={1-2
2) Leta=1,b=iandc =1, then
- (1)), 2
FL(Li; 1;,2) = Yy L
241 D] )] ] |
= M
i+, i+ DE+2)
1+IZ+ 21 v/

3.2.1

o =1 (1=3)
=1+1iz+ > z° + G z° +
3) Considera =b=1,c = 2and for -z, we have

N, (=2
F1(1,1; 2;,—2) Z, @), i

1.1

.. , 1212 22 N
- 7 AT 5370
1
— — — — 2—000
=1 2Z+32
s . Zj
= (=1) .
Z( ) T+ 1
Jj=0

12



Now. In the following remark, we recall some properties of the Gauss hypergeometric
function in unit disk which we need in the development of the work.

Remark 1.4.4

In ([12],[13]), forall ze D anda, b,c € R, ce C\ Z,; , then

(i) The differential of functions (1.7) defined as
ab
(,Fi(a,b; c;2))' = = ,JFila+1,b+1; c+1;2).

Proof. Using Eq.(1.7) , we get

(2Fi(a,b; ¢;2))’

a.b a(a+Dbb+1) ,

-1
O T2 er D21

a(a+D(a+2)b(b+1)(b+2) ,
cc+D(c+2).321 °

+..)

_ab ala+1)b(b+1) a(a+1)(a+2)b(b+1)(b+2)3 .
o1 e+ 21 AT cc+D(c+2).321 Z e

_a.b1 (a+1)(B+1) (a+1D(a+2)(b+1)(b+2)z?
= U —ry ¢t C+Dc+2) 21

~ a.bi(a+1)]-(b+ 1), zJ
¢ 4 (c+1); ]!
j=0

a.b
:T JFi(la+1,b+1; c+1;2).

(i) In [6]. The Euler integral representation for function (1.7) defined as

,Fi(a,b; ¢c;z) = F(c)_ b)J th-1(1 -0 1—2zt) %dt
0

I'(b)I'(c
Wherec > b > 0.

Proof. Suppose z € D, Re b > 0 and Re (c — b) > 0, then

13



(1-tz)*= (a__')j tiz/

j=0

This implies that
1 - (a)] X 1 X
f th-1(1—-0) P 11 —zt) *dt = Z_j' zJ f t/tP=1 (1 — ) b1t
0 : : 0
j=0

The latter integral is a beta integral which equals

I'G+b)I'(c—Db)
I['G+o)

1
f t/t0=1 (1 — )1 dt =B(j+ b,c — b) =
0

Now, we use the fact that

rG+b) . _ L
TR b(b+1)..(b+j—1)=(b);, j=012,..
To obtain
r'(c) Lo s . TOCTG+HD(@;
—F(b)r(c_b)fo 71 (1= £ - z) =2 TG

- Z (a()cj)(.b)j i = ,F (a,b; c;2).
=

1.5 The Bergman space

Function spaces. An important class of such functions is defined next.
Definition 1.5.1

The Bergman space 2P (D) for (0 < p < 1) is the set of functions f analytic in the open

unit disk D := {z: z € C; |z| < 1} with the norm ||f[l,, < co defined by

1
11 = | 1FGIP a2t < oo zeD,
D

14



where d2l is known as Lebesque measure over D [9].

1.6 The Mean Value Theorem for Integrals and Dirichlet Formula

The Mean Value Theorem for integrals is a powerful tool, which can be used to prove the
Fundamental Theorem of Calculus, and to obtain the average value of a function on an
interval. On the other hand, its weighted version is very useful for evaluating inequalities

for definite integrals.
Theorem 1.6.1.( Mean Value Theorem for integrals)
In [20]. Assume that f and g are continuous on [a, b]. If g never changes sign and is

nonnegative (g(x) = 0) in [a, b], then for some c in [a, b], we have

b b
[ regtaax = £ [ gwax

Theorem 1.6.2 (Leibniz Rule)

The Leibniz integral rule gives a formula for differentiation of a definite integral whose

limits are functions of the differential variable,

b(z) b(2)
i 0 db P
9z (j) fw,z)dw = (J) a—]ZCdW + f(b(z),z)E —f(a(z)’z)a_czl

It is sometimes known as differentiation under the integral sign [18].
Theorem 1.6.3 (Dirichlet Formula)

If £ is continuous and ,v > 0, then

[iz—trtde [[(t—x) " f(z0)dx = [} dx [2(z— )Pt — )" fz,0)dt

[17].

15



CHAPTER TWO

FRACTIONAL CALCULUS

In this chapter we define the fractional integral and fractional derivative in geometric
function theory on a function f(z) which is analytic in simply-connected region of the

complex z-plane C.

2.1 The Fractional Integral
According to the Riemann-Liouville approach to the fractional calculus, the notion
of fractional integral of order o, for a function f(z) by Srivastava and Owa ([14],[15]),

is as follows:

1% f(z) = fzf(w)(z —w)* 1dw (2.1
0

1
['(a)
where 0 <a <1.

As an application of the expression (2.1), we get the fractional integral of the function z¥
as follows:

rv+1)

EYE et D

vAS 0<a;-1< v (2.2)
we can show that, using Eq.(2.1), as follows:

Ia v 1 Zf a—ld
&z —m Jo (w)(z — w) w

1 Z
= _F(a) fo w’(z—w)* tdw

16



Z
= _F(a) z“‘lj; w’(1-w/z)* 1dw
Let %ztthen%oz dt, thus as w = 0 then t = 0 and as

w==zthent =1,s0

1 1
= A f ZVtV(1 — )% 1z dt
r'a) 0

1
- Za+17-l- tv(l _t a—1 dt
I'a) 0 )

1 V7" *B(v+1,a)
r'(a) '

B 1 vioq T+ DIN(a)
- T@) ” rv+a+1)

R rv+1) .
rv+a+1)

For complementation we define 12 = I (identity operator), i.e. we mean I? f(z) = f(2).

Furthermore, we can prove the following property

g1f =1 =1f19 fora,p =0 (2.3)

As follow
1 VA
@ = s f (z - )% 1 f(w) do

1 zZ 1 w
= —_— - _ -1 _ a—1
F(oc)JO F(,B)fo fOw—-t)F1dt (z— w)*'dw

17



Using Dirichlet Formula, we get

« 1B _ 1 ’ Y R e
1218 £(2) —F(a)r(ﬁ)fof(t)dtj;(w D51 (2 — )% do

Using Beta function formula (1.3), we have

aB — 1 ‘ _ f\a+p-1
LILF® = reorgy ). -0 FO deB@)
M@)o
_F(a)F(ﬁ)F(a+B)fo(Z DTSt
1

— ‘ _ a+B-1
F(O‘+B)fo (z—1t) f(o)dt

=17 (f@).
Which implies the property I If = Ié”ﬁ is hold.
As we proved If 1¥(f(2)) = If”’f(z), so we can conclude that

1218(f(2)) = I£ 12 (f(2)

Thus, we have

1P ) =12 18 (F(2) = 12 12(F () = 15 £ (2)

We shall now give an example of a fractional integral which satisfy the expression(2.2).

Example 2.1.1

Let f(2z) = z% and « =1/2, then find I}/* 23, by using definition (2.1).

18



Solution:

Since f(z) = z3 is analytic in the unit disk and « = 1/2 , we have:

1/2 3 _ 1 ‘ _ .0 (1/2)-1
1Y%, F(l/z)fof(w)(z ®) dw
1 z _
=F(1/2)Lw3(z—w) /2 qeo

using T G) = +/m, we have

1 VA
11/2 73 = — Z—1/zj w3(1 _ w/Z)—l/Z dw
Vi 0

zZ

Letgzt then, d7w=dtthusasoozOthent=0andasw=zthen t=1,s0

Z

1 1
IM? 28 = —Z_l/zf (zt)3(1 —t)~ Y2z dt
Vr 0

1 7 I@ra/?)
i T@+1/2)
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Also, we can prove the following properties of the fractional integral as in the following
theorem.

Theorem 2.1.2

Let f(z) and g(z) be analytic functions in simply-connected region of the complex z-

plane Candk, A are constants. Then

1) I¢ (f + 9)(2) = I2 (f(D) + £ (9(2)).
2) I¥ (kf (2)) = KIE (£ (2)) .

3) 1§ f(1z) = 2 ILf(2).

Proof:

Using Eq. (2.1), we have

1 VA
D 9@ = j (F + 9)(w)(z — w)™ dw

1 VA
- jo [Fw) + gw)] (2 — w)* dw

= we ([ £ Gt dw [ g —wret d
—F(a)(ofwzw w ngzw w)

Z

1 [? 1 1 a-1
= mjo fw) (z—w) dw+@ Og(W)(Z—W) dw

20



= I; (f) + 17 (9).

1 YA
D) RO = fo kW)@ — W)™ dw

F( )kf fw) (z—w)* 1 dw

= F( )ff(w)(z—w)“ 1 dw

= kI f(2).

1 Az
3 10D = s fo Fw) Oz — w)e dw

a-—1

1 Az
_ m pCa! jo f(w) (Z — V—}\:) dw

Let %ztthen dTwzdt thus, as w = 0 then t = 0 and as

w = Az then = z, so

I f(Az) = ﬁ A% 1J FAD) (z — )% 1A dt

= m xaf F(AD) (z— )1 dt

= A I f (2).
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2.2 The Fractional Derivatives

The concept of derivative is traditionally associated to an integer; given an analytic
function, we can derive it one, two, three times and so on. It can have an interest to
investigate the possibility to derive a real number of times of a function. We now extend
the ordinary derivative into the fractional derivative. After the notion of fractional
integral, that of fractional derivative of order a, for a function f(z) by Srivastava and

Owa ([14], [15]), is as follows:

DEF(2) = f F@)(z - ©) do 2.4)

m dz
where 0 < a < 1.

By Eq.(6.19) of [2], we have

Dg f(2) = I;7*(f' (@) = I;7% (D3 f(2)) provided f(0) = 0 (2.5)
Fundamental theorem of calculus to show that D? (f(z)) = f(z), Further we have

D7 I7 (f(2)) = f(2) (2.6)

To prove result, we use the expressions 2.4 and 2.1, as follows

D¢ Ia(f(z))— a) P f[af(w)(z— ®)~* dw

— 1 d ‘1 ¢ a—ld |

1

T -l @ dzf(z_“)) J f®O(w - ' dt do

Using Dirichlet Formula, we get

22



1 d Z Z
D% I (f() = = —f £(6) dtf (z— )" %(w - D% dw

(1—-a)l(a) dz J,

By formula (1.3), we have

1 ifz(z—t)of(t) dt B(a,1—a)

pg Iz (f(@) = I'(1—a)r()dz),

S orACLENO)

Which implies the property D% I (f(2)) = f(z) is hold.

To show IZ D% (f(z)) we using Eq.(2.5), as follow
IfD5(f(2) = I¢1;7%(D; f(@)) =1; D} f(2) = f f'w)dw = f(2) — £(0)
0

If £(0) = 0, then IZ D% (f(2)) = f(2).

If £(0) # 0, then I D (f (2)) = f(2) — f(0).
And, for the expression (2.4), we get the following expression that will be used later

rv+1)

bi = ro—a+ D

zZvT¢« , 0O<a<l;v>-1 (2.7)

It can be proved , by expression (2.4), as follow

D¥ z¥ = = a)dzjf(u))(z—oo) “dw
— d v —ad
=T 4@ Ooo(z—u)) )

23



1 d

= m E Z_a.f (,l)v(l - OJ/Z)_a dw
0

Let 3=t then %“’: dt thus, as w = 0 then t = 0 and as

w=1zthent = 1,5s0

D¥ z¥ = ; i Z_“flz” t’(1—t)"%zdt
rl—a) dz 0
1 d v—a+1
:mEZ B(U+1,1—C¥)
_ 1 izv—aﬂ rv+1Drd—a
rl—a) dz rv—a+2)
1 rv+1Drd—a)
— _ v—a
ra—g V"ot 2 Tv—a+2)
rv+1)

= w—a+1) z"“

w—a+Drv—a+1)

rv+1)
rv—a+1)

— V-

The relation between fractional integral and fractional derivative can be shown in the
following theorem.

Theorem 2.2.1

Let f(z) be an analytic function in simply-connected region of the complex z-plane C.

Then

d
Df f(2) = — 127 f(2)

24



Proof

Using the expression 2.4, we get

1 d (* .
DI = =gy 4 ), F@E— ) do

ra

Let(=1—a ,then

DI f(2) = f F(@)(z— )¢ do

F(Z)dz

- TG | e

_ad 3 _ 4 .
= @) = o Q).

Now, we have some properties of the fractional derivative as in the following theorem.
Theorem 2.2.2

Let f(z) and g(z) be analytic functions in simply-connected region of the complex z-

plane C and k , A are constants. Then
1) D (f + 9)(2) = Df (f(2)) + Df (9(2)).

2) DE (kf (2)) =k D f(2) .

3) DD (f(2) = 1" " f(2) = ;77" f(2) = D DZ (f ()) for £(0) = 0.

4) D7 f(Az) = A% D, f (2).

25



Proof:

Using Eq. (2.4), we get

1) D (f +g)(2) = f(f+g)(u))(z—w) @ do

F(l

1 d (? B
ZWELV(w)+ 9@z~ ) do

_ 1 d r? —eg 1 d [z y
_F(l—a)EfOf(w)(Z_“)) “’+p(1_a)EJ0g(w)(z—w) w

= D7 (f) + D7 (9).

d fkf(oo)(z—oo) “dw

2) f () = Fr—ay %5

1 d_(” By
=makjof(oo)(z—w) dw
_ kd
T I'l-a)dz

f flw)(z—w) *dw

:kmd ff(oo)(z—oo)“dw

=k D7 (f).

3) Suppose f(0) = 0 and apply Eq.(2.5) Dg = Izl_ﬁ DL we get
DED; f(z) = D&l DL f(2)
Using Eq.(2.3), we have
DEDY f(z) = DELP DL f(2) = DELP f(2)

Also apply Eq.(2.6) D¢ = I1"* D1 we get

26



DEDY f(z) =134 DiIP f(2) = ;%1 f(2) = 1;°7F £ (2).
Thus
DEDL (F@) = 1P f(2) = 1P~ f(2) = DY D¢ (f(2))
Note that, to determine I we refer to [10].

1Y f(z) = 1,7 D} (f (2)) provided f(0) = 0.

If £(0) # 0, then

DEDE (f(2)) = D1, P DE(f(2)) = DL I, F (f'(2))

1 z _
= D; (F(I_B)fof(w)(z—w) Bdw)

Integrating by part, we get

<(Z — ) Pf'(w)
(1-8) 1-0)

Z

Dg D} f(2) = Df -

1 yA
- B)-[ f"(w)(z— oo)l"Bdoo)
0

0

_ na (Z)I_Bf’(o) a 1 ‘ " 1-
= D¢ (F(Z—_B)>—DZ (F(z - B)fof (@) - o) Bdw)

@)'Pf'(0)

— 7l1—a n1
=l DZ<F(2—B)

) ~ D (@)

_ 1o <(Z)‘Bf’(0)

_ql—aplgl1-B en
Z F(l _ B) > IZ DZ IZ IZ (f (Z))

I AC) [ g e
_F(l—B)F(l—oc)Of(Z w) w0 P do - 13741, (f"(2)
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O O apo
_F(l—B)F(l—a)f(l ) 0™ do — 17" (f" (@)

Let §=tthen d7“’=dt thus, as w = 0 then t = 0 and as

w=1zthent = 1,50

a nB _f,(o) —a/3+1 _ a _g2=a=B ,cn
D! F(D) = =g f (-0 Fde— 1277 (77 ()

~ f'(0) z7%F* T1-B)F1—a) 2-a-B o
TA-B)r1-a) rd—-a-p) -1 (f"(@)

"0 —-a—-f+1 e
e T

Hence for (0) # 0, then

/ 1-a-p
f (0) z _ Iz—a—ﬁ (f”(Z)).

DEDY f() = For—o gy
4) Df f(1z) —md—f f@Az— w)* ! dw
1 Az N a1
r(a)E 1] f@)(z-3)  do

Let — —tthen dTw—dt thus, as w = 0 then t = 0 and as

w = Az thent = z,s0

1
Df f(Az) —md— A% 1J fAD)(z—-t)*ade
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}\(X
(o)

% fo Dz - 0 de

= A*Di f(2).

We shall illustrate the above theorem by the following example.
Example 2.2.3
Consider « = 3/2 and a function f(z) = z2 + 5 (vz)3 — 1, then find D3/2 f(2).
Solution:
Since f is analytic and by previous theorem, we get
D}* (22 + 5(z)?—1) = D}*(z%) +D}/* (5 (Vz)?) - D3*1

Using expression (2.8), so

D32 f(z) = F(Z—J;l)z(z—% +5 @Zé—% _F(O—gl)zo_g
r(z-3+1) r(z-z+1) r(o-3+1)

5
! r'\s
2 Z(%) +5 —(2>Z(O) _ z(73/2)

3 rq) r¢1/2)
F(z)
3 3
2r(2
r(= —2Vm
zr(z)
_ 12 LB g3V L e
7\/5 2.2 -2\
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4 1 15\/E+ 1 4(=3/2

Jn 4 2\

1
—— (822 + 15+ 2z73/2).
2\/5( )

)
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CHAPTER THREE

FRACTIONAL CALCULUS OPERATORS

In this chapter some basic definitions and results are given about new fractional calculus

operators, [9].

3.1 Fractional Integral Operator

In this section, we provide some definitions and give some related results in the present
work and in the future work. We prove some properties of the new fractional integral
operator, for instance: the boundedness, compactness in the Bergman space and study two

further examples.
Definition 3.1.1

Let f(z) be analytic in a simple connected region, for all z € D, containing the origin

and (0 < a <1),(0 < B <1). Then the fractional integral operator £;"B is given by:

£y = — i f A0
0

YONCEDE (z — 0)-«*F
And if a = B, then

£:°f(2) = f (2.

In the following theorems, we consider to show that the operator in definition 3.1.1 is

bounded and compact in the space AP (D).

From now on, we denote A to be the set of all analytic functions in the unit disk D with

f(0)=0and f'(0) = 1.
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Theorem 3.1.2.(Boundedness)

Let f € A on unit disk D. Then for all z € D the operator £§“B:?Ip — AP is a bounded

operator and

Proof. Suppose that f(z) € AP, then it follows that

e faL, < @Ik

o), = - | e ref

[ fD
=

! f

D

By setting gzuweget %zdu,soast=0thenu=O,andastzzthenuz 1, we

p

I'(«) e [P P .

ORCED N D

P
dU

& 1-a,a—fB-1 ‘ L—-1 _E a—-p-1
NORCED) 71797 fot (1 Z) f(t) dt

obtain

I'()

1 p
m j uﬁ_l (1 - u)“"ﬁ"l f(UZ) dul d2«
0

a, r 1
el =7 |

T

Using theorem 1.6.1 and Beta function, we have

D g )| an
®ra-—p

e ol <5 |

T
1[
=

=% fD | F@)IP d% = | @D)IIP.

M@ @B ,
ORCED O ¢ a
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This complete the proof as |

p
g0P f(z)”w) < lIf @2, forall z € D.
Theorem 3.1.3.(Compactness)
Let f € A. Then EZ"B: AP — AP is compact.

Proof. Assume that (f;,),en IS @ sequence of functions in AP and that f,, = 0 uniformly

on D asn — . Then

p 1
2% ()|, = supen {; f
D

1
Y
D

£28 £ ()| d%t}

(o) 1-a Zﬁ—l _ ma-p-1
NORCED) v/ J;)t (z—1) fn(t) dt

14
d‘)l} (3.1)

& 1-a ,a—fB-1 ’ p-1 _Ea—ﬁ—l
et Ay e a

1 p
= SUP,ep {E f d%[}
D

Set E = u then % =du,soast = 0thenu = 0,andas t = z then u = 1, thus we obtain

p
aaf

& ! L1 _ a—p-1
F(B)F(a—g)jou (1-w fn(uz) du

p 1
e 1o, = supven | |
D

Using theorem 1.6.1 and Beta function, we have

p 1
o, < swvven |3 |
D

1
_—
D

1
= sup,ep {; | 1a@P dm}

I'(a)
Bt —p BB P RO

14

d?l}
M@  T@a—-p) .
e H - Tw @) ‘m}
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= SuszD”fn(Z)”p = “fn”p

Since f;, » 0 on D, we obtain ||f,,||q» — 0, and by putting n — oo in Eq.(3.1), we have

P
EZ“B fn ”mr’ = 0. Hence, the compactness of the operator EZ"B follows.

B

Now, we are ready to prove some properties of fractional integral operator £, in open

unit disk D.
Proposition 3.1.4
Letf,g € Aanda,b € C, thenforallze D
O‘B(af+ bg) = a£a6f+ b£Z g-
Proof:

Using definition 3.1.1, we have

op _ (o) 1-a ‘ B-1 ¢, _ \a—f-1
£, (af + bg) = NORCED) v/ J;) tP~r(z—1t) [af (t) + bg(t)] dt
= o277 ( jz th=1 (z — )* B laf (t)dt + fztﬁ‘l (z—t)* P 1hg(t) dt)
F(B)F((X - B) 0 0
Tz a j tB=1f (1) - Tz b (% tP1g(t) it
- TR (a=Pp)Jy (z—0)- arp F(BT(a—PB)J, (z—t)L-ath
Tz z tB1f(D) (o) z1™¢ tB=1g(t)
IRONCED) f (z — t)1-ath e+ b (B (o — B)f (z—-0)'" arp ¢

= a£2PF+ by
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Proposition 3.1.5

Letf € A.Forallze D andforsome 0 <a <1, 0<pf <1, wehave

£XP £8° F(2) = (@)

And

£P EPM £(2) = £5F (2)
Proof. Using definition 3.1.1, we have

(o)

o Ba —
BB O = e p

zZ
z1-a f tP=1 (z — ) B L £ £(6) ar
0

=P rf wel fw)
TP —a) ), (t—w)l-Bta

1-a z
o B)f 1 (2 = ) P dw) dt

T T®T(a-p)

Zl

TT(E- ol (a—p)

t
f (z—t)* Pt f w1l (t —w)P~*1 f(w) dwdt
0

1- B-a-1

z 1 a-1 ‘ a—1 w
F(B —o)l(a — B)f (z—-t)*" B-1 ¢B- fo w (1 — ?) f(w) dw dt

Set %=uthen dTW=du, so asw=0thenu =0, and as w =t then u = 1, thus
£“PEP £ () is equal

71—«

F(B—o)l(a—p)

1
f (z —t)* Pt th-a- 1t“f @1 (1 —uw)P=*1 f(tu)du dt
0

Using theorem 1.6.1 and Beta function with |tu| < 1, we have

Zl—a

FB—ol(a—P)J,

£XPERf(2) = T = 0P B B(a, f — @) f (Dt
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B z17 F(a)r(B
ICEENCEI G

— 9 fz (z—t)F-1tB-1 f(t) dt
0

(o) z1™¢

— ’ _ \a—B-1 -1
TRy €O T O

F(O() z1-a Bt z ) t a—-p-1
“morept ), O ) o

Set 2 = v then % =dv,s0ast = 0thenv = 0,andas t = z then v = 1, thus we obtain

T 1-a 1
(@) 2 )z“‘ﬁ‘lzﬁ‘lzj VA1 (1 —v)* -1 f(zv) dv
0

OB cBa —
£," £, f(z)_r(ﬁ)r(a—s

Using theorem 1.6.1 and Beta function with |zv| < 1, we get

I'(a)

a,B B _
B D = T —p)

B(B,a—B) f(2)

_T@  Tr@-p
NONCEIIMNTC)

f@)=f(2).

To prove £°F £P* £(2) = £ f(2), we have

1-a z
£§"B EE'” f(2) = %] tP=1 (z — t)aB-1 EE’”(f(t))dt
0
r 1-a rz 1-8 ¢
= F(Exoz—ZB) jo th-1 (z - t)a’—ﬁ—l m[) Wu—l(t _ W)ﬁ_u_lf(w) dwdt

B (o) z17«
CT(Wra—Rr—-w

fz (z—-t)* B4t ftw“‘l (t —w)P=H1 f(w) dw
0 0

Using Dirichlet formula and Beta function formula (1.3), thus Eg’BEE’”f(z) is equal
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F((X) Zl—a z
F(Wra—=pre—mwl,

wHt 1 f(w) dw fz(z — ) B (t —w)F-r1qt

B (o) z'“ z B(a—B,B—w)
STr—prGE—ml, MM e

M) z'™% £ R T(a—BF(B—w
STr—prG -, T T MY

r 1-a z
— ooRe W= )
0

= £ (2).

Proposition 3.1.6

£98 () = % 215 (1 ()

Proof:

Using definition 3.1.1, we get

a,B — F(O() 1-a ’ L—-1 _ a—-B-1
£,7f(2) NONCED) Z jot (z—1) f(t) dt
_ M@ 4 1 81 a-p-1

T e O @

By Eqg. (2.1), we get

r@

X0 Zl_“lf_ﬁ zP~1£(2).

£XPf(2) =
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3.2 Fractional Differential Operator

In this section, we provide some definitions and give some related results in the present
work and in the future work. We prove some properties of the new fractional differential
operator, for instance: the boundedness, compactness in the Bergman space and study two

further examples.
Definition 3.2.1

Let f(z) be analytic in a simple connected region, for all z € D, containing the origin

and (0 < a <1),(0 < B < 1). Thenwe define the fractional differential operator 22"3

as follows:

24Bf(z) = r(a)rr(fi ili o) < fo (tz_l—t];(t)g at
In particular if « = S, we have
2;°f(2) = f(2).
We can show that using definition 3.2.1 as follow
2;%f(2) = fa)z d (FEO dt

ro)rl—a+a) dz o Z—t)a«
d zZ
= z17¢@ EJ@ t* 1 £(t) dt

= 272" f(2) = f(2).

Now, we are ready to prove some properties of fractional differential operator 2%B in

open unit disk D.
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Proposition 3.2.2
Letf, g€ Aanda,b € C,thenforallze€ D

2%8(af + bg) = a2%Ff + b 2By,
Proof

Using definition 3.2.1, we get

29P(af + bg) =

rez-r  d fzt“‘l laf®+bg@®]
rle)rd—a+p) dzJ, (z—t)eB

__ rz2f  d fzt“‘l laf@] (e [bg@])
T T(@rd—-a+p)dz|), (z-t)«bB o (z—1)aB

r@z'fa d 7t'f () r@z'*b d g

TT@Td-a+pdz), -0 B T(@T(d—a+p)dz), @—oesdt

= a28Pf + b 2Ry
Proposition 3.2.3

Let € A , then

[B) 14 arp

o, _ N\
2@ =gy P

271 f(2)
Proof. Using definition 3.2.1 and theorem 2.2.1, we get

o, _ r(ﬁ) Zl_ﬁ i g a—-1 _ —-o
2 = e D ), @ OO de

@z’ d 1 : —a a-1
- I'(a) EF(l—a+B)f0 (2= OF T f e de

_ ra) z'7F d 1-a+f _g-1
= W a IZ Z f(Z)
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Proposition 3.2.4

Letf €A, 0<a<land 0<p <1,then

28 £ f(2)=f(2)  and £58 208F(2) = f(2) if f(0) = 0
are holds true forall z € D .
Proof. By definitions 3.1.1 and 3.2.1, we obtain

oB B _ F(ﬁ) Zl_ﬁ i Za_ _ —a c%B
2P @) = A ) OB Foe

3 r(p)z-# d (% . o Mt whtfw)
“T@rd—a+p) &L T e O e T = B ), Gy W

z1-B d r? _a t . e
:F(a—B)F(l—a+,3) &J;) (z—1t)P dtj;wﬁ (t—w)* P-1f(w) dw

Using Dirichlet formula, we get 2P Eg"ﬁ f(z) isequal

z1-B d
Fa—pB)r(1—a+p) dz

JZ wh=Lf(w) dw jz(z — )P (t—w)e P14t
0 w

Using Beta function formula 1.3, we have

z1-B d
(@a—p)Tr(l—a+p) dz

28 £5% £(2) = f "W (w) dw B(a— BB —a+ 1)
0

B A rla—Brd—-a+p)d
“Ta-Br(l—-a+p) r (1) dz

fz wh=1f(w) dw
0

=2'"F2P71f(2) = f(2).

To prove EZ"B 22"Bf(z), using proposition 3.1.6 and proposition 3.2.3, we obtain
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I'(a) z17¢

£57 20Pf(2) = 197F (2P 2P (2))

Q)
M@z TI®z2 P d e
=@ ! B<Z B O f(Z))>

Using theorem 2.2.1, we get
£,7 20Pf(2) = 27 1°F (D F (27 f(2))
By Eq.(2.5), D% 8 = [1+F=2D1(z%1 £(2)), s0
£5P 20Bf (7) = 217 4B (IHB-2D1 (2971 f(2))
By property 2.3 and (0) = 0, we get

£57 200 f(2) =22 "D (2% f(2) = 272 f (D) = f ().

Theorem 3.2.5

If f(z) = Ypooa,z™, then

g > TR rn+a) , .
26 = ) g e Z“

Proof:

Using proposition 3.2.3, we have

d
SRR Y B

Using theorem 2.2.1, we get
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Qg’ﬁzn — % Zl—BD;-’_ﬁ (Za—lzn)
— % Zl—ﬁDZ“—B (Za+n—1)

By Eqg. (2.7), we get

T I C) F(n+a)
z F(a) ITn+ta—-1—-a+p+1)

a+n—-1-a+pf

F(ﬁ) -8 I'n+a) n
“T@’ Tm+p

+5-1

F([)’) I'(n+ a)
T Tm+p)”

thus

i o O T® rn+a) ,
2,7 nZ nz "T(@) T+ )~ ZA z"

where

'B) Tn+ a)

An = O Ty T+ B) (3.2)

Proposition 3.2.6

Letf € A.Forallze D andforsome 0 <a <1, 0<pf <1, wehave

29B 2B () =f(2) if f(O)=0
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And

2B 281 £(2) = 204 f (2)
Proof.

Using proposition 3.2.3, we have

208 2B f(7) = 22 (% pima C [P zﬂ-1f<z)>

Using theorem 2.2.1, we get

@)

OB 5B — paB
2P 20 £ (2) = 25 (F(ﬁ)

zl—“Dﬁ—“(zﬁ—lﬂz)))

By Eq.(2.5), DF~%* = [**¢=B D1 then

(a)

o,B 4B o,B
208 20 f(2) = 2 (F(ﬁ)

1—a11+a—BD1(ZB—1f(Z))>

By Eqg. (2.3), we have

(a)

B 5B _ 2B
2,727 f(2) =2, <F(ﬁ)

1—a’1a’—ﬁ11D1(Zﬁ—1f(Z))>

For f(0) = 0 then I'D1f(z) = f(z), we have

r@

20B 2B £(7) = 20P ( 0 s (Z”"lf(Z))>

)

a, F(O:) 1-a ,a—p-1 ’ t a—pF-1 -1
:2Z6<m2 VA B J;) (1-;) B tﬂ f(t)dt)
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Set g = u then % = du,soast = 0thenu = 0,andas t = z then u = 1, thus we obtain

I'(a)

o,B 4B.a — aa,f
22 22 f(Z) 2Z (F(ﬁ)r((l _ ﬁ)

1
f (1—u)* k1 uﬁ_lf(zu)du>
0

Using theorem 1.6.1 and Beta function, we have

I'(a)

oB 4B — o
28020470 =28 (e =p)

f(2)B(a —ﬁ,ﬁ’)>

I d -a+ -
=27%( f(2)) = % 2P =L 2 (2)

Repeat the same steps, we get
2P 28 (2) = f(2) if f(0)=0
Now, we want to show
25P 284 f(2) = 25" f (2)

By using proposition 3.2.5, then

2B 2B f(z) = ) Ay 240
n=0

_ i/‘ MG r(n+p)
"TR) T+

n=0

By Eqg. (3.2), we have

22"6 2[Z3,IJ f(z) = i ) T(n+a) T(w) T(n+p)

L T@ T+ p) TE To+m
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8

~ () T(n + @)
B z“” T@Tn+p ~

n=0

o Mwra+ao
= LT@tmep ™ = @

In the following theorems, we consider to show that the operator 3.2.1 is bounded and

compact in the space AP (D).
Theorem 3.2.7.(Boundedness)

Let f € A on unit disk D. Then for all z € D the operator 2°F: AP — AP is a bounded

operator and
122 F @5, < IF @G

Proof. Suppose that (z) € AP, f(0) = 0 and using proposition 3.2.3, we obtain

1
l25® rallyy = - [ 5P rel” an
D

_1f
-

Using theorem 2.2.1 and Eq. (2.5) D*# = I'=**£ D! we have

p

Mi 1-a+p a-1 d?l

F((X) dZ z z f(Z)

10 |t z'F P
125° f @l = - f ‘% D P2 f(2)| au
L(P®) 2P g1 |
:;L X0 I D*z*7 f(z)| dU
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Using Eq. (2.1), Eq.(2.3) and for f(0) = 0, we get

r(p) z'-* P
125° F @Iy, = = f ‘(BF)(Z) 1F=21'D1z 7 f(z)| dU

_1f
=

r(p) z*-°
I'(a)

p

1-B
I z .

I'(a)

Iﬁ—a(za—lf(z))

d

77—f
D
— -]-

T Jp

By setting £= u we get % =du,soast =0thenu =0,andast = zthenu = 1, thus

1 zZ
_ f\B—a—-1ra-1
F(B_OOJ;) (z—-1t) t* ! f(t)dt

14

-8
reg) z* o

F(r(P—ao)

z
t
zPat f (1= Hfe et f(Dde
0

we obtain

] P _ l F(B) ' _a\B-a-1.,,a-1 b
1227 fF @) ||y = nfD ‘F(a)F(B — fo (1—w) ue! f(zu)du| dU
By theorem 1.6.1 and Beta function with |zu| < 1, we get
o,p p l F(B) N P
25 @l <3 [ frare 2k - or@| e
1 f r®  T@re-o
), |T()I(B—a) r'(B)
=~ r@ra=irer
=), _
Hence, the fractional differential operator is bounded, i.e.

2% F@lge < IF @G
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Theorem 3.2.8.(Compactness)

Let f € A onD. Then 2%F: 9P — AP is compact.

Proof. Assume that (f,)neny IS @ Sequence of the functions in 2P and that f,, = 0

uniformly on D as - o, £(0) = 0 and using proposition 3.2.3, then

1
125 @ g = supsen {; | st rl d%r}
D

1
.
D

r(p)z'"d & j1-atp jam
M'a) dz'?

|

fn (Z)

Using theorem 2.2.1, we get

125° @l = supsen {% f % Dy’ 2 fu(2) d%}
By Eq.(2.5) DY # = 12"**F D1 and using Eq. (2.3), we have
125 £ (@)l = supzen {% jD %é‘“*”’ D} 271 £, (2) p d?l}
= supgep {% f F(?(Z)l e d%}
= supien 1 [ O o) el
= sup,ep {% fD F(BF)((:)I_B o fo C (2= a1t £ (1)de ' dQI}

P
aaf

M B-a-1 “ _Eﬁ—a—l -1
F(OL)F(B—OL)Z fo 1 z) t* ! fu(®)dt

1
—_—
D
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Set g = u then % = du,soast = 0thenu = 0,andas t = z then u = 1, thus we obtain

D
d?l}

1
125 il = supueo [z |

& ' — B—a—-1,,a—1
T ), W e

By theorem 1.6.1 and Beta function with |zu| < 1, we obtain

r)

ml‘?(a, f— a)fn(2)

1
125 il < supeeo {5 |

1
.
D

1
= Supen {; f | fu@) IP d%}

P
d?l}
P
d‘)l}

re)  Tr@re-o
M- T

fn(2)

= supzep I/ (DIIP = [IflI.

Since f, — 0 on D, thus we obtain ||f,|lq» — 0, and by putting n - o in Eq.(3.1), we

have that lim ||25P fn||;p = 0. Hence, the compactness of the operator 2%# follows.
n—-oo

3.3 New Operators And Special Functions

In this section we show that the operators ES’B, 2%P represents some special functions. In
the next section as in section 1.3 we consider one special functions in geometric function
theory, that is also known as Gauss hypergeometric function and study some of their
properties in the unit disk D. In [4], we know that if f(z) is given by 3.3.1 which is a
member in the class of univalent functions §, then |a,,| <m, m=1{23,..}.

Furthermore, if f(z) given by 3.3.1 is in the class of convex functions &, then

la,| <1, m={123,..}.
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Now, we consider to find the upper bounded of the operators EZ"B, 2%F of univalent and

convex functions.
Theorem 3.3.2

For extension the operator 3.1.1 in unit disk, let f(z) = Y;n—o amz™ belongs to class of

analytic functions A, then

E51(@) = i B~ .8 + m)ap”

(B (a—B) L

Proof. For all z € D, using definition 3.1.1, we obtain
P = ) £f(anem)
m=0

I'(a) z'7¢ z

“tera-pl, S CTOT mzzo{a’"sm}ds

(0]

z“‘ﬁ‘lj sh~1 (1 - 2)“‘3‘1 z {a,s™}ds
0

m=0

. T(o) zl-@
IONCEN))

Let §=t,then%=dt.80ass=0thent=0,andass=zthent=1,Weget

(0]

_1 L th~1 (1 —t)*F1 Z {am(zt)™} dt

m=0

I'(a) z7¢

o —
B = a5 *

Using theorem 1.6.1 and Beta function with |zt| < 1, we have

oB F((Z) m+£-1 _ Aa-p-1
£,"f(2) = NONC ﬁ)Zamz Jt 1-1 dt
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Where we can change the order of integration and summation since the series

Ym=olamz™t™} is uniformly convergent in open unit disk D for 0 <t <1 and the
integral f01|tﬁ‘1 (1 —t)*A-|dt is convergent as long as0 <a<land 0 < <1,
then we have

I'(a)

a,p _
EO = e L

1
A z™ f tmHP-1 (1 — ) B-1 4t
0

I'(a)

- P ;OB(m +B,a—B) apz™

Hence, we arrive at the desired result.

Theorem 3.3.3

For extension the operator 3.2.1 in unit disk, let f(z) = };n—o amz™ belongs to class of

analytic functions A, then

rp)
r(@)I(l—a+pB)

2987 (2) = z Bla+m,p—a+1) a,(m+ p)z™
m=1

Proof. For all z € D, using definition 3.2.1, we obtain

oo

282 = ) 2 {aps™)

m=0

[ee]

_ reg) z'7F d (* a- -a m
T T@r—a+p) EJO ez = 0)f Z amt™ dt

m=0

o)

— F(ﬁ) Zl_B d —-a ’ a—1 t -a m
=TT a7 B & zP fo t (1—;)3 Z amt™ dt

m=0
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Let ézu,then%=du.Soast=Othenu=0,andast=zthenu=1,Weget

o

rg)z\=# d 1
a,B — B a-1,1 _ ﬁ—az m
2,°f(2) ORCETET) 7 Z .[;u (1-uw) 0am(zu) du
m=
Using theorem 1.6.1 and Beta function with |zu| < 1, we have
rp)zi*  d < 1
o,B — el B+m m+a-1 _aN\B-a
22 f(Z) F((Z)F(l—d-{-ﬁ) dz Zoamz j;)u (1 u) du
m=
rp)z-*

d
= —_pt+tm _
(@I —a+p L mag”  PermBatD

o

Tz
Tl —a+p) L

Ay (B +m)zP*™ 1 Bla+m,B—a+1)

B reg)
T T(@I(1—a+p)

ZB(a+m,B—a+1)am(ﬁ+m)zm.

This completes the proof of theorem 3.3.3 for differentiation.

Theorem 3.3.4 (Univalence)

Let f € S, then

5P| < r(F LB 7))

Proof. By assuming that the function f(z) given by definition 3.3.1 in the class §, then

by using proposition 3.2.3, we have

£XPf(2) = % Rl {z A zmﬂg‘l},a1 =1



F(“) —aja—pB
Tt z“’"*”

Using Eq. (2.2), we have

(a) S-a = m+p+1)
@) " LTm+a+rn ™7

m+p+a—pf

£2Pf(2) =

_T(@) T+ +1)
T LTm+a+D) Gm+12

m+1

Using properties of Gauss hypergeometric function in 1.4, we have

w8 D@ O B+ DmT(B+1) -
T =1 L @+ D M@+ 1) ™7

CT@BTB) B+ D S
T al(@ & (a+ D ™

_ B N B+ Dm s

Now, subsequently

- (B+ Dim -

o, _ ﬁ
£ ()| = (et D 17

By triangle inequality

@) <2 D T lameal 1274
m=0 m

< % Z 1)m (m+Dr™? |zl =7

m=0
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Since (2),, = (m+ 1)! and

m+ 1)!
m41= D!

then

O B+ Dm @m
m=0(a+1)m m!

o,B _ ﬁ
£ (@) =1

= r% JF1(2, 8+ 1 a+ 1;7)
Using Remark 1.4.4, we have
Eg,ﬁf(z) =r§i 2F1(1,'8,;a;r) ,=T ZFl(llﬁ; a;r) ,-
B

Now, by applying the last assertion on 22"8 we conclude
a
2@ <7 5 (P2 at+Lp+11)

To prove this, let f(z) = Yon=0 amz™ in the class S, then

r(B) z+~F C

d (?
o, _ a— _ -a m _
2 f(z)‘r(a)r(1—a+ﬁ) deot o zamt dba =1

m=1

o

— F(ﬁ) ZI_B 1 d ? -a m+a—1
=T r(1—a+ﬁ)Ef0(Z_t)B Zamt dt

m=1

Using Eq. (2.4), we have
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-B ©
2g'8f(z) _ F(i)(ozl)l D;t—ﬁ {Z amzm+a—1}

_F(ﬁ)zl_ﬁ a-p N m+a
= M@ D, {mz: Am+1Z }

Using Eq.(2.7), we get

Im+a+1) _
am+1zm+a a+p

whpy  TBYZF
2 (@) = M@ &LTm+a—a+p+1)

T F(m +a+1) 1
"T(@ LTm+F+1D Am+1Z

By properties of Gauss hypergeometric function in 1.4, we have

wperr T(B) O (a+ Dy (a+1) _—
2,7 f(2) = (@) ) B+ D TB+ 1D Am+1Z

Thus,

r®) < (a+ 1), Mla+1) i
(@ & @+DulB+D ™

| 20FF(2)| =

8

g (a+1Dp,
=B 4B+ Dn

Iam+1llzm+1|

Since |1l <m+1and|z| =7

a, N + Dm m+1
|29B£(2)| < %mzz g+1)m (m + Dr

o« (a+ 1Dy @), m
E : B+ D m!
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=r %{ZFl(Z,a+1;B+1;r)}.

Remark 3.3.5

We note that, this series in above theorem are absolutely convergent for all z € D, so that
represented as the analytic functions and holds true for property of Gauss hypergeometric

function in open unit disk D (see [8]; p.28; Ch.1; Eq.(1.6.11)).

Next, we are interested to find the upper bound for inequality involving the

hypergeometric function, which is given in the following theorem.
Theorem 3.3.6 (convexity)

Let the function f(z) belongs to class of convex functions K. Then

£(Z"'Bf(z)| < rg{ JF(LB+La+1;m)}

Proof. By imposing that f(z) € X and using the same method in the previous theorem

and proposition 3.1.6, we obtain

aB (a) L1-a a-f N
S = 7 {Z

m=1

m+p—-1

F(a) 1-a i a—p
= z1- A 1777 zm*B1
r'(p) e

Using Eq. (2.2), we have

M@ N BHDalB+D g

gop
1@ =1 L @+ Dpl@+1) ™
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CT(@ B+ Dm BTB)

TT) L@+ Dy al(@ ™7

o a+1), M
m=
Now, subsequently
B+ 1)
oth( )| (a " 1)m Ay 2™
m

By triangle inequality and |a,,+1| < 1, we have

B (B + Dm

5P f(2)] <

m+1

=r g{ JF1(L B+ La+ ;7).

Forall z € D.

For differentiation method we can show that as for f(z) € X, then

|22 f(2)| < r% (LR(La+16+ 1)

Proof. Let f(z) = Y=o amz™ be in the class ¥, then

56

m+1|

(3.3)



o)

o,B _ F(ﬁ) Zl_ﬁ i ’ a— _ -a m
2D = rra—a+ B dzfo A Z amt™ dt,

m=1

= F(ﬁ) 2 1 d (* - N m+a-—
) (F(l—a+ﬁ) EJO(Z_t)ﬁ Zamt 1dt>

m=1

— F('B) Zl_ﬁ a-p N m+a—1( _ F('B) Zl_ﬁ N a=B_m+a-
= @ D, {Z A Z 1} =@ {Z amD, "z !

Using EQ.(2.7), we get

wrrn LB 2P M(m + ) mta-1-a+p
2.7f(2) = I'(a) mle(m+a—1—a+ﬂ+1) dm? '

_T(B) o T(m + a)
T(@) £LiT(m+p)

Zm+[>’—1Z1—ﬁ

F(,B) F(m +a+1)

“T@ LTm+F+1D a2

By properties of Gauss hypergeometric function in 1.4, we get

g« T @+ DyT@+1)
2, f(Z) = F(CZ) (B E I+ 1) Am+1Z™ +1
CTB) O (@t Dyal(@) -
“T@ L B+ Dn BT ™
_a = (a+ 1Dy, -
~B mZO B+ 1)y 17 GH

Thus,



(a + D

+1
= B+ D i1 2"

| 26Pf(2)| =

8

a 0(+1)m | I
= BL BT,

m+1|

Since |a 41l < 1and |z| =7

(oc + D,

SGES

|208F(2)| < ﬁ

_ e @+ Dy W,
T BBt Dn m!

% {Fi(La+ 18+ 11}

Theorem 3.3.7

Let f(z) € K, then

an(Z)| _ml (1_5)0( B- 1(1—7'5) ds

Proof. Suppose that, f(z) € K on D, and by Eq.(3.3), we have




Using the definition of (a),,, we get

Im+pF+Dl(a+1)
Im+a+ DI +1)

m+1

o, E N
£ @) <~

m=0

Y] - Im+p+1)
_@mﬂ) Im+a+1)

m+1

Multiplying and dividing by I'(a — f3), also we add and subtract 5 in denominator to get

the Beta function

(e o T(m+ B+ Dl(a—p)
F(B)I'(a—p) £ F[+m+a+1-p)

m+1

£5Pf(2) =
Where m+ >0, a—f >0,a > B > 0and since

@) Z Bim+ B+ 1, — ) rm*?

op —
D= e L

rF(a) m+ﬁ a-f-1
~TB)I(a— B)ZJ A=) dsr™

then it follows that

£5Pf(2)] =

r['(a) 1 e = .
FEre—p )y * O 1{,nzzom) }ds

rI'(a) sﬁ (1 — 5)a-1 1

SONCED) Tors &

= m J:sﬁ (1-s)*F1 (1 -rs)tds.

For differential operator it follows as
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@ (1-s5)P* (1 —-rs)tds

o,B r !
250 = s ),

Proof. Suppose f(z) € X, and by Eq.(3.4), we have

0B _a - (a+ D, et
2@ =5 ) G et

m=0

Since |z| = rand |a,,+1]| < 1, then

wp a O Tm+a+Dr@B+1 .
227 (@) = B Z Tm+ B+ DM@+ 1) '

_a N Tm+a+DRTB) .,
_EWZO Im+p+1)al(a) r

T~ Tm+a+1)
T T@ 4L Tm+p+1)

m+1

Multiplying and dividing by I'(8 — «), also we add and subtract « in denominator to get

the Beta function

rB) & Tm+a+ DI —a)
()T —a) o I[(m+a+1+pf—a)

m+1

| 20PF (2)| =

L)

= m;o Bm+a+ 1, —a)rmt!
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FT(B) e .
F(a)m?—a)z f (1 =) ds ™

r ') a-1 m
<— " MOt —a) Z f (1-5)A~%"1ds (rs)

o)

. 1
=———— | s“(1—s)f %1 > (rs)™ds
B((l,ﬁ - a) -[;) mz=0
r e 1
:B(a,ﬁ—a)fos (1= )Pt o ds

r 1 a ~
=mjos (1—s)F% (1 —rs) ds.

In the next we provide some examples.
Example 3.3.8

Let f(z) = z", forall z € D, then

wB py _ L@T(+pB)
LY = Ty o

Solution. By consider the operator 3.1.1, we obtain

I'(a) z g1 v

1-a

aBr vy _
SRR OTTCE K e

— F(O() 1-a ,a—f3-1 ’ B+v-1 _Ea—ﬁ—l
S T e
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Where 0 <a<1l,0<f<land 0<a—-f<1and zeD,veR Setézuthen

% =du,ast =0,thenu = 0andast = z,then u = 1 and using Beta function, we have

) = Fra T © J, W a0
r
@ e

__ M@ T@+9Ie-Pp ,
XONCRIDECERD

_T(@r+v) )
S T(Rr(a+v) = °

Examples 3.3.9

Let f(2) = e? = Z;‘;oi—vfor all z € D, then

(1L £%ey= A8 w2), (0<B<a)
(2) 2%Pe?} = [F(a; B;2z), (0<a<O}p).

Solution. In this example we follow same as methods in a previous Example and we
obtain

I'()

aBygzy
W B e

VA
1-a J tﬁ—l (Z — t)a—ﬁ—l et dt
0

(o)

— 1-a ,a—B-1 ’ L—1 _Ea—ﬁ—l t
F(B)F(O(—B)Z yA fot (1 Z) e dt

Seté = u then % =du,ast =0,thenu =0andast = z, then u = 1, thus we have
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1
Eg,B{ez} — F(B)II“(((;)_ B) Z_B+B_1+1f uﬁ—l(l _ u)a—ﬁ—l e?%du
— F(O() ' - a-F-1 ,zu
R J, e

Hence, by Eq. (1.5), we get
Eg’B{ez} = 1F(B; a; z).

2 20Per} = Fi(a; B;2)

Using proposition 3.2.3, we get

2?’8{62} FE‘? 1- Bdill “"‘ﬁ( a-1¢7)

By theorem 2.2.1, we have

e

a=B  a-1,z
TOKECIE

27Me} =

By Eq.(25) D% =12"**F D1 we get

2013{ 2} = FEL? 1- [3121—“*'5 Dzl (z%1e?)

Using Eq.(2.3), we get

r®

2018{ Z} ]"( )

2P 13 DY (2 te)

For f£(0) = 0, then

(B)
By, z 71— ﬁ @ a1z
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Using Eq. (2.1), then

r(p)
TON

1 Z
aBr,zy — 1-B a-1¢., _ \B—a-1 ,t
2,7 {e”} F(B—a)fot (z—1t) etdt

B F(B) _ o A a_ t B—a-1
“rramn L) e

Seté = u then % =du,ast =0,thenu = 0andas t = z, thenu = 1, thus we have

L) !

By z1 —
=2 = ore o U,

ua—l(l _ u)ﬁ—a—l e?ldu

Hence, by Eq. (1.5), we get

20%e?} = |Fy(a; B;2).

Remark. We note that for any z € C ,F;(a; B; z) is convergent and it has an integral

representation (see [8], p.29, Eq.1.6.15). In any case, may be can represent the operator

EZ"B in example 3.3.8 as the following integral

1
Eg‘ﬁ{eZ} — I'(a) B)L ub-1 (1-— u)a—ﬁ—l eY¥z du

r(Bria—
Or, by using the fact of the beta function

ACONCES:D
- (o

B(ﬁ,a - ﬁ)

yields

£5P(e?} = WPt (1 — )@ F1 e¥ gy, (0 < B < a).

mf
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Examples 3.3.10
Let0<a<10<pB<1and|z| <1,then
W £HA-27 = OB @)

2 20¥A-2)" = R B;2)

Where

v(v+1 viv+ 1D+ 2
(2| ) 2, U 3>'< ) oy

1-z)y"Y=1+vz+

Solution. By direct calculations, we obtain

(1) £ -2} = M) 5 A fzsﬁ_l (z—5)*F 11 -5)"ds
0

NONCE

I'()

- 7 1-ata—fp-1 “ -1 _fa—ﬁ—l -
NONCEDE ]OS 1-2) (1—s)""ds

Setg = u then % =du,ass =0,thenu = 0and as s = z, then u = 1, thus we have

Eg’ﬁ{(l —z)"} = ba) B)j uP (1 —w)* 11— zu) P du
0

AONCED)

= ,FF(v,B; «; z).
@ 2HA-27 = A(a Bi2)
Using proposition 3.2.3, we get

'® AN ilzl_aw z* 11 -2)™")

2= =55 * ' a

65



By theorem 2.2.1, we have

)

2HA-D™ = 5

zl_BD;_ﬁ z* 11 -2)"")

By Eq.(25) DY # =12"**F D1 we get

28P((1 = 2) 7} = 10D 1B D (e (1 = 1))

I I
Using Eq.(2.3), we have
20M (1 -2 = % 2P IDE (2% (1 - 2) ™)
For f£(0) = 0, then
r®)

251 -2y = = 2P 1 -

['(a)

Using Eq. (2.1), then

RO

o,B ) 1 Za—l _ —a— -V
20P((1 - 2) }_F(a)z F(B‘“)Jos (z—s)B~*"1(1-s)"ds

B—a—-1

. T® oot [ S v
_mz1 BB 1105 (1 Z) (1-s)"ds

Setg = u then % =du,ass =0,thenu = 0and as s = z, then u = 1, thus we have

22"6{(1 —z) "} = L(B) a)j uf 11 —w)f*11 - zu) "’ du
0

F(OT'(B—

= /v, B; 2).

Therefore the proof is complete.
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