

Deanship of Graduate Studies

Al-Quds University

Distributed Obfuscation Model for Software Protection

(DOSP)

Mai Kamel Atef Amro

M.Sc. Thesis

Jerusalem-Palestine

1443/2022

Jerusalem – Palestine

Distributed Obfuscation Model for Software Protection

(DOSP)

Prepared By:

Mai Kamel Atef Amro

B.Sc.: Computer System Engineering

Palestine Polytechnic University, Palestine

Supervisor: Dr. Rushdi Hamamreh

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of Master of Electronic and

Computer Engineering, Faculty of Engineering at Al-Quds

University

1443/2022

I

Declaration

 I Certify that this thesis submitted for the Degree of Master is the result of my

research, except where otherwise acknowledged, and that this thesis (or any part of the

same) has not been submitted for a higher degree to any other university or institution.

Signed by:

Mai Amro

Date: 09-01-2022

II

Dedication

I dedicate this work to my great parents and my husband

Mai Amro

III

Acknowledgment

My work would never have been possible without Allah and the help of many people during

my research. I would like to give special thanks to my supervisor for this project, Dr. Rushdi

Hamamreh, for his guidance, support, and encouragement through my research semesters.

Special thanks to my great sister, Dima for all her support, help, and encouragement.

Deeply thanks to my husband, father, and mother for their infinite giving support and

encouragement. I would also like to thank my dear sisters Reem and Renad.

IV

ABSTRACT

 This study suggests a new Distributed Obfuscation Model for Software Protection (DOSP-

AES). DOSP-AES is proposed as a method of protecting software from a reverse engineering

analysis. DOSP-AES is made up of software processes that are obfuscated and de-obfuscated.

Three levels of obfuscation techniques are used in the obfuscated software process. DOSP-AES is

applied to C++, Java, and Android programs.

 The first level, name obfuscation, involves renaming identifiers and variables with meaningless

names and obfuscating them using the AES algorithm with a random key length of 128 bits.

Methods for obfuscating code include the renaming and removing process. Removing means

removing unnecessary debugging information, methods, comments, and structures from the

program. The transformation of a program's variables, constants, class, method names, and other

identifiers to prevent attackers from understanding and analyzing it is referred to as renaming.

 The second level, data obfuscation, proposed concealing data values by changing the

statements in which variables are defined and used. DOSP-AES encrypts the values of constants,

local and global program variables to complicate reverse engineering and protect sensitive data

from disclosure. Data obfuscation with the AES algorithm and a key length of 256 bits. The most

important aspect is that DOSP-AES obfuscates each variable differently from the other when it is

mentioned on more than one site with the same application; each variable appears in a different

form from the other, despite the fact that they are the same variable.

 The third level, bytecode obfuscation, where bytecode is modified so that after the bytecode is

compiled, it contains obscure compilation errors, but the compiled Java program still functions as

expected. Java is compiled into bytecode. Decompiling bytecode files is easy because of the

V

names, fields, and methods within them. Obfuscation is one of the major defenses against

decompilation. The goal of bytecode obfuscation is to make the decompiled program much harder

to understand so that the attacker must spend more time Sand effort on the obscure bytecode.

Identifier names of bytecode are replaced with illegal obfuscated identifiers, which cause syntax

errors and compilation errors when decompiling. The DOSP-AES algorithm encrypts identifiers

and class names in bytecode files with a key length of 192 bits using the AES algorithm.

By obfuscating the code on multiple levels, the attacker will have a more difficult time analyzing

and analyzing the code.

 The de-obfuscated process is a client-server model (distributed system), where clients download

the obfuscated software and applications that were uploaded to the internet. The client requests the

server for the obfuscation key to de-obfuscate the software, then the server complies by sending

the secure key (obfuscated key) as one block of 72 bytes. The key is randomly generated using a

key generator (keygen) in the Crypto++ simulator. There are three levels of obfuscation in each

subkey. The first level (name obfuscation) is de-obfuscated using 16-byte key lengths, the second

Level (data obfuscation) is de-obfuscated using 32-byte key lengths, and the third level (bytecode

obfuscation) is de-obfuscated using 24-byte key lengths.

 Thus, the experiment has produced successful and promising results since it is difficult for

reverse engineering tools to read and analyze the obfuscated code. Even the revealed code did not

perform as well as the original and obfuscated code.

VI

TABLE OF CONTENTS

Declaration ... I

Dedication ... II

Acknowledgment ...III

ABSTRACT .. IV

TABLE OF CONTENTS .. VI

List of Figures ... XI

List of Tables .. XIII

List of Acronyms ... XIV

Chapter One ... 1

Introduction .. 1

1.1 Motivation and Problem Statement .. 2

1.2 Research Aims and Objectives ... 3

1.3 DOSP-AES Security Threat Model ... 3

1.3.1 Man in The Middle (MITM) attack ... 4

1.3.2 String Detection ... 4

1.3.3 Multiple Input Binary Files .. 5

1.3.4 One Input Binary File .. 5

1.4 Contributions .. 5

1.5 Thesis Organization .. 7

Chapter Two ... 8

Literature Review and Background ... 8

2.1 Literature Review ... 9

2.2 Software Development Tools ..14

2.2.1 Compiler .. 14

2.2.2 Interpreter ... 17

2.2.3 Compiler Vs Interpreter ... 17

2.3 Cryptosystem Models ..18

VII

2.4 Cryptographic Techniques ...19

2.4.1 Asymmetric Encryption (public-key encryption) .. 19

2.4.1.1 Rivest–Shamir–Adleman Algorithm (RSA) ... 20

2.4.1.2 Diffie –Hellman Algorithm (DH) ... 22

2.4.1.3 Elliptic Curve Cryptography Algorithm (ECC) .. 23

2.4.2 Symmetric Encryption (Private Key Encryption) .. 24

2.4.2.1 Advanced Encryption Standard (AES) ... 24

2.4.2.2 RC4 Algorithm.. 27

2.4.2.3 Triple DES (TDES)... 28

2.5 Performance Comparison of Cryptosystem Model ...30

2.6 Summary ..32

Chapter 3 ..33

Reverse Engineering and Obfuscation Techniques ...33

3.1 Reverse Engineering ..34

3.2 Reversing Methodologies ..34

3.2.1 Offline Code Analysis.. 35

3.2.2 Live (Online) Code Analysis ... 35

3.3 Reverse Engineering Tools ..35

3.3.1 Disassemblers .. 35

3.3.2 Debuggers .. 36

3.3.3 Decompiler ... 36

3.3.4 System Monitoring... 36

3.4 Technical Solution to Prevent Reverse Engineering ...37

3.4.1 Code Encryption .. 37

3.5 Obfuscation Process ...38

3.6 Obfuscation Techniques ...38

3.6.1 Name Obfuscation ... 38

3.6.2 Data Transformation .. 39

3.6.3 Bytecode Obfuscation .. 39

3.6.4 Obfuscation of Assembly Code Instructions ... 39

3.6.5 Anti-Debug .. 40

VIII

3.7 Characteristic of Success Obfuscation Techniques ...40

3.8 Summary ..41

Chapter Four ..42

Proposed Model Distributed Obfuscation Model for Software Protection (DOSP)

 ..42

4.1 Introduction to DOSP-AES ..43

4.1.1 Generate Symbol Table.. 43

4.1.2 Obfuscated Process of DOSP-AES .. 48

4.1.3 De- Obfuscated process (DO) of DOSP-AES ... 51

4.2 Introduction to DOSP-RSA ...57

4.2.1 Obfuscation process of DOSP-RSA .. 57

4.2.1.1 First level: Source code (Name, layout) obfuscation ... 57

4.2.1.2 Second level: Data ... 57

4.2.1.3 Third level: Bytecode obfuscation .. 57

4.2.2 De-obfuscation process of DOSP-RSA ... 58

4.3 Summary ..58

Chapter Five ...59

Results and Analysis ..59

5.1 Results for Generate Symbol Table ...60

5.2 All the Trials during prepare our model ..61

5.2.1 First Trial using normal implementation of Encryption Algorithm................................. 61

5.2.2 The Second Trial using Rajindi library and TPF_Math_Library 65

5.2.3 The Third Trial Using Chilkat Library .. 66

5.2.4 The Fourth Trial using crypto++ library .. 66

5.3 Analysis of DOSP-AES model ..67

5.3.1 DOSP-AES model for C++ programs ... 67

5.3.2 DOSP-AES model for Java programs.. 69

5.3.3 DOSP-AES model for Android programs ... 71

5.4 Analysis of DOSP-RSA model ..73

5.4.1 DOSP-RSA model for C++ programs ... 73

5.4.2 DOSP-RSA model for Java programs ... 75

IX

5.4.3 DOSP-RSA model for Android programs ... 77

5.5 Comparison between DOSP-AES and DOSP-RSA Depend on the Time in all

levels ..79

5.5.1 Comparison in the 1st level (Name Obfuscation) ... 79

5.5.2 Comparison in the 2nd level (Data Obfuscation) .. 82

5.5.3 Comparison in the 3rd level (Bytecode/machine code Obfuscation) 85

5.6 Comparison between DOSP-AES and DOSP-RSA Depend on the key’s length

 ..89

5.6.1 Comparison between DOSP-AES and DOSP-RSA using different key lengths in C++

programs in the obfuscation process. .. 89

5.6.2 Comparison between DOSP-AES and DOSP-RSA using different key lengths in C++

programs in the De-obfuscation process. .. 90

5.6.3 Comparison between DOSP-AES and DOSP-RSA using different key lengths in Java

programs in the obfuscation process. .. 91

5.6.4 Comparison between DOSP-AES and DOSP-RSA using different key lengths in Java

programs in the De-obfuscation process. .. 92

5.6.5 Comparison between DOSP-AES and DOSP-RSA using different key lengths in

Android programs in the obfuscation process. ... 93

5.6.6 Comparison between DOSP-AES and DOSP-RSA using different key lengths in

Android programs in the De-obfuscation process. ... 94

5.7 Comparison between DOSP-AES and DOSP-RSA Depend on the

Programming languages C++, Java, Android ..95

5.7.1 1st level: Name Obfuscation ... 95

5.7.2 2nd level: Data Obfuscation .. 96

5.7.3 3rd level: Bytecode Obfuscation ... 97

5.8 Brute force attack ...98

5.9 Attack model ..101

5.10 Summary ...102

Chapter Six ...103

Conclusion and future work ...103

6.1 Conclusion ...104

6.2 Future Work ...107

Bibliography ...109

X

Appendix A ..114

XI

List of Figures

Figure

Number
Figure Name Page No

Figure 2.1 Life cycle of a computer program 12

Figure 2.2 Phase of compiler 13

Figure 2.3 Cryptography 15

Figure 2.4 A simplified model for asymmetric encryption 17

Figure 2.5 A simplified model for symmetric encryption 20

Figure 2.6 AES general encryption process 21

Figure 2.7 AES structure encryption process 22

Figure 2.8 Triple DES encryption process 25

Figure 2.9 Comparison between AES, RSA, TDES, RC4 27

Figure 2.10 Comparison between RSA and Diffie-Hellman Key Generation 27

Figure 4.1 Symbol table result

Figure 4.2 workflow of DOSP-AES 40

Figure 4.3 DOSP-AES Block Diagram 41

Figure 4.4
General Block diagram of DOSP-AES model (Obfuscation and De-Obfuscation

process)

Figure 4.5 Obfuscation process of DOSP-AES 42

Figure 4.4 Name obfuscation 43

Figure 4.5 Data obfuscation 43

Figure 5.1 Obfuscation time in Source code level using AES algorithm 52

Figure 5.2 De- Obfuscation time in Source code level using AES algorithm 53

Figure 5.3 Obfuscation time in machine code level using AES algorithm 53

Figure 5.4 De-Obfuscation time in machine code level using AES algorithm 54

Figure 5.5 Obfuscation and Deobfuscation of DOSP-AES for C++ programs 56

Figure 5.6 Obfuscation and Deobfuscation of DOSP-AES for Java programs 58

Figure 5.7 Obfuscation and De-Obfuscation of DOSP-AES for Android programs 59

Figure 5.8 Obfuscation and Deobfuscation of DOSP-AES for C++ programs 61

Figure 5.9 Obfuscation and Deobfuscation of DOSP-AES for Java programs 64

Figure 5.10 Obfuscation and De-Obfuscation of DOSP-AES for Android programs 64

XII

Figure 5.11 Name obfuscation technique of C++ programs 65

Figure 5.12 Name obfuscation technique of Java programs 66

Figure 5.13 Name obfuscation technique of Android programs 67

Figure 5.14 Data obfuscation technique of C++ programs 68

Figure 5.15 Data obfuscation technique of Java programs 69

Figure 5.16 Data obfuscation technique of Android programs 71

Figure 5.17 C++ Machine code obfuscation technique using 192-bit key length 71

Figure 5.18 Java bytecode obfuscation technique using 192-bit key length 72

Figure 5.19 Android bytecode obfuscation technique using 192-bit key length 73

Figure 5.20 Obfuscation of DOSP-AES and DSP2 using different keys length in C++ programs 74

Figure 5.21
Deobfuscation of DOSP-AES and DOSP-RSA using different keys length in C++

programs
75

Figure 5.22
Obfuscation of DOSP-AES and DOSP-RSA using different keys length in Java

programs
76

Figure 5.23
Deobfuscation of DOSP-AES and DOSP-RSA using different keys length in Java

programs
77

Figure 5.24
Obfuscation of DOSP-AES and DOSP-RSA using different keys length in Android

programs
78

Figure 5.26 Name obfuscation using different key lengths in C++, Java, Android programs 98

Figure 5.27 Data obfuscation using different key lengths in C++, Java, Android programs 99

Figure 5.28
Machine-code/bytecode obfuscation using different key lengths in C++, Java,

Android programs
99

XIII

List of Tables

Table

Number
 Table Name

Page

Number

Table 2.1 Comparison Between Symmetric and Asymmetric Encryption 25

Table 5.1 Results of Obfuscation and De-Obfuscation process of the First Trial 52

Table 5.2
Obfuscation and De-Obfuscation time for DOSP-AES using different file sizes of C++

programs
55

Table 5.3
Obfuscation and De-Obfuscation time for DOSP-AES using different file sizes of Java

programs
57

Table 5.4
Obfuscation and De-Obfuscation time for DOSP-AES using different file sizes of

Android programs
58

Table 5.5
Obfuscation and De-Obfuscation time for DOSP-RSA using different file sizes of C++

programs
60

Table 5.6
Obfuscation and De-Obfuscation time for DOSP-RSA using different file sizes of Java

programs
61

Table 5.7
Obfuscation and De-Obfuscation time for DOSP-RSA using different file sizes of

Android programs
63

Table 5.8 Name obfuscation (Source code) technique 65

Table 5.9 Data obfuscation technique 67

Table 5.10 Bytecode / machine obfuscation technique 70

Table 5.11 Time to crack AES various key using Brute force analysis 81

XIV

List of Acronyms

DOSP-AES Distributed obfuscation model technique for software protection

IDA Interactive Disassembler

RC4 Rivest Cipher 4

DH Diffie Hellman

RSA Rivest–Shamir–Adleman Algorithm

AES Advanced Encryption Standard

𝑘𝐸 Encryption Key

𝐾𝐷 Decryption Key

𝑘𝑃𝑢𝑏𝑙𝑖𝑐 Public key

𝐾𝑠 Secret key

gcd greatest common divisor

mod Module’s arithmetic

ECC Elliptic Curve Cryptography algorithm

TDES Triple Data Encryption Standard

P Plain text (original program)

O(P) Obfuscation Text/code

𝐾𝑂𝑏𝑓 Obfuscation key

𝐾𝐷𝑂 De-Obfuscation key

BO Bytecode Obfuscation

𝐾256 Key length 256 bit

𝐾192 Key length 192 bit

𝐾128 Key length 128 bit

𝐾72 Key length 72 byte

Chapter One

Introduction

2

Chapter One: Introduction

 This chapter introduces the purpose of this thesis. It presents the research motivations, problem

statements, aims and objectives, threat model, contributions, and finally, the thesis organization is

presented.

1.1 Motivation and Problem Statement

 Over the last years, a lot of software and programs have been suffering from copyright violations, as

this software required hard work, a lot of time, intelligence, and a lot of money. It is estimated that

software protection against piracy will cost billions of dollars, considering how much intellectual property

and copyright is included within the software. Besides software piracy, many tools can provide illegal

access to software data and enable reverse engineers and adversaries to analyze the software and steal the

intellectual property.

It is the distribution of software (Client/Server) over the client devices that poses the biggest problem to

software protection since the owners lose control. In recent years, client devices have become more

powerful, allowing an attacker with malicious intent to violate copyrights and tamper with software using

several analyses and reverse engineering tools. Illegal access could be obtained when the software is

being cracked, where illegal copying and distributing of cracked software is a form of copyright

infringement. The need for robust software protection techniques against reverse engineering analysis is

highly needed today. These methods should address the lack of confidence in software in an untrusted

environment.

There have been many studies on one-to-one protection. However, there are few studies evaluating many-

to-one protection, which protects intellectual property and is treated as trade secret.

3

1.2 Research Aims and Objectives

1. Protect the intellectual property, licensing mechanisms, copyright and unauthorized modification

of the software from unauthorized access and reverse-engineering analysis.

2. Develop robust techniques that integrate multi levels of obfuscations. Traditional techniques

depend on only one level of obfuscation and these techniques suffered from reverse engineering

analysis. So, depending on multi-levels of obfuscation makes reverse engineering analysis more

complex.

3. To ensure data confidentiality from any type of reverse engineering while distributing the software

over client device, and while transmitting data through network, so users can securely install all

components of application and use it securely without any modifications during distribution of

the software over client device.

 1.3 DOSP-AES Security Threat Model

The purpose of threat modeling is to label and preserve the import utilities of a software model. A variety

of attackers can access the software, particularly through reverse engineering. Software protection

techniques are suffering from many threats that the DOSP-AES model will solve:

4

Figure 1.1: DOSP-AES Security Threat Model

1.3.1 Man in The Middle (MITM) attack

 A MITM is a type of eavesdropping attack, in which attackers can read, write and alter secret

information without any trees of manipulation [65].

1.3.2 String Detection

Radare2 is one of the reverse engineering techniques used for string detection. As part of radare2,

disassemblers and debugging tools are made. In addition to running on both Linux and Windows, this

software can also be scripted in Python and JavaScript. And perform disassembly, debugging, analysis,

comparison, and manipulation of binary files [6].

5

1.3.3 Multiple Input Binary Files

 Ghidra is an open-source reverse engineering tool. A potential attacker can load and analyze multiple

binary files of this software at the same time using this software. This software can load and analyze

multiple binary files at the same time. Gidra runs on many platforms such as Windows, macOS, and

Linux. As part of this software, disassembly and decompilation are performed. Also, it provides an array

of process instruction sets and executable formats that can run in interactive or automated modes [6].

1.3.4 One Input Binary File

 Interactive Disassembler (IDA) is one of the most popular tools of the reverse engineering process.

IDA tools load only one binary file at a time. IDA makes disassembler of software and supports a number

of executable formats for operating systems and processors. IDA has many advantages that enable the

user to change any part of displayed data:

1. The names of functions, variables, data structures and other.

2. Change data representation (as numbers, strings, data structures)

3. Easy to understand the disassembled code by providing diagrams and code flow graphs.

4. Automatically name variables and structure in the code.

5. Automatically name functions of the standard library in assembler code [7].

 1.4 Contributions

 While the Distributed Obfuscation Model with multiple levels of obfuscation is robust and more secure

than traditional techniques.

6

The main contribution of this thesis is presenting a suitable solution to protect software, copyright, and

distributed software over client/server against reverse engineering analysis, and these contributions are

summarized as follows:

1. Developing a comprehensive distributed obfuscation technique contains multi-levels of different

obfuscation techniques. And so our model protects the intellectual property and copyright of the

software while distributing it over client devices. Using this technique improves the protection and

confidentiality of software

2. Another significant contribution is the ability to improve the security of AES and DH algorithms

against reverse engineering analysis. This is carried out by using random key generation ideas based

on key exchange and generation processes that utilize the Diffie Hellman principle.

3. Develop multi-level obfuscation techniques for distributed software, combined with AES encryption

algorithms to make robust models and to increase security, thus hiding sensitive, valuable and secret

data from attackers. Also, in a de-obfuscated model, the client requests a key from the server to

download and open the obfuscated software from the internet. The key consists of subkeys, each

subkey used to de-obfuscate only one level, each level de-obfuscated using a different subkey from

another. Using subkeys makes the reverse engineering analysis more complicated. This technique is

called “DOSP-AES”

4. Introduce another technique called "DOSP-RSA". The same as DOSP-AES but an RSA encryption

algorithm is used.

7

1.5 Thesis Organization

 This thesis has six chapters summarized as follows:

Chapter One: Introduction. This chapter describes the thesis idea, objectives, contributions,

motivations, threat model, problem statement, research aims, and structure of research.

Chapter Two: Literature review and Background. This chapter presents literature review, software

development tools, Cryptosystem models, and Attack analysis.

Chapter Three: Model of obfuscation. This chapter presents obfuscation, the obfuscation technique,

the reverse engineering process, and the tool for reverse engineering.

Chapter Four: Research Methodology and procedure (Proposed model). This chapter talks about

the obfuscation model this thesis uses. describes all levels that the DOSP-AES model contains. Also,

describe the model DOSP-RSA, and describe all levels that the DOSP-RSA model contains.

Chapter Five: Results and analysis. Includes the testing results of the proposed model (DOSP-AES),

testing, and results of the DOSP-RSA model. In addition, it presents a comparison between the DOSP-

AES model and the DOSP-RSA model.

Chapter Six: Conclusions and future work. Contains the research conclusion followed by future work

and recommendations.

8

Chapter Two

Literature Review and Background

9

Chapter Two: Literature Review and Background

 This chapter provides a brief overview of the development environment tools, such as compiler and

interpreter, for programming languages C++, Java, and Android. Then, it presents detailed cryptosystem

models and attaches an analysis.

2.1 Literature Review

 The study reviews the recent literature on obfuscation techniques used in mobile and software malware.

1. Hardening Code Obfuscation Against Automated Attacks

 This research introduces LOKI which is a code obfuscation approach against all known automated

deobfuscation attacks and unaccounted attack vectors (ex. program synthesis).

They introduce a set of obfuscation techniques that can be combined to protect code against reverse

engineering analysis and deobfuscation attacks. The design of this model is based on the following

principles:

1. Merging core semantics

2. Merging different, independent core semantics which increases the complexity

3. Diversifying the selection mechanism and adding syntactic and semantic complexity

For more details regarding these principles, check reference.

 The research shows that it can protect code from reverse engineering and deobfuscation attacks and

10

ensure intellectual property rights. Through code obfuscation [8].

2. Obfuscation for Privacy-Preserving Syntactic Parsing

 Homomorphic encryption aims to convert data such that another party can work on it without vividly

revealing the content of the original data. This research proposes an idea for a privacy-preserving

transformation of natural language data, based on homomorphic encryption. Their basic tool is

obfuscation, depending on the characteristics of natural language. Mainly, a given English text is

obfuscated using a neural model aiming to preserve the syntactic relationships of the primary sentence.

This is the obfuscated sentence that can be interpreted instead of the initial one.

 The pattern operates at the word level and retains to obfuscate each word independently by converting

it into a new word that has a similar syntactic task. The text obfuscated by this model causes better

function on three syntactic analyses (two dependencies and one constituency parser) in contrast to an

upper-bound random replacement beginning.

 As more terms are obfuscated (by their part of speech), the substitution upper bound greatly degrades,

while the neural pattern retains remarkably high performance. All of this is done without much renounce

of privacy compared to the random substitution upper bound. They analyzed the outcomes and detected

that the substituted words have similar syntactic characteristics, but different semantic content, compared

to the initial words [9].

3. Dynamic Analysis Techniques to Reverse Engineer Mobile Applications.

 Mobile applications are becoming more significant with time. It is for this reason that many companies

recommend creating more applications. As mobile applications get more complex than before, the

problems of code maintenance and comprehension of poorly documented apps are arising. To solve this

11

problem techniques to reverse engineer mobile applications based on code are needed. In this study, they

created a smartphone version for reverse engineering applications. Which is a complete set of techniques

and tools analyzing the functional structure of the application, to improve the software understanding of

it, thus its maintenance. For this purpose, they developed a functional structure view of the system that

includes two components: first, the classes, their relationships, and the methods that implement a

business-relevant scenario; second, the class's time series that allows them to recognize when a specific

class or set of classes are involved in a scenario technique. Since execution trace files can contain very

large amounts of events, they developed a trace segmentation technique to cope with the large volume of

data. This trace segmentation proved to be efficient in analyzing the interactions between the components

of the system. By applying this method to the analysis of iPhone apps. They expanded the interpretation

of the results of the tools and methods used in the smartphone context.

The results show the creation of a trace file that applies to all mobile environments. Knowing how to

build source code for a specific programming language in order to create a trace file is also necessary.

Specifically, they have created an instrument for Java, to be able to analyze Android applications. This

developed trace analyzer provides the maintenance engineer with a wide range of views to analyze how

the code runs. The time series technique is useful in visualizing the mutual behavior of the classes in a

suitable arrangement. And it gives an idea about the interaction of classes while running the use-case.

There were some obstacles during this study since they used these techniques which are based on

business-related use-cases. This enabled them to make a hypothesis about the business semantics of the

observed patterns of execution of classes. However, as the use-cases are taken from the user´s

observation, this analysis is not complete. Due to the complexity of the task, they studied a semi-

automated technique to recover the use case directly from the code for desktop applications. In addition,

use-case recovery from source code is still a problem that is not solved [10].

12

4. A Parameterized Flattening Control Flow Based Obfuscation Algorithm with Opaque

Predicate for Reduplicate Obfuscation.

 This study suggests a repetitive code obfuscation algorithm to protect the source code and enhance

white box security. They employed the parameter decomposition tree to shape the code, then they used a

flattening control flow system to decompose the source code into a multi-branch WHILE-SWITCH

structure. Finally, opaque predicate code depiction and diverse ways of adding opaque predicates into

program branches and sequence blocks were applied. Furthermore, the time-space cost of source code

and obfuscated code was compared. The results showed that the suggested algorithm made the code´s

anti-attack ability better and also elevated the difficulty of reverse engineering [11].

5. An Adaptive Approach to Recommending Obfuscation Rules for Java Bytecode Obfuscators.

 Many techniques make the decompiled program uncompilable. The obfuscation effects cannot be easily

undone by other cracking tools. A cracker has to spend lots of time debugging the decompiled buggy

program manually. The main objective of the obfuscation techniques proposed is to scramble the

symbolic names and the symbolic references in the bytecode. This paper sheds light on the OR Chooser

(Obfuscation Rule Chooser), as an adaptive approach to endorse a small number of obfuscation rules for

java bytecode obfuscation. To randomly choose\unchosen obfuscation rules for the obfuscation and to

compute the obfuscation distance between the bytecode before and after obfuscation. Moreover, OR

Chooser considers a constant process to adaptively obfuscate the bytecode file f, as the obfuscated code

is far from f. They applied and observed OR Chooser on bytecode obfuscators: Android R8.

The results of the observation exhibit the strength of ORChooser. In particular, with 5 repetitions, OR

Chooser selects about 25% of obfuscation rules for R8, minimizing more than 29% of the bytecode size.

The likeness between the bytecode files before and after obfuscation is less than 27%, implying that

13

ORChooser – supported obfuscators have obfuscated bytecode competently and minimized the

comprehensibility greatly [12].

6. A Study of Encryption Algorithms AES, DES and RSA for Security

 Using AES, DES, and RSA encryption algorithms, this research compared their use as encryption tools

in terms of their prompt time for encryption and decryption. Using distinct file sizes, they encrypt and

decrypt the files based on AES, RSA, and DES algorithms. Simulation outcomes suggest that AES

performs better than DES and RSA. The AES algorithm utilizes the least encryption and RSA utilizes the

longest encryption time. The decryption of the AES algorithm is more effective than other algorithms[13].

7. Hybrid obfuscation using signals and encryption

 In this paper, they proposed an algorithm that aimed to implement the obfuscation in both methods

the signal and the encryption to enhance the complexity level and inhibit the detection potency as

possible. On one hand, an advantage of this algorithm is its structure that makes the control graph of the

program vague. On the other hand, the disadvantage is the high costs. It's a combination of both signal

and encryption methods that is why it’s called S&E.

 This proposed algorithm S&E applied a signal method in order to convert the tree- and graph-like

structure of the program into a star structure and conceal the control flow graph of the problem. The

problem of the signal method is the high number of call and return instructions. However, this study

proposed inserting a dispatcher to the program in order to change the signal program to the original

control flow graph. And so, the problem of the signal method was solved. The dispatcher that is used was

encoded to keep it secure from hackers. In addition, a new approach has been proposed to calculate the

complexity and resilience. There are five functions that were suggested to be able to calculate the values

14

of complexity and resilience. The results of the difference of obfuscation data similarities with the initial

codes, based on Mishra's method, represent a functioning advantage of the suggested and hybrid

algorithm obfuscation [14].

2.2 Software Development Tools

 Software developers deploy software development techniques to produce, debug, keep, and support

other programs. Development tools are utilized during the actual coding process. This entails original

code production. The most essential tools are a source code editor and a compiler or interpreter. This

section aims to concentrate on the compiler and interpreter tools

2.2.1 Compiler

 Before the computer processes the program, The source code of the program must be converted into a

suitable instruction sequence. It is necessary to convert the source code of the program into an instruction

sequence before it is processed by the computer. Compilers convert source code (a set of rules, symbols,

and special words) written in any high-level language into binary instructions (machine code) that can be

used by the computer processor. Its main function is to translate the source code of the program into

machine-understandable code and preserve the semantics of the program source code [15] [16] [17] [18].

 Many compilers are a combination of five different tools, Editor, debugger, compile, linker, loader. But

in this thesis, our scope is limited to debugging and compiling only.

 The editor for writing a software program or modifying an existing program is provided by IDE

(Integrated Development Environment) which is a software application that combines all of the features

and tools (graphical user interface and developer tools) needed by a software developer like a Visual

Studio program. IDE is created when the compiler is activated. When editing is completed, if the source

code of the program does not contain any syntax error, the compiler compiles the program successfully

15

and translates it into object code (.obj). Object code is machine language code but it’s not executable.

On the other hand, if the source code contains any syntax error, the debugger tool is activated and

produces a list of syntax errors. Correcting source code and eliminating the syntax errors in the program

can be done only manually through re-editing the program source code. After the program compiles

successfully and the object code is obtained. The liker tool links the object code with the library functions

that are used in the program and also it combines all the modules as required. So, when the linker process

is completed, the object code is converted into executable code (.exe). Finally, the loader tool loads this

exe file in the main memory for execution [17]. All compiler functions are shown by the flow chart in

Figure 2.1.

The compiler operates in six phases as shown in Figure 2.2. Each phase converts the source program

from one representation to another. Symbol table and error handler interact with these phases [15]

[17].

1. Lexical Analysis, it interprets the program and changes it into tokens. Tokens in programming

languages include keywords, identifiers, operator symbols such as +, -, /, =, punctuation symbols such

as (,), {,}, parentheses, or commas.

2. Syntax Analyzer, sometimes it is called a parser. It builds the parse tree from the token created.

Also, it checks if the expression made by tokens follows the syntax or not.

3. Semantic Analyzer, it proves the parse tree, whether it’s meaningful or not.

4. Intermediate Code Generator, compilers create intermediate code from source code.

5. Code Optimizer, it changes the intermediate code so that it utilizes fewer resources, less power,

generates more speed, and makes better target code.

16

Figure 2.1: Life cycle of a computer program.

6. Symbol Table: It is a data structure produced by the compiler. This allows the compiler to find

identifiers quickly. It entails all the identifier names, their types, the scopes, functions, and methods

names.

❖ Error Handler: There are many types of errors some of them, first compiler runtime errors, occur

when the compiler detects syntax error in the source code of the program, logic errors, occur if there

17

is strange output, crash in the program and if the program operates in an unexpected and incorrectly

way, finally run time error, it occurs because of invalid input data. In all cases, the compiler issues an

error message about the error that occurred [17] [18].

Figure 2.2: Phases of compiler.

2.2.2 Interpreter

 The interpreter is a computer program that translates source code directly from a high-level language

into some other form, one statement at a time, without translating it into machine language first, so no

intermediate code is generated [19].

2.2.3 Compiler Vs Interpreter

 There is a difference between compiler and interpreter. A compiler scans the entire program and

translates it into machine language code, while an interpreter takes one line of source code at a time and

executes it if there is no syntax error in that line. So, interpreters execute programs line by line and the

execution time is slower, So, the execution time of the compiler is faster and much more effective than

18

interpreters. No intermediate code is generated (memory efficient) by the interpreter but the compiler

requires more memory because it generates intermediate code. In the early days of computers, the

interpreters were in much practice because of low speed of hardware and less memory. At a very low cost

a faster processor and a large amount of memory are available [17] [18] [19].

2.3 Cryptosystem Models

 This section presents an overview about Cryptography models. Cryptography is derived from the Greek

word ‘crypto’ means secret, ‘graphy’ means writing. It is the science and study of the techniques that

protect the data from the access of unauthorized users by hiding the content of the message, it ensuring

integrity, availability, identification, confidentiality, authentication of user, security and privacy of the

data. As shown in Figure 2.3, encryption algorithms encrypt the plaintext into cipher text using a key. A

decryption algorithm is used for decryption and restoring the original plaintext from the ciphertext [20]

[21].

Figure 2.3: Cryptography

 Cryptology entails two main sorts. Cryptography which is the study of securing the information. And

Cryptanalysis which is a branch of analyzing secure communication. Cryptography is utilized for

19

different reasons that can be either all accomplished at the same time in one approach, or only one of

them These reasons are [20] [22] [23]:

1. Confidentiality is a service to maintain the information secret and make sure that no one can

understand the accepted information/message except the one who has the decipher key.

2. Authentication helps in recognition. that means the user or the system can verify their identities to

different parties who don’t possess personal information of their recognition

3. Data Integrity helps to label the uncertified change of data and it makes sure that the accepted data

has not been converted in any way from its initial form.

4. Non-Repudiation: is deployed to verify that the sender really sent specific information, and the

information was accepted by the specified party, so the recipient cannot say that the message was not

sent.

5. Access Control: it is preventing an uncertified utilization of means. This purpose is to control who

can have access to the resources, if one can access, under which restrictions and terms the access can

be carried out, and what are the permission stages of a given access.

2.4 Cryptographic Techniques

 Cryptosystems have two types based on the number of keys used, they are either symmetric (private

key encryption), in which case both the encryption and decryption keys must be kept secret, or

asymmetric (public-key encryption) in which case one of the keys can be made public without

compromising the other [20] [21] [23].

2.4.1 Asymmetric Encryption (public-key encryption)

 Each person has a pair of keys (a public key and a private key). A person's public key is published but

the private key is kept secret and hidden. data is converted using the recipient’s public key and can only

20

be decrypted using his private key. In this method there is no need to share secret keys between sender

and receiver. All communications utilize only public keys, and no private key is transmitted [24] [25],

see Figure 2.4.

Figure 2.4: A simplified model for asymmetric encryption.

2.4.1.1 Rivest–Shamir–Adleman Algorithm (RSA)

 RSA algorithm introduced by Rivest, Shamir, and Adleman in 1978. The important things of RSA, it

implements asymmetric key /public-key cryptosystem for key exchange or as digital signatures [25] [26] [27].

1. Public-key encryption

In RSA, encryption keys are public, and the decryption keys are private. Only the person who has

the decryption key can decrypt the ciphertext.

2. Digital signatures

The receiver checks and verifies that the transmit message was created by the sender (signature).

This works using the sender’s decryption key.

RSA used two keys, public key and private key. Public key can anyone know it and it is used to encrypt

the ciphertext, but the ciphertext only decrypts using the private key. The RSA algorithm is characterized

by a high degree of security, difficulty of getting original text from ciphertext, due to the difficulty of

factoring large products of two prime numbers [25] [26] [27].

21

RSA operation involves four steps: key generation, key distribution, encryption and decryption [26]

[28].

❖ Key generation

 key generation can be done using the following steps:

a. Select two large prime numbers, 𝑝 𝑎𝑛𝑑 𝑞.

b. Compute n, as equations 2.1:

 𝑛 = 𝑝 × 𝑞 (2.1)

c. Compute phi function (Euler's totient function), as equation 2.2:

 ɸ(𝑛) = (𝑝 − 1)(𝑞 − 1) (2.2)

d. Select the public exponent e, such that 1 < 𝑒 < ɸ(𝑛), and e must be coprime with ɸ(𝑛) ,

as equation 2.3:

 𝑔𝑐𝑑 𝑔𝑐𝑑 (𝑒, ɸ(𝑛)) = 1

(2.3)

e. Compute the private key d, as equation 2.4:

 𝑑 = 𝑒−1 (𝑚𝑜𝑑 ɸ(𝑛)) (2.4)

f. The public key can be computed using n and e, as equation 2.5:

𝑘𝑝𝑢𝑏𝑙𝑖𝑐 = 𝑃𝑢𝑏𝑙𝑖𝑐 𝑘𝑒𝑦 (𝑛 , 𝑒) (2.5)

❖ Key distribution

If sender and receiver use the RSA algorithm to transmit a message, Sender must know the

receiver’s public key to encrypt the message, and the receiver must use his private key to decrypt

the message.

22

The receiver must send his public key (n, e) to the sender, to enable the sender to send his encrypted

message. Sender transmits his public key (n, e) to the sender via a reliable. receiver’s private key (d) is

never distributed [26] [27].

❖ Encryption

 RSA Encryption process is done using the public key 𝑘𝑝𝑢𝑏𝑙𝑖𝑐 and plaintext m, as equation 2.6:

 𝑐 = 𝑚𝑒 𝑚𝑜𝑑 𝑛 (2.6)

❖ Decryption

RSA decryption process is done using receiver’s private key d, and ciphertext c, as equation 2.7:

 𝑚 = 𝑐𝑑 𝑚𝑜𝑑 𝑛 (2.7)

2.4.1.2 Diffie –Hellman Algorithm (DH)

 The Diffie–Hellman algorithm is used to exchange cryptography keys. It is a key exchange method that

allows two parties that do not have any knowledge of each other to create a shared secret key over a

communications channel which is insecure. The following steps show how the Diffie-Hellman Algorithm

Key exchanges work [29] [21]:

1. Compute global public elements: in this step choose 𝒒 as prime number and 𝒂 is primitive root of

𝒒, such that 𝛼 < 𝑞.

2. Key generation of User A:

This can be done by selecting private key 𝑋𝐴, such that 𝑋𝐴 < 𝒒, then calculate public key 𝑌𝐴, as

equation 2.8:

 𝑌𝐴 = 𝛼 × 𝑋𝐴 𝑚𝑜𝑑𝑒 𝑞 (2.8)

23

3. Key generation of User B:

This can be done by selecting private key 𝑋𝐵, such that 𝑋𝐵 < 𝒒, then calculate public key 𝑌𝐵, as

equation 2.9:

 𝑌𝐵 = 𝛼 × 𝑋𝐵 𝑚𝑜𝑑𝑒 𝑞 (2.9)

4. Calculation of secret key by user A: secret key of user A can be computed as equation

(2.10):

 𝐾 = (𝑌𝐵)𝑋𝐴 𝑚𝑜𝑑 𝑞 (2.10)

5. Calculation of secret key by user B: secret key of user B can be computed as equation 2.11:

 𝐾 = (𝑌𝐴)𝑋𝐴 𝑚𝑜𝑑 𝑞 (2.11)

Notice that, the result is that the two sides have exchanged a secret key value.

2.4.1.3 Elliptic Curve Cryptography Algorithm (ECC)

 ECC is an alternative mechanism for implementing public-key cryptography. ECC is based on discrete

algorithms that are much more difficult to challenge at equivalent key lengths. The security of a public

key system using elliptic curves is based on the difficulty of computing discrete algorithms in the group

of points on an elliptic curve defined over a finite field. Elliptic curve equation over a finite field 𝐹𝑝 can

be described by equation 2.12:

𝒚𝟐 = 𝒙𝟑 + 𝒂𝒙 + 𝒃 (2.12)

Here, y, x, a and b are all within 𝐹𝑝, and p is an integer modulo p. a and b is the coefficients which

determine what points will be on the curve. Curve coefficients have to fulfill one condition that is:

24

𝟒𝒂𝟑 + 𝟐𝟕𝒃𝟐 ≠ 𝟎

This condition guarantees that the curve will not contain any singularities.

Each value of a and b gives a different elliptic curve. The public key is a point on the curve and the

private key is a random number. The public key is obtained by multiplying the private key with a

generator point G in the curve [30] [31].

2.4.2 Symmetric Encryption (Private Key Encryption)

 Using the same secret key in encrypt and decrypt messages. The problem in this type is

transmitting the secret key to the person that needs it [24]. Figure 2.5: A simplified model for

symmetric encryption.

Figure 2.5: A simplified model for symmetric encryption.

2.4.2.1 Advanced Encryption Standard (AES)

 AES is based on a substitution permutation network. It is fast in both hardware and software. AES has

an affixed block size of 128 bit, and it can specify with key sizes in any multiple of 32 bits. The key size

has a maximum of 256 bit. AES algorithms have many characteristics, resistance against all known

attacks, speed and design simplicity.

AES operates on a 4 × 4 matrix of bytes, termed a state. The AES cipher is specified as the number of

repetitions of transformation rounds that convert the plaintext into ciphertext. Each round consists of

several processing steps, including one that depends on the encryption key. A set of reverse rounds are

applied to transform ciphertext back into original plaintext using the same encryption key. The encryption

algorithm is organized into three rounds. Round 0 is simply an add key round; round 1 is a full round of

25

four functions; and round 2 contains only 3 functions. Each round includes the add key function, which

makes use of 16 bits of key. The initial 16-bit key is expanded to 48 bits, so that each round uses a distinct

16-bit round key. Figure 2.6 represents the AES encryption process, and relationship between number of

round and cipher key sizes, where 10 cycles need a key length of 128 bits, 128 cycles support a key length

of 192 bit and 14 cycles need a key length of 256 bit [21] [32].

Figure 2.6: AES general encryption process

The encryption algorithm involves the use of four different functions, or transformations: add key,

nibble substitution, shift row, and mix column, which are shown on Figure 2.7.

26

Figure 2.7: AES structure encryption process

27

2.4.2.2 RC4 Algorithm

 RC4 is a simple cryptography XOR process for both encryption and decryption. The main issue is in

the key generation which has several stages as follow:

The RC4 has an S-box which contains permutation numbers [0 – 255] as S[0], S[1], … S[255] where

this permutation is a function of Key (K), with an effective length. To generate the initial S-box:

First stage: vector initialization S:

S[i] = i,

T[i] = K [i mod key_length] (2.13)

where i is an index pointer from 0 to 255 and T is a temporary vector.

Second stage: Generate the permutation vector S using the key-scheduled algorithm KSA:

for many iterations of all i values in S and T from 0 to 255:

j = (j + s[i] + T[i]) mod 256 (2.14)

where j is an index pointer of permuted state vectors with an initial value of j = 0. Then, swap (s[i], s[j])

to implement the permutation S vector byte stream.

Third stage: Generate the key byte stream using Pseudo-random generation algorithm (PRGA):

i = (i + 1) mod 256, i = 0 as initial value (2.15)

j = (j + S[i]) mod 256, j = 0 as initial value (2.16)

 swap values of S[i] and S[j]

28

K = S[(S[i] + S[j]) mod 256] (2.17)

K is a byte of the key byte stream K[0], K[1], …

Final stage: The generated key stream is X-or with the plain text for encryption. X-or is used between

the generated key and the cipher text for decryption [33] [34].

2.4.2.3 Triple DES (TDES)

Triple DES or 3 DES is a type of symmetric key cryptography. It is simply extending the key size of DES

by applying the algorithm three times in succession with three different keys. The combined key size is

thus 168 bits (3 times 56) [35] [36]. It is much more secure than DES. The procedure for decrypting

something is the same as the procedure for encryption, except it is executed in reverse. Triple DES is

advantageous because it has a significantly sized key length, which is longer than most key lengths

affiliated with other encryption modes. There are three keying options in data encryption standards: first,

all keys being independent, second, Key 1 and key 2 being independent keys, third, all three keys being

identical. The third Key option as shown in Figure 2.8 triples DES [35] [36].

The 3DES encryption process as equation 2.17:

𝑪 = 𝑬𝑲𝟑 (𝑫𝑲𝟐 (𝑬𝑲𝟏 (𝒎))) (2.17)

The TDES decryption process as equation 2.18:

𝒎 = 𝑫𝒌𝟏 (𝑬𝒌𝟐 ((𝒄))) (2.18)

29

Figure 2.8: Triple DES encryption process [37].

30

2.5 Performance Comparison of Cryptosystem Model

 This section talks about symmetric and asymmetric key cryptography. Two types of cryptography

differed from each other through a set of factors as Table 2.1 [38].

Table 2.1: Comparison Between Symmetric and Asymmetric Encryption

Factors Symmetric encryption A Symmetric encryption

RC4 TDES AES RSA ECC DH

Key Length variable 112 to 168

Bits

128,192, or

256 bits

Based on number

of bits in

𝑁= 𝑝 × 𝑞

135 bits Key exchange

management

Speed Fast Fast Fast fast Slow slow

Security rate Weak Adequate Excellent Good Good Good

Execution

time

Slow Very slow Faster slowest fastest slow

Each of cryptographic algorithms has weakness points and strength points. We select the cryptographic

algorithm based on the demands of the application that will be used. From the comparison shown in

Figure 2.9, the AES algorithm is the perfect choice in case of time and memory according to

the criteria of prevent attacks, confidentiality and integrity, since it records the shortest time among all

algorithms. Also, it consumes the minimum memory storage.

31

Also, related to the [39], they compared the RSA and Diffie-Hellman key exchange, as there results the

Diffie-Hellman more secure than RSA as a key distribution algorithm, see Figure 2.10 they illustrate

that Diffie-Hellman needs less time to exchange keys between two parties.

Figure 2.9: Comparison between AES, RSA, TDES, RC4 [62][40][64].

Figure 2.10: Comparison between RSA and Diffie-Hellman Key Generation [39].

32

2.6 Summary

 Based on the AES encryption algorithm; AES is a stronger algorithm against reverse engineering

analysis. It provides faster encryption time than another encryption algorithm. AES provides an excellent

security rate and better performance than other algorithms. So, depending on researcher results AES

algorithm is chosen to be used. The AES algorithm will be used in the encryption process in the DOSP-

AES model.

 As mentioned in [39], their results confirm that the DH algorithm is more secure and it needs less time to

exchange keys between two parties than the RSA algorithm. So, the DH algorithm is chosen to be used

for key exchange / distribution in the DOSP-AES model

33

Chapter 3

 Reverse Engineering and Obfuscation

Techniques

34

Chapter 3: Reverse Engineering and Obfuscation Techniques

 This chapter discusses reverse engineering, its process and reverse engineering tools.

Second part discusses the obfuscation process and its techniques.

3.1 Reverse Engineering

 There are many terminologies regarding reverse engineering definition, Forward

Engineering composed from the normal development process, that is the process of

creating a high-level model to form it in a complex form based on specific need, and it’s

moving from high-level abstractions to the physical implementation of a system. Reverse

engineering, sometimes called Back Engineering, is the process of analyzing a system

and drawing out the knowledge about the design, material, structure and surface qualities

in order to re-establishing it in another shape based on removed data. Reverse engineering

involves the design of new parts, replication of existing parts, destroyed and damaged

parts, making the accuracy of the model better and recognition of the digital model.

Sometimes, the information is owned by someone who’s not willing to share it. Other

times, the data has been lost or destroyed. Software Reverse Engineering analyzes the

software system to draw out design and implement data and create representations of the

system in a different form or at a higher level of abstraction [40] [41] [42] [43].

3.2 Reversing Methodologies

 There are different ways for reversing and choosing the right one depending on the

intended program, the platform on which it works and on which it was developed, and what

35

kind of information attackers aim to draw out. There are two primary reversing

Methodologies, offline code analysis and live code analysis.

3.2.1 Offline Code Analysis

 Means that a binary executable is prepared and uses a disassembler or a decompiler to

convert it into a human-readable form. Then reverse engineering analyzes the output of

those parts. Offline code required a better understanding of the code than the live analysis

because the program data and how data flows can’t be seen. So, data type must be guessed.

3.2.2 Live (Online) Code Analysis

 The process of converting the code into a human-readable form, then running the code

in a debugger and monitoring its behavior on a live system (instead of read converted code).

This provides more information because the program’s internal data and how it affects the

flow of the code can be monitored. Generally, live analysis is better for beginners because

it provides a lot more data about the system that can work with [40] [42] [43].

3.3 Reverse Engineering Tools

 The tools are an important part of conducting reverse engineering, following some of

the reverse engineering tools that the reverse engineering analyzer is used for.

3.3.1 Disassemblers

 The disassembler is one of the most important reversing tools. It transfers binary machine

code into a readable assembly language text, it translates each instruction and creates a

textual representation for it. It aims to make it formatted for human-readability. So, the

disassemblers translate the program code back into source code, which humans can

understand and analyze.

36

3.3.2 Debuggers

 Debuggers support developers of software with testing, finding and correcting errors in

the programs, they also use strong reversing tools as code-tracing phase of program

analysis [8][9]. Debugger gives a scattered perspective of the presently working task and

lets the user step through the scattered code and look at what the program does at every

line. While the code is being stepped through, the debugger mainly depicts the state of the

CPU’s registers and a memory dump, usually depicting the presently active stack zone [44]

[45].

3.3.3 Decompiler

 Decompiler generates a high-level language source-code from a program binary

(executable file), then the file can assemble eminently. it is never possible to regain

the initial code in its exact form because the assembly process always removes some

data from the program [40].

3.3.4 System Monitoring

 System monitoring is a vital section of the reversing process. Sometimes, the

response to user questions can be acquired employing system-monitoring tools and

without ever really looking at code. System-monitoring remarked on the different

channels of input and output that exist between applications and the operating system.

For instance, file monitors tool, monitoring all the system files between program and

operating system and displaying every file operation (such as file creation, reading

or writing to a file, and so on) made from the application in the system [40].

37

3.4 Technical Solution to Prevent Reverse Engineering

Many technical solutions have been studied. The most relevant are described as follows.

3.4.1 Code Encryption

 Code encryption techniques secure the software against an attacker by transferring the

data into another form. Software encrypted using encryption key 𝐾𝐸 and decrypted using

the decryption key 𝐾𝐷 . So, only the user who have the decryption key 𝐾𝐷 can decrypt

the software and read it [46].

3.4.2 White-Box Cryptography (WBC)

 White-box cryptography is a protection software technique that aims to implement a

cryptographic algorithm that hide and protect secret keys 𝐾𝑆 in the data from attackers

(especially Whitebox attackers) who have access to memory, full control of the execution

environment, structural algorithm and internal structure of the software. This means that

the WBC improves the key extraction security [47] [48].

3.4.3 Obfuscation Technique

 Strong technique against reverse engineering analysis. It complicates the code by

transforming the code into new difficult code to understand and analyze but with the same

characteristic. [4] [49].

38

3.5 Obfuscation Process

 Making things difficult to analyze or understand is called obfuscation. Programming

code is obfuscated to keep intellectual property or secure data safe, and to prevent an

adversary from reverse engineering of the software application. Deobfuscation techniques

can be utilized to reverse engineer or undo obfuscation [50] [51] [4] [1]. An obfuscator is

a tool that converts plain source code into an obfuscated code that does the same function

and behavior but the obfuscated code is complex to read and understand. The obfuscated

version is impossible to follow using the human eye [50] [51] [4].

3.6 Obfuscation Techniques

Obfuscation has many techniques, some of these techniques include the following:

3.6.1 Name Obfuscation

 The obfuscation of the source code component is made by changing the program

information into another structure with the same characteristics, which makes the code

harder to understand, unpredictable, and it affects the presentation of the code. The main

goal of it is to make attacking complicated enough against attackers, rather than formally

proving the strength of algorithms.

A direct replacement is simply to replace the original name with an unrelated name. The

name of the exchange is randomly distributing all the names in the original program among

the variables, constants, classes, methods, etc. This method is relatively hidden, and the

attacker usually has difficulty detecting it [50] [52]. Removing and renaming is the main

method of source code layout obfuscation. Removing means that delete useless debugging

information, comments, methods and structures which will not be used in the program.

39

Renaming includes the transformation of a program variable name, constant name, class

name, method name and other identifiers, in order to prevent attackers from understanding

the program [1] [50].

3.6.2 Data Transformation

Data obfuscation purpose is to hide data values through changing the statements where

variables are defined and utilized. obfuscation is applied to the field of data in order to

protect data [50] [53]. One of the techniques of data obfuscation is encryption. Encryption

is an obfuscation technique such as in store and transfer data securely, encrypted data can’t

be analyzed and understood easily [4] [52].

3.6.3 Bytecode Obfuscation

 Obfuscation converts clear bytecode into not understood bytecode. The main function of

obfuscation is hardening the decompiled program to be understandable, thus attackers will

have to give more time and effort on the obfuscated bytecode. Identifiers names of

bytecode are replaced with unauthorized obfuscated identifiers applying bytecode

obfuscation technique, which produces a syntax error and compilation error when it

produces the source code by decompiling [50] [54].

3.6.4 Obfuscation of Assembly Code Instructions

 Assembly code or machine code of the software/program can be obfuscated to make the

decompiler and debugger more difficult, harder to understand and analysis. To improve

and increase the security and piracy of the assembly code, Obfuscation of assembly code

40

can be applied in different ways, such that using data transformation, using indirect

address, combining binary and decimal numbers with assembly code instruction or using

the binary and decimal numbers between the assembly code instruction [50] [53].

3.6.5 Anti-Debug

 Reverse engineering analyzer using the debug tools to analyze each line in the code. So,

the software developer uses the Anti-debug tools to detect if the debugger tool is being

used in the software by the attacker and prevent them from analyzing the software [55].

3.7 Characteristic of Success Obfuscation Techniques

▪ Complexity: complexity of the obfuscation code will be increased by using multi

levels of obfuscation techniques, the more levels used increase the difficulty and

complexity of the obfuscated software.

▪ Power and Strength: Strength of the code determined by how obfuscated code

resists deobfuscation attempts. The stronger the code, the more effort, time and

resource it takes to analyze.

▪ Differentiation: Differentiation is determining the degree of difference between

the obfuscated code and the original code. The higher differentiation means a more

complex code.

▪ Expense: The cost-effectiveness of the obfuscation solution is more valuable than

one that is pricey especially for large applications [50] [4].

41

3.8 Summary

 Obfuscation is the best solution to prevent Reverse-Engineering analysis, Obfuscation is

used in the DOSP-AES model. Three levels of obfuscation are used, name obfuscation,

data obfuscation and bytecode obfuscation, as related to the researcher these techniques are

powerful and when using multi levels of obfuscation techniques, the complexity,

differentiation and strength of the obfuscation code become highest from the original code.

So reverse engineering analysis needs more time to de-obfuscated the obfuscated code

O(P) especially when using multi levels of obfuscation.

Also, due to the use of the AES – DH algorithms in obfuscation, the strength and strength

of AES and DH algorithms was obtained. So, using AES- DH encryption algorithms with

multi levels of obfuscation make stronger, robust, and more complex models against

reverse engineering analysis.

42

Chapter Four

Proposed Model Distributed Obfuscation

Model for Software Protection (DOSP)

43

Chapter Four: Proposed Model: Distributed Obfuscation Model for

Software Protection (DOSP)

 This chapter represents DOSP-AES based on the AES algorithm and DOSP-RSA

based on RSA algorithm models which were implemented during this research.

Obfuscation and de-obfuscation at all levels of both models were described.

4.1 Introduction to DOSP-AES

 The proposed model DOSP-AES is presented in this chapter. DOSP-AES is a

novel distributed obfuscation technique for software protection. Obfuscation

techniques O(T) transform original code into a revised form that is semantic-

equivalent with the original one but more difficult to understand and analyze, to

enhance security levels of software against reverse engineering analysis (RE) [1].

We use the Crypto++ library that contains the encryption algorithm, so it’s easy

to use encryption algorithm (AES) in encryption levels.

4.1.1 Generate Symbol Table

 First of all, the symbol table is generated from the source code that is written in the

programming languages C++, Java, and Android. Therefore, the name and value of

variables are obfuscated easily.

As mentioned in chapter two, the compiler analyzes the input plain text to produce the

output through six phases. Each phase transforms the source program from one

representation to another and the symbol table interacts with these phases. The compiler

44

uses the information about the names in the source code; this information exists and is

entered into a symbol table. This information is collected about the string of characters, its

type (integer, real, string), its form (variable, structure), and its location. During the lexical

and syntactic analysis, the information about the names is entered into the symbol table.

Many possible entries symbol tables may contain, name (a string), Attribute, Reserved

word, variable name, type name, data type, scope information (where it can be used),

storage allocation.

In the model, the symbol table contains Location (the line that the identifier exists on),

Scope, data type (integer, double), name, value, type (class, method, instance). The Figure

4.1 show example of the symbol table result.

Figure 4.1: Symbol table result

 After the Generate symbol table, the 1st and 2nd levels of obfuscation are applied to it, the

3rd level is applied separately. Figure 4.2 illustrates the workflow of DOSP-AES.

45

Figure 4.2: workflow of DOSP-AES

DOSP-AES has two inputs (Plain text, Obfuscation key 𝐾𝑂𝑏𝑓) and one output

(Obfuscation code O(P)) as the result of multi-levels of the obfuscation process that the

DOSP-AES technique contains. The plain text represents the source code or

bytecode/machine code of the software.

The Plain Text is entered into the DOSP-AES model, then all the obfuscation levels of

DOSP-AES are applied on the plain text. Plain text obfuscated using Obfuscated key 𝐾𝑂𝑏𝑓

, 𝐾𝑂𝑏𝑓 generated randomly using a trusted 3rd party key generator (keygen) in Crypto++

simulator. After this process Plain Text becomes Obfuscated text. Obfuscated text

46

(software) will be available on the internet, so if any user downloads the obfuscated text

(software), the user can’t use the text (software) until de-obfuscated the text (software) to

get the original Plain Text.

 When the user downloads the obfuscated text/code O(P) from the internet, the user needs

to de-obfuscated the text, the user must send request to the server ask for 𝐾𝑂𝑏𝑓., After server

received the user request, the server send the 𝐾𝑂𝑏𝑓., the user can de-obfuscated the text and

get the original text (Plain Text). Follow the scenario illustrated in Figure 4.3.

Figure 4.3: DOSP-AES Block Diagram

Information about the obfuscation and de-obfuscation processes of the DOSP-AES model.

47

Obfuscation and de-obfuscation in the DOSP-AES model are structured by connecting key

generation, key exchange, encryption, obfuscation features, and de-obfuscation functions,

as shown in Figure 4.4.

Figure 4.4: General Block diagram of DOSP-AES model (Obfuscation and De-

Obfuscation process).

As follows are the obfuscated and de-obfuscated software processes of the proposed

techniques.

48

4.1.2 Obfuscated Process of DOSP-AES

 The Figure 4.5 show activity diagram of the obfuscation process of DOSP-AES.

After generate symbol table, DOOSP-AES model will apply to the symbol table if the input

file is source code, in order to applied 1st and 2nd level of obfuscation. If the input file is

bytecode, the 3rd level of obfuscation will apply.

Figure 4.5: Figure: Obfuscation process of DOSP-AES

49

The three levels of obfuscation techniques, as follows:

1. First level: Source Code (layout/ Name) Obfuscation

 In this level, the identifiers and variables are given meaningless names by encrypting

them with the AES encryption algorithm with a random key length of 128 bits (K128).

 Code obfuscation involves using renaming and removing methods. Removing

means deleting useless debugging information, comments, methods, and structures

that will not be used in the program. Deleting not only makes it difficult for an attacker

to read, understand, and analyze but also reduces the size of the program. This

improves the efficiency of program loading and execution. Renaming includes the

transformation of a program variable name, constant name, class name, method name,

and other identifiers, to prevent attackers from understanding and analyzing the

program. Figure 4.6 illustrates an example of the Name obfuscation technique.

Figure 4.6: Name obfuscation

50

2. The Second Level: Data Obfuscation

The data obfuscation technique aims to hide data values by changing the statements where

variables are defined and utilized. The main reason for applying obfuscation to a data field

is to protect data.

DOSP-AES model technique was used to secure the data. DOSP-AES encrypts the values

of constants, local and global program variables to make the reverse engineering process

more complex and to secure sensitive data from disclosure. DOSP-AES Encrypt the values

of constants, local and global program variables by using an AES encryption algorithm

with a key length of 256 bits (K256). The most significant thing is that DOSP-AES

obfuscates each variable differently from the other when it is mentioned on more than one

site with the same application. Each variable appears in a different form from the other,

although it is the same variable. Figure 4.7 illustrates an example of the Data obfuscation

technique.

Figure 4.7: Data obfuscation

3. Third level: Bytecode Obfuscation (BO)

 BO modifies bytecode so that the decompiled program of the obfuscated bytecode

contains obscure compilation errors while the obfuscated bytecode still functions correctly.

A Java program is compiled to bytecode. The names of types, fields, and methods are stored

within a bytecode file. These names and the simple machine instructions make de-

complication of the bytecode file easy by decompiling.

51

 Obfuscation tools are one of the major defenses against decompiles. Obfuscation

transforms clear bytecode into more obscure bytecode.

The goal of BO is to make the decompiled program much harder to understand so an

attacker has to spend more time and effort on the obfuscated bytecode. The bytecode

identifiers are obfuscated by using the bytecode obfuscation technique, which results in a

syntax error and compilation error when decompiling.

DOSP-AES obfuscates the identifiers and class names in bytecode files, by employing the

AES encryption algorithm with key length 192 bits 𝐾192. This level is applied to the

machine code when running C++ programs and to the .DEX File when using Android

programs.

4.1.3 De- Obfuscated process (DO) of DOSP-AES

 The De-obfuscated Process (DO) is based on a client-server model (distributed system) in

which clients can download software and applications that have been obfuscated and

uploaded on the Internet. A client requests the server to request the obfuscation key 𝐾𝑂𝑏𝑓

to de-obfuscate software, then the server responds by satisfying the client's request.

The process of transferring data over the network may contain critical and security

information. The transferred information must be secured and protected from unauthorized

access, use, modification, or destruction. So, the server will send the secure key (the

obfuscated key 𝐾𝑂𝑏𝑓) as one block, with a key length of 72 bytes 𝐾72. The key will be

generated randomly by a trusted 3rd party key generator.

52

The obfuscated key consists of three subkeys. Each subkey will de-obfuscate different

levels of obfuscation levels. So, if the attacker knows one subkey, he can’t know the other

subkeys and can’t disclose the secret data.

Code obfuscation will be de-obfuscated using key length 16 bytes 𝐾16, data obfuscation

will be de-obfuscated with key length 32 bytes 𝐾32, and bytecode level will be de-

obfuscated with key lengths 24 bytes 𝐾24. The proposed encryption algorithm that will be

used in our proposed technique is AES (advanced encryption standard) with DH (Diffie

Hellman) data exchange. You can follow the scenario of this process illustrated in the

description of the algorithms in Figure 4.8. And the algorithm 4.1.

53

Figure 4.8: Description of the Algorithm for de-obfuscated process for DOSP-

AES.

1. Client download obfuscated file and need the obfuscation key from

the server to de-obfuscate the file.

Ciphertext = Obfuscated (plaintext, key)

2. Server create Socket, port =x, for the incoming request.

WelcomeSocket = Server Socket ()

3. Server Wait for incoming request

ConnectionSocket = welcomeSocket.accept().

4. Client create a socket, connect to host id, port = x

Client Socket = Socket ()

5. Client Send request Using client Socket.

6. Server read request from connection socket.

7. Client read the reply of the server.

8. Server sends a confirmation code to the client and checks the

software ID for authentication.

9. Server requests the confirmation code from the client for

authentication

10. Client sends the received confirmation code to the server.

11. Server de-obfuscated the software using the obfuscation key

De-obfuscated (Ciphertext, key) = plaintext

12. The client has the option from the menu to end the connection, if he

chooses to end the connection program will terminate, else program

will continue

13. Client close client socket

14. Server close ConnectionSocket

54

Ciphertext = Obfuscated (plaintext, key);

WelcomeSocket = Server Socket ();

ConnectionSocket = welcomeSocket.accept();

ClientSocket = Socket ();

socket(SendRequest);

socket(ReadRequest);

send(obfuscation_Key);

Varialbe_key = Received_key.substr(0,16);

Value_key = Received_key.substr(16,24);

ByteCode_key = Received_key.substr(24,32);

If(User_Response == yes){

read_obfuscated_message();

} else {

Terminate() }

De-obfuscated (Ciphertext, key) = plaintext

Client_socket.close();

Connection_socket.close();

Algorithm 4.1: Algorithm for de-obfuscated process for DOSP-AES.

55

Figure 4.9 illustrates the sequence diagram of the de-obfuscated process. The figure shows

all steps in detail of the de-obfuscated process.

Figure 4.9: Sequence diagram of De-obfuscated process of DOSP-AES

56

 The proposed model focuses on different important points:

1. Solve the problems of distributed systems and transfer data over the network.

2. Make robust software techniques against reverse engineering by using multi-levels

of obfuscation techniques.

3. DOSP-AES uses the advantages of AES speed with DH security to produce robust

4. DOSP-AES uses the robust technique of subkeys to protect the key, so if the attacker

knows the key, he can’t know how the DOSP-AES model uses the key in the

obfuscation process; subkeys of the main key are 128,192,256 bits in the AES

algorithm.

5. Stored securely obfuscation key, and they must be used only for their intended

purpose.

6. DOSP-AES increased the security level of the key by using random numbers (e.g.,

unpredictable numbers), which are generated on the server-side.

To improve the usability and performance of AES, we compare the model with

other previous works.

Related to the [66], in this research, they introduce three levels of obfuscation,

source code obfuscation, data obfuscation, and bytecode obfuscation. They use the

Permutation Algorithm (PA). DOSP-AES model uses the AES encryption

algorithm and its more powerful than Permutation Algorithm (PA).

Also, we introduce another model called DOSP-RSA and use the RSA encryption

algorithm instead of using AES as in the first model which we called DOSP-AES.

The AES represents symmetric cryptography techniques that are fast and can be

57

implemented easily. DH is used for key exchange.

4.2 Introduction to DOSP-RSA

 As part of the obfuscated process of the levels, DOSP-RSA used RSA. This section shows

how encrypted and de-obfuscated processes work in the DOSP-RSA model. The DOSP-

RSA model works the same as the DOSP-AES model but DOSP-RSA uses RSA as the

encryption algorithm instead of the AES encryption algorithm at all obfuscation levels.

4.2.1 Obfuscation process of DOSP-RSA

Following sections describes the three levels of DOSP-RSA obfuscation process.

4.2.1.1 First level: Source code (Name, layout) obfuscation

 Obfuscation of names involves renaming identifiers and variables with meaningless

names. This is done by using the RSA algorithm with a key length of 128 bits K128 to

obfuscate all the names in the source code.

4.2.1.2 Second level: Data obfuscation

 The DOSP-RSA model uses RSA encryption algorithm to secure the data. DOSP-RSA

encrypts the values of constants, local and global program variables to make the reverse

engineering process more complex and to protect sensitive data from disclosure. Encrypt

the values of constants, local and global program variables, by using the RSA algorithm

with a key length of 256 bits K256 to secure the Data. The de-compilation process of

reverse engineering becomes more complex.

4.2.1.3 Third level: Bytecode obfuscation

 DOSP-RSA modifies bytecode so that the decompiled program of the obfuscated

58

bytecode contains obscure compilation errors while the obfuscated bytecode still functions

correctly. The bytecode identifier names are replaced with an illegal encrypted identifier

using the bytecode obfuscation technique, which leads to a syntax error and compilation

error when decompiling. Encrypt the identifiers and class names in bytecode files, by using

the RSA algorithm with key length 192 bits K192 to obfuscate the bytecode.

 4.2.2 De-obfuscation process of DOSP-RSA

 The de-obfuscated process uses a client-server model (distributed system), where clients

download applications and software from encrypted websites. A client requests the server

to request the encryption key to de-obfuscate software, then the server responds by

satisfying the client's request. So, the server then sends the obfuscated key KObf as one

block, key length is 72 bytes K72, the key will be generated randomly.

De-obfuscating code obfuscation with a key length of 16 bytes, de-obfuscating data

obfuscation with 32 bytes, and de-obfuscating bytecode level with 24 bytes. Furthermore,

the proposed encryption algorithm that will be used in our proposed technique is the RSA

algorithm.

4.3 Summary

 This chapter presents in detail the obfuscated process and the three levels of obfuscation

of the DOSP-AES model (Name, Data, and bytecode). And the de-obfuscation of the

DOSP-AES model at all three levels. Also, represent the DOSP-RSA model, the encrypted

and deobfuscated process of DOSP-RSA with all levels of obfuscation (Name, Data, and

bytecode).

59

Chapter Five

Results and Analysis

60

Chapter Five: Results and Analysis

 The results of the DOSP-AES model are presented in this chapter. In all experiments, the

following specifications are used: Intel® CoreTM i7-165G7 CPU @ 1.30GHz 1.50GHz,

16 GB RAM/ Microsoft Windows 10 Pro/Visual Studio 2019.

A symbol table is constructed from different file sizes (KBs) in order to apply the different

data and name obfuscation levels of the DOSP-AES model, using different key sizes at

each level. As a first step, Name obfuscation has been implemented using 128-bit keys.

Second, the Data obfuscation is implemented using 256-bit key sizes. The third level uses

the 192-bit key length to obfuscate bytecode. These levels in C++, Java and Android

software are taken into account when calculating the time. Both during obfuscation and

deobfuscation. In order for a user to deobfuscate each file with its own key, the files need

to be uploaded to the Internet in an orderly manner and the keys must be sent in the same

order as the uploaded files.

All three levels of obfuscation can be accomplished with either the AES encryption

algorithm, represented by the first technique (DOSP-AES), or the RSA encryption

algorithm, represented by the second technique (DOSP-RSA).

5.1 Results for Generate Symbol Table

 An important data structure is the symbol table, which is generated in the DOSP-AES

model to extract identifier names and data values from software source code. So it is easy

to obfuscate the first two levels of obfuscation (Name, Data). When the bytecode is

extracted during runtime, the third level of obfuscation, which is bytecode obfuscation, is

61

applied. A Symbol table can be generated from the source code written in C++, Java, and

Android programming languages using the DOSP-AES model.

5.2 All the Trials during prepare our model

5.2.1 First Trial using normal implementation of Encryption Algorithm

 During the first trial, the programming code was finished and prepared for obfuscation,

as well as the general implementation of the encryption algorithm. After the programming

code and key issue was resolved, the following problem occurred:

❖ A maximum of 14 KB of input files can be used and applied to the DOSP-AES

code. If the input file size exceeds 14 kb, for example 20 kb, 30 kb. An error

message appears as "out of range at memory location", or "Access violation

reading location".

❖ The following solutions were applied to solve the problem:

1. Different solutions were applied to allocate more memory for the visual studio

program from the windows of the device.

2. All indexes of the defined arrays in the code were modified so that the number of

lines for the project analysis was increased. Also, the arrays were defined as text.

3. Another version of the visual studio program was used.

4. Hard disk device was replaced with another SSD hard disk.

5. Another laptop device was used with higher memory and stronger specifications.

 After applying all the above attempts to solve the problem. The problem still existed. So

deep analysis was made in the code, an error in the block size in AES algorithm was found,

and there is an error in key expansion. There was only 176-bit expansion in the code of

62

AES implementation. The Key Expansion function only expands to 176 bytes (note that

AES128 bit key is expanded to 176-bytes), AES 192-bit key is expanded to 208-bytes. An

AES 256-bit key is expanded to 240-bytes.

An attempt was made to separate the structure.h file to implement and modify the key

expansion, however, this took a long time and had another error. Thus, another

implementation and another library of encryption algorithms were used (note that the key

expands is calculated from the following equation):

𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑑 𝐾𝑒𝑦 𝑆𝑖𝑧𝑒 = (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑜𝑢𝑛𝑑𝑠 + 1) ∗ 𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒 (5.1)

Table 5.1 Shows some results that were made in this trial. Figure 5.1 shows the relation

between the program size and obfuscation time in the first level of obfuscation (Source

code obfuscation), (note that the time increases with the increase in the program size).

63

Table 5.1: Results of Obfuscation and De-Obfuscation process of the First Trial

First Trial

Num.

File

size

(KB)

AES time obfuscation (s) AES time de-obfuscation (s)

Key

256 bits

Data

Key

192 bits

Machine code

Key

128 bits

Name

Key

256 bits

Data value

Key

192 bits

Machine code

Key

128 bits

Name

1 3 3 4 2 4 5 3

2 6 3 6 2 6 7 5

3 9 4 6 5 4 7 5

4 12 5 8 7 8 9 7

Figure 5.1: Obfuscation time in Source code level using AES algorithm

64

Figure 5.2 shows the relation between the program size and De-obfuscation time in the

Source code, (note that the time increases with the increase in the program size). But the

relation is not clear correctly because the max program sizes up to 14KB! Only.

Figure 5.2: De- Obfuscation time in Source code level using AES algorithm

Figure 5.3 shows the relation between the program size and obfuscation time in the 3rd

level of obfuscation (machine code obfuscation), (note that the time increases with the

increase in the program size).

Figure 5.3: Obfuscation time in machine code level using AES algorithm

65

Figure 5.4 shows the relation between the program size and De-obfuscation time in the

Source code De-obfuscation,(note that the time increases with the increase in the program

size). But the relation is not clear correctly because it doesn’t allow a file size of more than

14 KB!

Figure 5.4: De-Obfuscation time in machine code level using AES algorithm

5.2.2 The Second Trial using Rajindi library and TPF_Math_Library

 In the second trial, a newly developed implementation of AES using a newly developed

library called the Rajindi library was implemented to build the DOSP-AES model. The

library of TPF_Math_Library was used to implement the RSA encryption algorithm to

build the DOSP-RSA model. This method is done successfully. However, the results of the

comparison between DOSP-AES and DOSP-RSA are not accurate, and it is preferable to

employ the same library of encryption algorithms.

So the two models were re-written using the same library. Therefore, if the results of the

two models are compared to each other, the results will be more accurate. The Chilkat

encryption library that implements and contains all encryption algorithms inside it is

implemented in the revised implementation. So the Chilkat encryption library is used to

66

implement both AES, RSA, and DH algorithms, to make a comparison better and more

accurate. The programs are written in the C++, Java, and Android programming languages.

5.2.3 The Third Trial Using Chilkat Library

 The Chilkat library was used in this trial to implement both algorithms AES and RSA.

The programming code was completed and the obfuscation model was developed. AES

has been implemented successfully (random key generator, DH exchange key algorithms,

and dividing the key into subkeys).

The problem that occurred in this experiment when using RSA algorithms in the DOSP-

RSA. The same key lengths can’t be used as in DOSP-AES (256, 192, 128 bits) because

the Chilkat library does not support these key lengths. Chilkat library Supports data sizes

ranging from 512 bits to 4096 bits [68].

5.2.4 The Fourth Trial using crypto++ library

 Simulation results of the DOSP-AES model can be measured when using the crypto++

library, for both techniques DOSP-AES and DOSP-RSA. DOSP-AES is the obfuscation

technique that employs the AES encryption algorithm and DOSP-RSA is the obfuscation

technique that uses the RSA encryption algorithm.

 The DOSP-AES model was applied to different programming languages, such as C++,

Java, and Android. The first and second levels were applied to C++, Java, or Android

source code, and the third level was added to C++ machine code, Java bytecode, and

Android bytecode (DEX file).

67

5.3 Analysis of DOSP-AES model

 Analysis of DOSP-AES model entails description of the DOSP-AES analysis for C++,

Java and android programs.

5.3.1 DOSP-AES model for C++ programs

 Time of the obfuscation and the de-obfuscation process of the DOSP-AES model is

calculated in the 1st, 2nd and 3rd levels using different file of C++ programs. See Table 5.2.

Table 5.2: Obfuscation and De- Obfuscation time for DOSP-AES using different file

sizes of C++ programs

DOSP-AES / C++ programs

Num.

File size

(KB)

AES time obfuscation (ms) AES time de-obfuscation (ms)

1st level 2nd level 3rd level 1st level

2nd level 3rd level

1 200 1157 1180 860 1166 833 1407

2 400 1231 1011 1809 856 1125 2632

3 600 1315 1268 3043 1353 1225 3434

4 800 1864 1871 4323 1827 1802 5383

5 1000 2206 2245 5499 2271 2238 7090

6 1200 2590 2842 6452 2609 2702 7562

7 1400 3060 3141 7726 3481 4634 7819

8 1600 3482 3751 8434 4301 5027 9187

9 1800 4022 4111 9257 3773 6493 12589

10 2000 5455 5436 10564 5159 6846 13587

68

Note that, each value of file size is calculated in kilobyte (KB), and the time of obfuscation

and De-Obfuscation process is calculated on (ms).

Obfuscation and De- Obfuscation time for DOSP-AES using different file sizes of C++

programs illustrated in Figure 5.5. The Figure shows that when increasing the file size, the

time in both obfuscation and de-obfuscation will increase. The Figure represents the curve

of the obfuscation process in all levels (Name, Data and machine code obfuscation). Note

that, the obfuscation of Data using 𝐾256 bits take more time than the Name obfuscation

using 𝐾128 bits. Also, the 3rd level (machine code) takes a longer time than the 1st and 2nd

levels (Name and Data) because the file contains more complex information and

instructions than the first two levels.

As shown in Figure 5.5. The 𝐾128 In obfuscation and de-obfuscation processes, they take

approximately the same time but, in some cases, the de-obfuscated processes require more

The K256 In file size up to 1200 KB takes the same time but when file size increases then

the obfuscation process takes a longer time than the obfuscation process and this also

depends on the data size that is obfuscated-obfuscating the K192 takes more time than

obfuscating it.

69

Figure 5.5: Obfuscation and Deobfuscation of DOSP-AES for C++ programs

5.3.2 DOSP-AES model for Java programs

 The Time of obfuscation and de-obfuscation process of the DOSP-AES model is

calculated in the 1st ,2nd and 3rd levels when different file sizes of Java programs are used.

See Table 5.3.

Note that, each value of the file size is calculated in kilobyte (KB), and the time of

obfuscation and De-Obfuscation process is calculated on (ms).

Obfuscation and De- Obfuscation time for DOSP-AES using different file sizes of Java

programs illustrated in Figure 5.6. The Figure shows that when increasing the file size, the

time in both obfuscation and de-obfuscation will increase. The Figure represents the curve

of the obfuscation process in all levels (Name, Data and machine code obfuscation). Note

that, the obfuscation of Data using 𝐾256 bits takes more time than the Name obfuscation

using 𝐾128 bits.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(m

s)

File Size (KB)

Obfuscation and De-Obfuscation of DOSP-AES / C++

Obfuscation using
key 256 bit

Obfuscation using
key 128 bits

Obfuscation using
Key 192 bits

De-Obfuscation
using key 256 bits

De-Obfuscation
using key 128 bits

De-Obfuscation
using key 192 bits

70

Table 5.3: Obfuscation and De- Obfuscation time for DOSP-AES using different file

sizes of Java programs

DOSP-AES / Java programs

Num. File size

(KB)

AES time Obfuscation (ms) AES time De-obfuscation (ms)

1st level 2nd level 3rd level 1st level 2nd level 3rd level

1 200 288 286 901 281 257 265

2 400 1184 1214 1527 885 875 1221

3 600 1802 1789 2858 2488 2240 3720

4 800 3219 3190 4801 3357 3165 5107

5 1000 4137 4010 8216 4403 3957 6288

6 1200 4957 4734 10261 5469 4642 7458

7 1400 6528 5306 10938 5491 4933 8793

8 1600 8390 8439 11546 9894 8332 15046

9 1800 9160 9079 12749 7137 6694 13684

10 2000 11484 13022 17629 13704 14195 14803

Also, the 3rd level (Bytecode obfuscation) using key 𝐾192 bits take longer time than 1st and

2nd level (Name and Data) because the file contains complex information and instruction

than the first two levels.

As shown in Figure 5.6. The 𝐾128 take more time in the de-obfuscation process than

obfuscation process. The 𝐾256 takes approximately the same time in the obfuscation and

de-obfuscation process. The 𝐾192 take more time in a de-obfuscated process than

obfuscated process.

71

Figure 5.6 : Obfuscation and Deobfuscation of DOSP-AES for Java programs.

5.3.3 DOSP-AES model for Android programs

 The Time of obfuscation and de-obfuscation process of DOSP-AES model is calculated

in the 1st ,2nd and 3rd levels when different file sizes of Android programs are used. See

Table 5.4.

Note that, each value of file size is calculated in kilobyte (KB), and the time of obfuscation

and De-Obfuscation process is calculated on (ms).

Obfuscation and Deobfuscation time for DOSP-AES using different file sizes of Android

programs illustrated in Figure 5.7. The Figure shows that when increasing the file size, the

time in both obfuscation and de-obfuscation will increase. The Figure represents the curve

of the obfuscation process in all levels (Name, Data and machine code obfuscation).

0

5000

10000

15000

20000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(m

s)

File Size (KB)

Obfuscation and De-Obfuscation of DOSP-AES / Java

Obfuscation using
key 256 bit

Obfuscation using
key 128 bits

Obfuscation using
Key 192 bits

De-Obfuscation using
key 256 bits

De-Obfuscation using
key 128 bits

De-Obfuscation using
key 192 bits

72

Table 5.4: Obfuscation and De- Obfuscation time for DOSP-AES using different file

sizes of Android programs

DOSP-AES / Android programs

Num. File size

(KB)

AES time Obfuscation (ms) AES time De-obfuscation (ms)

1st level 2nd level 3rd level 1st level 2nd level 3rd level

1 200 333 574 458 914 994 832

2 400 743 851 612 749 815 675

3 600 1105 1162 900 1115 1252 1019

4 800 1437 1517 1235 1467 1646 1374

5 1000 1912 1959 1556 1841 2064 1729

6 1200 2150 2303 1816 2202 2467 2046

7 1400 2526 2681 2190 2557 2876 2383

8 1600 2966 3128 2513 2919 3301 2787

9 1800 3274 3493 2724 3358 3785 3055

10 2000 3585 3887 3095 3645 4108 3447

Note that, the obfuscation of Data using 𝐾256 bits takes more time than the Name

obfuscation using 𝐾128 bits and 𝐾192 bits. Also, The 𝐾128 , 𝐾256 and 𝐾192 take more time

in a de-obfuscated process than obfuscated process.

73

Figure 5.7: Obfuscation and De-Obfuscation of DOSP-AES for Android programs.

5.4 Analysis of DOSP-RSA model

 Analysis of DOSP-RSA model contains description of the DOSP-RSA analysis for C++,

Java and android programs.

5.4.1 DOSP-RSA model for C++ programs

 The time of obfuscation and deobfuscation of the DOSP-RSA model is calculated in the

1st ,2nd and 3rd levels when different file sizes of C++ programs are used. See Table 5.5.

Note that, each value of file size is calculated in kilobyte (KB), and the time of obfuscation

and De-Obfuscation process is calculated on (ms).

Obfuscation and De-Obfuscation time for DOSP-RSA using different file sizes of C++

programs illustrated in Figure 5.8. The Figure shows that when increasing the file size, the

time in both obfuscation and de-obfuscation will increase. The Figure represents the curve

of the obfuscation process in all levels (Name, Data and machine code obfuscation).

0

1000

2000

3000

4000

5000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(m

s)

File Size (KB)

Obfuscation and De-Obfuscation of DOSP-AES / Android

Obfuscation using key
256 bit

Obfuscation using key
128 bits

Obfuscation using
Key 192 bits

De-Obfuscation using
key 256 bits

De-Obfuscation using
key 128 bits

De-Obfuscation using
key 192 bits

74

Table 5.5: Obfuscation and De- Obfuscation time for DOSP-RSA using different file

sizes of C++ programs

DOSP-RSA / C++ programs

Num. File size

(KB)

RSA time Obfuscation (ms) RSA time De-obfuscation (ms)

1st level 2nd level 3rd level 1st level 2nd level 3rd level

1 200 1271 1589 982 1233 1695 1173

2 400 1989 2245 2725 3020 4170 2907

3 600 3720 4198 4113 4753 6455 4408

4 800 4710 5034 5590 6163 8561 6716

5 1000 5760 5274 6486 10044 10517 7296

6 1200 6088 6119 7852 12537 16817 11643

7 1400 7075 5758 8298 5290 7157 5119

8 1600 8495 7222 9387 5890 8021 5587

9 1800 9144 8978 10072 6849 9184 6435

10 2000 9315 9894 11450 12221 18139 12735

Note that, the obfuscation of Data using 𝐾256 bits takes more time than the Name

obfuscation using 𝐾128 bits and 𝐾192 bits. Also, the 𝐾128 , 𝐾256 and 𝐾192 take more time

in a de-obfuscated process than obfuscated process. Note that is some programs with large

sizes, 𝐾192 takes more time in obfuscation than de-obfuscation, this is related to the data

type that is obfuscated.

75

Figure 5.8 : Obfuscation and Deobfuscation of DOSP-AES for C++ programs

5.4.2 DOSP-RSA model for Java programs

 The time of obfuscation and deobfuscation of the DOSP-RSA model in the 1st ,2nd and

3rd levels is taken when different file sizes of Java programs are used. See Table 5.6.

Note that, each value of the file size is calculated in kilobyte (KB), and the time of

obfuscation and De-Obfuscation process is calculated on (ms).

Obfuscation and De-Obfuscation time for DOSP-RSA using different file sizes of Java

programs illustrated in Figure 5.9. The Figure shows that when increasing the file size, the

time in both obfuscation and de-obfuscation will increase. The Figure represents the curve

of the obfuscation process in all levels (Name, Data and machine code obfuscation).

0

5000

10000

15000

20000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(m

s)

File Size (KB)

Obfuscation and De-Obfuscation of DOSP-RSA / C++

Obfuscation using
key 256 bit

Obfuscation using
key 128 bits

Obfuscation using
Key 192 bits

De-Obfuscation
using key 256 bits

De-Obfuscation
using key 128 bits

De-Obfuscation
using key 192 bits

76

Table 5.6: Obfuscation and De- Obfuscation time for DOSP-RSA using different file

sizes of Java programs

DOSP-RSA / Java programs

Num. File size

(KB)

RSA time Obfuscation (ms) RSA time De-obfuscation (ms)

1st level 2nd level 3rd level 1st level 2nd level 3rd level

1 200 690 726 1067 831 1007 1595

2 400 1487 1580 2293 1611 2122 3067

3 600 2916 2997 4759 3361 4205 7517

4 800 5084 5155 8052 6050 7554 10522

5 1000 6197 6574 9747 7241 9143 14056

6 1200 7543 7912 12333 8842 11270 16321

7 1400 8657 9169 13905 10126 12615 18071

8 1600 9774 11581 15799 11599 14696 21065

9 1800 10457 13075 17231 12874 15784 22511

10 2000 11857 15570 19510 13987 16782 25784

Note that, the obfuscation of Data using 𝐾256 bits takes more time than the Name

obfuscation using 𝐾128 bits and 𝐾192 bits. Also, the 𝐾128 , 𝐾256, 𝐾192 and, 𝐾192 take more

time in a de-obfuscated process than obfuscated process.

77

Figure 5.9 : Obfuscation and Deobfuscation of DOSP-AES for Java programs

5.4.3 DOSP-RSA model for Android programs

The Time of obfuscation and de-obfuscation process of DOSP-RSA model is calculated in

the 1st ,2nd and 3rd levels when different file sizes of Android programs are used. See Table

5.7. Note that, each value of the file size is calculated in kilobyte (KB), and the time of

obfuscation and De-Obfuscation process is calculated on (ms).

Obfuscation and De-Obfuscation time for DOSP-RSA using different file sizes of Android

programs illustrated in Figure 5.10. The Figure shows that when increasing the file size,

the time in both obfuscation and de-obfuscation will increase. The Figure represents the

curve of the obfuscation process in all levels (Name, Data and machine code obfuscation).

Note that, the obfuscation of Data using 𝐾256 bits takes more time than the Name

obfuscation using 𝐾128 bits and 𝐾192 bits. Also, the 𝐾128 , 𝐾256, 𝐾192 and, 𝐾192 take more

time in a de-obfuscated process than obfuscated process.

0

5000

10000

15000

20000

25000

30000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(m

s)

File Size (KB)

Obfuscation and De-Obfuscation of DOSP-RSA / Java

Obfuscation using key
256 bit

Obfuscation using key
128 bits

Obfuscation using Key
192 bits

De-Obfuscation using
key 256 bits

De-Obfuscation using
key 128 bits

De-Obfuscation using
key 192 bits

78

Table 5.7: Obfuscation and De- Obfuscation time for DOSP-RSA using different file

sizes of Android programs

DOSP-RSA /Android programs

Num. File size

(KB)

RSA time Obfuscation (ms) RSA time De-obfuscation (ms)

1st level 2nd level 3rd level 1st level 2nd level 3rd level

1 200 578 787 532 578 730 404

2 400 1175 1081 662 1175 1514 811

3 600 1763 1621 1010 1763 2267 1203

4 800 2356 2131 1316 2356 3033 1595

5 1000 3563 3610 1990 3563 4810 2372

6 1200 3912 3960 2267 3412 4550 2370

7 1400 4752 4130 2706 3952 5162 2794

8 1600 5048 4648 2914 5048 6100 3171

9 1800 5513 4709 3078 5213 6686 3527

10 2000 5701 5218 3398 5701 7507 3899

79

Figure 5.10 : Obfuscation and De-Obfuscation of DOSP-AES for Android programs

5.5 Comparison between DOSP-AES and DOSP-RSA Depend on the

Time in all levels

 A comparison is shown in this section between the time that different keys length takes

in DOSP-AES and DOSP-RSA using C++, Java, Android, and the obfuscation process.

5.5.1 Comparison in the 1st level (Name Obfuscation)

 A comparison between the DOSP-AES and DOSP-RSA techniques in 1st level

obfuscation (Name obfuscation) which used 256-bit key length (32 byte). In C++ and Java

and Android programs. See Table 5.8.

1. 1st level Using C++ program

The DOSP-RSA model takes more time than DOSP-AES models in the 1st level Name

obfuscation when using C++ programs. So, the DOSP-AES model is faster than

DOSP-RSA in Name obfuscation level in C++ programs. Figure 5.11 shows a

0

1000

2000

3000

4000

5000

6000

7000

8000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(m

s)

File Size (KB)

Obfuscation and De-Obfuscation of DOSP-RSA / Android

Obfuscation using key
256 bit

Obfuscation using key
128 bits

Obfuscation using Key
192 bits

De-Obfuscation using key
256 bits

De-Obfuscation using key
128 bits

De-Obfuscation using key
192 bits

80

comparison between DOSP-AES and DOSP-RSA in name obfuscation level using

C++ programs. We take the average time of 10 trials for each point.

Table 5.8: Name obfuscation (Source code) technique

 1st level of obfuscation (Name obfuscation) using 16-byte key length

File size

(KB)

C++ Java Android

DOSP-

AES

DOSP-RSA DOSP-

AES

DOSP-RSA DOSP-

AES

DOSP-RSA

200 1157 1271 288 690 333 460

400 1231 1989 1184 1487 743 936

600 1315 3720 1802 2916 1105 1418

800 1864 4710 3219 5084 1437 1871

1000 2206 5960 4137 6197 1912 3908

1200 2590 8088 4957 7543 2150 3160

1400 3060 4075 5528 8657 2526 3184

1600 3482 4495 8390 9774 2966 4053

1800 4022 5144 7160 10457 3274 4066

 2000 5455 9315 11484 11857 3585 4557

81

2. 1st level using Java programs

 The DOSP-RSA model takes more time than DOSP-AES models in the 1st level Name

obfuscation in Java programs. So, the DOSP-AES model is faster than DOSP-RSA in

Name obfuscation level in Java programs. Figure 5.12 shows a comparison between

DOSP-AES and DOSP-RSA in name obfuscation level using Java programs.

Figure 5.11: Name obfuscation technique of C++ programs.

Figure 5.12: Name obfuscation technique of Java programs.

0

2000

4000

6000

8000

10000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(

m
s)

File size (KB)

Name Obfuscation Technique / C++

DOSP-AES DOSP-RSA

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(

m
s)

File size (KB)

Name Obfuscation Technique / Java

DOSP-AES DOSP-RSA

82

3. 1st level using Android programs

 DOSP-RSA models take more time than DOSP-AES models in the 3rd level

Name obfuscation in Android programs. So, the DOSP-AES model is faster than

DOSP-RSA in Name obfuscation level using Android programs. Figure 5.13 shows

a comparison between DOSP-AES and DOSP-RSA in name obfuscation level

using Android programs.

Figure 5.13: Name obfuscation technique of Android programs.

5.5.2 Comparison in the 2nd level (Data Obfuscation)

 A comparison is shown in this section between the DOSP-AES and DOSP-RSA

techniques in 2nd level obfuscation (Data obfuscation) in which 256-bit key length (32

byte) was used. In C++ and Java and Android programs. See Table 5.9.

1. 2nd level using C++ programs

The DOSP-RSA model takes more time than DOSP-AES models in the 2nd level

Data obfuscation in C++ programs. So, the DOSP-AES model is faster than DOSP-

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(

m
s)

File size (KB)

Name Obfuscation Technique / Android

DOSP-AES DOSP-RSA

83

RSA in Data obfuscation level using C++ programs. Figure 5.14 shows a

comparison between DOSP-AES and DOSP-RSA in Data obfuscation level using

C++ programs.

Table 5.9: Data obfuscation technique

2nd level of obfuscation (Data Obfuscation) using 32-byte key length

File size

(KB)

 C++ Java Android

DOSP-AES DOSP-RSA DOSP-AES DOSP-RSA DOSP-AES DOSP-RSA

200 1180 1089 286 726 574 522

400 1011 2245 1214 1580 851 1081

600 1268 4198 1789 2997 1162 1621

800 1871 5534 3190 5155 1517 2131

1000 2245 7274 4010 6574 1959 3610

1200 2842 8119 4734 7912 2303 3160

1400 3141 4758 5306 9169 2681 3630

1600 3751 5222 8439 11581 3128 4648

1800 4111 5978 7079 13075 3493 4709

2000 5436 10894 13022 15570 3887 5218

84

Figure 5.14: Data obfuscation technique of C++ programs.

2. 2nd level using Java programs

The DOSP-RSA model takes more time than DOSP-AES models in the 2nd level

Data obfuscation in Java programs. So, the DOSP-AES model is faster than DOSP-

RSA in Data obfuscation level using Java programs. Figure 5.15 shows a

comparison between DOSP-AES and DOSP-RSA in Data obfuscation level using

Java programs.

Figure 5.15: Data obfuscation technique of Java programs.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(

m
s)

File size (KB)

Data Obfuscation Technique / C++

DOSP-AES DOSP-RSA

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(

m
s)

File size (KB)

Data Obfuscation Technique / Java

DOSP-AES DOSP-RSA

85

3. 2nd levels using Android programs

The DOSP-RSA model takes more time than DOSP-AES models in the 2nd level

Data obfuscation in Android programs. So, the DOSP-AES model is faster than

DOSP-RSA in Data obfuscation level using Android programs. Figure 5.16 shows

a comparison between DOSP-AES and DOSP-RSA in Data obfuscation level using

Android programs.

Figure 5.16: Data obfuscation technique of Android programs

5.5.3 Comparison in the 3rd level (Bytecode/machine code Obfuscation)

 A comparison between the DOSP-AES and DOSP-RSA techniques in 3rd level

obfuscation (Bytecode/machine code obfuscation) which used 256-bit key length (32 byte).

In C++ and Java and Android programs. See Table 5.10.

1. 3rd level using C++ programs

The DOSP-RSA model takes more time than DOSP-AES models in the 3rd level

machine code obfuscation in C++ programs. So, the DOSP-AES model is faster

than DOSP-RSA in machine code obfuscation level using C++ programs. Figure

0

2000

4000

6000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(

m
s)

File size (KB)

Data Obfuscation Technique / Android

DOSP-AES DOSP-RSA

86

5.17 shows a comparison between DOSP-AES and DOSP-RSA in machine code

obfuscation level using C++ program

Table 5.10: Bytecode / machine obfuscation technique

3rd level of obfuscation (Bytecode) using 24-byte key length

File size

(KB)

C++ Java Android

DOSP-AES DOSP-RSA DOSP-AES DOSP-RSA DOSP-AES DOSP-RSA

200 860 982 401 1067 458 423

400 1809 2725 1527 2293 612 662

600 3043 3113 2858 4759 900 1010

800 4323 5590 4801 8052 1235 1316

1000 5499 7486 8216 9747 1556 2767

1200 6452 6552 10261 12333 1816 1990

1400 3726 7298 7338 13905 2190 2206

1600 4134 11387 15046 15799 2513 2914

1800 4957 10072 9749 17231 2724 2878

 2000 8564 10450 17629 19510 3095 3198

87

1. 3rd level using Java programs

The DOSP-RSA model takes more time than DOSP-AES models in the 3rd level

Bytecode obfuscation in C++ programs. So, the DOSP-AES model is faster than

DOSP-RSA in Bytecode obfuscation level using Java programs. Figure 5.18 shows

a comparison between DOSP-AES and DOSP-RSA in machine code obfuscation

level using Java programs.

Figure 5.17: C++ Machine code obfuscation technique using 192-bit key length.

Figure 5.18: Java bytecode obfuscation technique using 192-bit key length

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(

m
s)

File size (KB)

Machine Code Obfuscation using 192 bit key length

DOSP-AES DOSP-RSA

0
1500
3000
4500
6000
7500
9000

10500
12000
13500
15000
16500
18000
19500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(

m
s)

File size (KB)

Java Bytecode obfuscation using 192 bit key length

DOSP-AES DOSP-RSA

88

2. 3rd level using Java programs

 The DOSP-RSA model takes more time than DOSP-AES models in the 3rd level

Bytecode obfuscation in Android programs. So, the DOSP-AES model is faster

than DOSP-RSA in Bytecode obfuscation level using Android programs. Figure

5.19 shows a comparison between DOSP-AES and DOSP-RSA in machine code

obfuscation level using Android programs. DEX. File of Android programs is

obfuscated.

Figure 5.19: Android bytecode obfuscation technique using 192-bit key lengths

⮚ As a result of the comparison between DOSP-AES and DOSP-RSA models. The

DOSP-AES is faster than the DOSP-RSA in all the levels of obfuscation (Name,

Data and bytecode), Which is implemented in DOSP-AES models. So, the DOSP-

AES is faster and more feasible than DOSP-RSA.

0
1000
2000
3000
4000

0 200 400 600 800 1000 1200 1400 1600 1800 2000T
im

e
(

m
s)

File size (KB)

Android Bytecode obfuscation using 192 bit key length

DOSP-AES DOSP-RSA

89

5.6 Comparison between DOSP-AES and DOSP-RSA Depend on the

key’s length

 A comparison is shown in this section between the time that different key lengths take in

DOSP-AES and DOSP-RSA using C++, Java, Android, In obfuscation and De-obfuscation

process.

5.6.1 Comparison between DOSP-AES and DOSP-RSA using different key lengths

in C++ programs in the obfuscation process.

The 𝐾128 bits takes less time than 𝐾192 bits and 𝐾256 bits. Because 𝐾128 uses 10 rounds,

𝐾192 uses 12 rounds, and 𝐾256 uses 14 rounds. DOSP-AES takes less time in all key

lengths 𝐾128, 𝐾192, and 𝐾256 than DOSP-RSA in obfuscated C++ programs. The result

of this comparison is illustrated in Figure 5.20.

Figure 5.20: Obfuscation of DOSP-AES and DOSP-RSA using different key

lengths in C++ programs

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(

m
s)

File size (KB)

Obfuscation using Different key lengths / C++

256-bit for DOSP-AES 192-bit for DOSP-AES 128-bit for DOSP-AES

256-bit for DOSP-RSA 192-bit for DOSP-RSA 128-bit for DOSP-RSA

90

5.6.2 Comparison between DOSP-AES and DOSP-RSA using different key lengths

in C++ programs in the De-obfuscation process.

▪ The 𝐾128 bits require the largest time in de-obfuscated processes in C++ programs

in DOSP-RSA than DOSP-AES.

▪ The 𝐾192 bits take the longest time in the deobfuscated process in C++ programs in

DOSP-AES than DOSP-RSA.

▪ and 𝐾256 bits consume the longest time in the deobfuscated process in C++

programs in DOSP-RSA than DOSP-AES.

These results appear because in DOSP-AES there is a client- server model so it will take

time when the user requests the key and the server responds to the user. DOSP-RSA,

however, uses the RSA encryption algorithm to generate and distribute keys without using

third parties. . Therefore, the results show that DOSP-AES takes less time than DOSP-RSA

in de-obfuscated time when utilizing 128 and K256. This comparison is illustrated in

Figure 5.21.

Figure 5.21: Deobfuscation of DOSP-AES and DOSP-RSA using different key

lengths in C++ programs

0

5000

10000

15000

20000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(

m
s)

File size (KB)

De-Obfuscation using Different key lengths / C++

256-bit for DOSP-AES 192-bit for DOSP-AES 128-bit for DOSP-AES

256-bit for DOSP-RSA 192-bit for DOSP-RSA 128-bit for DOSP-RSA

91

5.6.3 Comparison between DOSP-AES and DOSP-RSA using different key lengths

in Java programs in the obfuscation process.

▪ The 𝐾128 bits take the longest time in obfuscated processes in C++ programs in

DOSP-RSA than DOSP-AES.

▪ The 𝐾192 bits require the longest time in an obfuscated process in C++ program in

DOSP-RSA than DOSP-AES.

▪ and 𝐾256 bits consume the longest time in an obfuscated process in C++ program

in DOSP-RSA than DOSP-AES.

These results show that the DOSP-AES takes less time in obfuscation in all key lengths

𝐾128, 𝐾192 and 𝐾256 bits. This comparison is illustrated in Figure 5.22.

Figure 5.22: Obfuscation of DOSP-AES and DOSP-RSA using different key

lengths in Java programs

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000
22000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(

m
s)

File size (KB)

Obfuscation using Different key lengths / Java

256-bit for DOSP-AES 192-bit for DOSP-AES 128-bit for DOSP-AES

256-bit for DOSP-RSA 192-bit for DOSP-RSA 128-bit for DOSP-RSA

92

5.6.4 Comparison between DOSP-AES and DOSP-RSA using different key lengths

in Java programs in the De-obfuscation process.

▪ The 𝐾128 bits take the largest time in de-obfuscated processes in Java programs in

DOSP-RSA than DOSP-AES.

▪ The 𝐾192 bits take the longest time in the deobfuscated process in Java programs in

DOSP-RSA than DOSP-AES.

▪ and 𝐾256 bits take the largest time in de-obfuscated processes in Java programs in

DOSP-AES.

These results show that the DOSP-AES requires less time in de-obfuscation for all

key lengths, K128, K192, and K256 bits. These results appear because in DOSP-

AES there is a client- > server model so it will take time when the user requests the

key and the server responds to the user. But DOSP-RSA uses the RSA encryption

algorithm to generate and distribute keys without involving a third party. So, the

results show that DOSP-AES takes less time than DOSP-RSA in de-obfuscated

time when using K128, K192, and K256 bits. This comparison is illustrated in

Figure 5.23.

93

Figure 5.23: Deobfuscation of DOSP-AES and DOSP-RSA using different key

lengths in Java programs

5.6.5 Comparison between DOSP-AES and DOSP-RSA using different key lengths

in Android programs in the obfuscation process.

▪ The 𝐾128 bits takes the longest time in obfuscated processes in Android programs

in DOSP-RSA than DOSP-AES.

▪ The 𝐾192 bits consumes the longest time in the obfuscated process in Android

programs in DOSP-RSA than DOSP-AES.

▪ and 𝐾256 bits requires the longest time in the obfuscated process in Android

programs in DOSP-RSA than DOSP-AES.

These results show that the DOSP-AES requires less time in obfuscation in all key

lengths 𝐾128, 𝐾192 and 𝐾256 bits. This comparison is illustrated in Figure 5.24.

0

10000

20000

30000

0 500 1000 1500 2000 2500T
im

e
(

m
s)

File size (KB)

De-Obfuscation using Different key lengths / Java

256-bit for DOSP-AES 192-bit for DOSP-AES 128-bit for DOSP-AES

256-bit for DOSP-RSA 192-bit for DOSP-RSA 128-bit for DOSP-RSA

94

Figure 5.24: Obfuscation of DOSP-AES and DOSP-RSA using different key

lengths in Android programs

5.6.6 Comparison between DOSP-AES and DOSP-RSA using different key lengths

in Android programs in the De-obfuscation process.

▪ The 𝐾128 bits requires the longest time in de-obfuscated processes in Java programs

in DOSP-RSA than DOSP-AES.

▪ The 𝐾192 bits takes the longest time in the deobfuscated process in Java programs

in DOSP-RSA than DOSP-AES.

▪ and 𝐾256 bits consumes the longest time in de-obfuscated processes in Java

programs in DOSP-AES.

These results show that the DOSP-AES requires less time in de-obfuscation for all key

lengths, K128, K192, and K256 bits. These results appear because in DOSP-AES there

is a client- > server model so it will take time when the user requests the key and the

server responds to the user. In contrast, DOSP-RSA uses an RSA encryption algorithm

for key generation and distribution without involving a third party. So, the results show

0

2000

4000

6000

0 200 400 600 800 1000 1200 1400 1600 1800 2000T
im

e
(

m
s)

File size (KB)

Obfuscation using Different key lengths / Android

128-bit for DOSP-AES 192-bit for DOSP-AES 256-BITS for DOSP-AES

256-bit for DOSP-RSA 192-bit for DOSP-RSA 128-bit for DOSP-RSA

95

that DOSP-AES takes less time than DOSP-RSA in de-obfuscated time when using

K128, K192, and K256 bits. This comparison is illustrated in Figure 5.25.

Figure 5.25: Deobfuscation of DOSP-AES and DOSP-RSA using different key

lengths in Android programs

5.7 Comparison between DOSP-AES and DOSP-RSA Depend on the

Programming languages C++, Java, Android

This section describe comparison between the programming languages C++, Java,

Android. When using DOSP-AES and DOSP-RSA

5.7.1 1st level: Name Obfuscation

➢ C++, Java, Android programs using DOSP-AES talk shortest time than using it

using DOSP-RSA.

0

2000

4000

6000

8000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(

m
s)

File size (KB)

De-Obfuscation using Different key lengths / Android

256-bit for DOSP-AES 192-bit for DOSP-AES 128-bit for DOSP-AES

256-bit for DOSP-RSA 128-bit for DOSP-RSA 192-bit for DOSP-RSA

96

➢ Android programs talk shortest time in Name Obfuscation technique than C++

and Java programs. Java programs talk largest time than C++ and Android

programs.

Figure 5.26: Name obfuscation using different key lengths in C++, Java, Android

programs

5.7.2 2nd level: Data Obfuscation

➢ C++, Java, Android programs using DOSP-AES talk shortest time than using it using

DOSP-RSA.

➢ Android programs talk shortest time in Name Obfuscation technique than C++ and

Java programs. C++ programs talk largest time than Java and Android programs.

0

2000

4000

6000

8000

10000

12000

14000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(

m
s)

File size (KB)

Name Obfuscation using C++, Java, Android

C++ using DOSP-AES

Java using DOSP-AES

Android using DOSP-AES

C++ using DOSP-RSA

Java using DOSP-RSA

Android using DOSP-RSA

97

Figure 5.27: Data obfuscation using different key lengths in C++, Java, Android

programs

5.7.3 3rd level: Bytecode Obfuscation

Figure 5.28: Machine code/bytecode obfuscation using different key lengths in

C++, Java, Android programs

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(

m
s)

File size (KB)

Data Obfuscation using C++, Java, Android

C++ using DOSP-AES

Java using DOSP-AES

Android using DOSP-AES

C++ using DOSP-RSA

Java using DOSP-RSA

Android using DOSP-RSA

0

5000

10000

15000

20000

25000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(

m
s)

File size (KB)

Machine code/ Bytecode Obfuscation using C++, Java, Android

C++ using DOSP-AES

Java using DOSP-AES

Android using DOSP-AES

C++ using DOSP-RSA

Java using DOSP-RSA

Android using DOSP-RSA

98

➢ C++, Java, Android programs using DOSP-AES talk shortest time than

using it using DOSP-RSA.

➢ Android programs talk shortest time in Name Obfuscation technique than

C++ and Java programs. Java programs talk largest time than C++ and

Android programs.

5.8 Brute force attack

 A brute-force attack involves systematically checking all possible key combinations until

the correct key is found and is one method of attack when other weaknesses in an

encryption system cannot be exploited. The length of the key used in encryption determines

the practical feasibility of a brute-force attack, with longer keys being exponentially more

difficult to crack than shorter ones.

Keyspace analysis is used to prevent an adversary from using a brute-force attack to find

the key used to encrypt a message. The keyspace is usually designed to be large enough to

make such a search infeasible. On average, half the keyspace must be searched to find the

solution.

 Advanced Encryption Standard (AES) can use a symmetric key of 128, 192, and 256 bits,

resulting in a keyspace containing:

▪ 2256 = 1.1579 × 1077 possible keys

▪ 2192 = 6.2771017 * 1057 possible keys

▪ 2128 = 3.4028237 * 1038 possible keys

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

99

Table 5.10: Possible combination keys of AES algorithm

Key size Possible combination

AES 256 1.1579 × 1077

AES 192 6.2771017 * 1057

AES 128 3.4028237 * 1038

In computing, floating-point operations per second (FLOPS, flops, or flop/s) is a measure

of computer performance, useful in fields of scientific computations that require floating-

point calculations. For such cases, it is a more accurate measure than measuring

instructions per second.

FLOPS per cycle for Core processor x64 bit = 4

GFlops = (CPU speed in GHz) x (number of CPU cores) x (CPU instruction per cycle) x

(number of CPUs per node) (5.2)

Number of instructions that executed in a millisecond on a cold CPU (turbo frequency

times number of cores is taken).

For a minute, take the sustained rate with all cores running, not the turbo rate.

GFlops = 2.0Ghz * 2 * 2 * 2 = 16 GFlops / per second (5.3)

GFlops = 3.1Ghz * 2 * 2 * 2 = 24.1 GFlops / per millisecond (5.4)

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Computer_performance
https://en.wikipedia.org/wiki/Floating-point
https://en.wikipedia.org/wiki/Floating-point
https://en.wikipedia.org/wiki/Instructions_per_second

100

No. of Flops required per combination check: 1000 (very optimistic but just assume for

now)

No. of combination checks per second = (4 x 1015) / 1000 = 4 x 1012 // processor core

x64bit – flops = 4 per second (5.5)

No. of seconds in one Year = 365 x 24 x 60 x 60 = 31536000 sec (5.6)

No. of Years to crack AES with 128-bit Key = (3.4 x 1038) / [(4 x 1012) x 31536000] (5.7)

= (0.85 × 1026)/31536000

 = 2.695 x 1018

 = 2 billion billion years to crack 128bit AES

 Cracking the 128-bit AES key using brute force attack takes 2 billion years. This is more

than the age of the universe (13.75 billion years)

No. of Years to crack AES with 192-bit Key = (6.28 * 1057) / [(4 x 1012) x 31536000]

 = (1.57 x 1045)/31536000 (5.8)

 = 4.98 × 1037

 = 49.8 * 1036

 = 49 (billion)^4 years to crack AES-192 bit

101

▪ No. of Years to crack AES with 256-bit Key = (1.158 × 1077) / [(4 x 1012) x

31536000) (5.9)

 = (0.29 × 1065)/31536000

 = 9.18 × 1056

 = 918 *1054

 = 918 (billion)^6 years to crack 256 bit AES

Table 5.11: Time to crack AES various key using Brute force analysis

Key size Time to crack (years)

AES – 256 bit 918 *1054

AES – 192 bit 49.8 * 1036

AES – 128 bit 2.695 x 1018

Despite belief and arguments, AES has never been cracked and remains safe against brute

force attacks. However, the key size used for encryption should always be large enough

that it could not be cracked by modern computers. This is despite considering

advancements in processor speeds based on Moore's law.

5.9 Attack model

 The proposed model DOSP-AES solved the threat models that were mentioned chapter

one as follows:

102

DOSP-AES solved the Radare2, Ghidra, and IDA software problems by making the

assembly and machine code more difficult to disassemble, debug, and decompile. DOSP-

AES employs multiple levels of obfuscation, making it more difficult to analyze and

comprehend the code. DOSP-AES prevent man in the middle attack by using DH key

exchange algorithm. DOSP-AES prevents attempts at reverse engineering or debugging a

target process. DOSP-AES employs name obfuscation, data obfuscation, and

bytecode/machine code obfuscation, making decompiler, debugger, and disassembly more

difficult to implement in the code.

5.10 Summary

 When compared to DOSP-RSA, the values of time in DOSP-AES moved down and

decreased, according to the results of our model. This indicates that the DOSP-AES

obfuscation procedure takes less time than the DOSP-RSA. On every level. Because RSA

takes a lengthy time, employing the AES algorithm in the levels is preferable to using the

RSA method.

Furthermore, a comparison is made between all cases that include different file sizes at the

same time for our first technique DOSP-AES and second technique DOSP-RSA, and

obfuscation time is calculated in all levels of the two techniques, with DOSP-AES using

AES encryption algorithm having the better obfuscation time in all levels. RSA is both

more computationally intensive and much slower than AES. RSA is typically only used to

encrypt small amounts of data. Because of the large number calculations, RSA is extremely

slow.

103

Chapter Six

Conclusion and future work

104

Chapter six: Conclusion and future work

6.1 Conclusion

 As data exchange on the internet gains importance and value over time, solutions to

protect data from attackers become increasingly important. As a result, high-level

protection techniques and measures are regarded as the most critical issue concerning the

security of our communities.

Obfuscation is an important software protection technique that can solve more problems

with software protection and intellectual property security than other software techniques

such as cryptography. Obfuscation techniques benefit the entire computer science

community. To analyze software, attackers employ a variety of tools for reverse

engineering analysis.

The DOSP-AES model presents effective and promising software protection techniques

for software intellectual property and distributed systems; DOSP-AES enhances the

obfuscation intensity and enhances the difficulty of the reverse engineering process. The

above mentioned model makes attacking complicated enough to repulse attackers rather

than proving the strength of algorithms. Obfuscation solves many problems that

cryptography has not yet addressed.

105

The early theoretical work showed that it is impossible to find a general-purpose obfuscator

that can efficiently obfuscate programs, and secure programs according to the virtual black-

box security model. These challenges have been addressed in this thesis.

In the DOSP-AES model, the obfuscation model is designed to protect and secure software,

especially a distributed system from reverse engineering attacks. The idea of this thesis is

to apply multi-levels of obfuscation techniques to support software security and to provide

strong protection for software. The third and last level of obfuscation is the bytecode

transformation level. This involves altering bytecode so that it is a more difficult order to

read and understand for a hacker but remains functional. The first level uses code

obfuscation, with the definition that an obfuscated program is more difficult to perceive

and read than the original program. The second level uses data transformation methods by

replacing sensitive information with data that looks like real data and making it useless to

attack actors.

By combining these levels, a robust and high level of security for software against reverse

engineering analysis has been reached. Second, to enhance the security level of software

and make the model stronger and more difficult to analyze by reverse engineering, and an

obfuscation model integrating the encryption algorithm and using the DH key-exchange

algorithm to exchange the key.

106

Two models are built: DOSP-AES which uses AES encryption algorithm and DOSP-RSA

which uses RSA encryption algorithm. Files from the GitHub site with a large size up to

2000 KB (2MB) were used for testing. Note that Files with a larger size than 2 MB can be

used with the DOSP-AES model.

The results show that the DOSP-AES model increases the security level of the software

protection when using AES combine with DH. So, it is of great importance that the security

of the model is increased to maintain a high level of confidentiality for the users by

combining the two algorithms in one process AES and DH algorithms; due to use the AES

and DH algorithms in obfuscation, the speed and strength of AES and DH algorithms was

obtained. Also using the technique of sending the key as one block to the client and but in

the code using it as subkeys, so in the DOSP-AES model the key block is divided into three

subkeys blocks, each subkey is Obfuscate / Deobfuscate a specific level of obfuscation,

and each level can only be de-obfuscated with its key that was obfuscated. The evolutions

of this technique confirm that employing the subkeys technique and using multi-levels of

obfuscation with integrated AES encryption algorithms increase the difficulties of reverse

engineering analysis or brute force attack.

The outcomes of this experiment show that the proposed technique protects and secures

the software and application against hackers and reverse engineering analysis. The

performance evaluation confirmed that the DOSP-AES model saves software with

acceptable implementation time and memory utilization. The experimental results prove

107

that the proposed technique DOSP-AES provides stronger security and protection for

software and applications against attackers and reverse engineering analysis. The

performance evaluation confirms that our model protects software with acceptable

execution time and memory usage.

6.2 Future Work

The proposed DOSP-AES model enhances software protection and security and enhances

the difficulty of reverse engineering analysis. In no way does this claim to be the best

achievable outcome. But DOSP-AES solves current problems in software and enhances

obfuscation intensity. DOSP-AES builds robust obfuscation security. Towards achieving

this significant goal, the following research directions are proposed.

1. To improve the DOSP-AES proposed model, use other obfuscation techniques like

flow control as an additional level to make the DOSP-AES model more complex and

more secure against reverse engineering attacks.

2. Use the Whitebox technique in the DOSP-AES model, which is the combination of

obfuscation and encryption security techniques. In spite of the fact that attackers have

full access and control over the code, Whitebox remains one of the most robust

techniques for keeping the key and internal structure of algorithms secure.

3. Other security techniques can be produced to provide self-protection techniques, so

if an attacker is trying to access the connection or steal software, the software is

tampered with.

108

Finally, the goal is to improve the DOSP-AES model to achieve a higher and better

level of security, protection, and robustness against all attackers and all their

techniques.

109

Bibliography

[1] Krishan Kumar Kumar, Prabhpreet Kaur. A Thorough Investigation of Code Obfuscation

Techniques for Software Protection. International Journal of Computer Sciences and

Engineering, pp. 158-164, 2015.

[2] Marius Iulian Mihailescu, Stefania Loredana NITA, Marian Dorin PirloagaI. Software

security techniques: risks and challenges. Mircea cel Batran Naval Academy Press. pp. DOI:

10.21279/1454-864X-16-I1-007, 2015.

[3] Wadha Al Nafjan and Murtaza Ali Khan. Software Copyright Infringement: Causes, Forms

and Effects. 4th Conference on e-Learning Excellence. pp. 153-159, 2011.

[4] Savio Antony Sebastian, Saurabh Malgaonkar, Paulami Shah, Mudit Kapoor, and Tanay

Parekhji. A Study and Review on Code Obfuscation. IEEE. 2016.

[5] Jan Cappaert. Code Obfuscation Techniques. Katholieke Universiteit Leuven, PHD thesis,

Heverlee (Belgium),2012.

[6] https://techbeacon.com/security/reverse-engineering-attacks-6-tools-your-team-needs-know,

20,Nov, 2021.

[7] https://www.apriorit.com/ ,7,Jan, 2021.

[8] Moritz Schloegel et al. LOKI: Hardening Code Obfuscation Against Automated Attacks.

IEEE.Germany, June 2021.

[9] Zhifeng Hu Hu, Serhii Havrylov, Ivan Titov. Obfuscation for Privacy-preserving Syntactic

Parsing. International Conference on Parsing Technologies and the IWPT , pp. 62–72, 2020.

[10] Philippe Dugerdil and Roland Sako. Dynamic Analysis Techniques to Reverse. Springer

International Publishing Switzerland. vol. DOI: 10.1007/978-3-319-30142-6_14, pp. 250–

268, 2016.

[11] Zheheng Liang, Wenlin Li, Jing Guo, Deyu Qi, Jijun Zing. A parameterized flattening control

flow based obfuscation algorithm with opaque predicate for reduplicate obfuscation. IEEE.

Dec, 2017.

[12] Yanru Peng, Yuting Chen, Beijun Shen. An Adaptive Approach to Recommending. IEEE,

2019.

[13] Dr. Prerna Mahajan and Abhishek Sachdeva.A Study of Encryption Algorithms AES, DES

and RSA. Global Journal of Computer Science and Technology, 2013.

https://techbeacon.com/security/reverse-engineering-attacks-6-tools-your-team-needs-know
https://www.apriorit.com/

110

[14] Bahare Hashemzade and Ali Maroosi. Hybrid Obfuscation Using Signals and Encryption.

Hindawi Journal of Computer Networks and Communications, 2018.

[15] Prajakta Pahade and Mahesh Dawale. Introduction to compiler and IT phases. International

Research Journal of Engineering and Technology (IRJET), pp. 1318- 1322, 2019.

[16] Steven P. Reiss. Software Tools and Environments. ACM Computing Surveys, vol. 28, pp.

281-284, March 1996.

[17] Rajendra Kumar. Introduction to Compiler. Published versionA New Compiler for Space-

Time Scheduling of ILP Processors, pp. DOI: 10.13140/RG.2.2.31394.89289, 2019.

[18] Jad Matta. Paper on Symbol Table Implementation in Compiler Design. American University

of Beirut, pp. DOI:10.13140/RG.2.2.14217.60005, 2019.

[19] Fan Wu, Hira Narang, Miguel Cabral. Design and Implementation of an Interpreter Using

Software Engineering Concepts. International Journal of Advanced Computer Science and

Applications, pp. 170-177, 2014.

[20] Prof. Mukund R. Joshi R. Joshi and Renuka Avinash Karkade. Network Security with

Cryptography. International Journal of Computer Science and Mobile Computing, pp. 201-

204, 2015.

[21] William Stallings. Cryptography and Network Security Principles and Practices, Fourth

Edition.: Prentice Hall, 2005.

[22] Sarita Kumari. A Research Paper on Cryptography Encryption and Compression.

International Journal Of Engineering And Computer Science ISSN:2319-7242, pp. 20915-

20919, 2017.

[23] Omar Riyad. Cryptography and Data Security: An Introduction. Sohag University, Sohag,

Egypt, pp. DOI:10.13140/RG.2.2.30280.16646, 2018.

[24] Barranca Parkway. Encryption and Its Importance to Device Networking, 2018.

[25] Sirajuddin Asjad. The RSA Algorithm. University of South-Eastern Norway, Dec 2019.

[26] Dr. M. Gobi, R. Sridevi , and R. Rahini priyadharshini. A Comparative Study on the

Performance and the Security of RSA and ECC Algorithm. in Proceedings of the UGC

Sponsored National Conference on Advanced Networking and Applications, 2015, pp. 168-

171.

[27] Mashrufee Alam, Israt Jahan, Liton Jude Rozario, and Israt Jerin. A Comparative Study of

RSA and ECC and Implementation of ECC on Embedded Systems. International Journal of

Innovative Research in Advanced Engineering (IJIRAE), vol. 3, no. 3, March 2016.

111

[28] Rasha Samir Abdeldaym, Hatem Mohamed Abd Elkader, and Rida Hussein. Modified RSA

Algorithm Using Two Public Key and Chinese Remainder Theorem. Electronics and

Information Engineering, vol. 10, no. (DOI: 10.6636/IJEIE.201903 10(1).06), pp. 51-64,

March 2019.

[29] Keith Palmgren. Diffie-Hellman Key Exchange: A Non-mathematician’s explanation. ISSA

Journal, Oct 2006.

[30] Neha Grg and Partibha Yadav. Comparison of Asymmetric Algorithms in Cryptography.

International Journal of Computer Science and Mobile Computing, vol. 3, no. 4, pp. 1190-

1196, April 2014.

[31] Aqeel Khalique, Singh Kuldip, and Sandeep Kumar Sood. Implementation of Elliptic Curve

Digital Signature Algorithm. International Journal of Computer Applications, vol. 2, pp. 21-

27, May 2010.

[32] Ako Muhamad Abdullah. Advanced Encryption Standard (AES) Algorithm to Encrypt and

Decrypt Data. Cryptography and Network Security , June 2017.

[33] Isnar Sumartono, Andysah Putera Siahaan, and Nova Mayasari. An Overview of the RC4

Algorithm. IOSR Journal of Computer Engineering, vol. 18, no. 6, pp. 67-73, 2016 Dec.

[34] Sheetal Charbathia and Sandeep Sharma. A Comparative Study of Rivest Cipher Algorithms.

International Journal of Information and Computation Technology, vol. 4, pp. 1831-1838,

2014.

[35] Prashant Kumar Dey and Tarun Kumar Dey, ANALYSIS OF THE SECURITY OF AES,

DES, 3DES AND IDEA NXT ALGORITHM. INTERNATIONAL JOURNAL OF

ENGINEERING SCIENCES & RESEARCH TECHNOLOGY,Oct 2015.

[36] Karthik.S and Muruganandam.A, Data Encryption and Decryption by Using Triple DES and

Performance Analysis of Crypto System. International Journal of Scientific Engineering and

Research (IJSER), vol. 2, pp. 24-31, Nov 2014.

[37] Mozhgan Mokhtari. Analysis and Design of Affine and Hill Cipher. Journal of Mathematics

Research, vol. 4, Feb 2012.

[38] Ritu Tripathi and Sanjay Agrawal. Comparative Study of Symmetric and Asymmetric

Cryptography Techniques. International Journal of Advance Foundation and Research in

Computer (IJAFRC), vol. 1, June 2014.

[39] Rushdi A. Hamamreh, Israa M. Al-Qatow, and Mohammed A. Jamoos. SSCC: Cryptosystem

Model for Cloud Data Sharing. in The 19th International Conference on Microarchitecture

and Multiprocessor (ICMMT), Barcilona, 2017, pp. 3094-3098.

112

[40] Eldad Eilam. Reversing: Secrets of Reverse Engineering. CRYPTOLOGIC, vol. 29, no. 3,

pp. 282-283, May 2005.

[41] A. Bryant, R Mills, M Grimaila, and G Peterson. Top-Level Goals in Reverse Engineering

Executable Software. Journal of Information Warfare, vol. 1, pp. 32-43, May 2013.

[42] G. Sreeram Reddy, Manzoor Hussian, and K. Srinivasa Rao. Latest Research on Reverse

Engineering Technology: Review. in Proceedings of the International conference on

Paradigms in Engineering & Technology (ICPET), 2016, pp. 945-948.

[43] N. Rathore and P. Jane. REVERSE ENGINEERING APPLICATIONS IN

MANUFACTURING INDUSTRIES: AN OVERVIEW. in DAAAM INTERNATIONAL

SCIENTIFIC BOOK. Vienna, Austria: DAAAM International, 2014, ch. 45, pp. 567-576.

[44] www.preemptive.com. 20,NOV.2021.

[45] Sebastian Schrittwieser and Stefan Katzenbeisser. Code Obfuscation against Static and

Dynamic Reverse Engineering.2012.

[46] Pierre-Louis Cayrel, Mohamed ElYousf, Gerhard Hoffmann, Mohammed Meziani, and

Robert Niebuhr. Recent progress in code-based cryptography. CASED – Center for Advanced

Security Research Darmstadt, 2012.

[47] Seungkwang Lee and Myungchul Kim. Improvement on a Masked White-box Cryptographic

Implementation. Information Security Research Division, ETRI, May 2020.

[48] Okan Seker, Thomas Eisenbarth, and Maciej Liśkiewicz. A White-Box Masking Scheme

Resisting Computational and Algebraic Attacks. IACR Transactions on Cryptographic

Hardware and Embedded Systems, vol. 2021, no. 2, pp. 61-105, Feb 2021.

[49] Boaz Barak. On the (Im)possibility of Obfuscating Programs. July 2010.

[50] Muhammad Rizwan Asghar, Steven D. Galbraith, Andrea Lanzi, Giovanni Russello, and

Lukas Zobernig. Towards a Theory of Special-purpose Program Obfuscation. Research Gate,

Nov 2020.

[51] Hui Xu, Yangfan Zhou, Jiang Ming, and Michael Lyu. Layered obfuscation: a taxonomy of

software obfuscation techniques for layered security. Xu et al. Cybersecurity, pp.

doi.org/10.1186/s42400-020-00049-3, April 2020.

[52] Yakobu Dasari, Hemanth Kumar Kalluri, and Venkatesulu Dondeti. A Crypto Scheme Using

Data Obfuscation of Entity Detection and Replacement for Private Cloud. International

Journal of Safety and Security Engineering, vol. 10, pp. 417-422, April 2020.

about:blank

113

[53] Chandan Kumar Behera and D. Lalitha Bhaskari. Different Obfuscation Techniques for Code

Protection. in 4thInternational Conference on Eco-friendly Computing and Communication

Systems, 2015, pp. 757 – 763.

[54] Jien-Tsai Chan and Wuu Yang. Advanced obfuscation techniques for Java bytecode. The

Journal of Systems and Software, Aug 2004.

[55] Jong-Wouk Kim, Jiwon Bang, and Mi-Jung Choi. Defeating Anti-Debugging Techniques for

Malware Analysis Using a Debugger. Advances in Science, Technology and Engineering

Systems Journal, vol. 5, pp. 1178-1189, Nov 2020.

[56] Erwin Adi, Zubair Baig, and Philip Hingston. Stealthy Denial of Service (DoS) Attack

Modelling and Detection for HTTP/2 Services. Journal of Network and Computer

Applications 91, pp. DOI:10.1016/j.jnca.2017.04.015, April 2017.

[60] Gurpreet Singh and Supriya Kinger.Integrating AES, DES, and 3-DES Encryption

Algorithms for Enhanced Data Security. International Journal of Scientific & Engineering

Research, vol. 4, no. 7, July 2013.

[61] Subhi R. M. Zeebaree. DES encryption and decryption algorithm implementation. Indonesian

Journal of Electrical Engineering and Computer Science, vol. 18, pp. 774-781, May 2020.

[62] Akshita Bhandari. A framework for data security and storage in Cloud Computing. IEEE

2016 International Conference on Computational Techniques in Information and

Communication Technologies (ICCTICT), New-Delhi, 2016.

[63] https://www.chilkatsoft.com/rsa-c++.asp, 10,Jan, 2021.

[64] Dindayal Mahto, Dilip Kumar Yadav, RSA and ECC: A Comparative Analysis,. International

Journal of Applied Engineering Research, 2017

[65] Avijit Mallika, Abid Ahsanb, Mhia Md. Zaglul Shahadata and Jia-Chi Tsou. Man-in-the-

middle-attack. International Journal of Data and Network Science.2019.

[66] Adwan Yasin, Ihab Nasra , Dynamic Multi Levels Java Code Obfuscation Technique

(DMLJCOT), IEEE, Palestine,2016

https://www.chilkatsoft.com/rsa-c++.asp

114

Appendix A

The following is Pseudo code of DOSP-AES model and each function in the code that

present each instruction:

1.Server creates a socket with a specific port number for incoming connection

requisitions.

//Create a socket.

ListenSocket = socket(result->ai_family, result->ai_socktype,

 result->ai_protocol);

//Bind socket with TCP.

iResult = bind(ListenSocket, result->ai_addr, (int)result->ai_addrlen);

//Listen to the client.

iResult = listen(ListenSocket, SOMAXCONN);

6 Server wait for incoming connection

ClientSocket = accept(ListenSocket, NULL, NULL);

7 Client creates a socket and connects to the server with host id and port number.

ConnectSocket = socket(ptr->ai_family, ptr->ai_socktype, ptr->ai_protocol);

iResult = connect(ConnectSocket, ptr->ai_addr, (int)ptr->ai_addrlen);

8 Client sends a requestion for downloading a specific software with a command

“soft:<name>”.

sendbuf = "soft:" + softname

iResult = send(ConnectSocket, sendbuf, (int)strlen(sendbuf), 0);

115

9 Server receives the requestion and answers with “ok”.

iResult = recv(ClientSocket, recvbuf, recvbuflen, 0);

10 Client starts DH algorithm to make secret key.

Creates an instance of CkDh class of chilkat library.

CkDh clientDh; //creat client DH

clientDh.UnlockComponent("abc123");

clientDh.UseKnownPrime(1);

const char* p = 0;

int g;

p = clientDh.p(); //get prime

g = clientDh.get_G(); //get generator : 2 or 5

const char* eClient = 0;

eClient = clientDh.createE(96);

•Sends the three values to the server so that it can exchange key and secret key.

iResult = send(ConnectSocket, p, (int)strlen(p), 0); //send prime

iResult = send(ConnectSocket,gen,(int)strlen(gen), 0);//send generator

iResult = send(ConnectSocket,eClient,(int)strlen(eClient),0); //send exchange value

11 Server starts DH algorithm to make secret key.

Creates instance of DH object

CkDh serverDh; //create server DH

serverDh.UnlockComponent("abc123");

116

•Receives prime number, generator and client exchange key.

iResult = recv(ClientSocket, recvbuf, recvbuflen, 0); //receive p

string prime(recvbuf);

p = prime.c_str();

iResult = recv(ClientSocket, recvbuf, recvbuflen, 0); // receive g

g = atoi(recvbuf);

//receive exchange value of client

iResult = recv(ClientSocket, recvbuf, recvbuflen, 0);

string ekey(recvbuf);

eClient = ekey.c_str();

•Makes server exchange key and sends to client.

const char* eServer = 0;

eServer = serverDh.createE(96); //make exchange value

iResult = send(ClientSocket, eServer, strlen(eServer), 0); //send exchange value to client

•Make a secret key using a client exchange key.

const char* kServer = 0;

kServer = serverDh.findK(eClient);

8.Client receives a server exchange key and makes a secret key using it.

kServer = serverDh.findK(eClient);

string strE(recvbuf);

eServer = strE.c_str();

//make secret key using exchange key of server

117

const char* kClient = 0;

kClient = clientDh.findK(eServer);

9. Part one: Explanation of AES Obfuscation and de-obfuscation code

1) Obfuscation AES (3 levels)

The Obfuscation is processed as following:

● Obfuscation of variable names

//First, get the file name to obfuscate the variable names from the user

string filename;

cout << "Please enter the name of a file for variable name: ";

cin >> filename;

//Set the obfuscation key and initialization vector to encryptor

encryptor.SetKeyWithIV(nameKey, sizeof(nameKey), iv);

//the path of original file

string filepath = "../Data/name&value/" + filename + ".txt";

//the path of encrypted file

string nameencpath = "../Data/name&value/" + filename + "_nameencrypted.txt";

string line; //used to store one line string to encrypt name

vector<string> tokens; //used to store every word separated by tab

int len;

//input stream and output stream to read and save

fstream instrm, outstrm;

//open the file to encrypt variable names and do encryption per line

instrm.open(filepath, ios::in);

if (instrm.is_open()) {

 //encrypt variable names

 outstrm.open(nameencpath, ios::out);

 while (getline(instrm, line)) { //read one line

 plain_text = "";

 tokens.clear();

 splitString(line, '\t', tokens);

 if (tokens.size() >= 6) { //if dataline

 //variable name to encrypt

 plain_text = tokens.at(6);

 /// Encryption

 string encryptedStr;

 CryptoPP::StreamTransformationFilter encFilter(encryptor,

 new CryptoPP::StringSink(encryptedStr));

 encFilter.Put(reinterpret_cast<const

118

 byte*>(plain_text.c_str()), plain_text.size());

 encFilter.MessageEnd();

 /// convert encrypted name to hex representation

 string hexenstr;

 StringSource ss(encryptedStr, true, new HexEncoder(new

 StringSink(hexenstr)));

 //save encrypted string to the output file specified by //nameencpath

 tokens.at(6) = hexenstr;

 for (string token : tokens) {

 outstrm << token << '\t';

 }

 outstrm << endl;

 }

 else {

 outstrm << line << endl;

 }

 }

 outstrm.close();

}

instrm.close()

● Obfuscation of variable value and byte code

This step is so similar to the case of variable name encryption step

4 De-obfuscation process

The de-obfuscation process is done on the client side.

 // get the file name to decrypt

 string filename;

 cout << "Please enter the name of a file for variable name: ";

 cin >> filename;

 //set the key and iv to decryptor

 decryptor.SetKeyWithIV(nameKey, sizeof(nameKey), iv);

 string nameencpath = "../Data/name&value/" + filename + "_nameencrypted.txt";

 string namedecpath = "../Data/name&value/" + filename + "_namedecrypted.txt";

 string line;

 vector<string> tokens;

 fstream instrm, outstrm;

 instrm.open(nameencpath, ios::in);

 //open the file and read per one line

 if (instrm.is_open()) {

 //decrypt names

 outstrm.open(namedecpath, ios::out);

 while (getline(instrm, line)) { //get one line

 tokens.clear();

 splitString(line, '\t', tokens);

 if (tokens.size() >= 6) { //if dataline

119

 string hexenstr = tokens.at(6).c_str();

 string encryptedStr;

 StringSource ss(hexenstr, true, new HexDecoder(new

 StringSink(encryptedStr)));

 /// Decryption

 string decryptedStr;

 CryptoPP::StreamTransformationFilter decFilter(decryptor, new

 CryptoPP::StringSink(decryptedStr));

 decFilter.Put(reinterpret_cast<const byte*>(encryptedStr.c_str()),

 encryptedStr.size());

 decFilter.MessageEnd();

 tokens.at(6) = string(decryptedStr);

 //save to output file

 for (string token : tokens) {

 outstrm << token << '\t';

 }

 outstrm << endl;

 }

 else {

 outstrm << line << endl;

 }

 }

outstrm.close();

● Value and bytecode decryption is so similar to the case of name

decryption

5 Explanation of RSA Obfuscation and De-Obfuscation / code

Obfuscation RSA (3 levels)

● Obfuscation of the names
//get the name of file to encrypt

string filename;

cout << "Please enter the name of a file for variable name: ";

cin >> filename;

string filepath = "../Data/name&value/" + filename + ".txt";

string nameencpath = "../Data/name&value/" + filename + "_nameencrypted.txt";

string line;

vector<string> tokens; //store words separated by tab

int len;

fstream instrm, outstrm;

instrm.open(filepath, ios::in);

//open the file to encrypt and read per one line

if (instrm.is_open()) {

 //encrypt names

 outstrm.open(nameencpath, ios::out);

 while (getline(instrm, line)) {

120

 flat_text = "";

 tokens.clear();

 splitString(line, '\t', tokens);

 if (tokens.size() >= 6) { //if dataline

 flat_text = tokens.at(6); //the word representing name

 // Treat the message as a big endian byte array

 Integer iFlat_text = Integer((const byte*)flat_text.data(),

 flat_text.size());

 Integer iEncStr = namePubKey.ApplyFunction(iFlat_text);

 stringstream ss;

 ss << hex << iEncStr << endl;

 ss >> encryptedStr;

 tokens.at(6) = encryptedStr;

 //save the encrypted word to output file

 for (string token : tokens) {

 outstrm << token << '\t';

 }

 outstrm << endl;

 }

 else {

 outstrm << line << endl;

 }

}

outstrm.close();

● Obfuscation of value and bytecode is so similar to the last name

encryption process

●

4.3.2.1 How to Generate the random Key in the code
 AutoSeededRandomPool rng;
 InvertibleRSAFunction params;
 params.GenerateRandomWithKeySize(rng, 128);
 RSA::PrivateKey namePrivKey(params);
 RSA::PublicKey namePubKey(params);

 params.GenerateRandomWithKeySize(rng, 256);
 RSA::PrivateKey valuePrivKey(params);
 RSA::PublicKey valuePubKey(params);

 params.GenerateRandomWithKeySize(rng, 192);
 RSA::PrivateKey bcdPrivKey(params);
 RSA::PublicKey bcdPubKey(params);

4.3.2.2 De- Obfuscation RSA

 //get the name for decryption

 cout << "Please enter the name of a file for variable name: ";

 cin >> filename;

 nameencpath = "../Data/name&value/" + filename + "_nameencrypted.txt";

 string namedecpath = "../Data/name&value/" + filename +

121

 "_namedecrypted.txt";

 //open the file and read per one line

 instrm.open(nameencpath, ios::in);

 if (instrm.is_open()) {

 //decrypt names

 outstrm.open(namedecpath, ios::out);

 clock_t tic = clock();

 while (getline(instrm, line)) {

 tokens.clear();

 splitString(line, '\t', tokens);

 if (tokens.size() >= 6) { //if dataline

 encryptedStr = tokens.at(6).c_str();

 /// Decryption

 Integer iEnc(encryptedStr.c_str());

 Integer iDec = namePrivKey.CalculateInverse(rng, iEnc);

 size_t req = iDec.MinEncodedSize();

 decryptedStr.resize(req);

 iDec.Encode((byte*)decryptedStr.data(), decryptedStr.size());

 tokens.at(6) = decryptedStr;

 //save the decrypted word to the output file

 for (string token : tokens) {

 outstrm << token << '\t';

 }

 outstrm << endl;

 }

 else {

 outstrm << line << endl;

 }

 }

 outstrm.close();

122

 نموذج التشفير الموزع لحماية البرمجيات

 كامل عاطف عمرواعداد: مي

 اشراف: الدكتور رشدي حمامره

 ملخص:

الهندسة و وه تشفير جديد نموذجفي هذا البحث، تم اقتراح البرمجيات من عمليات التشفير الموزعة لحماية تقنية

 . C++, java, androidمج اعلى بر هذه التقنية العكسية والتغيير. تم تطبيق

 يتكون النموذج المقترح من نظام لتشفير البرمجيات. ويتكون من عملية تشفير على ثلاثة مستويات:

الاسم تشفير الأول، هو)المستوى تسمية name code obfuscationالبرمجي إعادة المستوى هذا ويتضمن ،)

غير مفهومة ولا معنى لها، باستخدام خوارزمية معيار التشفير بأسماء variable, والمتغيرات functionالمعرفات

باستخدامAES (Advance Encryption Standard المتقدم عشوائي (بت 128 طوله random keyمفتاح

الإزالة تعني حذف المعلومات غير تشفيرها. يتضمن تشفير الكود البرمجي استخدام طريقة إعادة التسمية والإزالة.ل

 attackerالتي لن يتم استخدامها في البرنامج. يجعل الحذف من الصعب على المهاجم commentsالمفيدة، والتعليقات

الأخرى من أجل منع القرصنة او والمعرفاتحويل أسماء المتغيرات القراءة والفهم والتحليل. تتضمن إعادة التسمية ت

 فهم البرنامج وتحليله.

حيث يهدف هذا المستوى إلى إخفاء قيم البيانات وحمايتها. ،(data obfuscation) البياناتالمستوى الثاني، هو تشفير

 global /local variablesالمحلية والعالمية ومتغيرات البرامج constantيقوم النموذج المقترح بتشفير قيم الثوابت

بت. ويشفر نفس المتغير كل 256طوله بمفتاح AESلجعل عملية الهندسة العكسية أكثر تعقيداً، باستخدام خوارزمية

 مره في نفس البرنامج بطريقة مختلفة يظهر فيها خلال الكود.

البايت كود الثالث، هو تشفير البايت كود ، هذا(bytecode obfuscation)المستوى يقوم . المستوى يقوم بتعديل

DOSP-AES بتشفير المعرفات (Identifier) باستخدام خوارزمية في ملف البايت كود ،AES 192 بمفتاح طوله

123

 تشغيله. وإذا تم محاوله تشغيل البرنامج وفك تشفيره بدون مفتاح فك التشفير، ف ان البرنامج يعطي أخطاء ولن يتم بت.

يهدف تشفير البايت كود لجعل البايت كود أكثر غموضاً، وجعل الملف المشفر أكثر صعوبة بالفهم، لذلك يجب على

 المهاجم أن يقضي المزيد من الوقت والجهد على محاوله فك تشفير البايت كود.

إلى زيادة صعوبة وتعقيد (Obfuscation and encryptionالتشفير والتعتيم)يؤدي استخدام مستويات متعددة من

 الكود. لذلك، سيستغرق المهاجم وقتاً أطول لتحليل الكود ويصعب تحليله وفهمه.

التشفير، يقوم المستخدم بتنزيل التطبيق او البرنامج الذي تم تشفيره ورفعه على الانترنت، لن يستطيع في عملية إلغاء

أو استخدامه بدون مفتاح فك التشفير، لذلك يجب على المستخدم ان يقوم بطلب المستخدم القيام بتشغيل التطبيق المشفر

من خلال (authentication process). بعد قيام السيرفر بالتأكد من المستخدم (server)مفتاح فك التشفير من الخادم

السيرفر بفك تشفير التطبيق ، يقوم (software ID)رمز التأكيد الذي يتم ارساله للمستخدم، ومن خلال رقم التطبيق

 بايت، بعد ذلك يتمكن المستخدم من استخدام التطبيق. 72عن طريق انشاء مفتاح بشكل عشوائي وله

يتكون مفتاح فك التشفير من ثلاثة أجزاء، كل جزء يختص ب فك تشفير مستوى معين من مستويات التشفير، المستوى

البرمجي) الكود الثاني 16(، يتم فك تشفيره بمفتاح طوله name obfuscationالأول وهو تشفير بايت، المستوى

 bytecodeبايت، تشفير البايت كود)32، يتم فك تشفيره بمفتاح طوله (data obfuscation) وهو تشفير البيانات

obfuscation بايت. 24(، يتم فك تشفيره بمفتاح طوله

-DOSP)، مع نتائج برامج التشفير الأخرى، ومع نموذج (DOSP-AES)من خلال مقارنه نتائج هذا النموذج

RSA) أثبت هذا النموذج فاعليته وقوته ضد هندسه التحليل العكسية ،(reverse engineering) وغيرها من أدوات

المهاجم الصعب على فانه من النموذج باستخدام هذا البرامج والتطبيقات. البرامج (attacker)تحليل بتحليل القيام

 والتطبيقات.

