
Int. J. Security and Networks, Vol. X, No. Y, xxxx 1

Copyright © 20XX Inderscience Enterprises Ltd.

Desktop and mobile operating system fingerprinting
based on IPv6 protocol using machine learning
algorithms

Saeed Salah*, Mohammad Abu Alhawa and
Raid Zaghal

Department of Computer Science,

Al-Quds University,

Jerusalem P.O. Box 20002, Palestine

Email: sasalah@staff.alquds.edu

Email: moalhawa@qou.edu

Email: zaghal@staff.alquds.edu

*Corresponding author

Abstract: Operating system (OS) fingerprinting tools are essential to network security because

of their relationship to vulnerability scanning and penetrating testing. Although OS identification

is traditionally performed by passive or active tools, more contributions have focused on IPv4

than IPv6. This paper proposes a new methodology based on machine learning algorithms to

build classification models to identify IPv6 OS fingerprinting using a newly created dataset.

Unlike other proposals that mainly depend on TCP and IP generic features; this work adds other

features to improve the detection accuracy. It also considers OSes installed in mobiles (Android

and iOS). The experimental results have shown that the algorithms achieved high and acceptable

results in classifying OSes. KNN and DT achieved high accuracy of up to 99%. SVM and GNB

achieved 81% and 75%, respectively. Moreover, KNN, RF and DT achieved the best recall,

precision, and f-score with almost the same as the achieved accuracy.

Keywords: operating system; fingerprinting; IPv6; network security; machine learning; mobile

operating system; performance measures.

Reference to this paper should be made as follows: Salah, S., Abu Alhawa, M. and Zaghal, R.

(xxxx) ‘Desktop and mobile operating system fingerprinting based on IPv6 protocol using

machine learning algorithms’, Int. J. Security and Networks, Vol. X, No. Y, pp.xxx–xxx.

Biographical notes: Saeed Salah is an Assistant Professor and researcher at the Department of

Computer Science at Al-Quds University in Jerusalem. He received his Master’s in Computer

Science from Al-Quds University in 2009 and PhD in Information and Communication

Technologies from the Department of Signal Theory, Telematics and Communications of the

University of Granada in 2015. His research interests are focused on network management,

machine learning, data mining, information and network security, MANETs, routing protocols

and blockchain. He published many peer-reviewed research papers in recognised international

journals and conferences. Moreover, he acts as a reviewer for a number of journals in his field.

Mohammed Abu Alhawa is a Master student at the Department of Computer Science at Al-Quds

University in Jerusalem. He received his BSc in Information Technology from Al-Quds Open

University in 2010. Currently, he is working as a Lecturer, Network Administrator and

Professional Diploma Coordinator at Al-Quds Open University. His research interests include

computer networks, network security, IPv6 security and machine learning.

Raid Zaghal received his PhD in Computer Science from Kent State University in Ohio, USA in

2005 and Master’s in Computer Science from the US University in Washington DC in 1996.

Currently, he is an Assistant Professor, Lecturer and researcher at the Computer Science Dept at

Al-Quds University (since 1996). His research interests are in network theories and protocols’

design, routing protocols, MANETs, cloud computing and mobile applications. In the past

13 years, he has advised more than 20 Master students on a number of research projects in these

fields and published many articles in international conferences and journals.

2 S. Salah et al.

1 Introduction

Operating system (OS) fingerprinting method is the process

of identifying OS which is installed in computer machines

based on signatures or behaviours that are exclusively

generated by it. This method is relevant to network security

because of its relationship to penetration testing, tailoring of

exploits, vulnerability scanning and network inventory.

Thus, determining the OS is useful for different purposes:

1 Identifying OS helps to recognise potential

vulnerabilities that might make the OS exposed to

different attacks.

2 It might help in discovering, managing, controlling and

securing network resources to identify systems that

might be vulnerable to be secured from any possible

attacks (Schwartzenberg, 2010).

3 Identifying OS inside a network provides the system

administrator with the necessary information about any

unpatched or unauthorised machine that might be

connected to the network (Elejla et al., 2017).

4 OS fingerprinting improves the administration process

by giving the administrators a better overview of the

network OS.

5 OS fingerprinting classifications allow the

administrator to monitor and apply policies on OS

types, versions and patch of the machines inside the

network (Matoušek et al., 2014).

Internet protocol (IPv6) has been designed to eventually

replace IPv4 due to the IPv4 problem of addresses

exhaustion. A significant number of IPv6 users increases

daily. Figure 1 shows the percentage of users that access

Google services over IPv6 (Google IPv6 Statistics, 2020). It

is shown that more than 30% of the total number of users

that reached Google servers use IPv6 protocol. IPv4 has

been sufficiently studied in terms of security and network

management by many researchers. OS fingerprinting

proposals coming from the IPv4 traffic are unable to

classify IPv6 due to the structural difference between both

protocols. Differences in the technical implementation of

well-known internet protocols (IP and TCP) make it

possible to identify the OS of a remote host by the generic

characteristics of its TCP and IP protocols’ headers, even in

the absence or lack of application-layer information.

Therefore, various techniques of OS fingerprinting over

IPv4 traffic have been in use for over a decade; however,

IPv6 OS fingerprinting has had comparatively scant

attention in both research community and private sector. In

the authors’ best knowledge, very little work was proposed

to provide the service of IPv6 OS fingerprinting

classification. Moreover, these proposals suffer from low

classification accuracy due to the used non-qualified

features (fingerprints) or being exposed to be blocked by the

network security systems. Some existing techniques have

drawbacks related to negatively affecting the network

performance due to their used probe (induction) packets

(Elejla et al., 2017).

Machine learning is a promising topic that has been

applied in several proposals for the purpose of OS

fingerprinting area such as those cited in Fifield et al.

(2015), Ordorica (2017) and Schwartzenberg (2010) and it

is proven to be an effective method for classifications.

Machine learning provides computers the ability to learn the

behaviours without being explicitly programmed

(configured). Moreover, the human role-based system

cannot accurately cover (learn) all the scenarios and

behaviours that might exist. However, machine learning can

learn from the input data to build a classification model that

accurately classifies any future data (Al-Shehari and

Shahzad, 2014). Also, it can be retrained when fingerprints

are updated or changed. Besides, despite the fact that the

number of mobile devices is increased daily and reached

7.3 billion devices worldwide (https://www.statista.com/), a

few of the exiting tools consider OS fingerprinting for

mobile OSes such as Android and iOS. The generic

methodology mainly depends on a set of features that will

be extracted from the IPv6 packets to be fed to the machine

learning algorithm. The chosen features can be used as a

predefined and reference set of features for classifying OSes

using different methods.

Figure 1 The percentage of internet users that access Google

services over IPv6 (see online version for colours)

This paper proposes a novel approach to identify IPv6 OS

fingerprinting based on IPv6 traffic that is generated from

the end-user devices. The main contribution of this work is

three-fold:

1 Unlike other OS fingerprint proposals that mainly

depend on TCP and IP generic features for detecting

the OS, this work adds other features to improve the

detection accuracy.

2 The scope of this work is extended beyond the

classification of OSes that are installed in desktop and

laptop (such as Windows and Linux), it also considers

OSes that are installed in mobiles and tablets (such as

Android and iOS).

3 Since IPv6 suffers from lack of such datasets that can

be used for OS fingerprinting purposes, due to privacy

issue of the IPv6 information (such as IPv6 address and

prefix), in this work a newly-created dataset was used

and will be available for other researchers who conduct

relevant works.

 Desktop and mobile operating system fingerprinting based on IPv6 protocol using machine learning algorithms 3

Besides the introduction section, this paper contains the

following sections. A review of the related work is

presented in Section 2. Section 3 details the proposed

methodology. The dataset and the preprocessing steps are

summarised in Section 4. The evaluation measures along

with the experimental results are presented in Section 5.

Finally, in Section 6, we conclude this research work and

shed light to some future works.

2 Related work

OS fingerprinting techniques are divided into two

categories: passive and active. The passive techniques are

silent techniques that depend on capturing and analysing the

normally generated traffic from the hosts. This traffic can be

any request or response packets such as the SYN or

SYN/ACK packets that use the TCP handshake mechanism.

These techniques do not probe the target host to generate

the needed traffic. Therefore, they might not find all the

necessary packets that are needed for identifying the OS

under consideration. Besides, they do not add any extra

overload to the network and they perform the detection

faster than the active mechanisms because they do not wait

for the hosts’ responses. On the other hand, the active OS

fingerprinting techniques use probes packets that are

designed to induce the machines to reply with specific

responses. They have the disadvantage that this process

triggers the OS to generate the needed traffic which might

be noisy to the network. Moreover, this traffic is exposed to

be blocked from the network firewall or intrusion detection

system (IDS) which might negatively affect their accuracy

(Elejla et al., 2017; Aksoy et al., 2017).

Both active and passive techniques use values from the

packets to be compared against a set of rules or models to

determine the generating OS. These values are called

discriminating features that are extracted from the traffic

layers headers (Nerakis, 2006). These features are

considered the key factor that is used to build the

classification model. OS fingerprinting classification

depends on the assumption that each OS has different values

for some of these features. For example, Windows 7 assigns

a value of 128 to time to live (TTL), unlike Linux Red Hat 9

chooses the value of 64 (Siby, 2014).

IPv4 fingerprinting tools work well with IPv4 networks

as they are proposed for such tasks. However, they should

adapt their used mechanisms to support IPv6 traffic. Some

IPv4 fingerprint tools that do not depend on the network

layers (other layers fields) might support IPv6 traffic with

slight modifications. Therefore, IPv4 OS fingerprinting tool

cannot be directly applied to IPv6 due to the changes

between the two protocols. To our best exploration, few of

the exiting tools have supported OS fingerprinting using

IPv6 protocol. Next, we summarise the most relevant works.

Some research efforts have paid attention to OS

fingerprinting problem in IPv6 protocol. These efforts are

either upgraded versions from IPv4 tools to support IPv6

protocol by considering the new IPv6 features, or

exclusively proposed tools for IPv6 network. These

proposals are organised into active and passive techniques

based on the classification mechanisms they adopted. Elejla

et al. (2017), Nerakis (2006), Schwartzenberg (2010) and

Stopforth (2007) have provided a good summary of IPv6

OS fingerprinting tools and explained their main advantages

and disadvantages.

NMAP (Lyon, 2009) is an active OS fingerprinting tool

that uses 18 probe packets (TCP, UDP, ICMP) that support

IPv6 user traffic and the hosts’ responses are compared to

the NMAP database of OSes signatures and the closest

match is chosen. SinFP (Auffret, 2010) is a mix of active

and passive tools that send three TCP probe packets with

sharable signatures database and compare the results. In

addition to the drawbacks of NAMP, this tool has high

inaccuracy of OS detection and it does not support mobile

OS fingerprint classification. These tools might be

misclassified as attack activities due to their probe packets;

they negatively affect the network availability, they depend

on a small database of IPv6 traffic, they do not support

auto-detection of IPv6 mobile OS fingerprint classification

and they have low accuracy (Elejla et al., 2017). And

finally, they cannot determine the OS unless there is at least

one open port in the host machine (Matoušek et al., 2014).

Beck et al. (2007) proposed a tool called osfinger6; it

has built-in OS fingerprint active mechanisms for IPv6

neighbour discovery protocol (NDP) that use 156 probe

packets (forged NS). Based on the observations of the OSes

responses, a decision tree of the available OSes is built. This

tool does not support the recent changes of IPv6 extension

headers, it does not support mobile OS fingerprint

classification, it depends only on the response of the

ICMPv6 NS packets and it was mainly designed for small

testbed used for validating the tool itself.

P0f (Zalewski, 2012) is a passive tool that analyses nine

TCP features. It extracts header information from TCP

packets to compare them with a database of signatures for

OS classification. Despite that it can detect traffic behind

firewalls and network address translation (NAT) systems,

this tool does not support auto-detection of IPv6 and mobile

OS fingerprint classification and most of the newer OSes

cannot be classified at the version level.

Fifield et al. (2015) proposed an active tool that uses

154 crafted probe packets for large datasets. When the

intended hosts respond, those response packets will be

analysed for features extraction. Ordorica (2017) is a

passive tool that uses six features. These features are fed

into the neural network and random forest classifiers. Since,

the number of used features is very small, this tool does not

support mobile OS fingerprint classification and does not

use non-qualified features such as transport layer. The

passive technique has not been sufficiently studied in IPv6

as only p0f (Zalewski, 2012) and Ordorica that have used

this technique up to this time.

In summary, most of the existing tools suffer from

several technical issues such as they might be misclassified

as attack activities due to their probe packets, some of them

negatively affect the network availability, others depend on

a small database of IPv6 traffic and some others do not

4 S. Salah et al.

support auto-detection of IPv6 OSes mobile OS fingerprint

classification. Furthermore, some of them have low

detection accuracy and cannot determine the OS unless

some TCP port configurations are preconfigured on the host

machine.

3 Methodology

The methodology of the proposed mechanism is designed to

combine two different steps to achieve the research goals. In

the first step, an IPv6 user traffic is captured, collected,

processed and stored in a database. The second step is

responsible for training and validating the machine learning

algorithm to build a classification model. The classification

accuracy, precision, recall and F-score will be used as the

metrices to evaluate the goodness of the built model. In

Figure 2 shows the details of the architecture of the

proposed methodology.

Figure 2 The proposed methodology which was followed to

achieve the main objective of this work (see online

version for colours)

As shown in Figure 2, the methodology starts by capturing

the traffic, then it keeps only traffic belonging to IPv6.

Next, the traffic is prepared by extracting and selecting the

best set of features then splitting the dataset into training

and testing parts. The training part will be fed to the

machine learning algorithm to be trained on them and build

a classification model. The model is evaluated on the testing

part to calculate its accuracy and be retrained until a

satisfying accuracy is achieved. The proposed methodology

steps are explained in detail in the following subsections.

3.1 Network traffic capturing

The role of the passive OS classification is to monitor the

whole traffic of the network without affecting any of the

network nodes. The proposed methodology aims to build a

learning-based model to classify OSes in the network based

on their generated traffic. Therefore, the methodology starts

by capturing the network traffic needed for the

classification. This stage is designed to capture the network

traffic and prepare it to be in a suitable format as well as

free of noisy traffic. The output of the stage is a PCAP

(packet capture) file of packets that are sent or received by

any of the network nodes.

3.2 IPv6 traffic filtration

Filtering traffic is an important step due to the processing

complexity that can be added by the unneeded packets.

Moreover, including such packets might confuse the applied

machine learning algorithm and leads a decrease in the

classification ability. Since this research interest is focusing

on IPv6 network, IPv4 packets are filtered out from the

network traffic. The output of this stage is a PCAP file of

IPv6 packets that will be fed as inputs to the next stage.

3.3 Features extraction

The function of this stage is to extract the needed

discriminating features from the received PCAP file. These

features are chosen as carrying differentiative information

based on the author’s domain knowledge of the field,

studying relevant works and conducting empirical

experiments. The chosen features are selected based on

justifications of their selection and are claimed to contribute

to accurately classifying the OSes. The output of this stage

is a new set of features that have been extracted and derived

from the traffic. Each of them has different values in each

OS. To this research, we assume some header fields

to be potential features for IPv6 OSes fingerprinting

classification. These features will be inspired by different

sources such as related works, dataset investigation, the

author’s domain knowledge and empirical experiments.

These potential features are assumed to carry unique values

for each generation of the OS. Table 2 shows the set of the

discriminative features that are assumed to accurately

differentiate the behaviour of each OS.

3.4 Features selection

This stage is the post-stage of building the classification

model using the machine learning algorithm. Although each

feature has been chosen based on a reasonable justification

and assumption, some of them might be redundant or not

strongly related to the classification process. Therefore, the

 Desktop and mobile operating system fingerprinting based on IPv6 protocol using machine learning algorithms 5

features need to be evaluated and only the most contributed

features to the classification will be selected. This stage

aims to unselect any non-contributed features to avoid extra

processing overhead or any packet misclassification.

Moreover, the feature selection helps to reduce the training

times that are needed by the machine learning algorithm to

build the model. To choose the best features that can

distinguish OSes, a feature ranking algorithm was applied to

the dataset. Features that get the highest-ranking score will

be selected and extracted from the traffic for further

processing. The traffic will be prepared and represented

only with these features and fed as inputs to the next stage.

3.5 Split the dataset

This stage is needed to prepare the training and testing

datasets for the algorithm. The classification process

requires two separate datasets: one for training and one for

testing. The splitting mechanism splits the dataset into two

parts: one part of the data to train the model (training

dataset) then uses a different part (testing datasets) to

evaluate the accuracy of the trained model. Given the large

size dataset, it is randomly split into the two parts: 80% of

the packets were used in training and 20% were used for

testing, while maintaining the original class distribution in

both the parts.

3.6 Applying machine learning algorithms

In this stage, a machine learning algorithm is chosen to be

applied to the dataset to be trained on the available OSes

data. The cross-validation testing mechanism is used by

training the algorithm on 80% of the dataset. Next, a testing

phase was done for their trained models on the rest of the

dataset (20%). The process chose different 20% from the

dataset for testing and the rest (80%) was chosen for

training. This stage aims at proving that the chosen features

can differentiate between the different OSes. The training

and testing processes will continue until a trustworthy

classification model is built. Also, parameter tuning was

applied to get the best possible model in terms of

classification accuracy and the other evaluation metrics.

This stage output is a trustworthy trained model that can

operate online to classify the OSes in the network.

4 Dataset: data collection and processing

As previously mentioned, a dataset is a core need to develop

passive OS fingerprinting techniques. OS fingerprinting

techniques use the datasets for different goals like:

1 investigating the traffic to choose the features

(fingerprints) that differentiate an OS from others

2 building, evaluating and conducting a comparison

amongst the different models.

However, IPv6 suffers from a lack of such datasets that can

be used for OS fingerprinting purposes. The reason behind

this lack is linked with a privacy issue of the IPv6

information (such as IPv6 address and prefix). This

information might be used by the attacker and expose the

used network to outside attacks. Some researchers

(Richardson et al., 2010) suggested the use of encryption or

mapping techniques to solve the security breaches of using

IPV6 dataset, but these techniques are very limited in scope

and scalability.

Figure 3 The network topology used for network traffic

collection (see online version for colours)

There is no existing benchmark datasets or well-known

features that can be considered as a reference to all IPv6 OS

fingerprint techniques. Nevertheless, we created a dataset to

achieve the purpose of this work and to select potential

features that might be used as fingerprints. To create the

dataset to work with, we implemented a network topology

at the department computer labs. The topology is shown in

Figure 3. During the data collection process, we adhered to

the five specifications that have been suggested by Sperotto

et al. (2010) to have a reliable and good dataset. We

considered the following specifications when collecting the

network traffic:

1 the dataset should be real and reflects the actual

circumstance of the OSes

2 the dataset traffic should be diverse and includes all the

possible scenarios of the traffic

3 the dataset records should be fully and correctly

labelled

4 the dataset should be balanced between the various

OSes under consideration

5 the features should be relevant and represent the

differences between the OSes.

To fulfil these requirements, the network traffic has been

collected using Wireshark sniffing tool (Nath, 2015) for a

period of three months (10/1/2020 to 9/4/2020). This traffic

was captured from a real network to satisfy the first

requirement to have a reliable dataset. Also, the capturing

6 S. Salah et al.

period has been chosen long enough to ensure that the

different network traffic scenarios have been included.

Moreover, to ensure the diversity of the scenarios, the

collection was done at different times with different users

and applications. The network has been created and

configured with 62 devices with different OSes that are

connected using a switch. The switch is connected to the

rest of the university campus intranet with internet access.

Each of the devices has preconfigured with a known IPv6

address to be used later for the data labelling process. The

diversity of the used OSes supports and emphasises the

second requirement of a good dataset. Table 1 shows a

description of the collected traffic in terms of the number of

devices and the number of captured packets.

Table 1 The software specifications of the end-user devices

that relate to the network topology

Type of OS OS version
of

devices

of

packets

Windows 10 12 108,396

Windows 7 9 108,562

Kali GNOME 3.30.2 5 36,003

Mac OS X El Capitan 10.11 5 27,031

Ubuntu 18.4 5 36,305

iOS Various versions 15 43,596

Android Various versions 11 40,107

One of the devices has been set to promiscuous mode to be

used as a master device to collect other devices’ traffic. The

switch port of this device is configured with a mirror port

mode. This mode forces the switch to collect the device’s

traffic and sends a copy of any packet that has been sent or

received by other devices to the promiscuous mode device.

The Wireshark has been configured to filter out IPv4

traffic and keep only IPv6 traffic which is the scope of this

research. The collected traffic is exported as a CSV file for

further processing.

The CSV file is exported with the specified potential

features which are expected to contribute to the OS

classification process. The potential features are assumed to

carry a unique value for each generating OS. The chosen

features are selected based on justifications of their

selection and are claimed to contribute to the process of

classifying the OSes accurately. Table 2 shows the

discriminative features (fingerprints) that are assumed to

accurately differentiate the behaviour of each OS.

It is worth noting that, each of the potential features has

been used in IPv4 OS fingerprinting using its similar field

values. In addition, each of them has been suggested or used

by research proposals for IPv6 OS fingerprinting purposes.

For example, ICMPv4 has been used for OS fingerprinting

in many IPv4 OS fingerprinting research such as Arkin

et al. (2003), Taleck (2004), Jiang et al. (2003) and Arkin

(2000). Moreover, ICMPv6 has been already used as probe

packets in active IPv6 OS fingerprinting techniques (Fifield

et al., 2015; Beck et al., 2007; Eckstein and Atlasis, 2011).

Therefore, ICMPv6 was used to extract some potential

features from it. Moreover, The IPv6 source address is used

as the criteria to label the traffic. Knowing the IPv6 source

address determines the OS that generates the packets. A

new column called OS is added to the CSV file to include

the OS of each packet. The process of labelling the records

satisfies the third condition of reliable dataset requirements.

5 Experimental results and discussion

5.1 Evaluation measures

Several generic evaluation measures are used to evaluate the

machine learning algorithms. In this work, we focus on the

most common ones, specifically we consider accuracy,

precision, recall, F-score and training time. The first three

measures can be computed using the confusion matrix as

shown in Figure 4. Referring to this figure:

• True positive (TP) is defined as the number of correct

predictions, i.e., positive class correctly identified as

positive.

• False negative (FN) is the number of incorrect

predictions, i.e., positive class incorrectly identified as

negative.

• False positive (FP) is the number of incorrect

predictions, i.e., negative class incorrectly identified as

positive.

• True negative (TN) is the number of correct predictions,

i.e., negative class correctly identified as negative.

The training time is the number of seconds needed by the

algorithm for training on the training dataset to build the

classification model and the F-score is the weighted

harmonic mean of precision and recall. It can be represented

mathematically as:

- 2 () ()F score recall precision recall precision= +

Kaggle Data Science Platform (https://www.kaggle.com)

was used to further preprocess the data. A new Kaggle

kernel has been created to write and apply python scripts to

the data. The CSV file is uploaded and stored in the kernel.

By plotting the histogram of the available OSes records, the

number of OS is not balanced as shown in Figure 5. To

balance the dataset, resampling techniques up_sample is

used to have a balanced number of packets for each OS. The

resampling techniques randomly duplicate packets

belonging to OSes with smaller values to have the same

number of packets to reach the max number of packets

belonging to an OS with highest value. By investigating the

OSes, Windows 10 has the highest number of packets.

Therefore, other OSes packets are resampled to have the

same number of packets to meet this requirement.

 Desktop and mobile operating system fingerprinting based on IPv6 protocol using machine learning algorithms 7

Table 2 The potential set of discriminative features (fingerprints)

Feature Justification Suggested by

Protocol Helps to identify packet protocol types.

Length Similar to IPv4 total length IPv4 OS fingerprinting such as Arkin et al.

(2003), Lippmann et al. (2003) and Schwartzenberg (2010)

Eckstein and Atlasis (2011), Fifield et al.

(2015) and Nerakis (2006)

Hop Limit Similar to IPv4 TTL IPv4 OS fingerprinting such as Arkin et al. (2003),

Auffret (2010), Beck et al. (2007), Lippmann et al. (2003) and

Schwartzenberg (2010)

Auffret (2010), Eckstein and Atlasis

(2011), Fifield et al. (2015) and Nerakis

(2006)

Traffic class Similar to IPv4 Type of Service IPv4 OS fingerprinting such as Arkin

(2000), Arkin et al. (2003), Auffret (2010), Lippmann et al. (2003) and

Nerakis (2006)

Eckstein and Atlasis (2011), Fifield et al.

(2015) and Nerakis (2006)

Payload length Similar to IPv4 payload length IPv4 OS fingerprinting such as Arkin et al.

(2003), Lippmann et al. (2003) and Schwartzenberg (2010)

Eckstein and Atlasis (2011), Fifield et al.

(2015) and Nerakis (2006)

Flow label Similar to IPv4 ident. field IPv4 OS fingerprinting such as Arkin (2000),

Arkin et al. (2003), Auffret (2010) and Taleck (2004)

Eckstein and Atlasis (2011), Fifield et al.

(2015), Nerakis (2006), Schwartzenberg

(2010) and Stopforth (2007)

TCP Window

size

Has a unique value for each OS including mobile OS

(Nerakis, 2006; Chen et al., 2014).

IPv4 OS fingerprinting such as Aksoy et al. (2017), Al-Shehari and

Shahzad (2014), Auffret (2010) and Lippmann et al. (2003)

Eckstein and Atlasis (2011), Fifield et al.

(2015), Lyon (2009) and Nerakis (2006)

TCP flags IPv4 OS fingerprinting such as Aksoy and Gunes (2016), Auffret (2010),

Chen et al. (2014) and Matoušek et al. (2014)

Fifield et al. (2015), Gagnon and

Esfandiari (2011) and Lyon (2009)

TCP options IPv4 OS fingerprinting such as Aksoy and Gunes (2016) Auffret (2010),

Brinley et al. (1960) and Chen et al. (2014)

Fifield et al. (2015) and Lyon (2009)

TCP options

length

IPv4 OS fingerprinting such as Aksoy and Gunes (2016), Auffret (2010),

Brinley et al. (1960) and Chen et al. (2014)

Fifield et al. (2015) and Lyon (2009)

TCP initial

sequence number

IPv4 OS fingerprinting such as Prigent et al. (2010) and Schwartzenberg

(2010) and Taleck (2004)

Fifield et al. (2015) and Lyon, 2009)

TCP Window

scale

IPv4 OS fingerprinting such as Aksoy and Gunes (2016), Auffret (2010),

Brinley et al. (1960) and Chen et al. (2014)

Fifield et al. (2015) and Lyon (2009)

TCP max

segment size

IPv4 OS fingerprinting such as Aksoy and Gunes (2016), Auffret (2010),

Brinley et al. (1960) and Chen et al. (2014)
Fifield et al. (2015) and Lyon (2009)

HTTP user-agent Browsers include some information inside the user-agent field that helps

in OS classification (Anderson and McGrew, 2017)

ICMPv6 type Similar to ICMPv4 type IPv4 OS fingerprinting such as Arkin (2000),

Arkin et al. (2003), Jiang et al. (2003) and Taleck (2004)

Eckstein and Atlasis (2011), Fifield et al.

(2015), Beck et al. (2007) and Nerakis

(2006)

ICMPv6

identifier

Similar to ICMPv4 identifier IPv4 OS fingerprinting such as Arkin

(2000), Arkin et al. (2003), Jiang et al. (2003) and Taleck (2004)

Eckstein and Atlasis (2011) and Nerakis

(2006)

ICMPv6

sequence

Similar to ICMPv4 sequence IPv4 OS fingerprinting such as Arkin

(2000), Arkin et al. (2003), Jiang et al. (2003) and Taleck (2004)

Eckstein and Atlasis (2011) and Nerakis

(2006)

Delta time Used in IPv4 OS fingerprinting (Boukhtouta et al. (2013)

DHCPv6

Lifetime

Similar to DHCPv4 Lifetime IPv4 OS fingerprinting

(Kollmann, 2007; Zalewski, 2012)

Kollmann (2007) and Ordorica (2017)

DHCPv6 vendor

class

Similar to DHCPv4 Vendor Class IPv4 OS fingerprinting

(Kollmann, 2007; Zalewski, 2012)

Kollmann (2007) and Ordorica (2017)

DHCPv6 client

identifier

Similar to the DHCPv4 Client Identifier IPv4 OS fingerprinting

(Kollmann, 2007; Zalewski, 2012)

Kollmann (2007) and Ordorica (2017)

DHCPv6 options

length

Similar to DHCPv4 options length IPv4 OS fingerprinting

(Kollmann, 2007; Zalewski, 2012)

Kollmann (2007) and Ordorica (2017)

DHCPv6 options

type

Similar to DHCPv4 options type IPv4 OS fingerprinting

(Kollmann, 2007; Zalewski, 2012)

Kollmann (2007) and Ordorica (2017)

8 S. Salah et al.

Figure 4 The confusion matrix and evaluation measures

(see online version for colours)

Figure 5 A histogram that shows the number of packets of each

OS in original dataset (see online version for colours)

After the resampling process, the dataset has a balanced

number of packets between all the OSes. Figure 6 shows the

histogram plot of the balanced OSes. To this point, the

dataset contains 758,772 packets from different OSes

(108,396 for each OS) which is considered a sufficient

number of packets. Balancing the dataset process satisfied

the fourth condition of reliable dataset requirements.

The non-features columns such as the IPv6 source

address is dropped from the dataset to avoid any irrelevant

feature from affecting the process of building the OS

classification, i.e., keeping such kind of features might give

a biased result where the model will be highly dependent on

them as they uniquely identify each packet. For example,

the IPv6 source address identifies its packets. However, the

IPv6 is not a feature where it can be changed in another

scenario or network and, in this case, the model will not

work probably (Elejla et al., 2018).

Some of the features are available for all IPv6 packets

such as flow label and traffic class. Some others are only

available in a special kind of IPv6 packets such as: TCP

flags which only exist in TCP packets and ICMPv6 which

only exists in ICMPv6 packets. These features’ values will

be empty for other packets types. For example, ICMPv6

packets will have empty values in TCP packets as well TCP

Flags will have empty values in ICMPv6 packets.

Figure 6 A histogram that shows the number of packets of each

OS in the balanced dataset (see online version for

colours)

Having missing values mislead the process of building the

model and add an extra overhead to classification process.

Moreover, some classification and features ranking

techniques do not accept missing values within the dataset

during the process of building the model. In addition, these

missing values negatively affect the process and produce a

biased model (Ahmadi et al., 2019). To avoid replacing the

missing value with real value (such as the most frequent

values) or dropping the whole packet that might negatively

affect the building process, the missing values were

replaced by (–1) as an indicator that the values were missing

(Fifield et al., 2015).

5.2 Features ranking

The features have been chosen based on assumptions about

their contribution to the OS classification. To evaluate the

feature’s contribution and relation to the OS, features

ranking technique is applied to the dataset to choose the

most related features. These chosen features will be selected

and others will be excluded from the dataset.

Feature ranking algorithms need the datasets to contain

numeric values only. However, some features such as

ICMPv6 type contain categorical values. These non-

numeric features need to be converted and mapped to

numeric values. To do that, the label encoder class from

sklearn library is imported. The fit_transform function

converts each unique value of the object features to a unique

number. Also, a random forest feature importance

algorithm is used to choose the best highly related features.

Random forest feature importance algorithm is chosen due

to its popularity, good accuracy, robustness and ease of use.

Random forest feature importance gives each feature a

ranking value that represents its importance in classifying

the classes. Table 3 shows the given ranking value of each

 Desktop and mobile operating system fingerprinting based on IPv6 protocol using machine learning algorithms 9

feature as an output of the random forest feature

importance.

Table 3 The ranking values of the selected features as

generated by the random forest feature importance

algorithm

Feature Rank value

1 Flow label 18.0733

2 Length 17.34066

3 Hop limit 12.90306

4 Payload length 12.45772

5 ICMPv6 identifier 11.84691

6 Delta time 10.25097

7 ICMPv6 type 4.513342

8 ICMPv6 sequence 4.085161

9 Protocol 3.780252

10 DHCPv6 client identifier 1.382102

11 DHCPv6 lifetime 0.9290888

12 DHCPv6 options length 0.798176

13 DHCPv6 options type 0.5888674

14 DHCPv6 vendor class 0.4792899

15 TCP flags 0.1966203

16 TCP Window size 0.1492546

17 TCP initial sequence number 0.1461586

18 Traffic class 0.0629026

19 TCP options 0.0047998

20 TCP options length 0.0046869

21 TCP max segment size 0.0038159

22 TCP Window scale 0.0028445

23 HTTP user-agent 9.92E-06

Features that achieve a ranking value > 1 are selected to

represent the dataset for the classification process. These

features are only kept while the others are dropped from the

dataset. The selected features are: flow label, length, hop

limit, payload length, ICMPv6 identifier, delta time,

ICMPv6 type, ICMPv6 Sequence, Protocol and DHCPv6

client identifier. By selecting these highly relevant features,

the fifth requirement of a good dataset is satisfied.

5.3 Applying machine learning algorithms

The common machine learning algorithms were

implemented with Python with the help of a library called

sklearn. Machine learning algorithms in this library divide

the dataset into four parts: the training dataset (the features

and their labels) and the validation dataset (the features and

their labels). These parts are named x_train, x_valid,

y_train, y_valid. x_train and x_valid are the training and

testing features without labeling, respectively. y_train and

y_valid are the labels for training and testing features,

respectively. The x and y are assigned to the train_test_split

function to be split into the four datasets x_train, x_valid,

y_train and y_valid. The chosen splitting factor is the most

popularly used by the literates for large datasets which 80%

training and 20% testing (Richardson et al., 2010). The

dataset is split with assigning the shuffle option the Boolean

value ‘true’ to avoid data overfitting problems.

y_train and y_valid contain categorical data which is the

name of the OS. This data needs to be converted to numeric

values where some of the machine learning algorithms do

not accept the categorical label. To convert them to

numeric, the fit_transform function is used again.

5.4 Evaluation measures results

Several machine learning algorithms have been applied to

the dataset after preparing them. These algorithms are

decision tree (DT), Gaussian Naïve Bayes (GNB), support

vector machine (SVM), K nearest neighbours (KNN) and

random forest (RF). They were chosen because they are

considered as the most common algorithms. The

classification accuracy, recall, precision and F-score are

calculated using accuracy_score, recall_score, precision

score and F-score functions, respectively, which are

available in sklearn.metrics library. The training time is

calculated by subtracting time after the training ends from

the time before the training starts.

Each algorithm was applied to the full dataset with the

ten selected features (see Table 3). Each algorithm has been

applied with its default parameter without any parameter

tuning. The evaluation metrics are calculated and their

values are summarised in Table 4.

Table 4 The achieved evaluation metrics of the selected

machine learning algorithms

Algorithm accuracy recall precision F-score
Training

time (sec)

DT 0.99823 0.99823 0.99823 0.99823 1.966

GNB 0.759 0.7591 0.81617 0.7207 0.1988

SVM 0.81086 0.811 0.827 0.807 7764.32

KNN 0.99692 0.99692 0.99692 0.99692 7.8494

RF 0.99841 0.99841 0.99841 0.99841 70.94878

Figure 7 shows a graphical representation of these results.

KNN, RF and DT achieve high accuracy of up to 99%.

SVM achieves a quite high accuracy of up to 81%. GNB

achieves the lowest accuracy up to 75%. These achieved

accuracies prove the efficiency of the potential features that

have been suggested for the purpose of this work.

Moreover, KNN, RF and DT achieve the best Recall,

Precision and F-score which are almost the same as the

achieved accuracy. SVM provides almost the same good

results in terms of accuracy, recall, precision and F-score

which proved the robustness of the classification model.

GNB achieves 0.75 recall larger than precision (0.81) due to

the high number of FN records. Also, the F-score is lower

than both the recall and precision which proved that FP and

FN are comparatively high. These bad results achieved by

GNB is due to its simplicity in classifying the records. GNB

depends on the elementary Bayes’ theorem. It greatly

10 S. Salah et al.

simplifies learning by assuming that features are not

dependent given the class variable.

Figure 7 The values of the evaluation metrics (accuracy, recall,

precision, F-score and training time) of the machine

learning algorithms (see online version for colours)

Although KNN, RF and DT provide the best results in terms

of the evaluation metrics, they have varied results in terms

of training time. DT needed less than a second to finish its

training which is the smallest training time compared to

KNN and RF. KNN took around eight seconds and RF took

around 70 seconds.

The output of the confusion matrix of each algorithm is

shown in Figure 8. It shows the number of correctly and

incorrectly classified packets for every OS. All algorithms

(except GNB and SVM) successfully classified most of the

OSes packets. For example, DT correctly classified 21,791

out of 21,864, 21,465 out of 21,509, 21,674 out of 21,682,

21,850 out of 21,870, 21,545 out of 21,575, 21,528 out of

21,562 and 21,667 out of 21,693 of Win7, Win10, Mac OS,

Ubuntu, Kali, Android and iOS, respectively. DT

misclassified 73, 44, 8, 20, 30, 34 and 26 packets of the

considered OSes, respectively.

However, GNB has the worst result among others in

classifying the OSes. It successfully classified 21,270 out of

21,864, 21,037 out of 21,509, 17,240 out of 21,682, 1,506

out of 21,870, 20,419 out of 21,575, 14,192 out of 21,562

and 21,454 out of 21,693 of Win7, Win10, Mac OS,

Ubuntu, Kali, Android and iOS, respectively. It failed to

classify most of the packets belonging to Ubuntu correctly.

This failure return to the simplicity in dealing with features

during the classification.

Figure 8 The output of the confusion matrix of each of the considered machine learning algorithms (see online version for colours)

(a) (b) (c)

(d) (e)

Notes: (a) Decision tree, (b) Gaussian Naïve Bayes, (c) support vector machine, (d) K-nearest neighbour and (e) random forest.

 Desktop and mobile operating system fingerprinting based on IPv6 protocol using machine learning algorithms 11

6 Conclusions and future work

This paper proposed a new machine-learning based

approach to identify IPv6 OS fingerprinting. This work

considered the addition of fingerprint features to improve

the detection accuracy and the scope of this work is

extended beyond the classification of OSes which are

installed in desktops and laptops, it also considered OSes

that are installed in mobiles and tablets. In addition, a new

dataset was created and will be available for the research

community. The experimental results proved the efficiency

of the proposed methodology to classify OSes based on

IPv6 traffic. The selected set of features are discriminative

enough to differentiate between the various OSes. The

results obtained by using the Kaggle platform have shown

that the highest accuracy, recall, precision and F-score are

achieved by DT, followed by KNN and RF algorithms,

respectively with more than 99%. Then comes the SVM

with an average of 81%. And finally, the lowest

performance refers to the GNB with an average of 75%.

Regarding the training time, it is shown that the GNB

has the smallest training time interval compared to the rest

of the algorithms. Considering all these evaluation matrices,

we conclude that DT is the best and fastest algorithm that

can achieve the best reliable model.

Compared to other works, the achieved accuracy

obtained by the DT, KNN and RF outperformed the same

measures cited in Ordorica (2017) that has an accuracy of

up 93.2%, which means that the overall enhancement is

6.0% increase in accuracy.

References

Ahmadi, S.S., Rashad, S. and Elgazzar, H. (2019) ‘Efficient

feature selection for intrusion detection systems’, IEEE

10th Annual Ubiquitous Computing, Electronics &

Mobile Communication Conference (UEMCON), October,

pp.1029–1034.

Aksoy, A. and Gunes, M.H. (2016) ‘Operating system

classification performance of TCP/IP protocol headers’, IEEE

41st Conference on Local Computer Networks Workshops

(LCN Workshops), November, pp.112–120.

Aksoy, A., Louis, S. and Gunes, M.H. (2017) ‘Operating system

fingerprinting via automated network traffic analysis’, IEEE

Congress on Evolutionary Computation (CEC), June,

pp.2502–2509.

Al-Shehari, T. and Shahzad, F. (2014) ‘Improving operating

system fingerprinting using machine learning techniques’,

International Journal of Computer Theory and Engineering,

Vol. 6, No. 1, p.57.

Anderson, B. and McGrew, D. (2017) ‘OS fingerprinting: new

techniques and a study of information gain and obfuscation’,

in IEEE Conference on Communications and Network

Security (CNS), October, pp.1–9.

Arkin O. (2000) ICMP Usage in Scanning [online] http://ofirarkin.

files.wordpress.com/2008/11/icmp_scanning_v30.pdf

(accessed 18 April 2021).

Arkin, O., Yarochkin, F. and Kydyraliev, M. (2003) The Present

and Future of Xprobe2: The Next Generation of Active

Operating System Fingerprinting, Sys-Security Group.

[online] https://ofirarkin.files.wordpress.com/2008/11/

present_and_future_xprobe2-v10.pdf (accessed 18 April

2021).

Auffret, P. (2010) ‘SinFP, unification of active and passive

operating system fingerprinting. Journal in Computer

Virology, Vol. 6, No. 3, pp.197–205.

Beck, F., Festor, O. and Chrisment, I. (2007) IPv6 Neighbor

Discovery Protocol Based OS Fingerprinting, Technical

Report, RT-0345, INRIA, pp.27 [online] https://hal.inria.fr/

inria-00169990/en/ (accessed 18 April 2021).

Boukhtouta, A., Lakhdari, N.E., Mokhov, S.A. and Debbabi, M.

(2013) ‘Towards Fingerprinting Malicious Traffic’, In

ANT/SEIT, June, Vol. 19, pp.548–555.

Brinley Jr, F.J., Kandel, E.R. and Marshall, W.H. (1960)

‘Potassium outflux from rabbit cortex during spreading

depression’, Journal of Neurophysiology, Vol. 23, No. 3,

pp.246–256.

Chen, Y.C., Liao, Y., Baldi, M., Lee, S.J. and Qiu, L. (2014)

‘OS fingerprinting and tethering detection in mobile

networks’, Proceedings of the 2014 Conference on Internet

Measurement Conference (IMC ‘14), Association for

Computing Machinery, New York, NY, USA, pp.173–180.

Eckstein, C. and Atlasis, A. (2011) OS Fingerprinting with IPv6.

Infosec Reading Room, SANS Institute., Information Security

Reading Room

Elejla, O.E., Anbar, M., Belaton, B. and Alijla, B.O. (2018)

‘Flow-based IDS for ICMPv6-based DDoS attacks detection’,

Arabian Journal for Science and Engineering, Vol. 43,

No. 12, pp.7757–7775.

Elejla, O.E., Belaton, B., Anbar, M. and Alijla, B. O. (2017) ‘IPv6

OS fingerprinting methods’, In International Visual

Informatics Conference, Springer, Cham, November,

pp.661–668.

Fifield, D., Geana, A., MartinGarcia, L., Morbitzer, M. and Tygar,

J.D. (2015) ‘Remote operating system classification over

IPv6’, in Proceedings of the 8th ACM Workshop on Artificial

Intelligence and Security, October, pp.57–67).

Gagnon, F. and Esfandiari, B. (2011) ‘A hybrid approach to

operating system discovery based on diagnosis’, International

Journal of Network Management, Vol. 21, No. 2,

pp.106–119.

Google IPv6 Statistics (2020) [online] https://www.google.com/

intl/en/ipv6/statistics.html/ (accessed 8 October 2020).

Jiang, W-h., Li, W-h. and Du, J. (2003) ‘The application of ICMP

protocol in network scanning’, in Proceedings of the 4th

International Conference on Parallel and Distributed

Computing, Applications and Technologies, IEEE, August,

pp.904–906.

Kollmann, E. (2007) Chatter on the Wire: A Look at DHCP Traffic

[online] http://myweb.cableone.net/xnih/download/chatter-

dhcp.pdf (accessed 8 October 2020).

Lippmann, R., Fried, D., Piwowarski, K. and Streilein, W. (2003)

‘Passive operating system identification from TCP/IP packet

headers’, in Workshop on Data Mining for Computer

Security, November, Vol. 40.

Lyon, G.F. (2009) Nmap Network Scanning: The Official Nmap

Project Guide to Network Discovery and Security Scanning,

Insecure. [online] https://nmap.org/book/ (accessed 18 April

2021).

Matoušek, P., Ryšavý, O., Grégr, M. and Vymlátil, M. (2014)

‘Towards identification of operating systems from the internet

traffic: IPFIX monitoring with fingerprinting and clustering’,

in 5th International Conference on Data Communication

Networking (DCNET), IEEE., August, pp.1–7.

12 S. Salah et al.

Nath, A. (2015) Packet Analysis with Wireshark, Packt Publishing

Ltd., Birmingham, UK.

Nerakis, E. (2006) IPv6 Host Fingerprint, Naval Postgraduate

School Monterey, CA.

Ordorica, A. (2017) Operating System Identification by IPv6

Communication Using Machine Learning Ensembles,

Doctoral dissertation, University of Arkansas).

Prigent, G., Vichot, F. and Harrouet, F. (2010) ‘IpMorph:

fingerprinting spoofing unification’, Journal in Computer

Virology, Vol. 6, No. 4, pp.329–342.

Richardson, D.W., Gribble, S.D. and Kohno, T. (2010) ‘The limits

of automatic OS fingerprint generation’, in Proceedings of the

3rd ACM Workshop on Artificial Intelligence and Security,

October, pp.24–34.

Schwartzenberg, J. (2010) Using Machine Learning Techniques

for Advanced Passive Operating System Fingerprinting,

Master’s thesis, University of Twente.

Siby, S. (2014) Default TTL (Time To Live) Values of Different

OS. [online] https://subinsb.com/default-device-ttl-values/

(accessed 18 April 2021).

Sperotto, A., Schaffrath, G., Sadre, R., Morariu, C., Pras, A. and

Stiller, B. (2010) ‘An overview of IP flow-based intrusion

detection’, IEEE Communications Surveys & Tutorials,

Vol. 12, No. 3, pp.343–356.

Stopforth, R. (2007) Techniques and Countermeasures of TCP/IP

OS Fingerprinting on Linux Systems, Doctoral dissertation.

Taleck, G. (2004) ‘Synscan: Towards Complete TCP/IP

Fingerprinting’, CanSecWest, Vancouver BC, Canada,

pp.1–12.

Zalewski, M. (2012) P0f V3: Passive Fingerprinter [online]

https://lcamtuf.coredump.cx/p0f3/ (accessed 8 October 2020).

