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Abstract: Operating system (OS) fingerprinting tools are essential to network security because 

of their relationship to vulnerability scanning and penetrating testing. Although OS identification 

is traditionally performed by passive or active tools, more contributions have focused on IPv4 

than IPv6. This paper proposes a new methodology based on machine learning algorithms to 

build classification models to identify IPv6 OS fingerprinting using a newly created dataset. 

Unlike other proposals that mainly depend on TCP and IP generic features; this work adds other 

features to improve the detection accuracy. It also considers OSes installed in mobiles (Android 

and iOS). The experimental results have shown that the algorithms achieved high and acceptable 

results in classifying OSes. KNN and DT achieved high accuracy of up to 99%. SVM and GNB 

achieved 81% and 75%, respectively. Moreover, KNN, RF and DT achieved the best recall, 

precision, and f-score with almost the same as the achieved accuracy. 
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1 Introduction 

Operating system (OS) fingerprinting method is the process 

of identifying OS which is installed in computer machines 

based on signatures or behaviours that are exclusively 

generated by it. This method is relevant to network security 

because of its relationship to penetration testing, tailoring of 

exploits, vulnerability scanning and network inventory. 

Thus, determining the OS is useful for different purposes: 

1 Identifying OS helps to recognise potential 

vulnerabilities that might make the OS exposed to 

different attacks. 

2 It might help in discovering, managing, controlling and 

securing network resources to identify systems that 

might be vulnerable to be secured from any possible 

attacks (Schwartzenberg, 2010). 

3 Identifying OS inside a network provides the system 

administrator with the necessary information about any 

unpatched or unauthorised machine that might be 

connected to the network (Elejla et al., 2017). 

4 OS fingerprinting improves the administration process 

by giving the administrators a better overview of the 

network OS. 

5 OS fingerprinting classifications allow the 

administrator to monitor and apply policies on OS 

types, versions and patch of the machines inside the 

network (Matoušek et al., 2014). 

Internet protocol (IPv6) has been designed to eventually 

replace IPv4 due to the IPv4 problem of addresses 

exhaustion. A significant number of IPv6 users increases 

daily. Figure 1 shows the percentage of users that access 

Google services over IPv6 (Google IPv6 Statistics, 2020). It 

is shown that more than 30% of the total number of users 

that reached Google servers use IPv6 protocol. IPv4 has 

been sufficiently studied in terms of security and network 

management by many researchers. OS fingerprinting 

proposals coming from the IPv4 traffic are unable to 

classify IPv6 due to the structural difference between both 

protocols. Differences in the technical implementation of 

well-known internet protocols (IP and TCP) make it 

possible to identify the OS of a remote host by the generic 

characteristics of its TCP and IP protocols’ headers, even in 

the absence or lack of application-layer information. 

Therefore, various techniques of OS fingerprinting over 

IPv4 traffic have been in use for over a decade; however, 

IPv6 OS fingerprinting has had comparatively scant 

attention in both research community and private sector. In 

the authors’ best knowledge, very little work was proposed 

to provide the service of IPv6 OS fingerprinting 

classification. Moreover, these proposals suffer from low 

classification accuracy due to the used non-qualified 

features (fingerprints) or being exposed to be blocked by the 

network security systems. Some existing techniques have 

drawbacks related to negatively affecting the network 

performance due to their used probe (induction) packets 

(Elejla et al., 2017). 

Machine learning is a promising topic that has been 

applied in several proposals for the purpose of OS 

fingerprinting area such as those cited in Fifield et al. 

(2015), Ordorica (2017) and Schwartzenberg (2010) and it 

is proven to be an effective method for classifications. 

Machine learning provides computers the ability to learn the 

behaviours without being explicitly programmed 

(configured). Moreover, the human role-based system 

cannot accurately cover (learn) all the scenarios and 

behaviours that might exist. However, machine learning can 

learn from the input data to build a classification model that 

accurately classifies any future data (Al-Shehari and 

Shahzad, 2014). Also, it can be retrained when fingerprints 

are updated or changed. Besides, despite the fact that the 

number of mobile devices is increased daily and reached  

7.3 billion devices worldwide (https://www.statista.com/), a 

few of the exiting tools consider OS fingerprinting for 

mobile OSes such as Android and iOS. The generic 

methodology mainly depends on a set of features that will 

be extracted from the IPv6 packets to be fed to the machine 

learning algorithm. The chosen features can be used as a 

predefined and reference set of features for classifying OSes 

using different methods. 

Figure 1 The percentage of internet users that access Google 

services over IPv6 (see online version for colours) 

 

 

 

This paper proposes a novel approach to identify IPv6 OS 

fingerprinting based on IPv6 traffic that is generated from 

the end-user devices. The main contribution of this work is 

three-fold: 

1 Unlike other OS fingerprint proposals that mainly 

depend on TCP and IP generic features for detecting 

the OS, this work adds other features to improve the 

detection accuracy. 

2 The scope of this work is extended beyond the 

classification of OSes that are installed in desktop and 

laptop (such as Windows and Linux), it also considers 

OSes that are installed in mobiles and tablets (such as 

Android and iOS). 

3 Since IPv6 suffers from lack of such datasets that can 

be used for OS fingerprinting purposes, due to privacy 

issue of the IPv6 information (such as IPv6 address and 

prefix), in this work a newly-created dataset was used 

and will be available for other researchers who conduct 

relevant works. 
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Besides the introduction section, this paper contains the 

following sections. A review of the related work is 

presented in Section 2. Section 3 details the proposed 

methodology. The dataset and the preprocessing steps are 

summarised in Section 4. The evaluation measures along 

with the experimental results are presented in Section 5. 

Finally, in Section 6, we conclude this research work and 

shed light to some future works. 

2 Related work 

OS fingerprinting techniques are divided into two 

categories: passive and active. The passive techniques are 

silent techniques that depend on capturing and analysing the 

normally generated traffic from the hosts. This traffic can be 

any request or response packets such as the SYN or 

SYN/ACK packets that use the TCP handshake mechanism. 

These techniques do not probe the target host to generate 

the needed traffic. Therefore, they might not find all the 

necessary packets that are needed for identifying the OS 

under consideration. Besides, they do not add any extra 

overload to the network and they perform the detection 

faster than the active mechanisms because they do not wait 

for the hosts’ responses. On the other hand, the active OS 

fingerprinting techniques use probes packets that are 

designed to induce the machines to reply with specific 

responses. They have the disadvantage that this process 

triggers the OS to generate the needed traffic which might 

be noisy to the network. Moreover, this traffic is exposed to 

be blocked from the network firewall or intrusion detection 

system (IDS) which might negatively affect their accuracy 

(Elejla et al., 2017; Aksoy et al., 2017). 

Both active and passive techniques use values from the 

packets to be compared against a set of rules or models to 

determine the generating OS. These values are called 

discriminating features that are extracted from the traffic 

layers headers (Nerakis, 2006). These features are 

considered the key factor that is used to build the 

classification model. OS fingerprinting classification 

depends on the assumption that each OS has different values 

for some of these features. For example, Windows 7 assigns 

a value of 128 to time to live (TTL), unlike Linux Red Hat 9 

chooses the value of 64 (Siby, 2014). 

IPv4 fingerprinting tools work well with IPv4 networks 

as they are proposed for such tasks. However, they should 

adapt their used mechanisms to support IPv6 traffic. Some 

IPv4 fingerprint tools that do not depend on the network 

layers (other layers fields) might support IPv6 traffic with 

slight modifications. Therefore, IPv4 OS fingerprinting tool 

cannot be directly applied to IPv6 due to the changes 

between the two protocols. To our best exploration, few of 

the exiting tools have supported OS fingerprinting using 

IPv6 protocol. Next, we summarise the most relevant works. 

Some research efforts have paid attention to OS 

fingerprinting problem in IPv6 protocol. These efforts are 

either upgraded versions from IPv4 tools to support IPv6 

protocol by considering the new IPv6 features, or 

exclusively proposed tools for IPv6 network. These 

proposals are organised into active and passive techniques 

based on the classification mechanisms they adopted. Elejla 

et al. (2017), Nerakis (2006), Schwartzenberg (2010) and 

Stopforth (2007) have provided a good summary of IPv6 

OS fingerprinting tools and explained their main advantages 

and disadvantages. 

NMAP (Lyon, 2009) is an active OS fingerprinting tool 

that uses 18 probe packets (TCP, UDP, ICMP) that support 

IPv6 user traffic and the hosts’ responses are compared to 

the NMAP database of OSes signatures and the closest 

match is chosen. SinFP (Auffret, 2010) is a mix of active 

and passive tools that send three TCP probe packets with 

sharable signatures database and compare the results. In 

addition to the drawbacks of NAMP, this tool has high 

inaccuracy of OS detection and it does not support mobile 

OS fingerprint classification. These tools might be 

misclassified as attack activities due to their probe packets; 

they negatively affect the network availability, they depend 

on a small database of IPv6 traffic, they do not support 

auto-detection of IPv6 mobile OS fingerprint classification 

and they have low accuracy (Elejla et al., 2017). And 

finally, they cannot determine the OS unless there is at least 

one open port in the host machine (Matoušek et al., 2014). 

Beck et al. (2007) proposed a tool called osfinger6; it 

has built-in OS fingerprint active mechanisms for IPv6 

neighbour discovery protocol (NDP) that use 156 probe 

packets (forged NS). Based on the observations of the OSes 

responses, a decision tree of the available OSes is built. This 

tool does not support the recent changes of IPv6 extension 

headers, it does not support mobile OS fingerprint 

classification, it depends only on the response of the 

ICMPv6 NS packets and it was mainly designed for small 

testbed used for validating the tool itself. 

P0f (Zalewski, 2012) is a passive tool that analyses nine 

TCP features. It extracts header information from TCP 

packets to compare them with a database of signatures for 

OS classification. Despite that it can detect traffic behind 

firewalls and network address translation (NAT) systems, 

this tool does not support auto-detection of IPv6 and mobile 

OS fingerprint classification and most of the newer OSes 

cannot be classified at the version level. 

Fifield et al. (2015) proposed an active tool that uses 

154 crafted probe packets for large datasets. When the 

intended hosts respond, those response packets will be 

analysed for features extraction. Ordorica (2017) is a 

passive tool that uses six features. These features are fed 

into the neural network and random forest classifiers. Since, 

the number of used features is very small, this tool does not 

support mobile OS fingerprint classification and does not 

use non-qualified features such as transport layer. The 

passive technique has not been sufficiently studied in IPv6 

as only p0f (Zalewski, 2012) and Ordorica that have used 

this technique up to this time. 

In summary, most of the existing tools suffer from 

several technical issues such as they might be misclassified 

as attack activities due to their probe packets, some of them 

negatively affect the network availability, others depend on 

a small database of IPv6 traffic and some others do not 
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support auto-detection of IPv6 OSes mobile OS fingerprint 

classification. Furthermore, some of them have low 

detection accuracy and cannot determine the OS unless 

some TCP port configurations are preconfigured on the host 

machine. 

3 Methodology 

The methodology of the proposed mechanism is designed to 

combine two different steps to achieve the research goals. In 

the first step, an IPv6 user traffic is captured, collected, 

processed and stored in a database. The second step is 

responsible for training and validating the machine learning 

algorithm to build a classification model. The classification 

accuracy, precision, recall and F-score will be used as the 

metrices to evaluate the goodness of the built model. In 

Figure 2 shows the details of the architecture of the 

proposed methodology. 

Figure 2 The proposed methodology which was followed to 

achieve the main objective of this work (see online 

version for colours) 
 

  

As shown in Figure 2, the methodology starts by capturing 

the traffic, then it keeps only traffic belonging to IPv6. 

Next, the traffic is prepared by extracting and selecting the 

best set of features then splitting the dataset into training 

and testing parts. The training part will be fed to the 

machine learning algorithm to be trained on them and build 

a classification model. The model is evaluated on the testing 

part to calculate its accuracy and be retrained until a 

satisfying accuracy is achieved. The proposed methodology 

steps are explained in detail in the following subsections. 

3.1 Network traffic capturing 

The role of the passive OS classification is to monitor the 

whole traffic of the network without affecting any of the 

network nodes. The proposed methodology aims to build a 

learning-based model to classify OSes in the network based 

on their generated traffic. Therefore, the methodology starts 

by capturing the network traffic needed for the 

classification. This stage is designed to capture the network 

traffic and prepare it to be in a suitable format as well as 

free of noisy traffic. The output of the stage is a PCAP 

(packet capture) file of packets that are sent or received by 

any of the network nodes. 

3.2 IPv6 traffic filtration 

Filtering traffic is an important step due to the processing 

complexity that can be added by the unneeded packets. 

Moreover, including such packets might confuse the applied 

machine learning algorithm and leads a decrease in the 

classification ability. Since this research interest is focusing 

on IPv6 network, IPv4 packets are filtered out from the 

network traffic. The output of this stage is a PCAP file of 

IPv6 packets that will be fed as inputs to the next stage. 

3.3 Features extraction 

The function of this stage is to extract the needed 

discriminating features from the received PCAP file. These 

features are chosen as carrying differentiative information 

based on the author’s domain knowledge of the field, 

studying relevant works and conducting empirical 

experiments. The chosen features are selected based on 

justifications of their selection and are claimed to contribute 

to accurately classifying the OSes. The output of this stage 

is a new set of features that have been extracted and derived 

from the traffic. Each of them has different values in each 

OS. To this research, we assume some header fields  

to be potential features for IPv6 OSes fingerprinting 

classification. These features will be inspired by different 

sources such as related works, dataset investigation, the 

author’s domain knowledge and empirical experiments. 

These potential features are assumed to carry unique values 

for each generation of the OS. Table 2 shows the set of the 

discriminative features that are assumed to accurately 

differentiate the behaviour of each OS. 

3.4 Features selection 

This stage is the post-stage of building the classification 

model using the machine learning algorithm. Although each 

feature has been chosen based on a reasonable justification 

and assumption, some of them might be redundant or not 

strongly related to the classification process. Therefore, the 



 Desktop and mobile operating system fingerprinting based on IPv6 protocol using machine learning algorithms 5 

features need to be evaluated and only the most contributed 

features to the classification will be selected. This stage 

aims to unselect any non-contributed features to avoid extra 

processing overhead or any packet misclassification. 

Moreover, the feature selection helps to reduce the training 

times that are needed by the machine learning algorithm to 

build the model. To choose the best features that can 

distinguish OSes, a feature ranking algorithm was applied to 

the dataset. Features that get the highest-ranking score will 

be selected and extracted from the traffic for further 

processing. The traffic will be prepared and represented 

only with these features and fed as inputs to the next stage. 

3.5 Split the dataset 

This stage is needed to prepare the training and testing 

datasets for the algorithm. The classification process 

requires two separate datasets: one for training and one for 

testing. The splitting mechanism splits the dataset into two 

parts: one part of the data to train the model (training 

dataset) then uses a different part (testing datasets) to 

evaluate the accuracy of the trained model. Given the large 

size dataset, it is randomly split into the two parts: 80% of 

the packets were used in training and 20% were used for 

testing, while maintaining the original class distribution in 

both the parts. 

3.6 Applying machine learning algorithms 

In this stage, a machine learning algorithm is chosen to be 

applied to the dataset to be trained on the available OSes 

data. The cross-validation testing mechanism is used by 

training the algorithm on 80% of the dataset. Next, a testing 

phase was done for their trained models on the rest of the 

dataset (20%). The process chose different 20% from the 

dataset for testing and the rest (80%) was chosen for 

training. This stage aims at proving that the chosen features 

can differentiate between the different OSes. The training 

and testing processes will continue until a trustworthy 

classification model is built. Also, parameter tuning was 

applied to get the best possible model in terms of 

classification accuracy and the other evaluation metrics. 

This stage output is a trustworthy trained model that can 

operate online to classify the OSes in the network. 

4 Dataset: data collection and processing 

As previously mentioned, a dataset is a core need to develop 

passive OS fingerprinting techniques. OS fingerprinting 

techniques use the datasets for different goals like: 

1 investigating the traffic to choose the features 

(fingerprints) that differentiate an OS from others 

2 building, evaluating and conducting a comparison 

amongst the different models. 

 

However, IPv6 suffers from a lack of such datasets that can 

be used for OS fingerprinting purposes. The reason behind 

this lack is linked with a privacy issue of the IPv6 

information (such as IPv6 address and prefix). This 

information might be used by the attacker and expose the 

used network to outside attacks. Some researchers 

(Richardson et al., 2010) suggested the use of encryption or 

mapping techniques to solve the security breaches of using 

IPV6 dataset, but these techniques are very limited in scope 

and scalability. 

Figure 3 The network topology used for network traffic 

collection (see online version for colours) 
 

  

There is no existing benchmark datasets or well-known 

features that can be considered as a reference to all IPv6 OS 

fingerprint techniques. Nevertheless, we created a dataset to 

achieve the purpose of this work and to select potential 

features that might be used as fingerprints. To create the 

dataset to work with, we implemented a network topology 

at the department computer labs. The topology is shown in 

Figure 3. During the data collection process, we adhered to 

the five specifications that have been suggested by Sperotto 

et al. (2010) to have a reliable and good dataset. We 

considered the following specifications when collecting the 

network traffic: 

1 the dataset should be real and reflects the actual 

circumstance of the OSes 

2 the dataset traffic should be diverse and includes all the 

possible scenarios of the traffic 

3 the dataset records should be fully and correctly 

labelled 

4 the dataset should be balanced between the various 

OSes under consideration 

5 the features should be relevant and represent the 

differences between the OSes. 

To fulfil these requirements, the network traffic has been 

collected using Wireshark sniffing tool (Nath, 2015) for a 

period of three months (10/1/2020 to 9/4/2020). This traffic 

was captured from a real network to satisfy the first 

requirement to have a reliable dataset. Also, the capturing  
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period has been chosen long enough to ensure that the 

different network traffic scenarios have been included. 

Moreover, to ensure the diversity of the scenarios, the 

collection was done at different times with different users 

and applications. The network has been created and 

configured with 62 devices with different OSes that are 

connected using a switch. The switch is connected to the 

rest of the university campus intranet with internet access. 

Each of the devices has preconfigured with a known IPv6 

address to be used later for the data labelling process. The 

diversity of the used OSes supports and emphasises the 

second requirement of a good dataset. Table 1 shows a 

description of the collected traffic in terms of the number of 

devices and the number of captured packets. 

Table 1 The software specifications of the end-user devices 

that relate to the network topology 

Type of OS OS version 
# of 

devices 

# of 

packets 

Windows 10 12 108,396 

Windows 7 9 108,562 

Kali GNOME 3.30.2 5 36,003 

Mac OS X El Capitan 10.11 5 27,031 

Ubuntu 18.4 5 36,305 

iOS Various versions 15 43,596 

Android Various versions 11 40,107 

One of the devices has been set to promiscuous mode to be 

used as a master device to collect other devices’ traffic. The 

switch port of this device is configured with a mirror port 

mode. This mode forces the switch to collect the device’s 

traffic and sends a copy of any packet that has been sent or 

received by other devices to the promiscuous mode device. 

The Wireshark has been configured to filter out IPv4 

traffic and keep only IPv6 traffic which is the scope of this 

research. The collected traffic is exported as a CSV file for 

further processing. 

The CSV file is exported with the specified potential 

features which are expected to contribute to the OS 

classification process. The potential features are assumed to 

carry a unique value for each generating OS. The chosen 

features are selected based on justifications of their 

selection and are claimed to contribute to the process of 

classifying the OSes accurately. Table 2 shows the 

discriminative features (fingerprints) that are assumed to 

accurately differentiate the behaviour of each OS. 

It is worth noting that, each of the potential features has 

been used in IPv4 OS fingerprinting using its similar field 

values. In addition, each of them has been suggested or used 

by research proposals for IPv6 OS fingerprinting purposes. 

For example, ICMPv4 has been used for OS fingerprinting 

in many IPv4 OS fingerprinting research such as Arkin  

et al. (2003), Taleck (2004), Jiang et al. (2003) and Arkin 

(2000). Moreover, ICMPv6 has been already used as probe 

packets in active IPv6 OS fingerprinting techniques (Fifield 

et al., 2015; Beck et al., 2007; Eckstein and Atlasis, 2011). 

Therefore, ICMPv6 was used to extract some potential 

features from it. Moreover, The IPv6 source address is used 

as the criteria to label the traffic. Knowing the IPv6 source 

address determines the OS that generates the packets. A 

new column called OS is added to the CSV file to include 

the OS of each packet. The process of labelling the records 

satisfies the third condition of reliable dataset requirements. 

5 Experimental results and discussion 

5.1 Evaluation measures 

Several generic evaluation measures are used to evaluate the 

machine learning algorithms. In this work, we focus on the 

most common ones, specifically we consider accuracy, 

precision, recall, F-score and training time. The first three 

measures can be computed using the confusion matrix as 

shown in Figure 4. Referring to this figure: 

• True positive (TP) is defined as the number of correct 

predictions, i.e., positive class correctly identified as 

positive. 

• False negative (FN) is the number of incorrect 

predictions, i.e., positive class incorrectly identified as 

negative. 

• False positive (FP) is the number of incorrect 

predictions, i.e., negative class incorrectly identified as 

positive. 

• True negative (TN) is the number of correct predictions, 

i.e., negative class correctly identified as negative. 

The training time is the number of seconds needed by the 

algorithm for training on the training dataset to build the 

classification model and the F-score is the weighted 

harmonic mean of precision and recall. It can be represented 

mathematically as: 

- 2 ( ) ( )F score recall precision recall precision=   +  

Kaggle Data Science Platform (https://www.kaggle.com) 

was used to further preprocess the data. A new Kaggle 

kernel has been created to write and apply python scripts to 

the data. The CSV file is uploaded and stored in the kernel. 

By plotting the histogram of the available OSes records, the 

number of OS is not balanced as shown in Figure 5. To 

balance the dataset, resampling techniques up_sample is 

used to have a balanced number of packets for each OS. The 

resampling techniques randomly duplicate packets 

belonging to OSes with smaller values to have the same 

number of packets to reach the max number of packets 

belonging to an OS with highest value. By investigating the 

OSes, Windows 10 has the highest number of packets. 

Therefore, other OSes packets are resampled to have the 

same number of packets to meet this requirement. 
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Table 2 The potential set of discriminative features (fingerprints) 

Feature Justification Suggested by 

Protocol  Helps to identify packet protocol types.  

Length Similar to IPv4 total length IPv4 OS fingerprinting such as Arkin et al. 

(2003), Lippmann et al. (2003) and Schwartzenberg (2010) 

Eckstein and Atlasis (2011), Fifield et al. 

(2015) and Nerakis (2006) 

Hop Limit Similar to IPv4 TTL IPv4 OS fingerprinting such as Arkin et al. (2003), 

Auffret (2010), Beck et al. (2007), Lippmann et al. (2003) and 

Schwartzenberg (2010) 

Auffret (2010), Eckstein and Atlasis 

(2011), Fifield et al. (2015) and Nerakis 

(2006) 

Traffic class Similar to IPv4 Type of Service IPv4 OS fingerprinting such as Arkin 

(2000), Arkin et al. (2003), Auffret (2010), Lippmann et al. (2003) and 

Nerakis (2006) 

Eckstein and Atlasis (2011), Fifield et al. 

(2015) and Nerakis (2006) 

Payload length Similar to IPv4 payload length IPv4 OS fingerprinting such as Arkin et al. 

(2003), Lippmann et al. (2003) and Schwartzenberg (2010) 

Eckstein and Atlasis (2011), Fifield et al. 

(2015) and Nerakis (2006) 

Flow label Similar to IPv4 ident. field IPv4 OS fingerprinting such as Arkin (2000), 

Arkin et al. (2003), Auffret (2010) and Taleck (2004) 

Eckstein and Atlasis (2011), Fifield et al. 

(2015), Nerakis (2006), Schwartzenberg 

(2010) and Stopforth (2007) 

TCP Window 

size 

Has a unique value for each OS including mobile OS 

(Nerakis, 2006; Chen et al., 2014). 

IPv4 OS fingerprinting such as Aksoy et al. (2017), Al-Shehari and 

Shahzad (2014), Auffret (2010) and Lippmann et al. (2003) 

Eckstein and Atlasis (2011), Fifield et al. 

(2015), Lyon (2009) and Nerakis (2006) 

TCP flags IPv4 OS fingerprinting such as Aksoy and Gunes (2016), Auffret (2010), 

Chen et al. (2014) and Matoušek et al. (2014) 

Fifield et al. (2015), Gagnon and 

Esfandiari (2011) and Lyon (2009) 

TCP options IPv4 OS fingerprinting such as Aksoy and Gunes (2016) Auffret (2010), 

Brinley et al. (1960) and Chen et al. (2014) 

Fifield et al. (2015) and Lyon (2009) 

TCP options 

length 

IPv4 OS fingerprinting such as Aksoy and Gunes (2016), Auffret (2010), 

Brinley et al. (1960) and Chen et al. (2014) 

Fifield et al. (2015) and Lyon (2009) 

TCP initial 

sequence number  

IPv4 OS fingerprinting such as Prigent et al. (2010) and Schwartzenberg 

(2010) and Taleck (2004) 

Fifield et al. (2015) and Lyon, 2009) 

TCP Window 

scale 

IPv4 OS fingerprinting such as Aksoy and Gunes (2016), Auffret (2010), 

Brinley et al. (1960) and Chen et al. (2014) 

Fifield et al. (2015) and Lyon (2009) 

TCP max 

segment size  

IPv4 OS fingerprinting such as Aksoy and Gunes (2016), Auffret (2010), 

Brinley et al. (1960) and Chen et al. (2014) 
Fifield et al. (2015) and Lyon (2009) 

HTTP user-agent  Browsers include some information inside the user-agent field that helps 

in OS classification (Anderson and McGrew, 2017) 

 

ICMPv6 type Similar to ICMPv4 type IPv4 OS fingerprinting such as Arkin (2000), 

Arkin et al. (2003), Jiang et al. (2003) and Taleck (2004) 

Eckstein and Atlasis (2011), Fifield et al. 

(2015), Beck et al. (2007) and Nerakis 

(2006) 

ICMPv6 

identifier 

Similar to ICMPv4 identifier IPv4 OS fingerprinting such as Arkin 

(2000), Arkin et al. (2003), Jiang et al. (2003) and Taleck (2004) 

Eckstein and Atlasis (2011) and Nerakis 

(2006) 

ICMPv6 

sequence 

Similar to ICMPv4 sequence IPv4 OS fingerprinting such as Arkin 

(2000), Arkin et al. (2003), Jiang et al. (2003) and Taleck (2004) 

Eckstein and Atlasis (2011) and Nerakis 

(2006) 

Delta time Used in IPv4 OS fingerprinting (Boukhtouta et al. (2013)  

DHCPv6 

Lifetime 

Similar to DHCPv4 Lifetime IPv4 OS fingerprinting 

(Kollmann, 2007; Zalewski, 2012) 

Kollmann (2007) and Ordorica (2017) 

DHCPv6 vendor 

class 

Similar to DHCPv4 Vendor Class IPv4 OS fingerprinting 

(Kollmann, 2007; Zalewski, 2012) 

Kollmann (2007) and Ordorica (2017) 

DHCPv6 client 

identifier 

Similar to the DHCPv4 Client Identifier IPv4 OS fingerprinting 

(Kollmann, 2007; Zalewski, 2012) 

Kollmann (2007) and Ordorica (2017) 

DHCPv6 options 

length 

Similar to DHCPv4 options length IPv4 OS fingerprinting 

(Kollmann, 2007; Zalewski, 2012) 

Kollmann (2007) and Ordorica (2017) 

DHCPv6 options 

type 

Similar to DHCPv4 options type IPv4 OS fingerprinting 

(Kollmann, 2007; Zalewski, 2012) 

Kollmann (2007) and Ordorica (2017) 
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Figure 4 The confusion matrix and evaluation measures 

(see online version for colours) 

  

Figure 5 A histogram that shows the number of packets of each 

OS in original dataset (see online version for colours)  

  

After the resampling process, the dataset has a balanced 

number of packets between all the OSes. Figure 6 shows the 

histogram plot of the balanced OSes. To this point, the 

dataset contains 758,772 packets from different OSes 

(108,396 for each OS) which is considered a sufficient 

number of packets. Balancing the dataset process satisfied 

the fourth condition of reliable dataset requirements. 

The non-features columns such as the IPv6 source 

address is dropped from the dataset to avoid any irrelevant 

feature from affecting the process of building the OS 

classification, i.e., keeping such kind of features might give 

a biased result where the model will be highly dependent on 

them as they uniquely identify each packet. For example, 

the IPv6 source address identifies its packets. However, the 

IPv6 is not a feature where it can be changed in another 

scenario or network and, in this case, the model will not 

work probably (Elejla et al., 2018). 

Some of the features are available for all IPv6 packets 

such as flow label and traffic class. Some others are only 

available in a special kind of IPv6 packets such as: TCP 

flags which only exist in TCP packets and ICMPv6 which 

only exists in ICMPv6 packets. These features’ values will 

be empty for other packets types. For example, ICMPv6 

packets will have empty values in TCP packets as well TCP 

Flags will have empty values in ICMPv6 packets. 

Figure 6 A histogram that shows the number of packets of each 

OS in the balanced dataset (see online version for 

colours) 

  

Having missing values mislead the process of building the 

model and add an extra overhead to classification process. 

Moreover, some classification and features ranking 

techniques do not accept missing values within the dataset 

during the process of building the model. In addition, these 

missing values negatively affect the process and produce a 

biased model (Ahmadi et al., 2019). To avoid replacing the 

missing value with real value (such as the most frequent 

values) or dropping the whole packet that might negatively 

affect the building process, the missing values were 

replaced by (–1) as an indicator that the values were missing 

(Fifield et al., 2015). 

5.2 Features ranking 

The features have been chosen based on assumptions about 

their contribution to the OS classification. To evaluate the 

feature’s contribution and relation to the OS, features 

ranking technique is applied to the dataset to choose the 

most related features. These chosen features will be selected 

and others will be excluded from the dataset. 

Feature ranking algorithms need the datasets to contain 

numeric values only. However, some features such as 

ICMPv6 type contain categorical values. These non-

numeric features need to be converted and mapped to 

numeric values. To do that, the label encoder class from 

sklearn library is imported. The fit_transform function 

converts each unique value of the object features to a unique 

number. Also, a random forest feature importance 

algorithm is used to choose the best highly related features. 

Random forest feature importance algorithm is chosen due 

to its popularity, good accuracy, robustness and ease of use. 

Random forest feature importance gives each feature a 

ranking value that represents its importance in classifying 

the classes. Table 3 shows the given ranking value of each 
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feature as an output of the random forest feature 

importance. 

Table 3 The ranking values of the selected features as 

generated by the random forest feature importance 

algorithm 

# Feature Rank value 

1 Flow label 18.0733 

2 Length 17.34066 

3 Hop limit 12.90306 

4 Payload length 12.45772 

5 ICMPv6 identifier 11.84691 

6 Delta time 10.25097 

7 ICMPv6 type 4.513342 

8 ICMPv6 sequence 4.085161 

9 Protocol 3.780252 

10 DHCPv6 client identifier 1.382102 

11 DHCPv6 lifetime 0.9290888 

12 DHCPv6 options length 0.798176 

13 DHCPv6 options type 0.5888674 

14 DHCPv6 vendor class 0.4792899 

15 TCP flags 0.1966203 

16 TCP Window size 0.1492546 

17 TCP initial sequence number 0.1461586 

18 Traffic class 0.0629026 

19 TCP options 0.0047998 

20 TCP options length 0.0046869 

21 TCP max segment size 0.0038159 

22 TCP Window scale 0.0028445 

23 HTTP user-agent 9.92E-06 

Features that achieve a ranking value > 1 are selected to 

represent the dataset for the classification process. These 

features are only kept while the others are dropped from the 

dataset. The selected features are: flow label, length, hop 

limit, payload length, ICMPv6 identifier, delta time, 

ICMPv6 type, ICMPv6 Sequence, Protocol and DHCPv6 

client identifier. By selecting these highly relevant features, 

the fifth requirement of a good dataset is satisfied. 

5.3 Applying machine learning algorithms 

The common machine learning algorithms were 

implemented with Python with the help of a library called 

sklearn. Machine learning algorithms in this library divide 

the dataset into four parts: the training dataset (the features 

and their labels) and the validation dataset (the features and 

their labels). These parts are named x_train, x_valid, 

y_train, y_valid. x_train and x_valid are the training and 

testing features without labeling, respectively. y_train and 

y_valid are the labels for training and testing features, 

respectively. The x and y are assigned to the train_test_split 

function to be split into the four datasets x_train, x_valid, 

y_train and y_valid. The chosen splitting factor is the most 

popularly used by the literates for large datasets which 80% 

training and 20% testing (Richardson et al., 2010). The 

dataset is split with assigning the shuffle option the Boolean 

value ‘true’ to avoid data overfitting problems. 

y_train and y_valid contain categorical data which is the 

name of the OS. This data needs to be converted to numeric 

values where some of the machine learning algorithms do 

not accept the categorical label. To convert them to 

numeric, the fit_transform function is used again. 

5.4 Evaluation measures results 

Several machine learning algorithms have been applied to 

the dataset after preparing them. These algorithms are 

decision tree (DT), Gaussian Naïve Bayes (GNB), support 

vector machine (SVM), K nearest neighbours (KNN) and 

random forest (RF). They were chosen because they are 

considered as the most common algorithms. The 

classification accuracy, recall, precision and F-score are 

calculated using accuracy_score, recall_score, precision 

score and F-score functions, respectively, which are 

available in sklearn.metrics library. The training time is 

calculated by subtracting time after the training ends from 

the time before the training starts. 

Each algorithm was applied to the full dataset with the 

ten selected features (see Table 3). Each algorithm has been 

applied with its default parameter without any parameter 

tuning. The evaluation metrics are calculated and their 

values are summarised in Table 4. 

Table 4 The achieved evaluation metrics of the selected 

machine learning algorithms 

Algorithm accuracy recall precision F-score 
Training 

time (sec) 

DT 0.99823 0.99823 0.99823 0.99823 1.966 

GNB 0.759 0.7591 0.81617 0.7207 0.1988 

SVM 0.81086 0.811 0.827 0.807 7764.32 

KNN 0.99692 0.99692 0.99692 0.99692 7.8494 

RF 0.99841 0.99841 0.99841 0.99841 70.94878 

Figure 7 shows a graphical representation of these results. 

KNN, RF and DT achieve high accuracy of up to 99%. 

SVM achieves a quite high accuracy of up to 81%. GNB 

achieves the lowest accuracy up to 75%. These achieved 

accuracies prove the efficiency of the potential features that 

have been suggested for the purpose of this work. 

Moreover, KNN, RF and DT achieve the best Recall, 

Precision and F-score which are almost the same as the 

achieved accuracy. SVM provides almost the same good 

results in terms of accuracy, recall, precision and F-score 

which proved the robustness of the classification model. 

GNB achieves 0.75 recall larger than precision (0.81) due to 

the high number of FN records. Also, the F-score is lower 

than both the recall and precision which proved that FP and 

FN are comparatively high. These bad results achieved by 

GNB is due to its simplicity in classifying the records. GNB 

depends on the elementary Bayes’ theorem. It greatly 
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simplifies learning by assuming that features are not 

dependent given the class variable. 

Figure 7 The values of the evaluation metrics (accuracy, recall, 

precision, F-score and training time) of the machine 

learning algorithms (see online version for colours)  

  

Although KNN, RF and DT provide the best results in terms 

of the evaluation metrics, they have varied results in terms 

of training time. DT needed less than a second to finish its 

training which is the smallest training time compared to 

KNN and RF. KNN took around eight seconds and RF took 

around 70 seconds. 

The output of the confusion matrix of each algorithm is 

shown in Figure 8. It shows the number of correctly and 

incorrectly classified packets for every OS. All algorithms 

(except GNB and SVM) successfully classified most of the 

OSes packets. For example, DT correctly classified 21,791 

out of 21,864, 21,465 out of 21,509, 21,674 out of 21,682, 

21,850 out of 21,870, 21,545 out of 21,575, 21,528 out of 

21,562 and 21,667 out of 21,693 of Win7, Win10, Mac OS, 

Ubuntu, Kali, Android and iOS, respectively. DT 

misclassified 73, 44, 8, 20, 30, 34 and 26 packets of the 

considered OSes, respectively. 

However, GNB has the worst result among others in 

classifying the OSes. It successfully classified 21,270 out of 

21,864, 21,037 out of 21,509, 17,240 out of 21,682, 1,506 

out of 21,870, 20,419 out of 21,575, 14,192 out of 21,562 

and 21,454 out of 21,693 of Win7, Win10, Mac OS, 

Ubuntu, Kali, Android and iOS, respectively. It failed to 

classify most of the packets belonging to Ubuntu correctly. 

This failure return to the simplicity in dealing with features 

during the classification. 

Figure 8 The output of the confusion matrix of each of the considered machine learning algorithms (see online version for colours) 

      

(a)     (b)     (c) 

    

(d)     (e) 

Notes: (a) Decision tree, (b) Gaussian Naïve Bayes, (c) support vector machine, (d) K-nearest neighbour and (e) random forest. 
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6 Conclusions and future work 

This paper proposed a new machine-learning based 

approach to identify IPv6 OS fingerprinting. This work 

considered the addition of fingerprint features to improve 

the detection accuracy and the scope of this work is 

extended beyond the classification of OSes which are 

installed in desktops and laptops, it also considered OSes 

that are installed in mobiles and tablets. In addition, a new 

dataset was created and will be available for the research 

community. The experimental results proved the efficiency 

of the proposed methodology to classify OSes based on 

IPv6 traffic. The selected set of features are discriminative 

enough to differentiate between the various OSes. The 

results obtained by using the Kaggle platform have shown 

that the highest accuracy, recall, precision and F-score are 

achieved by DT, followed by KNN and RF algorithms, 

respectively with more than 99%. Then comes the SVM 

with an average of 81%. And finally, the lowest 

performance refers to the GNB with an average of 75%. 

Regarding the training time, it is shown that the GNB 

has the smallest training time interval compared to the rest 

of the algorithms. Considering all these evaluation matrices, 

we conclude that DT is the best and fastest algorithm that 

can achieve the best reliable model. 

Compared to other works, the achieved accuracy 

obtained by the DT, KNN and RF outperformed the same 

measures cited in Ordorica (2017) that has an accuracy of 

up 93.2%, which means that the overall enhancement is 

6.0% increase in accuracy. 
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