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Abstract 

In this thesis we consider the Bayesian and non-Bayesian estimation of the unknown 

parameters of the Generalized Exponential (GE) distribution. Our aim is to compare the 

estimates of parameters and to observe the performance of the methods used for 

estimation.  

By the developed methodology for MLE and Bayesian estimation has been demonstrated 

on a real data set when both the shape (𝑝) and scale (𝜃) parameters of the GE distribution 

are unknown under informative set of independent priors. It is observed that the parameter 

estimates under the classical maximum likelihood method could not be obtained in close 

form; we therefore employed Newton- Raphson iterative approach via the Hessian matrix. 

In this study following C. Guure and S. Bosomprah (2013), we consider the Bayesian 

estimation of the unknown parameters of the GE distribution. We have also assumed a 

gamma prior on both parameters, and we provide the Bayesian estimators under the 

assumptions of squared error and general entropy loss functions. We see that the Bayesian 

estimators cannot be obtained in explicit forms, due to the complex nature of the posterior 

distribution of which Bayesian inference is drawn. Therefore, Lindley’s numerical 

approximations procedure is used. 

Results show that the Bayesian estimator under general entropy loss function performed 

quiet better than Bayesian under squared error loss function and that of maximum 

likelihood estimator for estimating the scale parameter with both MSE and absolute bias. 
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Chapter  One 

Introduction 

1.1   Survival Data 

Survival analysis is a branch of statistics which includes a variety of "statistical methods 

designed to describe, explain or predict the occurrence of events". It is widely applied in 

many fields such as biology, medicine, public health, and epidemiology. In survival 

analysis, our objective is to model the survival time, i.e. the time to the occurrence of a 

given event. The event could be just about anything. Within the medical field, common 

examples are the time to development of a disease, response to a treatment, and of course 

death. The available data often include the survival time, patient characteristics (such as 

gender, age, and blood pressure), disease information, treatment information, examination 

data and much more. Often we attempt to predict the probability of survival, response, or 

mean lifetime given a set of observed variables and compare survival distributions.  

1.2   Survival Function 

For matters of simplicity we assume time 𝑇 ( where 𝑇 is the random variable representing 

survival time) to be continuous. The distribution of survival times is described by three 

mathematically equivalent  functions: survival , hazard and cumulative hazard functions . 

A very simple way to specify the probability distribution of continuous durations 𝑇 is the 

distribution function 

𝐹 𝑡 = 𝑃 𝑇 ≤ 𝑡  (1.1) 

The distribution function of 𝑡 represents the probability that a realization of the random 

variable 𝑇 is less than a value 𝑡. Furthermore 𝑓(𝑡) is the density function corresponding to 

(1.1) and thus can be written as 
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𝑓 𝑡 = 𝑑𝐹(𝑡) 𝑑𝑡  (1.2) 

An alternative specification of the probability distribution of duration and an important 

concept in survival analysis is the survivor function, 𝑆(𝑡), defined as 

𝑆 𝑡 = 𝑃 𝑇 > 𝑡 = 1 − 𝐹 𝑡 = 1 −  𝑓 𝑥 𝑑𝑥

𝑡

−∞

=   𝑓 𝑥 𝑑𝑥

∞

𝑡

 (1.3) 

which is the probability that a realization of the random variable 𝑇 is greater than or equals 

to 𝑡. Or in other words: the probability that the event has not yet occurred by time 𝑡. 

Theoretically, the survival curve  𝑆 𝑡  can be plotted graphically to represent the 

probability of an individual‟s survival at varying time points. As 𝑡 ranges from 0 to ∞ all 

survival curves have the following properties: 

i. 𝑆 𝑡  is monotone  

ii. 𝑆 𝑡  is non-increasing 

iii. At time 𝑡 = 0 ,   𝑆 𝑡 = 1 (i.e. the probability of surviving past time 0 is 1)  

iv. At time 𝑡 = ∞,   𝑆 𝑡 = 0  (i.e. as time goes to infinity, the survival curve goes to 0)  

     (See Figure 1.1). 

 

Figure 1.1: The survival function 
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1.3   Hazard Function  

The hazard function 𝑕(𝑡) is the instantaneous rate at which events occur, given no previous 

events, defined as: 

𝑕(𝑡) = 𝑙𝑖𝑚
𝑑𝑡→0

𝑃𝑟{𝑡 ≤ 𝑇 < 𝑡 + 𝑑𝑡 𝑇 ≥ 𝑡} 

𝑑𝑡 

= 𝑙𝑖𝑚
𝑑𝑡→0

𝑃𝑟{𝑡 ≤ 𝑇 < 𝑡 + 𝑑𝑡}

𝑑𝑡 𝑃𝑟(𝑇 ≥ 𝑡) 
 

=
1

𝑆(𝑡)
𝑙𝑖𝑚
𝑑𝑡→0

𝐹 𝑡 + 𝑑𝑡 − 𝐹(𝑡)

𝑑𝑡

=
𝑓(𝑡)

𝑆(𝑡)

= −
𝑑

𝑑𝑡
log(𝑆 𝑡 ) 

 (1.4) 

from the definition; the hazard function is the „chance‟ of failure (though it is a normalized 

probability, not a probability) at time t , given that the individual has survived until time t. 

We see that the hazard function is similar to the density in the sense that it is a positive 

function. However it does not integrate to one. Indeed, it is not integrable. 

The cumulative hazard function , 𝐻 𝑡 ,  define as: 

𝐻 𝑡 =  𝑕 𝑢 𝑑𝑢 =  − 𝑙𝑜𝑔 𝑆(𝑡)

𝑡

0

 (1.5) 

1.3.1   Relationship between survival function and hazard function 

From (1.3) and (1.4), we get the relationship 

𝑕 𝑡 =
𝑓(𝑡)

𝑆(𝑡)
 (1.6) 

Furthermore, since the density function is defined as the derivative of the cumulative 

distribution function, we get  

𝑓 𝑡 =
𝑑

𝑑𝑡
 1 − 𝑆 𝑡  = −𝑆ˊ 𝑡  (1.7) 


