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Abstract   

  

Proportional hazard (PH) models can be formulated with or without assuming a 

probability distribution for survival times. The former assumption leads to parametric 

models, whereas the latter leads to the semi-parametric Cox model which is by far the 

most popular in survival analysis. However, a parametric model may lead to more 

efficient estimates than the Cox model under certain conditions. Only a few parametric 

models are closed under the PH assumption, the most common of which is the Weibull 

that accommodates only monotone hazard functions. We study and investigate a 

generalization of the log-logistic distribution that belongs to the PH family. It has 

properties similar to those of log-logistic, and approaches the Weibull in the limit. These 

features enable it to handle both monotone and nonmonotone hazard functions. 

Application to four data sets and a simulation study revealed that the model could 

potentially be very useful in adequately describing different types of time-to-event data.  
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 في تحليل البقاء  اتهتطبيق ونموذج الخطر النسبي اللوجستي واللوجستي المعمم 

 اعداد: افنان محمود مصطفى الشيخ

 إشراف: د. خالد صلاح 
 

 الملخص 

  

مع أو بدون افتراض توزيع   Proportional Hazard ج المخاطر النسبيةيمكن صياغة نماذ

. يؤدي الافتراض الأول إلى نماذج بارامترية Survival Time احتمالي لأوقات البقاء

Parametric في حين أن الأخير يؤدي إلى نموذج كوكس ،Cox  شبو البارامتي الذي يعد

، قد يؤدي النموذج المعياري إلى حياة. ومع ذلكالبقاء عمى قيد ال الأكثر شيوعًا في تحميل

عدد قميل فقط من النماذج  تقديرات أكثر كفاءة من نموذج كوكس في ظل ظروف معينة.

الذي يستوعب  Weibull، وأكثرىا شيوعًا ىو تكون مغمقة PHالبارامترية في ظل افتراض 

تعميم التوزيع   في  توسع ىذا البحث سوف ندرس ون في فقط  الاتجاهالخطر أحادية  اقترانات

. ليا خصائص مشابية لتمك الخاصة بالموجستيات ، PHالموجيستي الذي ينتمي إلى عائمة 

الخطر  اناتر اقتفي النياية. ىذه الميزات تمكنو من التعامل مع  Weibullوتقترب من 

monotone and nonmonotone hazard function .ى تم تطبيق ىذا النموذج عم

أن النموذج يمكن أن يكون مفيداً   ين، تبدراسة محاكاة وكذلك بياناتمن ال ختمفةممجموعات 

بشكل  time-to-event جداً في وصف الأنواع المختمفة من بيانات الوقت إلى الحدث

  مناسب. 
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Chapter One 

 Survival Analysis  

1.1   Introduction  

Survival analysis is a statically method for data analysis where the outcome variable of interest is 

the time to the occurrence of an event, it deals with the analysis of lifetime data.In this analysis, 

our objective is to model the survival time, i.e. the time to the occurrence of a given event. The 

event could be medical field ,common examples are the time to development of a disease, 

response to treatment, and death. The time to event in this case is defined as the time till death.  

When we study survival analysis some quantities of interest should be known, the first one, the 

survival function, which provides the probability of survival at a given time, and the second 

quantity is the rate at which a person who is an event at a given point in time will instantaneously 

experience the event which called hazard function.  

Survival data where a set of individuals are observed and the failure time or lifetime of that 

individual is recorded such as the time until a patient is cured.  

Survival analysis estimates duration by computing the survival function. There are several 

different ways to estimate a survival function such that Bayesian inference.  

Recent research that has sought to identify malignant treatments such as cancer has shown that it 

is important to monitor cured patients, with particular attention to the survival rate.  

Relative risk models are a category of survival models in this model where the effect on the 

common variable is multiplied by the risk rate, for example taking a drug that reduces the risk of 

a stroke by half. To estimate the healing rate and survival curve of treated patients, some authors 
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provided border, semi-parametric and non-parameter methods, including logarithmic, 

exponential, and Weibull distributions.  

We aim in this thesis to offer a simple extension of the log-logistic model which is closed under 

the Proportional Hazards relationship. The proposed generalized log-logistic model is a three 

parameter distribution and has characteristics similar to those of the log-logistic model. 

Moreover, it approaches the Weibull is the limit. These features enable it to satisfactorily handle 

both monotone and non-monotone hazard functions.  

Survival data where a set of individuals are observed and the failure time or lifetime of that 

individual is recorded such as the time until a patient is cured.  

Survival analysis estimates duration by computing the survival function. There are several 

different ways to estimate a survival function such that Bayesian inference  

1. Bayesian Inference: In Bayesian Inference, the parameter of interest is always considered 

to be a random variable with a prior distribution. To make inferences about the 

population parameters, Adaptive Rejection Metropolis Sampling (ARMS) and Gibbs 

sampling techniques are used, see Salah (2019). These methods are  kind of Markov 

chain Monte Carlo (MCMC) technique used to draw dependent samples from complex 

high-dimensional distributions. However, the joint posterior distribution of the 

parameters in the proposed model is very complicated. Using Open BUGS software can 

greatly simplify the process of simulating these samples, and we only need to specify the 

data distribution and prior distributions for the model parameters. Prafulla, et. al. (2016).  

  

2. Non- Bayesian Inference (Maximum Likelihood Approach): It provides a consistent 

approach to parameter estimation problems. This means that maximum likelihood 
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estimates can be developed for a large variety of estimation situations. Also, it has 

desirable mathematical and optimality properties. The disadvantages of this method are: 

The likelihood equations need to be specifically worked out for a given distribution and 

estimation problem, the numerical estimation is usually non-trivial, and it can be heavily 

biased for small samples. The optimality properties may not apply to small samples, and 

it is sensitive to the choice of starting values.  

1.2   Basic Concepts  

T is a continuous random variable with probability density function (Pdf)  and cumulative 

distribution function (cdf)  

   (1.1)  

giving the probability that the event has occurred by duration t. Where   

  (1.2)  

Survival function which gives the probability that the event of interest has not occurred by 

 duration t.   

   (1.3)  

The survival function gives the probability that a subject will survive past time t, where  

.The survival function has properties   

 It is non – increasing,  ( )    and as ,   

All the above properties are shown in Figure 1.1 
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Figure 1.1. The  Survival Function  

Different kinds of proportional hazard models may be obtained by making different assumptions 

about the baseline survival function, or equivalently, the baseline hazard function.  

Example 1.1.1 The exponential distribution, with density function   

  (1.4)  

has a survival function of  

  (1.5)  

Example 1.1.2 The Weibull distribution which has survival function   

  (1.6)  

Example 1.1.3 The Log logistic distribution with density function   

  (1.7)  

The Hazard function:  

An alternative characterization of the distribution of T is given by the hazard function, or 

instantaneous rate of occurrence of the event (Collett,D 2003) defined as  
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  (1.8)  

The cumulative Hazard function is  defined by  

  (1.8)  

1.3   Literature Review  

The Log logistic distribution is among the class of survival time parametric models where the 

hazard rate initially increases and then decreases and at times can be hump-shaped. Brain (1974) 

modeled the Log Logistic distribution using a transformation of a well-Known logistic variate, 

according to the literature on the field. Ragab and Green (1984) who also worked on the order 

statistics for the given distribution discussed the properties of the Log logistic distribution. The 

sample plane proposed by Kantam et al (2001) was based on the Log logistic distribution. The 

modified maximum likelihood estimation (MLE) of this distribution was developed by kantam 

and Rao (2002). The latest research aims to model survival data using the LL distribution and 

drive MLE using the Bayes estimates related probability intervals. Under the assumption of 

independent uniform priors for parameters, the Bayesian estimates may not be obtained 

straightforwardly.  

The authors will proceed with the assumption that the LL model's shape and scale are unknown.  

Using the open Bugs program, the authors will design a method to generate Markov chain Monte 

Carto(MCMC) samples based on posterior samples generated from the samples present research 

discussed the Log logistic model with two parameters, MLEs, and Bayesian estimates are 
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obtained from a real life sample using the Markov chain Monte Carlo(MCMC) technique using 

open BUGS software, Bayesian analysis under a different set of priors has been carried out and 

convergence pattern was studied using different diagnostics procedures. visual reviews are 

witnessed that the Log Logistic model whether used with MLES or with Bayesian Estimates fits 

the data well. A key assumption in the PH models is that the hazard ratio comparing any two 

speciating of covariates is constant over time, (Klein Baum and Klein 2012) put the proportional 

hazard assumption may be. Handled using time-dependent covariates. The cox model is the most 

popular in survival analysis. (Kalbfleisch and prentice 2002, Lawless2002). They saw fit 

distributional assumption is required for a fully parametric model proportional hazard.  

Efron (1977) and Oakes (1977), see that parametric models lead to more efficient estimates than 

Cox‟s model under certain conditions. The Cox proportional hazard in joint modeling of time to 

the event and longitudinal data (Wulfsohn and Tsiatis 1997) leads to underestimation of the 

standard errors of the parameter estimates ( Shieh et al.2006; Rizopoulos 2012). The parametric 

time-to-event models are the Weibull and the Log logistic is useful in modeling non-monotone 

hazard rates (Lawless 2002) the parametric like Weibull that Monotone hazard functions 

(Kalbfleisch and prentice 2002).  

Madhukar et al (1996) proposed a generalization of the Weibull distribution.  

Based on the results in the (international journal of Tomography and statistics 2021) research, 

Gamma and LOG-normal generalized distributions, as well as other models, are better suited to 

the breast cancer data set because these distributions are attracted to heavy peripheral data. In 

population-based cancer studies, treatment occurs when the mortality rate (risk) in the group of 

infected individuals returns to the same level of the population as expected, so treatment must 

study the survival of the cancer patient.  
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1.4.   Objective  

In this thesis, we study, investigate, and examine the extent to which the log-logistic model 

closes under the proportional hazards relationship, approaching the Weibull limit. These 

advantages make both monotonic and non-monotonic hazard functions acceptable. We 

investigate the generalized log-logistic model and tested the parameters estimation using 

Bayesian and maximum likelihood approaches. The aim of this work is to provide a simple 

extension and application of the closed log-logistic model under the proportional hazards 

relationship. More specifically, the model we study is a generalized log-logistic model with a 

three-parameter distribution with properties similar to the log-logistic model. Weibull is also 

approaching his limits.  
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Chapter Two  

Survival Analysis and Regression Models  

2.1 Introduction   

Survival analysis is a statically method for data analysis where the outcome variable of interest is 

the time to the occurrence of an event, often referred to as a failure time. It is used in different 

fields such that: medicine and engineering, and in engineering time till failure in mechanical 

systems is studied, for example, in medical studies the effect of a drug on the lifetime of a patient 

with a certain disease can be studied. The time to event in this case is defined as time till death.  

In the recent year‟s survival has been introduced into credit scoring it is the area of statistics that 

deals with the analysis of lifetime data. The variable of interest is the time to event. In the case of 

credit risk, the event of interest is default. The major advantage of survival analysis compared to 

other credit scoring models, is that the model is capable of including censored and truncated data 

in the development sample. In the current logistic regression approaches these observations are 

removed from the dataset. Right censoring is the most common type of censoring and states that 

the event is not observed within the study period. In the case of credit risk, a customer who 

doesn‟t default, because most of the customers do not default a lot of the data is right censored.  

2.2  Censoring  

In survival data there is important part, which is worrying constraint an inconvenience in the 

analysis if not adequately controlled. Also, the presence of some hidden observation in the 

survival data cannot be ignored or neglected. In the other word, the presence of individual who 

do not know when the event occurred and cannot be tracked over a period of time. There are 

different types of censoring, but the most common types are:  
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Type Ⅰ censoring. In this type, the duration of the study is constant, while the number of events 

(i; e) the number of individuals for whom the event occurred) it is a random variable, and this 

type of censoring is called constant censoring in which the time of the study cessation is 

determined after a specific period of time.  

 It is one the following types   

Right Censoring. the most common case in survival data, and this case is related to vocabulary 

that does not some vocabulary remains in life at the end of the study, i;e the time of survival of 

this singular above the end point of the study, and this vocabulary denotes it censoring right, the 

reasons for the occurrence of 111the right censoring: Some individuals did not have an event., 

When the researcher decides to end the study before the event occurs .  

Left Censoring To illustrate this concept, we assume that we have individuals who entered the 

study, but the time of exposure to the risk is unknown, while the time of the occurrence of the 

event is known only, for example cancer patients and AIDS patients, the time of the onset of the 

disease is unknown, but the time of death due to that disease is known and this word is called the 

left control. Survival methods are applicable when the measure of interest is time to an event 

such as mortality or occurrence of disease. The concept of censoring makes survival methods 

unique.  

Interval censoring. In this case the exact time of occurrence of the event is unknown to some 

individual, the period of time in which the event occurred, and it is said about this vocabulary 

that it has censored.   

Type Ⅱ censoring:  
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In this type, the number of individuals for which the event is known (constant)in advanced while 

period, the study is a random variable that cannot be known in advance. And in it, the end time 

of study is determined, after a certain number of cases the event occurs.   

2.3  Basic Survival Function  

2.3.1 The Survival Function  

Let T be a non-negative random variable with probability density function   and 

cumulative distribution function   representing the waiting time until  

the occurrence of an event, we consider survival analysis referring to the event of interest as 

death and to the waiting time, but the techniques to be studied have much wider applicability. 

They can be used for example to see the duration of stay in a city (or in a job) and the length of 

life. Survival function defined by:    

  

 ( )   *   +     ( )

                                     ∫  ( )  
 

 

                                              

(2.1) 

(2.2) 

   

While we note that about R(t)   

1-  ( )               

2-  ( )         ( )    

3-  ( ) is non-increasing in t.   

If there are no censored observations(t) is estimated by the proportion of patients surviving 

longer than t . time  

 ̂( )  
   𝑎                 𝑙        𝑎   

   𝑎𝑙       𝑎      
 

 (2.3) 
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Now let T be a discrete random variable that takes the values {  } where 0 ≤  1 <  2 < ⋯ with 

probabilities  

  ( 𝑗) =  {  =  𝑗}   (2.4)  

And we define the survivor function at time  𝑗 as the probability that the survival time T is at  

least  𝑗  

 (  )      {    }  ∑   

 

   

 
(2.5) 

 
  

2. The Hazard Function:  

An alternative characterization of the distribution of T is given by the hazard  function, 

or instantaneous rate of occurrence of the event, defined as  

  (  ≤   <   +    |   ≥  ) (2.6)  

  

This is the limit of the conditional probability that the event will occur in the interval [ ,   +   ] 

given that it has not occurred before per the width of the interval. In words, the rate of 

occurrence of the event at duration t equals the density of events at t divided by the probability of 

surviving to that duration without experiencing the event   
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3. The Cumulative Hazard Function   

The cumulative risk function is defined as the sum of risk that have occurred up to time t.  

   (2.7)  

For discrete data, the Hazard Function is  

   (2.8)  

the survival in terms of Hazard Function  

 

   ∏
  

    
 ∏ (    

 
   

 
   )  ∏ (    )

 
                                       (2.9) 

The cumulative Hazard function is  

   (2.10)  

2.3.4.  Relationships Between Survival Functions  

The former (2.5) may be written as  ( )   for small   , while the latter is  ( ) by definition.  

Dividing by    and passing to the limit gives the useful result  

                                                                               (2.11) 

since the density function is defined as the derivative of the cumulative distribution function, we 

get   

   (2.12)  
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Inserting (2.11) into (2.12), we got  

𝑍( )  
  ( )

 ( )
 

 

  
𝑙   ( ) (2.13) 

     

Referring to (2.7) and use (2.11) we get   

 ( )    ∫
 ( )

 ( )

 

 

                   

                  ∫
 

 ( )
(

 

  
 ( ))   

 

 

                   ( ( )                               

 

 

 

 

 

(2.14) 

we can solve the above expression (2.8) to obtain a formula for the probability of surviving to 

duration t as a function of the hazard at all durations up to t:  

   (2.15)  

Suppose that death is the event of interest, and time is measured in years. For example, in Figure 

2.1.a  shows two functions for two individuals(group), the first group represented by the red line, 

which has a higher risk of death than the second group, which is represented by the blue dashed 

line because the survival curve decreases faster than the other group.   
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Figuer 2.1.a. Plots of Survival curves.  

Figure 2.2.b shows that the risk function relates to how quickly the survival function over time  

  

Figure 2.2.b. Plots of Hazard curves corresponding to survival  function  
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2.4 Types of Survival  

The choice of which approach to use should be driven by the research question of interest. Often, 

more than one approach can be appropriately utilized in the same analysis. In survival analysis, 

we have three options for modeling the survival function: Non-parametric like Kaplan-Meir, 

Semi parametric like cox regression, and parametric (such as the Weibull distribution).  

 2.4.1.  Non-parametric  

Non-parametric approaches do not rely on assumptions about the shape or form of parameters in 

the underlying population, where are used to describe the data by estimating the survival 

function R(t). These descriptive statistics cannot be calculated directly from the data due to 

censoring, which underestimates the true survival time in censored subjects, leading to skewed 

estimates of the mean, median and other descriptive. Nonparametric approaches are often used as 

the first step in an analysis to generate unbiased descriptive statistics, and are often used in 

conjunction with semi-parametric or parametric approaches.  

The Non-parametric Kaplan-Meier Estimate  

In case of censored data, raw empirical estimators will not produce good results. In order to 

determine distribution function of these data, one of basic technique can be applied Kaplan 

Meier (KM), The Kaplan-Meier estimator works as a tool to estimate the number of patients who 

may have survived treatment. It is a non-parametric estimation which is commonly used to 

describe a community's survival and to compare two sample population groups and is the best 

statistics to make predictions in a sample to measure the survival chances of patients living after 

treatment for a certain period of time   
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The Kaplan-Meier estimator works by dividing the estimation of S(t) into a series of steps 

(intervals) based on the timing of the events observed. Observations contribute to the estimation 

of S(t) until such time as the event occurs or is censored. For each period, the probability of 

survival is calculated at the end of the period, given that people are at risk at the beginning of the 

period. 

Let   𝑗 be the number of individuals at risk (uncensored and alive) just before    . And let   𝑗 be 

the number of observed deaths at      

This is commonly referred to as    (
     

  
 ).The Kaplan-Meier estimator is obtained by 

calculating the probability of an event occurring at a given time, and then the successive 

probabilities are multiplied by any previous calculated probabilities to determine the final 

estimate. The main assumptions of this method are that censorship occurs after failure and that 

there is no collective effect on survival, so that people are equally likely to survive regardless of 

when they study.  

Suppose r individuals experience events in a group of individuals. Let the observed event times 

be given by  0 ≤  (1) ≤  (2) ≤  (3) ≤ ⋯ ≤  ( )  ∞.  

The KM estimator of the survival function   ( ) is defined  (Efron, B.(1977) by  

   (2.16)  

Where    𝑗 is the number of events at time x, generally either zero or one, but in case of tied 

survival times  𝑗 ≥ 1 , 𝑗 is the number of items at risk at time x. In the figure 2.3 a KM survival 
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estimator is illustrated. The „x‟ on the time axes determine an event and the „o‟ determines a 

censored data.  

  

Figure 2.3. Kaplan-Meier survival estimator.  

2.4.2  Parametric.  

In parametric approaches, both the hazard function and the effect of the covariates are specified. 

The hazard function is estimated based on an assumed distribution in the underlying population. 

In this model the researchers assume completely the form of the model and its assumptions, the 

most commonly used distributions are: the exponential distribution and the Weibull distribution, 

In order to estimate R(t), maximum likelihood estimation is used. parametric form is the most 

difficult part of parametric survival analysis. The specification of the parametric form should be 

driven by the study hypothesis, along with prior knowledge and biologic plausibility of the shape 

of the baseline hazard. For example, if it is known that the risk of death increases dramatically 

right after surgery and then decreases and flattens out, it would be inappropriate to specify the 
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exponential distribution, which assumes a constant hazard over time. The data can be used to 

assess whether the specified form appears to fit the data, but these data-driven methods should 

complement, not replace, hypothesis-driven selections.  

The exponential and Weibull Models:  

Different kinds of proportional hazard models may be obtained by making different assumptions 

about the base line survival function, or equivalently, the baseline hazard function. For example, 

if the baseline risk is constant, over time, so 𝜆0( ) = 𝜆0 , say we obtain the exponential regression 

model, where   

   (2.17)  

For example, consider the one-parameter exponential distribution with density function  

   (2.18)  

and the survivor function   

 ( ) =  −𝜆           ≥ 0  

also the hazard function  

(2.19)  

𝑍( ) = 𝜆,               ≥ 0  (2.20)  

The Weibull distribution is similar to the exponential distribution. While the exponential 

distribution assumes a constant hazard, the Weibull distribution assumes a monotonic hazard that 

can either be increasing or decreasing but not both. Which has survival function  

For parameter 𝜃 > 0 𝑎   𝛼 > 0.  
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 ( ) = exp (− ( ⁄𝜃))𝛼  

And hazard function  

(2.21)  

𝑍( ) = (𝛼⁄𝜃) ( ( ⁄𝜃)𝛼−1
  (2.22)  

 

In Figure 2.4  two models are fitted to the survival data: KM estimator, exponential and Weibull.  

  

Figure 2.4 plot of two types of survival models.  

2.4.3. Semi parametric  

Cox Regression Model  

The Cox Regression Model is a technique used  in Survival Analysis, which deals with time in 

the analysis. This method has several advantages, the most important of which is that it is 

considered one of the modern methods in addition to the ease of dealing with the disappearance 

data that appears when taking time into account. This model is used in cases where the time 
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variable that precedes the occurrence of a particular event is of importance in the analysis of the 

phenomenon concerned with the study, and it is also called the Proportional Hazards Model.  

 

 Terms of Use of the Cox Form  

1-The dependent variable is made up (a binary descriptive variable with a value and a time 

variable that precedes Event occurrence).  

2-Independent variables, regardless of their nature, structural, descriptive, or mixed, and it is 

expected to have an impact on the phenomenon concerned with the study.  

  Characteristics of the Cox Model  

The characteristics of the cox model has the following properties  

1- It does not require that you choose some specific probability model to represent the 

number of survivals martials.  

2- Parametric model.  

3- It is easy to combine the variables that depend on time, which are the variables whose 

value changes on.  

4- Over the course of the observation period.  

5- The Cox model means the effect of variables on the risk rate, but leaves the basic risk rate 

undefined.  

The archetype of Cox's regression was proposed by (Cox  1972), so  T A continuous random 

variable. The mathematical form of the model is  written as  

𝑍(    )  𝑍 ( )      ⋯      (2.23) 
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where  (   ) is the conditional hazard time t for a subject with a set of predictors  1, … ,    ,  

𝑍0( )is the baseline hazard function, and 𝛽1, … , 𝛽  are the model parameters describing the 

effect of the predictors on the overall hazard.  It is considered a semi-parametric approach 

because the model contains a non-parametric component and a parametric component. The 

nonparametric component is the baseline hazard, 𝑍0(t). This is the value of the hazard when all 

covariates are equal to 0, which highlights the importance of centering the covariates in the 

model for interpretability. Do not confuse the baseline hazard to be the hazard at time 0. The 

baseline hazard function is estimated non-parametrically, and so unlike most other statistical 

models, the survival times are not assumed to follow a particular statistical distribution and the 

shape of the baseline hazard is arbitrary. The baseline hazard function doesn‟t need to be 

estimated in order to make inferences about the relative hazard or the hazard ratio,  so the effect 

of any covariate is the same at any time during follow-up, and this is the basis for the 

proportional hazard‟s assumption.  

• 𝛽𝑗  represent the increase in the log hazard ratio for one-unit increase in  𝑗   

•  𝛽𝑗 represent the hazard ratio for one unit increase in  𝑗  

•  𝛽𝑗 < 0 means increasing  𝑗 associated with lower risk and longer survival times.  

• 𝛽𝑗 > 0 means increasing  𝑗 associated with increased risk and shorter survival times.  

Now we have used different approaches for parameter estimation.  

2.5. Maximum Likelihood Estimation (MLE) 

The most general of estimation is known as maximum likelihood Estimators (MLE), suppose that 

we have n units with lifetimes governed by a survivor function  ( ) with associated density  
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 ( ) and hazard 𝑍( ). Suppose unit i is observed for a time   . If the unit died at   , its contribution 

to the likelihood function is the density at that duration, which can be written as the product of 

the survivor and hazard functions  

 𝑙  =  (  ) =  (  )𝑍(  )  (2.24)  

If the unit is still a live at   , all we know under non-informative censoring is that the lifetime 

exceeds    , the probability of this event is    

 𝑙  =  (  )  (2.25)  

Let    be a death indicator, taking the value one, if unit    died and the value 0 otherwise. 

Then  

𝑙  ∏ 𝑙 

 

   

 ∏ 𝑍(  )
   (  

 

   

) 
(2.24) 

     

Where    = 1  when the event occurred and take the value 0 otherwise (censoring).  

2.6. Bayesian Method of Estimation.  

Bayesian statistics is a theory of statistics based on the Bayesian interpretation of probabilities in 

which probability expresses a certain degree of belief in an event, which can change as new 

information is gathered, rather than a fixed value dependent on frequency or slope. The degree of 

belief may be based on prior knowledge of the event, such as results from past experiences, or on 

personal beliefs about the event. This differs from a number of other explanations for probability, 
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such as the repeated interpretation that sees probability as a certain limit to the relative frequency 

of an event after a large number of experiences.  

Bayesian statistics use Bayes' Theorem to calculate and update probabilities after new data is 

obtained. Bayes' theorem describes the conditional probability of an event based on data as well 

as on prior information or beliefs about the event or conditions related to the event. For example, 

Bayes 'theorem can be used to estimate parameters through a probability distribution or a 

statistical model in Bayesian inference, and Bayes' theorem can also be a specific probability 

distribution that defines a belief as a parameter or a set of parameters.in probability theory and 

statistics, Bayes' theorem (also known as Bayes' law or Bayes' rule) describes the probability of 

an event occurring, based on prior knowledge of the conditions that may be related to the event. 

For example, if cancer is related to aging, then when using Bayes' Theorem, a person's age can 

be used to make a more accurate assessment of their cancer probability than can be done without 

knowing the person's age.  

Consider we have a sample random variable of the continuous type, the joint marginal p.d.f of  

 1,  2, … ,    is given by   

   (2.27)  

If the random variable of the discrete type, integration would be replaced by summation. In either 

case the conditional p.d.f of sample, given 𝑋1 =  1, … , 𝑋 =   is  

   (2.28)  
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This relationship is another form of Bayes formula.  

 

 

 

  

Chapter Three 

 Logistic Distributions  

3.1 Introduction  

The logistic distribution (LD) has been used in applications in modeling life data, the shape of 

the logistic distribution and the normal distribution are very similar. This distribution has no 

shape parameter; this means that the logistic pdf has only one shape, the bell shape.  

The log logistic distribution (LLD) has the same relationship to the logistic distribution that the 

log normal distribution has to the normal distribution. The log logistic distribution has certain 

similarities to the logistic distribution; A random variable is log logistic distribution if the 

logarithm of the random variable is logistic distribution, because of this there are many 

mathematical similarities between the two distribution.  

3.2 Logistic Distribution  

The log logistic distribution is a commonly used lifetime distribution data analysis since the 

logarithm of the lifetime variables are logistically distributed because of the well- known 

properties of the logistic distribution and because it belongs to the location- Scale family. The 

random variable X has the logistic distribution if it has the following cumulative distribution 

function (CDF) (Gupta 2010) 
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  (   𝜇 𝜎)  
 

   ( (     )⁄
         (3.1) 

 

     

for any arbitrary location parameter 𝜇 and for the scale parameter 𝜎 > 0. The probability density 

function (pdf)(Gupta 2010) corresponding to the CDF (3.1) is  

 ( )  
   (  (   𝜇 𝜎⁄ ))

  (      ( (   𝜇 𝜎⁄ )) 
 (3.2) 

 

Clearly, the pdf given in (2) is symmetric about the location parameter 𝜇.  However, as 𝜇 

decreases, the pdf is shifted to the left, and when 𝜇 increases, the pdf is shifted to the right. 

Moreover, as 𝜎 decreases, the pdf gets pushed toward the mean, or it becomes narrow and taller 

and as 𝜎 increases, the pdf spread out away from the mean, or it becomes broader and shallower. 

Figure 3.1 shows, pdf in (3.2) with different values of 𝜇 and  =s. Clear, when the location 

parameter 𝜇 is 0 and the scale parameter   is 1, then the probability density function of the 

logistic distribution is given by  

   (3.3)  
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Figure 3.1.  pdf of logistic distribution  

 

Note, that the main difference between the normal distribution and logistic distribution lies in the 

tails and in the behavior of the failure rate function. The logistic distribution has slightly longer 

tails compared to the normal distribution. Also, in the upper tail of the logistic distribution, the 

failure rate function levels out for large x approaching 1/ δ.  

One of the disadvantages of using the logistic distribution for reliability calculations is the fact 

that the logistic distribution starts at negative infinity. This can result in negative values for some 

of the results. Negative values for time are not accepted in most of the components of Weibull, 

nor are they implemented. Certain components of the application reserve negative values for 

suspensions, or will not return negative results. For example, the Quick Calculation Pad will 

return a null value (zero) if the result is negative. Only the Free-Form (Probit) data sheet can 

accept negative values for the random variable (x-axis values).  
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3.3 Log- Logistic Distribution   

In probability and statistics, the log-logistic distribution (known as the Fisk distribution in 

economics) is a continuous probability distribution for a non-negative random variable. It is used 

in survival analysis as a parametric model for events whose rate increases initially and decreases 

later, as, for example, mortality rate from cancer following diagnosis or treatment. It has also 

been used in hydrology to model stream flow and precipitation, in economics as a simple model 

of the distribution of wealth or income, and in networking to model the transmission times of 

data considering both the network and the software.  

The log-logistic distribution is the probability distribution of a random variable whose logarithm 

has a logistic distribution. It is similar in shape to the log-normal distribution but has heavier 

tails. Unlike the log-normal, its cumulative distribution function can be written in closed form.  

  

3.3.1  Basic Log-Logistic Distribution   

The basic log-logistic distribution with shape parameter 𝜅 ∈ (0, ∞) is a continuous distribution on 

[0, ∞) with distribution function given by  

   (3.4)  

In the special case that 𝜅 = 1, the distribution is the standard log-logistic distribution. The 

probability density function  (𝑧) is given by  

   (3.5)  
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 (𝑧) in (3.5) has a rich variety of shapes, and is unimodal if 𝜅 > 4 . When 𝜅 ≥ 1, is defined at 0 as 

well.  

Definition 3.3.1 

The quantile function 𝐺−1
  is given by  

   (3.6)  

Therefore, the quartiles are given by  

1. The first quartile 𝑄1 =  25 = (1⁄3)
1⁄𝜅  

2. The second quartile (Median) 𝑄2 =  50 = 1  

3. The third quartile 𝑄3 =  75 = 3
1⁄𝜅  

Recall that  /(1 −  ) is the odds ratio associated with probability   ∈ (0, 1). Thus, the quantile 

function of the basic log-logistic distribution with shape parameter 𝜅 is the 𝜅   root of the odds 

ratio function. In particular, the quantile function of the standard log-logistic distribution is the 

odds ratio function itself. Also of interest is that the median is 1 for every value of the shape 

parameter.  

3.3.2  General Log-Logistic Distribution  

The basic log-logistic distribution is generalized, like so many distributions on (0, ∞), by adding 

a scale parameter. Recall thata scale transformation often corresponds to a change of units 

(gallons into liters, for example), and so such transformations are of basic importance.  
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If 𝑍 has the basic log-logistic distribution with shape parameter 𝜅 ∈ (0, ∞) and if 𝛽 ∈ (0, ∞) then 

𝑋 = 𝛽𝑍 has the log-logistic (LL) distribution with shape parameter 𝜅 and scale parameter  

𝛽.  

𝑋 has distribution function    given by  

   (3.7)  

𝑋 has probability density function    given by  

   (3.8)  

As shown in Figure 2. When 𝜅 ≥ 1,   is defined at 0 also.    satisfies the following properties:   

1. If  0 < 𝜅 < 1,   is decreases with  ( )   ∞  as    ↓ 0  

2. If  𝜅 = 1,   is decreases with mode     = 0  

3. If  𝜅 > 1,   is increases and then decreases with mode    𝛽 .
   

   
/

  ⁄

.  
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Figure 3.2.  pdf of log-logistic distribution with 𝛽 = 1, and values of  𝜅 as shown in  

legend  

Definition 3.3.2  

𝑋 has quantile function(Alshomrani 2016)  −1
   given by  

   (3.9)  

1. The first quartile 𝑄1 =  25 = 𝛽(1⁄3)1⁄𝜅  

2. The second quartile (Median) 𝑄2 =  50 = 𝛽  

3. The third quartile 𝑄3 =  75 = 𝛽3
1⁄𝜅  

3.4  Maximum Likelihood Estimation (MLE)  

In this section, we briefly discuss the maximum likelihood estimators (MLE‟s) of the two 

parameter log-logistic distribution and discuss their asymptotic properties to obtain approximate 

confidence intervals based on MLE‟s.  

Let a random sample 𝑋 = ( 1,  2, … ,     ) of size n can be taken from 𝐿𝐿(𝜅, 𝛽), then the 

likelihood function 𝐿(𝜅, 𝛽) can be written as;  

   (3.10)  

by taking the logarithm of (3.10) then the log-likelihood function 𝑙(𝜅, 𝛽) can be written as;  
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Therefore, in order to obtain the MLE‟s of 𝜅 and 𝛽, we can maximize (3.11) directly with respect 

to 𝜅 and 𝛽 or the following two non-linear equations can be solved using iteration method  such 

as Newton-Raphson method (Alshomrani 2016) 

  

  

   (3.11.b)  

Let us denote the parameter vector by 𝜽 = (𝜅, 𝛽) and the corresponding MLE of 𝜽 as 𝜽   = (𝜅  , 𝛽  ), 

then the asymptotic normality results in  

 
(𝜽̂  𝜽)  𝑁 (  ( (𝜽̂))  ) 

where  (𝜃)̂ is the Fisher‟s information matrix given by (Alshomrani 2016) 

   (3.12)  

`In practice, as we do not know , it is useless that the MLE has asymptotic variance . 

Hence, the asymptotic variance can be approximated by "plugging in" the estimated value of the 

parameters. The common procedure is to use the observed Fisher information matrix (as an 

estimate of the information matrix  ) given by  
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   (3.13)  

where H is the Hessian matrix,  and  .  

To maximize the likelihood, the Newton-Raphson algorithm produces the observed information 

matrix. Therefore, the variance-covariance matrix is given by  

   (3.14)  

Hence, approximate   confidence intervals for  and  can be constructed from the 

asymptotic normality of MLEs as  

     and        

Where   𝛼     , 𝑧𝛼⁄2 is the upper percentile of standard normal variate.  

As shown above, the MLEs can be obtained by setting the two equations (3.11.1) and (3.11.b) to 

zero. Due to the lack of explicit solutions to these two Equations, we numerically estimate the  

MLEs using the llogisMLE function from the r STAR package.  

3.5.   Generalized log-logistic Distribution  

Some general aspects of the parametrized log-logistic distribution (LLD) are discussed in the 

previous section. The three-parameter log-logistic distribution is a generalization of the 

twoparameter log-logistic distribution. The generalized log-logistic distribution can be obtained 

from the log-logistic distribution by addition of a shift parameter 𝛿. Thus if  X has a log-logistic 
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distribution then 𝑋 + 𝛿 has a shifted (generalized) log-logistic distribution (GLLD). So Y  has a 

GLL distribution if log (𝑌 − 𝛾) has a logistic distribution. The shift parameter adds a location 

parameter to the scale and shape parameters of the (unshifted) log-logistic.  

The properties of this distribution are straightforward to derive from those of the log-logistic 

distribution. However, an alternative parameterization, similar to that used for the generalized 

Pareto distribution and the generalized extreme value distribution, gives more interpretable 

parameters and also aids their estimation.  

The generalized log-logistic distribution with location parameter 𝜇 ∈ ℝ, scale parameter 𝜎 ∈ (0, 

∞), and shape parameter 𝜉 ∈ ℝ is a continuous distribution on ℝ with distribution function given 

by  

 

 

 (  𝜇 𝜎 𝜉)  
 

  (  
𝜉(  𝜇)

𝜎 )
   ⁄

       ∈ ℝ 
(3.15) 

for    
 (   )

 
    

The probability density function (Pdf) 

   (3.16)  

also for    
 (   )
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The shape parameter 𝜉 is often restricted to lie in [−1, 1], when the probability density function is 

bounded. When |𝜉| > 1, it has an asymptote at   𝜇  
 

 
. Reversing the sign of  𝜉 reflects the pdf 

and the cdf about   = 𝜇. See Figure 3  

  

Figure 3.3.  pdf of generalized log-logistic distribution with 𝜇 = 0, 𝜎 = 1 and values  

of  𝜉 as shown in legend  

An alternate parameterization with simpler expressions for the cdf in (3.15) and the pdf in (3.16) 

is as follows. For the shape parameter  𝜅, scale parameter 𝜌, and location parameter 𝜇, the PDF is 

given by  

   (3.17)  

The probability density function (pdf) is then  

   (3.18)  
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In survival analysis and for a non-negative random variable T, by introducing a location 

parameter 𝛾 > 0 the pdf in (3.18) becomes   

   (3.19)  

hence, the cdf is then given by  

   (3.20)  

for  𝜌 > 0,  and  𝜅 > 0.   

3.6  Bayesian Estimation  

Let T  be a non-negative random variable follows the generalized log-logistic distribution with 

unknown parameters Ω = {𝜅, 𝛾, 𝜌}, and D = { } be the observed data. Using the pdf in (3.19) the 

likelihood function of  Ω, is then given by  

   (3.21)  

The joint posterior distribution of the parameters is obtained by combining the joint priors 

distribution with the likelihood function Ω. In the case of non-informative prior, the posterior 

distribution is given by  
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  (𝛺|𝐷) =  (𝜅, 𝛾, 𝜌|𝐷) ∝ 𝐿(𝜅, 𝛾, 𝜌) 𝜙[𝛿, 𝛾,  ]   (3.22)  

where 𝜙[∙] represents the joint prior distribution, and  𝐿(∙ ) is the likelihood function given in 

(3.21). In the case of informative priors, Chen et al. (1999) considered a joint posterior 

distribution from historical data as joint prior distribution by adding an extra parameter 𝛼0 ∈ 

(0, 1) that controls the influence of the historical data on the current data, and given by  

   (𝛺, 𝛼0|𝐷0) = 𝜙(𝜅, 𝛾, 𝜌, 𝛼0|𝐷0) ∝ [𝐿(𝜅, 𝛾, 𝜌, 𝛼0)]𝛼0 𝜙0[𝜅, 𝛾, 𝜌]𝜙0[𝛼0]  (3.23)  

  

where 𝐷0 is the vector of the observed historical data, 𝐿(∙ ) is the likelihood function (3.21) from 

these historical data, and 𝜙0[∙] represents the joint prior distribution considered for {𝜅, 𝛾, 𝜌, 𝛼0} 

from historical data.  

In order to make inference about the population parameters, Adaptive Rejection Metropolis 

Sampling (ARMS) and Gibbs sampling techniques are used, see Salah (2019). These methods 

are a kind of MCMC technique used to drawing dependent samples from complex 

highdimensional distributions. However, the joint posterior distribution of the parameters in the 

proposed model is very complicated. Using OpenBUGS software can greatly simplify the 

process of simulating these samples, and we only need to specify the data distribution and prior 

distributions for the model parameters. Prafulla, et. al. (2016).  
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Chapter Four 

 Generalized Log Logistic Distribution in Survival Model  

4.1 Introduction  

The Log Logistic distribution (LL) has attracted wide applicability in Survival and reliability 

over the last few decades, particularly in probability and statistics, it has a continuous probability 

distribution for a non-negative random variable, and it is used in Survival analysis as a 

parametric model for events whose failure rate increases initially and decreases later, for 

example, mortality from cancer following diagnosis or treatment.  
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In survival analysis when the mortality rate reaches a peak after a specified period and then 

slowly back down, it is appropriate to use a model with a non-pulmonary failure rate.  

In this thesis, we studied the logistic model as it is similar in shape to a normal logarithmic 

distribution, but it is more suitable for use in the analysis of survival data, this is because of its 

greater mathematical tracking ability when dealing with Controlled Observations that occur 

frequently in such data. The presence of controlled observations causes difficulties when using 

normal or inverse Gaussian models since the Survival functions in these states are complex.  

On the other hand, although the logarithms of small positive numbers are large negative 

numbers,  

log-Normal distribution may give Undue weight to extremely short Survival times.  

4.2 The Generalization Log Logistic in Survival Analysis  

The generalized Log-Logistic(GLL) model is a three-parameter distribution, and has 

characteristics similar to those of the log-logistic model. Also it approaches the Weibull in the 

limit. These advantages enable it to satisfactorily handle both monotone and nonmonotone 

(unimodal) hazard functions. The nonnegative random variable T has the generalized 

LogLogistic distribution (GLLD) if it has the following cumulative distribution function (CDF)   

   (4.1)  

for 𝜌 > 0, 𝑘 > 0, and   𝛾 > 0    are parameters. The (pdf) corresponding to the CDF (4.1) 
(Shahedul A. Khan, and Saima K. Khosa 2016) is   

   (4.2)  
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 the survivor function to the (GLLD) is given by ( Shahedul A. Khan, and Saima K. Khosa 2016) 

   (4.3)  

Thus, the GLLD for anon negative random variable of the hazard function for   > 0 defined as  

   (4.4)  

Let  𝛼 = (𝑘, 𝛾, 𝜌)
′
 , when  𝛾   depends on  𝜌  by  and 𝛾 = 𝜌𝜂−1⁄𝑘   with  𝜂 > 0   then (4.4) reduces 

the hazard function of the LLD , otherwise it is closed under  Proportional Hazard relationship. 

Clearly if  𝑘 ≤ 1   the hazard function is monotone decreasing , when   

  𝑘 > 1  be a unimodal ; which mean Z( ; 𝛼 ) = 0 at t = 0 and  when    = (𝑘 − 1)⁄𝛾𝑘(
1⁄𝑘)

   it 

increases to a maximum ) ,also as       ∞   it is approaches zero monotonically). Figure 1 shows 

the different examples. The GLLD of the hazard function from (4.4) the Weibull hazard function 

as . All the above gives us that the GLL model is distinguished for being able to 

satisfactorily deal with monotonous increased risks by   k > 1 and small  .  
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Figure 4.1.  A unimodal hazard shape of the survival time  

For the family of Proportional hazard models with covariates where and  

  , the proportional hazard model can be formulated by  

  

Where the  is the baseline hazard function , if  is definte by the (GLL) (4.5) hazard 

function from (4.4), then   

  (4.6)  

,   

where   . Hence the generalized log-logistic is closed under proportionality of hazards. 

The (GLLD) fall under the parametric proportional hazard family is the Weibull when  

 , and classified the Cox proportional hazard is semiparametric for the baseline hazard  

function in (4.6) is denoted by  .  

4.3. Some Basic characteristics of the (GLLD)   

The GLLD has  moment given by   

  (4.7)  

where    

The GLLD has mean given by  
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   (4.8)  

where   

4.4 Maximum Likelihood Estimation (MLE)  

In this section, we briefly discuss the maximum likelihood estimators (MLE‟s) of the 

threeparameter generalized Log-Logistic Distribution and discuss their asymptotic properties to 

obtain approximate confidence intervals based on MLE‟s.  

Let a censored random sample   of size n , where  is a lifetime and relative to whether  

 .We assume the vector of Covariates  for the  individual can  

be taken from GLLD  , then the likelihood function L  can be written as ;  

   (4.9)  

Let  .Now by taking the logarithm of (4.9) then the log- 

likelihood function   can be written as;  

  (4.10)  

where    

The first derivatives of the log-likelihood function are  
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  (4.11)  

  (4.12)  

  (4.13)  

  

(4.14)  

where .  
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To improve the convergence of iterative procedures for maximum likelihood estimation and the 

accuracy of large-sample methods, we remove range restrictions on parameterizations to put  

,  and ,  then . The Maximum likelihood  

estimate of  can be obtained by solving the equations  

 ,   

where  

  

Many software packages have reliable optimization procedures to maximize loglikelihood 

functions. We used the r and ObeBugs softwares, (see the Appendex).  

4.4  Tests and confidence intervals  

Tests and interval estimates for the model parameters are based on the approximate normality of 

the maximum likelihood estimators. The asymptotic distribution of   is approximately a  

(p + 3)-variate normal distribution with mean  and covariance matrix 𝐷 ∑ 𝐷 where 

 where  
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is the (p + 3) × (p + 3) observed information matrix (second derivatives of   are given 

below). By the multivariate delta method, the asymptotic distribution of  is also approximately 

normal with mean θ and covariance matrix  , where D is the (p + 3) × (p + 3) diagonal matrix  

.  

Second derivatives of   :  

    

  (4.15)  
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  (4.16)  

  

  

    

  (4.17)  

   

  

    

  (4.18)  
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                                       (4.19)

   

  (4.20)  

  

  

  (4.21)  

  

The asymptotic   confidence intervals for ,  respectively can be  

constructed as  

 ,   and    

where  is the upper percentile of standard normal variate  

4.5 Generalized LL Distribution in joint Modeling   

Co-models are used to determine the association between an internal time –dependent covariate 

and time until an event of interest occurs. It involves two separate models: a model that takes 

into account measurement error in the time dependent covariate to estimate its true values 
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(longitudinal model), and another model that uses these estimated values to quantify the 

association between this covariate and the time to the occurrence of the event .The relationship 

between the longitudinal covariate, and the failure time process can be evaluated using the Cox 

relative risk regression model, the problem in estimating the parameters in the Cox model when 

the linear variable is measured infrequently and with a measurement error.  

Parameter estimates are obtained by maximizing the common probability of the covariate process 

and the failure time process, it uses the covariate data and the survival data simultaneously. 

Many longitudinal studies collect information on outcomes such as infection or death as well as 

covariates that vary over time. In order to study the relationship of covariate to survival, we can 

use the covariate as a time dependent covariate in the relative risk regression model.  

This modeling approach has been advocated on the basis that is reduces the bias of the parameter 

estimate in the cox mode. The covariate and the survival are processed simultaneously because 

we estimate the parameters that describe the risk of failure as a function of the covariate process 

and those that describe the risk of failure as a function of the covariate process at the same time, 

our method uses not only the observed covariate data but also survival information to get 

estimates of the true covariate value at any time. If we assume that the random effects that 

determine the process of the covariate are constant for the individual over time and therefore are 

identical at all times of events when the individual is at risk, this is logical more than the 

assumption of common variables for those in the risk group will follow the normal distribution at 

all times if individuals are excluded from Surveillance due to death or censorship, and another 

model that uses these estimated values to quantify the association between this covariate and the 

time to the occurrence of the event (time to event model) .  
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The idea behind the joint modeling technique is to couple the time-to-event model with the 

longitudinal model , an advantageous characteristic of mixed models is that it is not only possible 

to estimate parameters that describe how the mean response change overtime . This is one of the 

main reasons for the use of these models in the joint modeling framework for longitudinal and 

time- to-event data.  

Estimation:   

The estimation of the parameters of linear mixed effects models is often based on maximum 

likelihood principles. Maximization of the log-likelihood function for joint modeling is 

computationally difficult, as it involves evaluating multiple integrals that have no analytical 

solution, except in very special cases, in particular, the marginal density of the observed response 

data for the i
th

 subject is given by the expression  

  (𝑦 ) = ∫  (𝑦  | 𝑏 ) (𝑏 ) 𝑏   (4.22)  

4.6 Goodness of fit  

The nonparametric estimates are useful for assessing the quality of fit of a particular parametric 

time-to-event model (Lawless 2002). For a model without covariate, we use the approach to 

simultaneously examine plots of parametric and nonparametric estimates of the survival 

function, superimposed on the same graph. Let  ( , 𝜃  ) and   ( ) be the estimates of the survivor 

functions based on the parametric model of interest and the Kaplan-Meier method (Kaplan and 

Meier 1958), respectively. The estimates  ( , 𝜃  ) as a function of t should be close to   ( ) if the 

parametric model is adequate. For a model with covariates, we consider residual diagnostic plots, 

where the residuals are defined based on the cumulative hazard function  ( , 𝜃). If   ( ( , 𝜃  )) is 
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the Kaplan-Meier estimate of  ( , 𝜃 ), then a plot of log   ( ( , 𝜃 ))  versus  ( , 𝜃 ) should be 

roughly a straight line with unit slope when the model is adequate (Lawless 2002). We also use 

the Akaike‟s information criterion (AIC) (Akaike 1974) to compare the fits of different models.  

The AIC is defined by  

𝐴 𝐶 = −2 log(𝑀𝑎   𝐿 𝑘 𝑙     ) + 2(  + 𝑘)  

where p is the number of covariates and k is the number of parameters of the assumed probability 

distribution (k = 3 for the generalized log-logistic model). In general, when comparing two or 

more models, we prefer the one with the lowest AIC value. A rule of thumb is that if  ∆𝑀= 𝐴 𝐶𝑀 

− 𝐴 𝐶𝑀   > 2, then there is considerably less support for  

Model M compared to the model with minimum AIC (Burnham and Anderson 2002).  
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Chapter Five  

Applications 

In this chapter, a simulation study is conducted to demonstrate the importance and utility of the GLL 

distribution in survival data, and then three datasets from the literature are applied to demonstrate the 

power of the GLL distribution in modeling time_to_event data. Details of the MCMC algorithm we 

use are in the appendix, including details on how the GLL distribution is implemented in the 

OpenBUGS development interface. 

5.1. Simulation Study. 

In all simulations, two covariates were considered in the proportional hazards regression framework: 

a Continuous covariate (𝐶 ) generated from standard normal distribution; and binary covariate (𝐶 ) 

generated from Bernoulli (0.5) distribution. α = (0.5, 0.75) corresponding to the covariate vector 

  (𝐶  𝐶 ) was chosen as the regression parameter value. To evaluate the performance of the GLL 

model, we considered three simulation cases based on the shape of the hazard function. For each case, 

survival data were generated from a generalized Weibull distribution with a probability density 

function 

 (   𝛾 𝜅 𝜌  )  𝜅𝜌(𝜌 )    (   ),  𝛾(𝜌 ) -
 

.   /

 
  

 
(5.1) 

Where 𝜌    𝜅           𝛾     are parameters. Note that the hazard function of the 

generalized Weibull distribution is  

i. Monotone increasing for 𝜅    and 𝛾    

ii. Monotone decreasing for   𝜅    and 𝛾    

iii. Unimodal for 𝜅    and 𝛾   .  
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The simulations are then specified as follows: 

 Case 1: The hazard function decreases. Survival times were generated from generalized 

Weibull with  𝜅      𝛾           𝜌     , and censoring times were generated from the 

exponential distribution with rate parameter 𝜆      . 

 Case 2: The hazard function increases. Survival times were generated from generalized 

Weibull with  𝜅    𝛾           𝜌     , and censoring times were generated from the 

exponential distribution with rate parameter 𝜆      . 

 Case 3: The hazard function has a unimodal. Survival times were generated from generalized 

Weibull with  𝜅    𝛾            𝜌     , and censoring times were generated from the 

exponential distribution with rate parameter 𝜆      . 

The choice of model parameter values led to, on average, 40% to 45% censored observations for the 

above 3 cases. Given the covariates and censoring indicator, we also fit the generalized log-logistic, 

Weibull and Cox PH models to the simulated survival data. The simulation was performed on finite 

samples of size n = 100. This simulation was performed to calculate the average biases (AVB), root 

mean square error (RMSE), and  the coverage probability for 95% highest probability density HPD 

(CP) of all model parameters. Results are presented in Tables 5.1 – 5.3. 

As shown in Tables 5.1 - 5.3, the parameter estimates do not show much difference in the first case. 

However, for continuous covariate (𝐶 ), all three models provided estimates with similar RMSEs and 

good coverage probabilities; while for binary covariate (𝐶 ), GLL showed the smallest RMSE. In 

terms of bias, GLL and Cox proportional hazards are almost the same and both outperform Weibull. 
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In the second case, we assume that the hazard function increases. The results from the GLL and 

Weibull supporting this assumption in terms of  smallest bias and similar RMSE. and both 

outperform Cox. 

According to AVB values, GLL and Cox proportional hazards provided comparable estimates of 

regression coefficients. However, GLL provided the most accurate estimates in terms of RMSE. 

Tables 5.1.  GLL Proportional Hazard Model performance. 

Case Parameter Mean AVB RMSE CP 

1 

True values: 

α = (0.5, 0.75) 

𝜅      𝛾     , 

𝜌      

𝛼  0.513 0.018 0.174 94% 

𝛼  0.744 – 0.023 0.087 96% 

𝜅 0.517 0.012 0.133 95% 

𝛾 0.212 0.028 0.218 94% 

𝜌 0.193 – 0.016 0.197 94% 

2 

True values: 

α = (0.5, 0.75) 

𝜅    𝛾     , 

𝜌      

𝛼  0.516 0.019 0.175 94% 

𝛼  0.741 – 0.024 0.088 96% 

𝜅 2.021 0.024 0.145 95% 

𝛾 0.207 0.019 0.212 94% 

𝜌 0.198 – 0.013 0.108 95% 

3 

True values: 

α = (0.5, 0.75) 

𝜅    𝛾      , 

𝜌      

𝛼  0.517 0.027 0.181 94% 

𝛼  0.758 0.017 0.063 97% 

𝜅 2.039 0.031 0.166 94% 

𝛾 – 0.187 0.028 0.263 94% 

𝜌 0.208 0.021 0.137 94% 

AVB: Average Biases.    RMSE: Root Mean Square Error .  CP:  coverage probability for 95% highest probability density 

HPD.  
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Tables 5.2.  Cox Proportional Hazard Model performance. 

Case Parameter Mean AVB RMSE CP 

1 
𝛼  0.511 0.017 0.173 94% 

𝛼  0.745 – 0.024 0.088 96% 

2 
𝛼  0.516 0.018 0.174 94% 

𝛼  0.742 – 0.023 0.087 96% 

3 
𝛼  0.518 0.027 0.180 94% 

𝛼  0.757 0.017 0.062 97% 

True values:  α = (0.5, 0.75).   AVB: Average Biases.    RMSE: Root Mean Square Error .  CP:  coverage 

probability for 95% highest probability density HPD.  

 

Tables 5.3.  Weibull Proportional Hazard Model performance. 

Case Parameter Mean AVB RMSE CP 

1 

True values: 

α = (0.5, 0.75) 

𝜅      𝜌      

𝛼  0.519 0.021 0.176 94% 

𝛼  0.762 0.027 0.094 95% 

𝜅 0.509 0.011 0.130 95% 

𝜌 0.202 0.013 0.168 95% 

2 

True values: 

α = (0.5, 0.75) 

𝜅    𝜌      

𝛼  0.515 0.019 0.174 94% 

𝛼  0.743 – 0.023 0.086 96% 

𝜅 2.019 0.024 0.144 95% 

𝜌 0.203 0.010 0.107 95% 

3 

True values: 

α = (0.5, 0.75) 

𝛼  0.529 0.046 0.196 93% 

𝛼  0.786 0.097 0.188 94% 

𝜅 2.031 0.028 0.162 94% 
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𝜅    𝜌      𝜌 0.202 0.018 0.136 94% 

AVB: Average Biases.    RMSE: Root Mean Square Error .  CP:  coverage probability for 95% highest probability density 

HPD.  

 

5.2. Breast Cancer Data Analysis. 

In this section, we will provide real data for the application, which illustrates the performance and 

practicality of the Bayesian approach. This is done by applying the GLL to a real data of 686 lymph 

node positive breast cancer patients. The data is provided as bc.dat in the r software package. 

The result of interest is relapse-free survival time; that is, the duration from the start of the study to 

the beginning of death or recurrence of the disease (usually the time of diagnosis of primary breast 

cancer) (whichever occurs first). There were 299 events leading to this result, with a median follow-

up time of approximately 5 years. In addition, the data were divided into three equal-sized prognostic 

groups. The three groups are labeled as "Good", "Medium" and "Poor". 

We compared the Kaplan–Meier (KM) survival curves with the GLL curves, for all groups. In all 

estimates the 95% C.I. of  GLL curves  were approximately covering the Kaplan-Meier curves. 

Results are presented in Figures 5.1 – 5.4. “r” codes were presented in Appendix A. 

 

 

Figure 5.1.  Fitted survival curves for prognostic group in the good data. 
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Figure 5.2.  Fitted survival curves for prognostic group in the medium data. 

 

 

 

Figure 5.3.  Fitted survival curves for prognostic group in the poor data. 

 

 

Figure 5.4.  Fitted survival curves for prognostic group in the poor data. 

 

As, shown in the previous figures, when the censoring rate is moderate or low, the model will provide 

a better fit. See Figures 5.2 and 5.3. Moreover, the presence of cured patients (cencored) in all data 

groups is usually suggested by a KM plots of the survival functions, which show a long and stable 
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plateau with different heavy censoring at the extreme right of the plots, leading to three scenarios of 

censoring rate (high, moderate, and low) that cover a wide range of tail behaviors. 

For the Bayesian analysis of the GLL it was assumed a non-informative gamma G(0.5,  1) prior 

distributions for 𝜅       𝜌, and Normal N(0.5, 1) for 𝛾. The convergence of the MCMC algorithm was 

checked using the software OpenBUGS choosing different values for these hyperparameters, the 

same results were obtained when using a larger burn in period for the algorithm. 

Since the GLL model is not the default probabilistic model in OpenBUGS, it guarantees the 

integration of modules for parameter estimation of the GLL model. The Bayesian analysis of the 

probability model can only be performed on the default probability model in OpenBUGS. For the 

OpenBUGS code, please refer to the Appendix B. 

Using the OpenBUGS software, the model was specified in the same form, and 10,000 MCMC 

iterations were run. After discarding the first 5,000 burn-in iterations, to eliminate the initial value 

effects, there are a total of 5,000 samples for summarization and convergence checking. The 

following figure shows the time series plot and kernel density plot of each simulation parameter used 

for convergence diagnosis. From the upper graphs of Figure 5.5 to 5.8 we can safely conclude that 

since the graph does not show an expanded growth or decline trend, but looks like a horizontal band, 

the chain has converged. 

Table 5.4 shows posterior summaries based on MCMC samples from posterior characteristics of GLL 

model.  From the DIC values for each data set, we can conclude that the model has a reasonable fit. 

However, when we compare the obtained DIC values for each data set, we note that lowest censoring  

rate laving smallest DIC, as it was expected, since GLL distribution can be considered as “Modiarate 

Heavy Tailed Distribution”. 
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(𝜅) (𝛾) (𝜌) 

   

Figure 5.5:  The above figures are the time series convergence diagrams of the estimated parameters 

𝜅 𝛾     𝜌. The figures below is the kernel density estimation of the same parameters for the 

whole set of bc data. 

 

 

 

   

(𝜅) (𝛾) (𝜌) 

   

Figure 5.6:  The above figures are the time series convergence diagrams of the estimated parameters 

𝜅 𝛾     𝜌. The figures below is the kernel density estimation of the same parameters for the 

Good data set. 

 

   

(𝜅) (𝛾) (𝜌) 
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Figure 5.7:  The above figures are the time series convergence diagrams of the estimated parameters 

𝜅 𝛾     𝜌. The figures below is the kernel density estimation of the same parameters for the 

Medium data set. 

 

 

   

(𝜅) (𝛾) (𝜌) 

   

Figure 5.8:  The above figures are the time series convergence diagrams of the estimated parameters 

𝜅 𝛾     𝜌. The figures below is the kernel density estimation of the same parameters for the 

Poor data set. 

 

In addition, the results in the same table show the posterior summary obtained from the simulated 

samples. Obviously, since the standard error and MC error of the estimated value are small, and all 

the credible Intervals do not include zero, all the posterior estimates are applicable. Likewise, as 

shown in the lower graphs of Figures 5.5 to 5.8, all the posterior have approximately unimodal 

densities. 
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Table 5.4: Bayesian Estimates of Model Parameters and Deviance Information Criterion (DIC). 

Data Parameter 

Estimated 
95% Credible 

Interval 
DIC 

Parameter 
Std. 

Error 

MC. 

Error 
Lower Upper 

bc 

𝜅 5.076 0.2745 0.11220 4.5389 5.6130 

5343.0 𝛾  0.473 0.0384 0.01457 0.3977 0.5482 

 𝜌 4.988 0.2655 0.1035 4.4676 5.5083 

Good 

𝜅 5.076 0.2745 0.11220 4.5389 5.6130 

1878.7 𝛾  0.473 0.0384 0.01457 0.3977 0.5482 

 𝜌 4.988 0.2655 0.1035 4.4676 5.5083 

Medium 

𝜅 3.473 0.2788 0.05778 2.9265 4.0194 

1257.0 𝛾  0.579 0.0660 0.01481 0.4496 0.7083 

 𝜌 3.475 0.2749 0.06519 2.9361 4.0138 

Poor 

𝜅 1.801 0.1286 0.02878 1.5489 2.0530 

1078.0 𝛾  0.4962 0.0662 0.01404 0.3664 0.6259 

 𝜌 2.913 0.3470 0.07329 2.2328 3.5931 

 

 

5.3 Conclusion 

The current study discusses three-parameter GLL models; Bayesian estimates are obtained from 

simulations and real-world data by using "r" and the Markov Chain Monte Carlo (MCMC) technique 



60  

  

of OpenBUGS software. Perform Bayesian analysis under different prior sets and examine 

convergence patterns using different diagnostic methods. Numerical summaries of MCMC samples 

based on the late distribution of the GLL model are elaborated on the basis of non-informative priors. 

As shown in the simulation studies, the GLL model takes into account naturally decreasing and 

unimodal hazard functions. As demonstrated in bc-data, it turns out that GLL may provide better 

tuning when describing moderate and low censored data. Furthermore, our simulation studies show 

that GLL can provide more accurate results in describing monotonically decreasing and unimodal 

hazard functions than the Weibull and Cox proportional hazards models. In conclusion, the flexibility 

provided by the GLL model is very useful for adequately describing different types of event-time 

data. 
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Appendix (A)  

r codes for fitted survival data  

library(flexsurvcure) 

library("survival") 

library("splines") 

library("lattice") library(ggplot2) 

library(ggfortify)  

########################data sets ######################### good_data <- 

subset(bc, group == "Good" ,select=censrec:recyrs) medium_data <- subset(bc, group 

== "Medium" ,select=censrec:recyrs) poor_data <- subset(bc, group == "Poor" 

,select=censrec:recyrs) par(mfrow=c(2,2))    # set the plotting area into a 1*2 array  

######################## Fit Good #########################  
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cure_good <- flexsurvreg(Surv(recyrs, censrec)~1, data = good_data, link="identity", dist="glogis", 

mixture=T) print(cure_good) plot(cure_good, ci=TRUE, conf.int=FALSE, main="Good Data Set", 

ylab="Survival Probability", xlab="Recurrence Free Survival Time (Years)", lwd=2, col="blue") 

legend("topright", lty=c(1,1), lwd=c(2,2), col=c("blue","black"), c("GLL","KM"))  

######################## Fit Medium ######################### cure_medium <- 

flexsurvcure(Surv(recyrs, censrec)~1, data = medium_data, link="logistic", dist="glogis", mixture=T) 

print(cure_medium) plot(cure_medium, ci=TRUE, conf.int=FALSE, main="Medium Data Set", ylab="Survival 

Probability", xlab="Recurrence Free Survival Time (Years)", lwd=2, col="red") legend("topright", lty=c(1,1), 

lwd=c(2,2), col=c("red","black"), c("GLL","KM"))  

######################## Fit Poor #########################  

cure_poor <- flexsurvcure(Surv(recyrs, censrec)~1, data = poor_data, link="identity", dist="glogis", 

mixture=T) print(cure_poor) plot(cure_poor, ci=TRUE, conf.int=FALSE, main="Poor Data Set", 

ylab="Survival Probability", xlab="Recurrence Free Survival Time (Years)", lwd=2, col="green") 

legend("topright", lty=c(1,1), lwd=c(2,2), col=c("green","black"), c("GLL","KM"))  

######################## Fit bc #########################  

cure_all <- flexsurvcure(Surv(recyrs, censrec)~1, data = bc, link="probit", dist="lnorm", mixture=T) 

print(cure_all) plot(cure_all, ci=TRUE, conf.int=FALSE, main="PC Data Set", ylab="Survival 

Probability", xlab="Recurrence Free Survival Time (Years)", lwd=2, col="yellow") legend("topright", 

lty=c(1,1), lwd=c(2,2), col=c("yellow","black"), c("GLL","KM"))  

  

  

 

  

Appendix (B)  

OpenBugs codes for fitted survival data model  

  {  

    for( i in 1 : N ) # observed failure times  

    {  

    a[i] <-  pow(roh,k)/pow(gamma,k)  

      

f[i] <- (k*roh* pow(roh*t[i],(k-1)))/ pow((1+pow(gamma*t[i],k)),(a[i]+1))   

  S[i] <-  pow((1+pow(gamma*t[i],k)),(-1*(pow(roh,k)/pow(gamma,k))))   h[i] <- (k*roh* 

pow(roh*t[i],(k-1))) / (1+pow(gamma*t[i],k))   L[i] <- pow(f[i], d[i])* pow(S[i], 1-d[i])   

logL[i] <- log(L[i])   zeros[i] <- 0  

    zeros[i]~dloglik(logL[i])  

  }  
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# Prior distributions of the model parameters     k~dgamma(0.5,0.1)  

  roh~dgamma(0.5,0.1)   gamma~dnorm(0.5,1)  

 }  

  

# Initial model parameter values  list(k = 

2.5,  roh = 2.5, gamma = 0.5)  
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