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Abstract 

 

This work deals with the approximate solution of Laplace equation in three-

dimensional regions. 

Green's representation is of greate important in this regard. Furthermore, harmonic, 

subharmonic, superharmonic functions and potential layers considered here are of 

essential role in understanding and analyzing potential phenomena. 

Special boundary integral equations are developed for solving potential problems in 

three-dimensional regions with arbitrary configuration of spherical cavities. 

The solution on the boundary of each cavity is represented by a finite sum of spherical 

harmonics with unknowns coefficients. The cavity geometry is directly exploited in a 

new set of integral equations with special kernel functions which independently "pick 

out" these coefficients. 

Each new equation contains only one coefficient relating to the particular cavity and 

so the resulting system of equations for unknown field on the boundaries of the 

cavities is well-conditioned.  

The level of approximation in these equations depends on the number of spherical 

harmonics in the representation of the solution on the boundary of the cavity. 

Equations corresponding to the lowest and next higher level of approximation are 

solved. Examples are given to demonstrate the proposed method. Moreover, this 

method is also applied to three-dimensional regions with slender cavities of circular-

cross sections. 
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Introduction 

One of the most important partial differential equations that occurs in applied 

mathematics is Laplace equation. 

Many important problems require the solution of this equation such as [16], heat 

conduction in cooled gas turbine blades [4], flow of an inviscid compressible fluid around 

circular cylinders [12], and electrostatic field around gratings of charged wires [13]. 

Laplace equation is an example of the more general type of partial differential equations 

known as elliptic partial differential equations. The basic theory of these equations is 

presented in Gilbarg and Trudinger [7], Jost [9], Alexer [1]. 

Moreover the solution of boundary value problems for partial differential equations is one 

of the most important field of applications for integral equations, see Kress [10] and 

Kanwal [5]. 

It is the nonlinearity and the complex geometries that make analytical solution difficult to 

obtain. The best alternative is to seek approximate solution. Many numerical techniques 

were derived based on finite element, finite difference, and boundary integral methods, 

see [11,8,14]. 

The technique "special boundary integral equations…" was proposed by Baron and Caulk 

[2,3] for potential problems in regions with circular holes and to regions with slender 

cavities. The same technique was applied to three-dimensional regions with spherical 

cavities by Zahaykah, [17].  

In [17], the potential or its outward normal derivative was assumed to be constant. 

Here beside the constant case we consider also the case where the potential or its outward 

normal derivative is not constant. 
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In this work we approach the problem by formulating special boundary integral equations 

which take explicit account of the cavity geometry and the corresponding characteristic 

of the solution. 

First the potential function and its normal derivative are represented by a finite series of 

spherical harmonics on the boundary of each cavity. 

The unknown coefficients in each series are determined by a new set of integral equations 

with special kernel functions which independently "pick out" respective coefficient at a 

given cavity. Taken together, the equations at any one cavity express the coefficients, and 

hence the solution, on the boundary of the cavity in terms of integrals over the outer 

boundary and the outer cavities in the region. Because each equation contains only one 

coefficient at its associated cavity, the system is well-conditioned. 

The outline of the thesis is as follows: 

In chapter one, we outline the basic theory of the Laplace equation, [7,10]. We present 

some properties of harmonic functions, and we give the existence and uniqueness of the 

solution of the Laplace equation theorems based on Perron's method and potential layers. 

In chapter two we present the method of special boundary integral equations to 

approximate the solution of Laplace's equation in three-dimensional regions with 

spherical cavities.We formulate the basic boundary integral equations. 

Here we treat Dirichlet problem and we consider a general configuration of spherical 

cavities in a region of arbitrary shape and specify firstly boundary potential on each 

cavity and secondly the sum of a constant and first order harmonic. In both cases the 

boundary flux is taken to be a constant which leads to the so-called zeroth-order solution, 

or a constant plus a first order harmonic which leads to the so-called first order solution. 
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Also in chapter two we apply the procedure to Neumann problem, and we give some 

examples to demonstrate applicability of the proposed method. 

Finally, in chapter three we apply this method to three-dimensional regions with slender 

cavities with circular-cross sections. 
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Chapter One 

Potential Theory 

  As we mentioned in the introduction, one of the most important partial differential 

equations occurring in applied mathematics is the Laplace equation. 

 adivDu
x

u
Δu  

n

i i

                                                                              ,0
1

2

2


 


  

where u is a )(2 ΩC  function  and Ω  is a domain in  .n Furthermore, 
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is called the Laplacian of u, div denotes the divergence  of u and Du denotes the gradiant 

of  u. Any )(2 ΩC  function u that satisfies Laplace equation is called harmonic. It is 

called subharmonic if Δu ≥ 0, and superharmonic if  Δu ≤ 0. A basic argument used in 

solving Laplace equation is the divergence theorem. 

Theorem [7] (Divergence theorem) 

Let Ω  be a bounded domain with ΩC ∂  boundary1  and let v denote the unit  outward 

normal to .Ω∂   For any vector field w in )(1 ΩC   we then have  

 bvdswdivwdx                                                                                                         .


  

Where ds indicates the (n-1) dimensional area element in .Ω∂  Notice that if u is a  
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1.1  Some Properties of Harmonic Functions 

In this section we review some properties of harmonic, subharmonic and superharmonic 

functions. 



 5 

Theorem 1.1.1 [7] (The Mean Value Theorem) 

Let )≤,(≥  (2 00 0satisfy )  ΔuΩCu  in Ω. Then for any ball (centered at y with radius 

R) have we⊂⊂  Ω)(BB R y    
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Proof: 
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y  the relation (1.1.2) follows.  

To get the relation  (1.1.3) we write the relation (1.1.2) as  
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.,1 Rρudsuρnω
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Integrate with respect to ρ from 0 to R we get   
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Theorem 1.1.4 [7] ( Strong Maximum and Minimum Principle ) 

Let Ω)Δu   (≤ ≥ in0 0  and suppose there exist a point Ωy  for which 

.inf(sup  ) uu u(y)
ΩΩ

  Then u is constant. Consequently a harmonic function cannot 

assume an interior maximum or minimum value unless its constant. 

Proof: 

.  torelative  closed iscontinuous  is   Since empty.not  is  assumptionBy 

∈define  and  supin0let

 ΩΩuΩ

. MxuΩΩuMΩΔ u 

MM 

M

  

})({    ,     
Ω

 x

 

Let z  be any point in MΩ  and apply the mean value inequality to subharmonic function 

u-M in a ball  .⊂ ⊂ ΩzBB R )(  Therefore we obtain 

0 0    (u-M)dx
Rω

Mzu
B

n

n

1
-)(  so that u=M in . )( zBR  Consequently  MΩ is also 

open relative =ΩΩΩ M   .  Henceto . 

For the superharmonic case we replace u by -u, then the result follows.                       □         

Corollary 1.1.5 [7] 

Let D be a bounded domain and let u be a nonconstant harmonic in D and continuous in 

Then  .D the maximum and minimum of u attained on the boundary. 
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Theorem 1.1.6 [7]  (Weak maximum and minimum principle ) 

Let  .  (≤≥  ∩ ΩuΩCΩCu in)0 0Δwith  )()( 02 Then provided Ω is bounded  

 )infinf( supsup
 ∂∂

. u u u  u 
ΩΩΩΩ

 Consequently, for harmonic function u  

 

 

Proof: 

Since Ω  is compact then u has a suprimum and an infimum in Ω . Because 0)( 0Δ ≥u  

in Ω and u is not constant, then by theorem 1.1.4 the suprimum and the infimum must 

attained at boundary points.                                                                                                □                                   

Theorem 1.1.7 [7] ( Uniqueness theorem ) 

.  .∂        , vThenon vandinvΔΔsatisfy)(∩)(vLet 02 u=Ωu=Ω u =ΩCΩCu   

Proof: 

Let w = u – v. Then Δw = 0 in Ω and w = 0 on ∂Ω. So by the weak maximum and 

minimum principle w = 0 in Ω and hence u = v in Ω.                                                        □ 

Remark 1.1.8 [7] 

 If u is harmonic and v is superharmonic agreeing on the boundary ∂Ω, then by the weak 

maximum and minimum principle v ≥ u in Ω. 

Proof: 

Let w=u-v then  0Δ ≥w and by theorem 1.1.6 .0supsup
∂

 ww 
ΩΩ

 Hence w ≤ 0 and 

therefore v ≥ u.                                                                                                                    □ 
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Theorem 1.1.9 [7]  ( Harnack Inequality )  

Let u  0 be harmonic function in Ω. Then for any bounded subdomain ΩΩ    there 

exist a constant C depending only on  such that  and  Ω,Ωn,  .infsup uCu
ΩΩ
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1.2 Green's Theorems 

Theorem 1.2.1 [7] (Green’s First Identity) 

Let u, v be )(2 ΩC  functions, Ω be a domain in n for which the divergence theorem 

holds. Then 

                                                                 221 
 ∂

 ∂
.Δ ..ds

ν

u
 dxDDuudx 



 vvv  

Proof: 

Set w = vDu in equation (b) then 
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Theorem 1.2.3  [7] (Green’s Second Identity) 

Let u, v and Ω be as given in theorem 1.2.1 then  

    421     
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Proof: 

Interchanging u and v  in equation 1.2.2 we get  
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Substracting from equation (1.2.2) then we obtain the Green's second identity 
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Laplace's equation has the radially symmetric solution 
-nr 2

 for n>2  and log r for n=2, r 

being radial distance from a fixed point.  

To proceed further from equation (1.2.5) we fix a point y in Ω and introduce the 

normalized fundamental solution of Laplace’s equation: 
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Furthermore we have the following estimates:  
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The singularity at  x=y prevents us from using Г  in place of v in Green's second identity 

(1.2.4).  

Replace Ω by )(   yρρρ BB-Ω B where  for sufficiently small ρ we conclude from (1.2.4) 

that 
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Hence letting ρ tend to zero in (1.2.8) we arrive Green's representation formula 
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If  u has a compact support in n , then (1.2.9) yields the frequently useful representation 

formula 

 10.2.1                                                                                            .Δ)(



ρB

udx)u( y-xy  

For harmonic function u, we also obtain the representation  
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This formula is called Green's formula. 

The integrand in equation (1.2.11) is infinitely differentiable and also analytic with 

respect to y, it follows that u is also analytic in Ω. Thus harmonic functions are analytic 

throughout their domain of definition and therefore uniquely determined by their values 

in any open subset. 

Now suppose that )21 (ΩC)Ω( Ch    satisfies Δh = 0 in Ω. Then again by Green's 

second identity (1.2.4) we obtain   

 12.2.1                     .)Δ                                                       










 ds

ν

h
u

ν

u
hudxh (  

Writing G=Г+h and adding (1.2.9) and (1.2.12) we obtain a more general version of 

Green's representation formula: 
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If G=0 on Ω   we have  
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 ds
ν

G
uudxGΔ)u(
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 y  

and the functions G=G(x,y) is called the Green's function for the domain Ω, sometimes 

also called the Green's function of the first kind for Ω. 
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By uniqueness theorem the Green's function is unique and from the formula (1.2.14) its 

existence implies a representation for  a )21 (ΩC)Ω( C   harmonic function in terms of 

its boundary values. 

When the domain Ω is a ball the Green’s function can be explicity determined by the 

method of images and leads to the well known Poisson integral representation for 

harmonic function in a ball. 
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The function G defined by (1.2.16) has the properties  

G(x,y) =G(y,x) 

G(x,y)≤ 0for  x,y RB . 

Moreover, direct calculation shows that at  x RB  the normal derivative of G is given by 
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Theorem 1.2.20 [7]  

Let )0(RBB   and φ be a continuous function on .B  Then the function u defined by  
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Proof: 

u is harmonic in B is evident from the fact that G, and hence 


G
 is harmonic in x. 

To establish the continuity of u on ,B  we use the Poison formula (1.2.19) for the special 

case u=1 to obtain the identity 
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If now 
0- xx  is sufficiently small its clear that  2 )(-)( 0 xx uu and hence u is 

continuous at  .0x  Consequently )( 0 BCu   as required.                                       □ 

Now we consider some convergence theorems. 

Theorem 1.2.23 [7] 

A )(0 ΩC  function u is harmonic if and only if for every ball ΩBB R  )( y  it satisfies 

the mean value property, .
1

1

B

n-

n

uds
Rnω

u(  =)y  

Proof: 

By theorem 1.2.20 there exist for any ΩB    a harmonic function h such that h=u on 

 .B The difference w=u-h will then be a function satisfying the mean value property on 

any ball in Ω. Consequently the maximum principle and uniqueness results apply to w 

since the mean value inequalities were the only properties of harmonic functions used in 

their derivation. Hence w=0 in B and consequently u must be harmonic in Ω.             □ 

Theorem 1.2.24 [7] 

The limit of a uniformly convergent sequence of harmonic functions is harmonic. 
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Proof: 

Let }{ ku  is a sequence of harmonic functions that converges uniformly to u. By theorem 

1.2.23  


ku
B

kn-

n

k dxu
Rnω

 asThen  .)(
1

1
y  since the convergence is uniformly  we  

 )( have .
1

1 



B

n-

n

udx
Rnω

u y  

Again by theorem 1.2.23 u is harmonic.                                                                           □ 

 

Remark 1.2.25 [7] 

If }{ nu  is a sequence of harmonic functions in a bounded domain Ω with continuous 

boundary values }{ n  which converge uniformly on Ω to a function φ. Then by the 

maximum principle the sequence }{ nu  converges uniformly to a harmonic function 

having the boundary values φ on ∂Ω. 

Theorem 1.2.26 [7] 

Let }{ nu  be a monotone increasing sequence of harmonic functions in a domain Ω and 

suppose that the sequence )}({ ynu  is bounded for some point  y .Ω  Then the sequence 

converges uniformly on any subdomain ΩΩ   to a harmonic function. 

Proof: 

The sequence )}({ ynu  will converge, which implies that for arbitrary 0  there is a 

number N such that   . allfor  0 Nnm)(u)(u nm  yy But by Harnack's inequality 

we must C)(u)(u nm
Ω




xxsup  have  for some constant C depending on .  and ΩΩ  
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Consequently }{ nu  converges uniformly and by theorem (1.2.24) the limit function is 

harmonic.                                                                                                                           □ 

1.3 The Method of Subharmonic Functions 

We are now approach the question of existence of solutions of the classical Dirichlet 

problem in arbitrary bounded domains. The treatment here will be accomplished by 

Perron's method of subharmonic functions which relies heavily on the maximum 

principle and the solvability of the Dirichlet problem in balls. The method has a number 

of attractive features in that it is elementary, it separates the interior existence problem 

from that of the boundary behavior of solutions, and it is easily extended to more general 

classes of second order elliptic equations. We generalize the definition of subharmonic 

(superharmonic) functions as follows. 

Definition 1.3.1 [7] 

A  )(0 ΩC  function u will be called subharmonic (superharmonic) in Ω if    ∀ ΩB⊂⊂ and 

for every function h harmonic in B satisfying ,on    )( Bhu   we also have 

.in    )( Bhu   

Following we list some properties of subharmonic functions. 

Corresponding results for superharmonic function are obtained by replacing u by –u. 

(1) If u is subharmonic in a domain Ω, it satisfies the strong maximum principle in  Ω, 

and if v is superharmonic in a bounded domain Ω with v Ωu  on     then either 

v  u throughout Ω or v .u  
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Proof: 

For the first statement, we follow the same proof in theorem 1.1.4. For the second 

statement, suppose the contrary, then at some point Ω∈0x   we have 

,0v)(sup)v)(( 0 ≥Mu-u-
Ω

x assume  )( 0xBB ∃ such that .on   v BMu- ≡  

v~~ Letting ,u  denote the harmonic functions such that  ,on  vv~~ Bu,u ∂ one find that 

MuuuM
B




))(v())(v~~()v~~(sup 00 xx and hence the equality holds through-

out. By the strong maximum principle for harmonic functions it follows that v~~ u ≡M in 

B, and hence u-v ≡ M on ∂B, which contradicts the choice of B.                                       □ 

Definition 1.3.2 [7] 

 Let u be a subharmonic in Ω and B be a ball strictly contained in Ω, let u~ be  

.on  ~ satisfing in function  harmonic the BuuB ∂  Then the harmonic lifting of u ( in B), 

denoted by U(x)  is defined as  )( and   if )(~ xxxxx u)U(B u)U(  ∈ if  . Ω-B ∈x  

(2) The harmonic lifting   U is also subharmonic in Ω.                                 

Proof: 

Consider an arbitrary ball hΩB let  and ⊂⊂  be harmonic function in  B satisfying  

and in   have  wein    Since . ∂on    BhuBUuBUh  ≤ ≤ ≥  .in    hence -BBhU  ≤  

by  have  wein  harmonic is   since Also BU the maximum principle .in  BBhU ≤  

Consequently UBhU  and in    ≤ is subharmonic in Ω.                                               □ 

 (3) Let N,...,u,uu 21 be subharmonic in Ω. Then the function 

)}()()({max  )( 21 xxxx N,...,u,uuu  is also subharmonic in Ω.                                                                              
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Definition 1.3.3 [7] 

Let Ω be bounded and φ be a bounded function on ∂Ω.  0A )Ω(C subharmonic 

(superharmonic) function u is called a subfunction (superfunction) relative to φ if it 

satisfies .Ωuu ∂ ) ≥( ≤ on   

Remark 1.3.4 [7] 

By the maximum principle every subfunction is less than or equal to every superfunction. 

In particular, constant functions )sup(inf
∂∂




 ≥ ≤
Ω

 are subfunctions (superfunctions). 

Let denote S the set of subfunctions relative to φ. The basic result of Perron method is 

contained in the following theorem. 

Theorem 1.3.5 [7] 

The function )(vsup
∈v

xx
S

u )(  is harmonic in Ω. 

Proof: 

By the maximum principle any function  supvsatisfies v  ≤ ∈ S  so that u is well 

defined. Let y be an arbitrary fixed point of  Ω. By the definition of u, there exists a 

sequence   such that}v{ Sn ⊂  →v .u(n )() yy )( inf vmaxwithvreplacingBy ,  nn  we  may 

assume that the sequence }v n{  is bounded. Now choose R so that the ball 

Ω)(BB R  y  and define nV  to be the harmonic lifting of nv  in B, then  

 )(→)( yy uVSV nn  ,  and the sequence }{ nV  contains a subsequence }{
knV  converging 

  )(ballany in uniformly yρB with vfunction a   to  Rρ  that is harmonic in B. Clearly      

v ≤ u in B and .u )()( yy v  We claim now that  in fact v=u in B. For suppose            
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v(z)< u(z) at some  .Bz Then there exists a function .uSu )()(  zz vsuch that∈   

Defining )max nkk Vuw ,(  and let kW  the harmonic lifting, we obtain before a 

subsequence of the sequence { kW } converging to a harmonic function w satisfying  

byBut then vandinv  )()()(    .uwBuw yyy  the maximum principle we must have 

v=w in B. This contradicts the definition of .Ωuu   in harmonic is  hence and                   □  

Definition 1.3.6 [7] 

Let   acalled is function)(aThen ofpoint  a be 2
barrier     .    ΩCΩ relative at    

 if  to Ω  is superharmonic in .0)(  and  }{in  0  ,  ΩωΩ  A boundary point is 

regular if there exists a barrier at that point. 

Lemma1.3.7 [7] 

Let u be the harmonic function defined in Ω by Perron method. If ξ is regular boundary 

point of Ω and φ is continuous at ξ  then ).(→)( ξx u  

Proof: 

Choose ε > 0 and let .sup 
Ω

M   Since ξ is a regular boundary point then there is a 

barrier w  at ξ  and by virtue of the continuity  of φ there are constants δ and k such that  

 .  if  2 )(  and  if  )()( δ-Mkwδ-ε-  ξxxξxξx   

The function kwε )(ξ  is a superfunction and kw-ε -)( ξ is a subfunction relative to 

every   dominatesion superfunctevery fact that   theand of definition  thefrom Hence    u.   

subfunction, we have in or  )( )()()( -)(  xξxxξ wkεuwk-εΩ    

).( )(-)( xξx wkεu   

 ξ.xξxξxx →  )as(→)(obtain     we,→as 0  )( Since u →w                                         □                                                                                                                                                                     
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Theorem 1.3.8 [7] 

The classical Dirichlet problem in a bounded domain is solvable for arbitrary continuous 

boundary values if and only if the boundary points are all regular. 

Proof: 

If the boundary values φ are continious and the boundary ∂Ω consists of regular points, 

the preceding lemma states that the harmonic function provided by Perron's method 

solves the Dirichlet problem. Conversely, suppose that the Dirichlet problem is solvable 

for all continuous boundary values.  )(function  Then the .Let ξxxξ -Ω   is 

continuous on ∂Ω and the harmonic function solving the Dirichlet problem in Ω with 

boundary  .at barrier  aobviously  is   values ξ  

. of points all are as regular, is  Hence Ωξ                                                               □ 

1.4 Potential Layers 

In this section we will study briefly some of the basic boundary value problems, namely 

Dirichlet and Neumann problems, from the integral equations point of view. We start by 

defining such problems. We take the space dimension n to be 2 or 3.  

Interior Dirichlet problem: Find  )()( 02 ΩCΩCu  that satisfies ,in  0Δ Ωu  and u=f  

on  ,Ω where f is a given continuous function. 

Interior Neumann  problem: Find  )()( 02 ΩCΩCu  and satisfies ,in  0Δ Ωu  and 

 ,on  Ωg
u







 where g is a given continuous function. 

Exterior Dirichlet problem: Find )\()\( 02 ΩCΩCu nn   and satisfies  in 0Δ u  
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 ,\n Ω  and u=f on  ,Ω where f is a given continuous function. xFor  it is 

required that u(x)=O(1), if n=2 and  u(x)= o(1), if n=3. 

Exterior Neumann  problem: Find )\()\(2 ΩCΩCu nn   and satisfies  

in 0Δ u ,\n Ω and  ,on  Ωg
u







 where g is a given continuous function.  

xFor  it is required that u(x)= o(1). 

Theorem 1.4.1 [10] 

Both the interior and the exterior Dirichlet problem have at most one solution. 

Proof: 

 difference   theSo  .  problemDirichlet interior   the tosolutions exist two  thereSuppose 21,uu

boundary  the toup continuousfunction  harmonic a is 21 uuu  satisfy the homogeneous  

exterior   for the \in  0 and probleminterior  for the  in  0obtain    wetheorem

 principle minimum and maximum strong  thefromThen   .on  0condition boundary 

ΩuΩu

Ωu

n



. that implise which , problem 21 uu                                                                                  □ 

Theorem 1.4.2  [10] 

solution. onemost at  have  problemNeuman 

exterior  The constant. aby  only differ  becan  problemNeumann interior   theof solutions Two
 

Proof: 

Let 21,uu  be two solutions of the interior Neumann problem and let . 21 uuu   Then u 

is a harmonic function continuous up to the boundary satisfying the homogeneous 

boundary conditioned .on  0 Ω
u
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For the interior problem, suppose u is not constant in Ω. Then there exists some closed 

ball B  contained in Ω such that .0
2

   dxDuI
B

 

From the first Green's theorem applied to the interior of Ω  of some parallel surface  

}:)({   xxhxΩ  with sufficiently small h>0 we derive  

 thatobserve  weproblem,exterior  For the .ion contradict a  ,0 so

  get    we0 Letting   .
2
















  

  

I

ds
u

uds
u

uhds
u

udxDuI

ΩΩΩ
  

 0 that Assume  .directions allfor uniformly  , ,
1

)(  ,
1

)(
1

































DuODuOu

nn
x

x
x

x
x  

 surface parallel somebetween  domain    the to theoremsGreen'first  Appling

 .0such that  in  contained  ball closed someexist  Then there  .in 
2



 

Ω

dxDuIΩ\BΩ\
B

nn

 

 with}:{ Ω)hv(Ω  
xxx sufficiently small h>0 and some sufficiently large sphere 

RΩ  with radius R  we get .
2


 











ΩΩΩ

ds
v

u
uds

v

u
udxDuI

R

 Letting ,R and 

 ,0h we arrive at the contradiction inconstant  Therefore  .0  uI  

 thisand Ω\n constant must be zero since .0)u(                                                   □ 

Definition 1.4.3 [10] 

The functions  441                                                 )()()()( ..Ω\,ds,Φu
n




 xyyxyx   

 541                                                                       )(
)(

)(
)()(v and ..Ω\,ds

ν

,Φ n








 xy

y

yx
yx 

where φ is a function belongs to )( ΩC  are called single-layer and double-layer potentials 

with  density φ, respectively. Here Ф is the fundamental solution given by  
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Theorem 1.4.6 [10]   

 . of class  a is   where)(let 2CΩΩC  Then the single-layer potential u with density φ 

is continuous throughout holds  thereOn   . Ωn   

 

 

   ,
2

1
lim )( where

 841                                                )(
2

1
)(

)(

)(
)()( and

741                                                                              )()()()(

0








































))hv(). Du(ν(
ν

u

..Ω,xds
ν

,Φ

ν

u

..Ω,ds,Φu

h
xxxx

xy
x

yx
yx

xyyxyx







is to be understood in the sense  of uniform convergence on ∂Ω and where the integrals 

exist as improper integrals. The double-layer potential v with density φ can be 

continuously extended from Ω\
n

   with   to from and  to ΩΩΩ\
n

 limiting values 

 941                                                         )(
2

1
)(

)(

)(
)()(v ..Ω,xds

ν

,Φ



 



 xy

y

yx
yx   

improper asexist  integrals  the whereand   )(vlim)(v  where
0

)h(
h

xxx 


 integrals. 

Furthermore  

 1041                                                ,0)(
v

)(
v

lim 
0

..Ω)h()h(
h





















xxxxx 





 

.on uniformly Ω  

Proof: 

See[6]. 
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Theorem. 1.4.11 [10] 

     Ω,L

LCΩ





yxyxyxx  allfor    . 

such that  constant  positive a exists Then there . class of be Let 

2

2


 

Proof: 

See [6]. 

Theorem1.4.12 [10] 

The double-layer potential ,  )(
)(

)(
)()( 







 Ω,ds

ν

,Φ
u xy

y

yx
yx   with continuous density  

 1341                                                      .    )(2-)(
)(

)(
)(2-)(

equation 

 integral   theofsolution   a is    provided problemDirichlet interior   theofsolution  a is  

..Ω,fds
ν

,Φ







xxy

y

yx
yx 



 

Proof: 

From theorem 1.4.6   ,    )(
2

1
-)(

)(

)(
)()( 



 



 Ω,ds

ν

,Φ
u xxy

y

yx
yx  which implies  




 



  .    )(-)(

)(

)(
)(2)(2 Ω,ds

ν

,Φ
u xxy

y

yx
yx  Now for Ωx  u (x)= ,)f(x so 

equation  1.4.13 holds.                                                                                                   □       

Theorem 1.4.14 [10] 

The single-layer potential  ,    )()()()( 


 Ω,ds,Φu xyyxyx   

 1541                                                       )(2)(
)(

)(
)(2)(

equation  integral  theofsolution  a

 is  provided problemNeumann interior   theofsolution  a is density  continuous awith 

..Ω,gds
ν

,Φ







 xxy

x

yx
yx 
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Proof: 

From theorem 1.4.6   .    )(
2

1
)(

)(

)(
)()( 



 








Ω,ds

ν

,Φu
xxy

x

yx
yx 


Which implies  




 








 .    )()(

)(

)(
)(2)(2 Ω,ds

ν

,Φu
xxy

x

yx
yx 


 Now for ,Ωx  )g(

ν

u
x



  so 

 equation  1.4.15 holds.                                                                                                       □ 

Theorem 1.4.16 [10] 

The interior Neumann problem is solvable if and only if zero.   toequal is 
Ω

gds  

Proof: 

uΩxxhx solution    the to theoremsGreen'apply    we}:)({Let    to get  

.0limlim
00





 

 







ds
u

gdsgds
hh

Ω


                                                                               □ 

Theorem 1.4.17 [10] 

The solution to the Dirichlet and Neumann problem depend continuously in the 

maximum norm on the given data. 

Proof: 

See[10]. 
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Chapter Two 

Special Boundary Integral Equations for Approximate Solution of 

Potential Problems in Three–Dimensional Regions with spherical 

Cavities 

In this chapter we proposed a boundary integral method for solving potentials problems 

in three – dimensional region with spherical cavities. Boundary quantities were expanded 

in spherical harmonics on the surface cavity and special boundary integral equations were 

introduced to determine the unknown coefficients. The outer boundary was treated in a 

conventional manner and in principle, all integration on the cavities are done explicitly. 

The theory in this chapter based on [17] .  

2.1 Integral Equations [17] 

Consider a three-dimensional open region Ω  containing N spheres centered at the points 

,i
ξ  i=1,2,...,N. Let ia  be the radius of sphere i, 

i
S be the lateral boundary of sphere i, 

Ω be   .  of  boundaryouter    the Ω Further function  harmonic a be let  in Ω, i.e.  

   11.2                                                                                                    . 0,= .Ωφ  xx  

As we done in chapter one, using the fundamental solution , 
4

1
)( Ω

-π
= 


 yx,

yx
yx,  

and the Green's second identity  we obtain the integral representation for the potential 

function φ as  

 21.2                                                         )( ∑
1

.Γ) ds  q
ν

Γ
 ()ds

ν
Γ

ν

Γ
(

  n

  i

i

S

i

i
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2.2 Dirichlet Problem  

Next we consider the Dirichlet problem, [17], find φ such that 

 S
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i .  ,      )(                         
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Where a constant potential is considered on each surface of spheres. In this case equation 

(2.1.6) reduced to  
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Notice that this equation contains . unknowns )1( 2 i

nmqMN   To determine these 

unknowns consider the following sequence of kernel functions 
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2.2.3 Theorem
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ξx  and consider the Laplace equation in spherical coordinates. 
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Using the kernel functions given in equation (2.2.2) we obtain 
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Hence equation (2.2.9) gives 
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Again using the sequense of kernel functions given in equation (2.2.2) we obtain 

   

   20.2.2                0),(()(

19.2.2                       0),()(

1

1

1

i

1100

1

0

01

1

i

11000

0





























































 





dsq
ν

Υds
νν

dsq
ν

Υds
νν

N

i S

is

nm

s

nmiiis

nm

s

nm

N

i S

is
s

iiis
s

i

i











 



 35 

We proceed as in the previous case and simplify the integrals appear in equations (2.2.19) 

and (2.2.20). 
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2.3 Neumann Problem 

We can apply the ideas of spherical harmonics to Neumann problem too. We treat the 

case where a constant normal derivative is prescribed on the boundary of the spheres. 

That is we can consider the problem,  [17], find φ such that 
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Hence in the case i≠s we 
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2.4  Levels of Approximations [17] 

In general the same normal derivatives (2.1.4) on each sphere can be represented by any 
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The next level of approximation corresponds to take M=1 in equation (2.1.4). Then 

equations (2.2.1) and (2.2.16) reduced to 
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Equations (2.4.3) to (2.4.7) are called the first order equations and their solution is called 

the first order solution. 
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Figure 1 
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These equations are called the zeroth-order equations and their solution is called the 

zeroth–order solution. 

The next level of approximation corresponds to set M=1 in equation (2.1.3). Thus 

equations (2.1.6) and (2.3.8) reduced to 
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2.5 Applications 

Example 1 [17] 

Let us solve the Dirichlet problem for the exterior of the unit sphere. 

That is, find φ (x) such that 

S

Ω

   constant  )(                          

                      0)(Δ                          

00 



xx

xx




 

where Ω is the exterior of the unit sphere. 

The zeroth order equations (2.4.1) and (2.4.2) reduced to 
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 y  which agrees with the solution obtained by Stackgold [15] 

The fist order equations (2.4.3)-(2.4.7) reduced to equations same as (2.5.1), and (2.5.2). 

Equations (2.4.5)-(2.4.7) implies that .0111011  qqq  

Thus equations (2.4.3) and (2.4.4) implies  
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and we obtain the same solution as the zeroth-order equations. 

Example 2 (A single sphere in a half–space) [17] 

In this example we consider a single sphere of radius a with center a distance d (a < d) 

below the surface of the half – space ,-  ,-  21 xx , 03x . The potential 

on the sphere is considered to be constant 00 , while on the surface of the half–space is 

taken zero. 
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We consider the first order equations (2.4.3)–(2.4.7), applied to the sphere and to its 

image with respect to the plane  .03x . 

We denote the quantities associated with the image sphere by a prime. From the 

geometry of the problem we have ,qqqq -- 11111111 0    thesincefurther   potential  

is vanishing on the surface ,03x  we obtain .10100000 qq,qq  We enclose the sphere 

and its image by a large sphere of radius  that  theso  let    weand 11 RR integrals over 

Ω in equations (2.4.3)-(2.4.7) vanish. 
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Example 3 (An infinite row of spheres in a half – space) [17] 

Consider an infinite row of identical spheres in a half –space. Suppose that each sphere 

has a radius a and that the centers of the spheres are uniformly equal distributed along an 

axis parallel to 3x  at a distance d (d > a) belong 03x . Further suppose the distance 

between two successive centers is L distance apart. Assume that the potential boundary of 
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each sphere is constant 00 and that the potential on the surface of the half–space 

( 03x ) is zero. In order to solve this problem, we consider a finite number of spheres 

namely 2N + 1 sphere. We completely reflect the problem about the plane x3 = 0 so that 

the boundary condition on 03x is satisfied identically. For conveince we index the 

spheres by an integer n which takes the values from –N to N. 

Let the quantities associated with the image spheres be denoted by a prime. 

From the untisymmetry we have  

.0 

         ;
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nnnn
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qqqq

 


 

Also from the symmetry about the center sphere (n=0) we have 

0  and   0               ; 1111111110100000  





 nnnnnnnn qqqqqqqq  

As we did in the case of a single sphere, we enclose all the spheres by a sphere of radius  

equationin  integrals surface  that theso  1 R (2.4.3) to (2.4.7) vanish in the limit. Next 

identity sphere S in these equations with n=0 then from the symmetry of the problem 

equations (2.4.5) and (2.4.7) are satisfied identically and equations (2.4.4), (2.4.6) 

reduced to  
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Where we have dropped the superscript when n=0.  Now pass to the limit N  and 
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Example 4 (A single sphere in a half – space) [17]   

Consider a sphere of radius a kept at a constant normal flux is placed in a lower half-

space with a distance d (d > a) below the surface of the half - space. Further assume that 

q is equal to zero at the surface of the half –sphere and equal to constant 00q  on the 

surface of the sphere. 

Consider the image of the sphere and enclose it with the original sphere by sphere of 

radius in  over  integrals  the as that so 11 RR equations (2.4.17)-(2.4.20) vanish. 
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Now in order to have zero flux on the surface of the half -space the flux on the image 

sphere is taking to be .0   ,   ,  take weand 111111111010000000 
  ---q  

Hence the flux depend only on ψ and r. 

Thus equation (2.4.17) reduced to 
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Example 5 

In this example we consider Dirichlet problem for the exterior of the unit sphere. That is 

find φ such that 

SY

ΩΔ

 ,   ),()(                          

 ,                     0)(                             

1

11100 



xx

xx




 

Where Ω is the exterior of the unit ball and S is the surface of the ball. Taking 00qq  , 

we drop the superscripts since we have only one ball, then equations (2.2.18) and       

(2.2. 21) reduced to   
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Chapter Three 

Special Boundary Integral Equation for Approximate Solution of 

Potential Problems in Three-Dimensional Regions with Slender Cavities 

of Circular Cross–section 

In this chapter we consider potential problems in general three–dimensional regions with 

slender internal cavities of circular cross–section. We assume that the surface potential 

and its normal derivative are locally axis-symmetric. With this assumption, the surface 

integrals on a cavity boundary can be reduced to contour integrals a long the center line 

of the cavity. The solution at any point a long the cavity is determined by a special 

integral equation formed by localing the fundamental solution at point in the center of the 

cavity. The theory  in this chapter based on [3]. 

3.1 Integral Equations [3] 

As in chapter two we consider a three–dimensional open region Ω containing n slender 

cavities with variable circular cross – section. We notice the following definitions: 
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Assume that both the surface potential φ and its normal derivative on iS are axi-

symmetric about iC  so that  
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The integrals on iS  in equation (3.1.1) then reduced to contour integrals along iC  as 

follows. Let θ represent the polar angle in the cross-section of the cavity so that the 

coordinates (s,θ) span the lateral surface iS . In terms of these coordinates the element of 

area da on iS  is 
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.   where y-xr  r = x- y 

So that with (3.1.2) and (3.1.3) the surface integral may be expanded in the form 
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3.2 Coaxial Tori [3] 

Now want to apply the integral equation (1.1.4) to collection of coaxial toroidal cavities 

in unbounded region. In this case all the curves iC  are circles centered on a common axis 

of symmetry. 

Define the following:  
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These assumptions state that because of axially symmetric, the separation between 

cavities is large compared with    and   α  . ii qφa are constants on each cavity and for an 

unbounded region (3.1.9) is reduced to   
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Example 1 [3] 

Consider two identical tori with opposite potentials 0  separated by a distance 2d.  The 
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Example 2  [3] 

Consider a torodial cavity located in the midplane of a uniform slap of thikness d has zero 

potential on each surface. The solution of this problem can be obtained by solving the 

equivalent problem of an infinite series of parallel tori assigned with alternating 

potentials and separated by a distance d. The solution relating the flux q to the potential φ 

on the torus is 
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To show this assume there exist r tori under our torus, so there exist r tori above it, now 
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