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Abstract

This work deals with the approximate solution of Laplace equation in three-
dimensional regions.

Green's representation is of greate important in this regard. Furthermore, harmonic,
subharmonic, superharmonic functions and potential layers considered here are of
essential role in understanding and analyzing potential phenomena.

Special boundary integral equations are developed for solving potential problems in
three-dimensional regions with arbitrary configuration of spherical cavities.

The solution on the boundary of each cavity is represented by a finite sum of spherical
harmonics with unknowns coefficients. The cavity geometry is directly exploited in a
new set of integral equations with special kernel functions which independently "pick
out" these coefficients.

Each new equation contains only one coefficient relating to the particular cavity and
so the resulting system of equations for unknown field on the boundaries of the
cavities is well-conditioned.

The level of approximation in these equations depends on the number of spherical
harmonics in the representation of the solution on the boundary of the cavity.
Equations corresponding to the lowest and next higher level of approximation are
solved. Examples are given to demonstrate the proposed method. Moreover, this
method is also applied to three-dimensional regions with slender cavities of circular-

Cross sections.
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Introduction

One of the most important partial differential equations that occurs in applied
mathematics is Laplace equation.

Many important problems require the solution of this equation such as [16], heat
conduction in cooled gas turbine blades [4], flow of an inviscid compressible fluid around
circular cylinders [12], and electrostatic field around gratings of charged wires [13].
Laplace equation is an example of the more general type of partial differential equations
known as elliptic partial differential equations. The basic theory of these equations is
presented in Gilbarg and Trudinger [7], Jost [9], Alexer [1].

Moreover the solution of boundary value problems for partial differential equations is one
of the most important field of applications for integral equations, see Kress [10] and
Kanwal [5].

It is the nonlinearity and the complex geometries that make analytical solution difficult to
obtain. The best alternative is to seek approximate solution. Many numerical techniques
were derived based on finite element, finite difference, and boundary integral methods,
see [11,8,14].

The technique "special boundary integral equations..." was proposed by Baron and Caulk
[2,3] for potential problems in regions with circular holes and to regions with slender
cavities. The same technique was applied to three-dimensional regions with spherical
cavities by Zahaykah, [17].

In [17], the potential or its outward normal derivative was assumed to be constant.

Here beside the constant case we consider also the case where the potential or its outward

normal derivative is not constant.



In this work we approach the problem by formulating special boundary integral equations
which take explicit account of the cavity geometry and the corresponding characteristic
of the solution.

First the potential function and its normal derivative are represented by a finite series of
spherical harmonics on the boundary of each cavity.

The unknown coefficients in each series are determined by a new set of integral equations
with special kernel functions which independently "pick out"” respective coefficient at a
given cavity. Taken together, the equations at any one cavity express the coefficients, and
hence the solution, on the boundary of the cavity in terms of integrals over the outer
boundary and the outer cavities in the region. Because each equation contains only one
coefficient at its associated cavity, the system is well-conditioned.

The outline of the thesis is as follows:

In chapter one, we outline the basic theory of the Laplace equation, [7,10]. We present
some properties of harmonic functions, and we give the existence and uniqueness of the
solution of the Laplace equation theorems based on Perron's method and potential layers.
In chapter two we present the method of special boundary integral equations to
approximate the solution of Laplace's equation in three-dimensional regions with
spherical cavities.We formulate the basic boundary integral equations.

Here we treat Dirichlet problem and we consider a general configuration of spherical
cavities in a region of arbitrary shape and specify firstly boundary potential on each
cavity and secondly the sum of a constant and first order harmonic. In both cases the
boundary flux is taken to be a constant which leads to the so-called zeroth-order solution,

or a constant plus a first order harmonic which leads to the so-called first order solution.



Also in chapter two we apply the procedure to Neumann problem, and we give some
examples to demonstrate applicability of the proposed method.

Finally, in chapter three we apply this method to three-dimensional regions with slender

cavities with circular-cross sections.



Chapter One

Potential Theory

As we mentioned in the introduction, one of the most important partial differential

equations occurring in applied mathematics is the Laplace equation.

n 2
Au = a—l:: divDu=0, (a)

i=1 i

5%
2
i1 OX;

where uisa C?(Q) function and Q is a domain in R". Furthermore, Au =
is called the Laplacian of u, div denotes the divergence of u and Du denotes the gradiant
of u. Any C?(Q) function u that satisfies Laplace equation is called harmonic. It is
called subharmonic if 4u > 0, and superharmonic if Au < 0. A basic argument used in
solving Laplace equation is the divergence theorem.

Theorem [7] (Divergence theorem)

Let Q be a bounded domain with C* boundary 62 and let v denote the unit outward

normal to 0Q. For any vector field w in Cl(f_Q) we then have

[divwdx = [w.vds (b)

Q oQ
Where ds indicates the (n-1) dimensional area element in Q. Notice that if uis a

C2(Q) function andwe take w=Du in( b) then

[Audx = [Du.vds = ja—uds (c)
Q oQ

0V
1.1 Some Properties of Harmonic Functions
In this section we review some properties of harmonic, subharmonic and superharmonic

functions.



Theorem 1.1.1 [7] (The Mean Value Theorem)

Let ue Ct Q) satisfy 4u=Qq =0,<0) in Q. Then for any ball (centered at y with radius

R) B =Bg(y)cc Q we have

ufy)=(s, ) R”l Iuds (1.1.2)
1
ufy)=(<,2 — judx (1.1.3)
n B
2
wherew, = is the volumeof unit ball in R".
nr'(;)
2
Proof:

Let p € (0,R) and apply the identity (c) to the ball B, =B( y), we obtain

j —ds— _[Audx = 2

e, OV

P

. . . X - .
Introducing radial and angular coordinates r=|x-y|, w=2"Y and writing
r

u(x)=4 y+r w) we have

ou ou P ou
[ 5 ds= | —{ yrpo)s=p™ [ —{ y+pw)de
&) ov & ov ol or

=" 2[4 yrporo = p ap o' Juds] o 2,270

|wl=1

Consequently forany p¢g O,R) p™ Iuds ~(<,2)R™ juds
3Bp oB
and since "mopn'l Iuds =Naw, u(y) the relation (1.1.2) follows.
p—>
0

To get the relation (1.1.3) we write the relation (1.1.2) as



nw,p™ y){ <) [uds, p<R.
oB

Integrate with respect to p from 0 to R we get

R

R
U(Y)=I IUdep- OrwnR”U(y)=judx. Henceu(y) = a)lR”

n
0 OGBP B

n
n

n

j udx. O
B

Theorem 1.1.4 [7] ( Strong Maximum and Minimum Principle )

Let 4u=Q <0)in Q and suppose there exist a point y € Q for which

u(y) =supu (igf u). Then u is constant. Consequently a harmonic function cannot
Q

assume an interior maximum or minimum value unless its constant.

Proof:

let 4u >0in Q,M :sgpu and define Q,, { xe Q¢ x)= M}

By assumption Q,, is not empty.Since uis continuousQ,, is closed relative to Q.

Letz be any pointin ©,, and apply the mean value inequality to subharmonic function

u-Minaball B=B( z)c< Q. Therefore we obtain

1
o R"

n

0=y z)-M < I(u-M)dx <0 sothatu=M in B{ z). Consequently Q,, is also
B

open relative to 2. Hence Q,,=Q.
For the superharmonic case we replace u by -u, then the result follows. O

Corollary 1.1.5[7]

Let D be a bounded domain and let u be a nonconstant harmonic in D and continuous in

D. Then the maximum and minimum of u attained on the boundary.



Theorem 1.1.6 [7] (Weak maximum and minimum principle )
Let ue C2(Q)nC°(Q) with Au=Q <0)in Q. Then provided Q is bounded

Sup U =sup u (il’gl)f u= |g|£ u). Consequently, for harmonic function u
Q 0Q

inf usy x)<supu , xeQ.
0Q 00

Proof:

Since Q is compact then u has a suprimum and an infimum in Q. Because Au 2 0(<0)
in Q and u is not constant, then by theorem 1.1.4 the suprimum and the infimum must
attained at boundary points. O
Theorem 1.1.7 [7] ( Uniqueness theorem )

Let u,ve C2(Q)n C°(Q) satisfy Au=Avin Q andu=von 6Q. Thenu=v.

Proof:

Let w=u—v. Then 4w =0 in 2 and w = 0 on 0Q. So by the weak maximum and
minimum principle w = 0 in Q and hence u = v in Q. O
Remark 1.1.8 [7]

If u is harmonic and v is superharmonic agreeing on the boundary 09, then by the weak
maximum and minimum principle v>u in Q.

Proof:

Let w=u-v then Aw=0 and by theorem 1.1.6 supw =supw=0. Hence w < 0 and
Q 0Q

therefore v > u. m|



Theorem 1.1.9 [7] ( Harnack Inequality )

Let u >0 be harmonic function in Q. Then for any bounded subdomain Q' c= Q there

exist a constant C depending only on n,Q’,and Qsuch thatsupu <C irggf u.
o

Proof:

Let ye Q, B,x(y)  Q.Thenforany points x,, X, € B, (y) wehaveby (11.3)

1 1
— |udx < = fudx, U(x, )= ——— |udx>
(Un R BRZ'-Xl) (Un Bz!()’) i C!)n (3R) BgRJ(.Xz)

u(x, )= - J.udx.

C{)n Byr (Y)

Consequently we obtain supu <3" inf u.
Br (V) Br(Y)

Let Q' c— Q,and choose x,, X, € Q' sothat U(x, )=supu, u(x, )= inf u.
Q

Let Lbe closed arcsuch that x,, X, € L c Q'and chooseR sothat

4R < dist(L,09).So L can be covered by a finite number N of balls of radius R.

Weobtain U(x, )< 3™ uU(x, ) Thusthe result holdswith C =3™. O

1.2 Green's Theorems
Theorem 1.2.1 [7] (Green’s First Identity)
Let u, v be C{ 5_2) functions, Q be a domain in R"for which the divergence theorem

holds. Then

IvAudx+jDu.Dv dx = Iva—uds (122)
Q Q oQ av

Proof:
Set w = vDu in equation (b) then

a—uds m|

Idiv(vDu) dx = IvDu.vds. Hence IvAudx+_[Du.Dv dx = Iv
Q oQ Q Q o0 av



Theorem 1.2.3 [7] (Green’s Second Identity)

Let u, vand 2 be as given in theorem 1.2.1 then

ou ov
E[ (VAU —uAv )dx = i}(v P UEJdS (124)
Proof:

Interchanging u and v in equation 1.2.2 we get

iuAvdX+£Du.Dv dx :(Lug—\;ds.

Substracting from equation (1.2.2) then we obtain the Green's second identity

.[ (VAU —uAv )dx = j (v ou_ ua—vjds. (125)

5 FANNCAY ov

d

Laplace's equation has the radially symmetric solution r*" for n>2 and log r for n=2, r
being radial distance from a fixed point.
To proceed further from equation (1.2.5) we fix a point y in © and introduce the

normalized fundamental solution of Laplace’s equation:

1
2—Iog|x-y|, n=2,
r(x-y)=r(x-y)=5 ", . (126)
——Ix-y[", n>2
(]Z-n)a)n
Now
9

1 n
5 I(X-y)=——(-Y, )|X - Y| .
X Nw

1 n

Therefore DI'(x - y) = i(x_y?] Further
non x -y

O r(x- Y {[x- 8, -n(xy 0y - v (27)
OX.0X . Nw ! PoraE

i n




2

0
Thusgl“(x y) {|x y| -n(x;-y;) }|x y|

n-2

_i _ —n_ v 2 _ -n-2
= ey -y, Yo ane

Ar =1 {|x y[ " -nlx-y[” } 0if x = .
No,

Hence if X #y, I' is harmonic.

Furthermore we have the following estimates:

0?

<_
oX; 8x |X y|

I'x-y)

< L|X _ y|l-n
Nw

‘a% I'(x-y)
‘Dﬁf(x - y)‘ <Clx- y|2'n"ﬂ‘, C=Gn,|p)

The singularity at x=y prevents us from using 1" in place of v in Green's second identity
(1.2.4).

Replace Q by Q B_p whereB, = B( y) for sufficiently small p we conclude from (1.2.4)

that

TAudx = [ I'—-u—)ds+ F—- —d 128
Q:..B Hex ﬁ 6vu8v)sa£( avu )ds. ( )

p

now jFa—ds =I'(p )I—ds <nw,p" sup|Du|—> 0 asp- 0

B, p

and

Ju—ds :-F'(p)fuds: il — J‘uds—> -u(y) as p - 0.
o8, no 2B,

n

Hence letting p tend to zero in (1.2.8) we arrive Green's representation formula

u(y) = I (u %(x -y)-I'(x - y)%)ds +aJB'1“(x - y)Audx (y €9Q) (1.2.9)

a8,

10



If u has a compact support in R", then (1.2.9) yields the frequently useful representation

formula

uy) = JF(X - y)Audx. (1.2.10)

B,

For harmonic function u, we also obtain the representation

or ou

u(y) = J.(u —(x-y)-T(x- y)—)ds, (yeQ) (1.2.11)

AN ov
This formula is called Green's formula.
The integrand in equation (1.2.11) is infinitely differentiable and also analytic with
respect to y, it follows that u is also analytic in . Thus harmonic functions are analytic
throughout their domain of definition and therefore uniquely determined by their values
in any open subset.

Now suppose that he C! (Q)NC2(Q) satisfies 44 = 0 in Q. Then again by Green's

second identity (1.2.4) we obtain

jhAudx_j h—v—u—)d (1.2.12)

Writing G=I"+h and adding (1.2.9) and (1.2.12) we obtain a more general version of

Green's representation formula:

u(y) = j GAudx + j u—-G—)d (1.2.13)
V

If G=0on 0Q we have

u(y):iGA udx+ajs;u%ds (1.2.14)

and the functions G=G(x,y) is called the Green's function for the domain £, sometimes

also called the Green's function of the first kind for Q.

11



By uniqueness theorem the Green's function is unique and from the formula (1.2.14) its

existence implies a representation for a C* (2)NC2(Q) harmonic function in terms of
its boundary values.
When the domain Q is a ball the Green’s function can be explicity determined by the

method of images and leads to the well known Poisson integral representation for

harmonic function in a ball.

Let B, =B;(0) and forx e B;, x *# 0, let

X=X (1.2.15)

denote its inverse point with respect to By, if x =0we take X =« . Then the Green's

function for B, is given by

y _
G(x-y)= F(|><'>/|)-F(%\><-y\), y*0
r(x)-T(R), y=0

2
:F(\/|x|2+|y|2-2x.y) - \/[@} +R?*-2x.y

forall x,yeB,, x*Y. (1.2.16)

The function G defined by (1.2.16) has the properties
G(xy) =G(y.x)
G(x,y)< Ofor x,y € B_R.

Moreover, direct calculation shows that at xe 0B, the normal derivative of G is given by

12



2 _ 2
%6 _0G R x-y[" 20 (1.2.18)
av 9x  neoR

Henceif u ECl(gR)ﬂCZ(BR) is harmonic, wehave by (1.2.14) thePoissonintegral

formula

R? -]y’ I uds

1.2.19
o L 1219)

u(y) =

Theorem 1.2.20 [7]
Let B =B, (0) and ¢ be a continuous function on &B. Then the function u defined by
R2-|X" @(y)ds,

u(x) = no,R 3B |)(_y|n
o(X), for x € 0B

, forxeB

(1.2.21)

belongs to C°(B)(NC?(B) and satisfies Au=0in B.

Proof:

u is harmonic in B is evident from the fact that G, and hence Z—G is harmonic in X.
1%

To establish the continuity of u on 0B, we use the Poison formula (1.2.19) for the special
case u=1 to obtain the identity

IK(X, y)ds, =1 forall x € B, where K is the Poissonkernel
oB

R” —[x|°
neo,R|x-y|"
Now let X, € 0B and ¢ be an arbitrary positive number. Chooses > 0 so that

K(x,y) = X € B,y edB. (1.2.22)

[o(X) - p(X,)| < & if [x-X,| <5 and let |p<M on 6B. Then if

13



X - X,| < éwehave by(1.2.21)and | K(x, y)ds, =1
2 y
oB

U0 -u(x,)] = | [ K, Y)(0(X) - 9(x,))ds,
< [KOGYp(0) - 0(xo)lds, + [K(x, y)lp(x) - o(x,)[ds,
ly-Xo|<6 ly-xo|>6

2M (R? -|x|)R"™*
(6/2)"

<&+

If now |x-x,| is sufficiently small its clear that |u(x)-u(x,)|<2¢ and hence u is
continuous at x,. Consequently u eC°(B) as required. O

Now we consider some convergence theorems.

Theorem 1.2.23 [7]

A C°(Q) function u is harmonic if and only if for every ball B =B, (y) cc @ it satisfies

1

the mean value property, U(y )= ———
property, U(y) ho R

juds
oB

Proof:

By theorem 1.2.20 there exist for any B £ a harmonic function h such that h=u on
oB. The difference w=u-h will then be a function satisfying the mean value property on
any ball in Q. Consequently the maximum principle and uniqueness results apply to w

since the mean value inequalities were the only properties of harmonic functions used in

their derivation. Hence w=0 in B and consequently u must be harmonic in Q. O

Theorem 1.2.24 [7]

The limit of a uniformly convergent sequence of harmonic functions is harmonic.

14



Proof:

Let {u,} is a sequence of harmonic functions that converges uniformly to u. By theorem

1223 u, (y) = s 1R”‘1 Iukdx.Then ask — oo since the convergence is uniformly we
a)n oB
haveu(y) _ 1 .[de'
na)an_l oB
Again by theorem 1.2.23 u is harmonic. O

Remark 1.2.25 [7]

If {u,} is a sequence of harmonic functions in a bounded domain ©Q with continuous
boundary values {@,} which converge uniformly on Q to a function ¢. Then by the
maximum principle the sequence {u,} converges uniformly to a harmonic function

having the boundary values ¢ on 0Q.

Theorem 1.2.26 [7]

Let {u,} be a monotone increasing sequence of harmonic functions in a domain 2 and
suppose that the sequence {u,(y)} is bounded for some point ye Q. Then the sequence

converges uniformly on any subdomain Q" —c Q to a harmonic function.
Proof:

The sequence {u,(y)} will converge, which implies that for arbitrary & >0 there is a
number N such that 0<u,_(y)—u,y)<eforallm>n>N. But by Harnack's inequality

we must have sup|um(x)— un(x)| < Ce for some constant C depending on ©"and Q.
o

15



Consequently {u,} converges uniformly and by theorem (1.2.24) the limit function is
harmonic. O

1.3 The Method of Subharmonic Functions

We are now approach the question of existence of solutions of the classical Dirichlet
problem in arbitrary bounded domains. The treatment here will be accomplished by
Perron's method of subharmonic functions which relies heavily on the maximum
principle and the solvability of the Dirichlet problem in balls. The method has a number
of attractive features in that it is elementary, it separates the interior existence problem
from that of the boundary behavior of solutions, and it is easily extended to more general
classes of second order elliptic equations. We generalize the definition of subharmonic
(superharmonic) functions as follows.

Definition 1.3.1 [7]

A C°(Q) function u will be called subharmonic (superharmonic) in Q if VB<ccQ and
for every function h harmonic in B satisfying u<(>)h on oB, we also have
u<(>hin B.

Following we list some properties of subharmonic functions.

Corresponding results for superharmonic function are obtained by replacing u by —u.

(1) If u is subharmonic in a domain Q, it satisfies the strong maximum principle in Q,
and if v is superharmonic in a bounded domain ©Q with v>u on 0@ then either

v>u throughout Q or v=u.

16



Proof:

For the first statement, we follow the same proof in theorem 1.1.4. For the second

statement, suppose the contrary, then at some point x, € 2 we have

(U-v)(X,) =sup(u-v) =M =0, assume 3B = B(X,) such that u-v#M onB.
Q

Lettingu,v denote the harmonic functions such that U =u,v=vondB, one find that

M >sup(U —V) > (U —V)(X,) = (u—V)(x,) =M and hence the equality holds through-
B

out. By the strong maximum principle for harmonic functions it follows that U —V =M in
B, and hence u-v = M on 0B, which contradicts the choice of B. O
Definition 1.3.2 [7]

Let u be a subharmonic in Q and B be a ball strictly contained in Q, let U be
the harmonicfunctionin B satisfingu = u on éB. Then the harmonic lifting of u ( in B),
denoted by U(x) is defined as U(x)=u(x) if xeBandU(x)=u(x) if x € Q-B.

(2) The harmonic lifting U is also subharmonic in Q.

Proof:

Consider an arbitrary ball B’ cc Qandlet h be harmonic function in B’ satisfying

h=U onoB'.Sinceu<U in B’ wehaveu <hin B"and hence U <hin B'-B.

Also sinceU is harmonicin B wehaveby the maximum principle U <hin B(\B'.
Consequently U <hin B"andU is subharmonic in Q. O
(3) Let ug,u,,...,u, be subharmonic in Q. Then the function

u(x) =max{u, (x),u,(x),..,u  (x)}is also subharmonic in Q.

17



Definition 1.3.3 [7]
Let © be bounded and ¢ be a bounded function on 8Q. A C°(Q) subharmonic
(superharmonic) function u is called a subfunction (superfunction) relative to ¢ if it

satisfies u<¢f u=g@)on oQ.

Remark 1.3.4 [7]
By the maximum principle every subfunction is less than or equal to every superfunction.

In particular, constant functions <inf ¢(=sup ¢) are subfunctions (superfunctions).
o9 o0

Let S, denotethe set of subfunctions relative to ¢. The basic result of Perron method is

contained in the following theorem.
Theorem 1.3.5 [7]

The function § x)= supv(x) is harmonic in Q.
veS(p

Proof:

By the maximum principle any function ve S satisfies v<supp so that u is well
defined. Let y be an arbitrary fixed point of Q. By the definition of u, there exists a
sequence{v,}<c S, suchthat v, (y)— ¢ y). By replacing v, with max v, ,inf ¢) we may
assume that the sequence v, } is bounded. Now choose R so that the ball
B=Bi(y)cc Q and define V, to be the harmonic lifting of v, in B, then
V,€S,,V,(y)~ u(y) and the sequence V,} contains a subsequence V, } converging
uniformly in any ball B, (y) with p <R toafunctionvthat is harmonic in B. Clearly

v<uinBand vy)=¢ y) We claim now that in fact v=u in B. For suppose

18



V(2)< u(z) at some zeB. Then there exists a function Ue S, suchthaty z)<{ z).
Defining w, =max T,V,,) and let W, the harmonic lifting, we obtain before a
subsequence of the sequence {W, } converging to a harmonic function w satisfying
v<w<uin Bandy y)=w y)= y).But then by the maximum principle we must have
v=w in B. This contradicts the definition of U and hence u is harmonicin Q. O
Definition 1.3.6 [7]

Let &£ bea point of 6Q. Thena C?(Q) functionw = @, is called a barrier at & relative

to Qif @ is superharmonic in 2, o >0in Q —{&} and w(&) =0. A boundary point is

regular if there exists a barrier at that point.
Lemmal.3.7 [7]

Let u be the harmonic function defined in 2 by Perron method. If & is regular boundary

point of 2 and ¢ is continuous at & then u(x) - @(&).
Proof:

Choose ¢ > 0 and let M :sup|go|. Since &is a regular boundary point then there is a

Q
barrier w at & and by virtue of the continuity of ¢ there are constants 6 and k such that
p(X)-0(&)| < e if |[X-&| < sand kw(X) 22M if |X-&[> .

The function (&) + ¢+ kw is a superfunction and ¢(&)-¢ - kwis a subfunction relative to
¢ . Hencefromthedefinition of uand thefact thateverysuperfuncion dominates every

subfunction, we have in Q @(&)-¢-k w(x) <u(x) < (&) +e+kw(x) or
u(x) - (&) < e +k W(X).

Sincew(x) - Oas x - &, weobtain u(x) - @(&)as x & O
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Theorem 1.3.8 [7]
The classical Dirichlet problem in a bounded domain is solvable for arbitrary continuous
boundary values if and only if the boundary points are all regular.

Proof:
If the boundary values ¢ are continious and the boundary 0€2 consists of regular points,

the preceding lemma states that the harmonic function provided by Perron's method

solves the Dirichlet problem. Conversely, suppose that the Dirichlet problem is solvable
for all continuous boundary values. Let¢ eaQ. Then thefunctiong(x) =|x-&| is
continuous on 0% and the harmonic function solving the Dirichlet problem in Q with

boundary values ¢ is obviously a barrier at &.

Hence & is regular, as are all points of 0Q. O

1.4 Potential Layers

In this section we will study briefly some of the basic boundary value problems, namely
Dirichlet and Neumann problems, from the integral equations point of view. We start by

defining such problems. We take the space dimension n to be 2 or 3.

Interior Dirichlet problem: Find u e C*(2) nC°(Q) that satisfies Au =0in ©,and u=f
on 0Q, where f is a given continuous function.

Interior Neumann problem: Findu € C*(2) nC°(Q) and satisfies Au=0in £, and

S—u =gonofR, where g is a given continuous function.
|4

Exterior Dirichlet problem: Find u e C*(R"\ Q) nC°(R"\ Q) and satisfies Au=0in
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R"\Q, and u=f on 0Q, where f is a given continuous function. For|x| —>oo it is

required that u(x)=0(1), if n=2 and u(x)= 0(1), if n=3.

Exterior Neumann problem: Find u e C*(R"\ Q) nC(R" \ Q) and satisfies

Au=0in R"\Q,and S—U =gonoQ, where g is a given continuous function.
1%

For|x| — oo it is required that u(x)= o(1).

Theorem 1.4.1 [10]

Both the interior and the exterior Dirichlet problem have at most one solution.
Proof:

Supposethere exist two solutions to the interior Dirichlet problem u,,u,. So the difference
u =u, —Uu, is a harmonic function continuous up to the boundary satisfy the homogeneous

boundary condition u = 0 on Q. Then from the strong maximum and minimum principle

theorem we obtain u=0in Q for the interior problem andu = 0in k" \ Q for the exterior
problem , which implise thatu, =u,. O

Theorem 1.4.2 [10]

Twosolutions of theinterior Neumann problem can be differ only by a constant.The exterior

Neuman problem have at mostone solution.
Proof:
Let u,,u, be two solutions of the interior Neumann problem and let u=u, —u,. Thenu

is a harmonic function continuous up to the boundary satisfying the homogeneous

boundary conditioned S—U =00noQ.
1%
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For the interior problem, suppose u is not constant in ©. Then there exists some closed

ball B contained in Q such that | :I|Du|2dx >0.
B

From the first Green's theorem applied to the interior of Q* of some parallel surface
02" ={x—hv(x): x e 0Q} with sufficiently small h>0 we derive

ou . ou ou
| < [|Duf*dx= [ u==ds. Lettingh—0 t [u=—d ~—d
<é|'| ul” dx '[uav s. Lettingh — 0 wege quav s—>6J;u6V s

09"

sol <0, acontradicion . For theexterior problem, weobservethat

IR Bl

u(x):O( L } Du(x):O[ L ],|X|—>oo, uniformlyfor all directions. Assumethat Du =0

in R"\Q. Then thereexist someclosedball B containedin R"™\Q such thatl = I|Du|2 dx > 0.
B

Appling first Green's theoremto the domain Q* betweensomeparallel surface

092" ={x +hv(x): x e 6Q}with sufficiently small h>0 and some sufficiently large sphere

Q; with radius R we get 1 < I|Du|2dx: jua—uds—j u M s, Letting R — oo, and
2 ov ov

Qg Q"

h — 0, we arrive at the contradiction | <0. Thereforeu = constantin
R"\Q2 and this constant must be zero since u(w) = 0. O

Definition 1.4.3 [10]

The functionsu(x) = I(p(y)qﬁ(x,y)ds(y), X e R \0Q (14.4)
and v(x) = [ o(y) ag;((’;;’) ds(y), xeR"\oQ (L45)

where ¢ is a function belongs to C(0Q2) are called single-layer and double-layer potentials

with density ¢, respectively. Here @ is the fundamental solution given by
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1I ! n=2

X—
(xy) = '1 4

47z|x—y|’

Theorem 1.4.6 [10]

let 9 € C(02) where 6Qis a classof C?. Then the single-layer potential u with density ¢

is continuous throughout R". On oQ thereholds

u(x) = [@(y)P(xy)ds(y), xeoQ (L47)
o0P(x,y)
ajg'z o(y) ——22 P00 ds(y) F = ¢(x) X € 0Q (148)

- lhiino(vo()' Du i%hV(X))}

iS to be understood in the sense of uniform convergence on 02 and where the integrals

exist as improper integrals. The double-layer potential v with density ¢ can be
continuously extended from % \Q to9R"\Q2 and fromQ to Q2 with limiting values

v.09= [0y a((x)y)ds(y)_ P(x), xedQ (149)

where v, (X) = LII‘T(]) v(x £hv(x)) and wheretheintegrals exist asimproperintegrals.
Furthermore

|im{ﬂ(x+hv(x))—ﬂ(x—hv(x))}=o, X € 0Q (1410)
h—0" | Ov ov

uniformly on 0Q.

Proof:

See[6].
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Theorem. 1.4.11 [10]

Let 02 be of classC?. Then thereexists a positive constantL such that
v(x)(x = y)| < L[(x - y) | forall xy € 6@

Proof:

See [6].

Theorem1.4.12 [10]

0P (xy) ds(y), x € Q, with continuous density

The double-layer potential u(x) = | p(y) ——==
I ov(y)

@ is asolution of theinterior Dirichlet problem provided ¢ is a solution of the integral

equation
q)(x)-zjgo(y) POY) d4s(y) = -2 (%), x € 00, (1413)
‘o av(y)
Proof:
From theorem 1.4.6 u_(x) = j(p(y)MdS(y) -l(p(x), X € 0Q, which implies
A ov(y) 2
2u_(x) =2 [ p(y) OPOY) 4s(y) - p(x), X € 82, Now for x €@ u_ (X)= F(x), 0
i ov(y)
equation 1.4.13 holds. O

Theorem 1.4.14 [10]

The single-layer potential u(x) = Il//(y)qﬁ(x,y)ds(y), XeQ,

with a continuousdensity y is a solution of theinterior Neumann problem provided y is

a solution of theintegral equation

x//(x)+2jz//(y) a(( ’;/)ds(y) 29(x), XxedQ (1415)
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Proof:

OP(x ’y)d s(y)+= ://(x) X € 0Q. Which implies

ou
From theorem 1.4.6 —(x
— (0= j N 500

2—(x) 2j (y)a;((";’)ds(y)w(x) x €82, Now for x €80, aa—v—g(x)so

equation 1.4.15 holds. O
Theorem 1.4.16 [10]

The interior Neumann problem is solvable if and only if Igds is equal tozero.
o

Proof:
Let 0Q" ={x—hv(x): x € 0Q}we apply Green's theorem to the solution u to get

. . ou
Igds=lhm Igds=|h|21o a—vds:o. O

0Q o” "

Theorem 1.4.17 [10]

The solution to the Dirichlet and Neumann problem depend continuously in the
maximum norm on the given data.

Proof:

See[10].
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Chapter Two
Special Boundary Integral Equations for Approximate Solution of
Potential Problems in Three—Dimensional Regions with spherical

Cavities

In this chapter we proposed a boundary integral method for solving potentials problems
in three — dimensional region with spherical cavities. Boundary quantities were expanded
in spherical harmonics on the surface cavity and special boundary integral equations were
introduced to determine the unknown coefficients. The outer boundary was treated in a
conventional manner and in principle, all integration on the cavities are done explicitly.

The theory in this chapter based on [17] .
2.1 Integral Equations [17]
Consider a three-dimensional open region £ containing N spheres centered at the points

&', i=1,2,..,N. Let a, be the radius of sphere i, S be the lateral boundary of sphere i,

0Q be the outer boundary of Q. Further let ¢ bea harmonic functionin Q, i.e.

Ap(x)=0, xe®. (2.11)

As we done in chapter one, using the fundamental solution I'(x, y)= X,y € Q,

47| x-y|
and the Green's second identity we obtain the integral representation for the potential

function ¢ as

oY) j((p—r—r 2305+ 3 (6 L ') as (212)

i=1S;
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1, ifyeQ,
0, if yeR*\Q
and ¢' and q' are values of ¢ and its outwardnormalderevativeon thesphere i. We

whereA = {

represent ¢' and q' by thefinite sum of sphericalharmonics as

0 =D D oY (0'.9') (2.13)
q' =2 > 4 Y (60'.¢') (2.14)

whereg! ,q! areconstantsji=12,...,N and 8',¢' angle centeredat &' and measured

relative to the positive z and x axis.

We evaluate the integral expression
i O [

[(0' =—=a'r)ds.

5 ov

let ye and x €S, then

x-&' = (a;sinf cosg',a sinfh' sing',a cosh') and

y-&' = (rsiny' cosy',rsiny'siny',r cosy') therefore
X-y =
(a,;sin®' cosg' —r. siny' cosy',a sin@'sing' —r siny'siny',a cosd' -r, cosy')

and

Ixy| = Ja? +r? - 2ar cosy’

with cosy' = cosy' cosh' +siny'sind' cos(y' -¢'). Hence

= 1 and thus

4ra? +r? —2ar, cosy'
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— =V I (X,y)v=—

or -1 xy 5 _ —(a, —r,cosy")
ov 472'|x y|

4r(a’ +r? -2ar, cos;7‘)%

Moreover using sphericalharmonics/” can be expandedas[15],

-1 1 ot
—Yr,n I, Ianm el’ 1
“4nR T, Zz(r) N, VT 00

i n'=0m'=-n’

Where N,

4z - and R =|x-y|
"o +1(n" =|m’!

Consider the points x-¢&' = (t;sin@' cosg' t,sin@'sing't, cosd') that lies on the

parallel sphereS;" with center &' and radius t; where t, > a,.

Thenas t, — a, theintegral I(p —ds is equal to— '[go I'ds.

' S

Substituteinstead of o' from (2.1.3) weget

2rm

j(p Ids = Z Z o jY ', ¢ )rds_tfi Z A (Hi,qﬁi)%sin 6'do'dg’

n=1 m=-n n=1 m=-n

i n'=0m=-n" n=lm=-n

n 1 2rm

Yo'y )¢nm[rj m”Ynm(é’iﬁi)Ynm'(@i,(ﬁi)-
sin@'do'dg’

—t?

; M n 1 ti n
S22 om0 )G +1)[ j

r.

n+l
t.
Or wecan write I'ds = — , ! )
j(p § E PrYa (' y)(2n+1)£ ]

n=l m=-n (l// 7)(2n 1)( j
Therefore I 6—Fd i_i(ﬂann( )((2n ++21))( J . (2.15)

Similarly we substitutefrom (2.14)instead of ' to obtain
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n

3 a7 (@' g)rds =Y. 3, jv 0.4 )—ds

m=-n n=0 m=—n

Mz

—Iq I'ds = SI

I
o

n

| n'=0 m'=-n’

SR i 1 m’ i i *m’ i i
qunm!Y ©'.¢") = ZZ[ J W Yo (W' 7)Y, (0,¢")ds

_LM C in' qilm m iizm*m'ii Mmool i
Py ZZ(J e Al | KGRV G

sin@'d@'dg’

|n0mn

Hence—jtidS— ZZ[] (2n 1) Y (v ")

Therefore for y e Q equation (2.1.2)becomes

o= [(o a—r-raw)da&[ii(m 200l o )

CInm a'i " m i i
+ (2n+1)a( J A ,7)] (2.1.6)

n=0 m=-n

2.2 Dirichlet Problem

Next we consider the Dirichlet problem, [17], find ¢ such that
Ap(x)=0 ,xeQ,
Q' (X)= (péo , X €S;.
Where a constant potential is considered on each surface of spheres. In this case equation

(2.1.6) reduced to
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o(y)=

i( —-F )d +Z[Z (zinil)a‘(z:—:j Yn'"(wi#i)]- (2.2.1)

i=1 | n=0 m=-n

Notice that this equation contains N(M +1)? unknowns g!, . To determine these

unknowns consider the following sequence of kernel functions

1O p— r 00— C9) (222)
472" - ‘X— s
s=12,...,N n=12,...M m=-n,..n
Theorem2.2.3[17]
If x=&° then AT, (x) =0. Thusif x = ¢° thenT'; is a harmonicfunction.
Proof:
Let r= ‘x -&°| and consider the Laplace equation in spherical coordinates.
AL, (X)
1 ars 0 s O 1 or
; —( —)+ < (sing” —) + ( T )
r2sing or 06 06 0¢° 'sin@° 0¢°
(2.2.4)
Y% 4 _ —im¢5P\m\ s
Now I, =—" (f $) _ e " (cost ), thus
r r
) nrtte-mé plm (coso®) _ ne ™ PI" (cosg®) and
ar an rn+l
s —img® oina pSHIM| s
F2sin o° oy, _ne™ sing 113n (cos@”)
or r"
s _ n-2 ,—img* oin ASDIM s
Therefore ﬁ(rzsines 8an) -n(n-r" e 2 sin@°P. "' (cos*)
or r2-
_—n(n-1)e™ sin 0°PI" (cos6®) (2.25)

r
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s —em ddHS[P"m (cos@s)]

Further iy = . Thus
06° r'

s d
. —e ™ sing® — [P (cos®
4 Y (c050")]

sin@® —" = and hence
06° r'
. e
0 (sin@® aﬂ)
06° 06°
gt - d? im d
—e ™ sing* — [P (coso®)| e ™ cos®® — [PI" (cose®
) 4o P oo ] 1o P (cos6)]
r" r"
(2.2.6)
s s —img® p|m| s
Finally ar“;“ _ 1me P”n (c0s6”) and therefore
r
s s a-imgS M| B
_1 oy, _ Ime _Pn (cos@”) and
sing® 0¢° sin@°r"
s 2 —img* p|m| s
0 (.1 oy _Me _Pn (cos@*) (22.7)
0¢° 'sin@° 0¢° sin@°r"

Substitute in equation (2.2.4) from equations (2.2.5), (2.2.6) and (2.2.7) we get

—im¢® <:n S d2 ( |m| s ) —img® s d ( |m| s )

_1 |® sin@ do% P.'(cosg”)) e cosé do P, (cosa”)
Ar:m(X)Z 2 o3 S n + n
resiné r r

—imgS S m S img® p|m
N n(n—-1e siné@ Pn ‘(cos@ )_ m2em¢ PL \(00395)

re sin@°r"

s 1 . s d? . d
—e ™~ Isin29° ——(p!" (cos 6°) )+ sin 8° cos@° —— [P (cos 6°
e lsin 0" (Pl (cos 0")) P oser))

+(n(n—1)sin2 05 - mz)an (c0s6*)]=0
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Using the kernel functions given in equation (2.2.2) we obtain

o 0 ory L
o> -1, “’)ds+z [ (o > -T5q)ds =0 (2.2.8)
oQ a IlS a
and

ors, 0 . ar:m :

[o=m -1z, ‘/’)ds+z [ (@ 2 —T3a')ds =0 (2.2.9)
aQ ov i=1 g,

This system of equations involves N (M +1)® equations.

To simplify this system of equations we evaluate the integral over S, .

Ifi=s then I((poo 8;“ —T59")ds = g, I—Ods jl‘ 'ds:—jl“gq‘ds
s

_ % qu1m 1 ' m is is
- Z:Z:(antl)(ris]\(” W=7

|s n=0 m=-n

or, . . . .
% ds equal to zerosince T is harmonic function.
N

. i - s Iy -
Ifi=s then T, =T, =—1WhICh implies that6 0 = 12 .Hence
473, v 4mak
jq)‘ oy ds = —¢. a—izzﬁsineioleidqﬁi = (2.2.10)
: 00 v 00 4ﬂa2i )] 00

2

and — IFSq'ds_+qu”m ' ”Y ©',4")sin0'do'dg’
7Z'

n=0 m=-n

—agl (2.2.11)

Therefore equation (2.2.8) reduced to

32



61"5 S a S qu1m a' '
é!;(? o —Iy (D)ds Poo + 5000 +Z[ Z Z(2n+1) (_j "y, )} =0.

=1
i#s

|s n=0 m=-n

S

Analogously we simplify I((D(i)o ag ~T° q')ds
S, v

Ifi=sthen

;o pors
j( P =T )ds=¢oos[ . ds—s[r L0 ds=- jr g'ds

Because >, is harmonic everywhere inside S; except

for i=s

S

ol
Hence : an
§|., ((000 ov

_rnsmqi)ds = _J.anq ds
Ifi=sthen

:Lf’m whichimplise that OLom _ ="V @ ¢)
al a

I, =T,

nm

n+1
i

o ors . eny ™6, ¢ )
Thus : M ds =—gpp | ———2%
é[(000 oy %OI am

S; i

n 2rw - :
affan HY 0',4')sin0'do'dg’ =

For thesecondintegral _[F g'ds wehave, J'l“nmq ds = Ianq ds

SI Sl

2 2zx

:_Z Z qnm J‘J‘anp'(ai,¢i)Y:m(0i’¢i)sin9id9id¢i :_qrimalz_nNm,n

n'=0 m'=—-n’ i

S

_ - or
Thereforefori = s wehave '[(go(')o e
5 ov

_rnsmqi)ds = q:]maiZ—n Nm,n'
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Hence equation (2.2.9) gives

81—‘nsm R ptl a_(” S 2-n S s i _
[ -, —)ds+anal N, - _lsj S qids=0 (2.2.15)

i#s

Thus the system of equations (2.2.8) and (2.2.9) reduced to the following system

is n=0 m=-n

or, 8(0 PO g a ) o
FS dS a _ om0 ITI |51 IS :0
J.( rY ) Poo + q00+|21:{r Z n+D\r Yo (w™.7")

(2.2.16)

or: o
—m 1 —)ds+qS,ai"N I’ g'ds=0 2.2.17
a{) (p=" ~)ds+g le Sj 10 (2.2.17)

i#s

Now consider the Dirichlet problem if the potential on each S, is nonconstant, say find

@ such that
A p(x) =0, X €Q

P'(X)= oy +o,Y:(0'.¢'), X €S

where ¢}, and ¢, are scalars. Then equation (2.1.6) reduced to

o(y) =
a;
—-F— da+ LYy, o
JQ( ~ ) Z{%i W' ')+ ;;(Znﬂ)
n+1
g me i
(?j Y™ y') ] (2.2.18)
Again using the sequense of kernel functions given in equation (2.2.2) we obtain
S 8(0 - 1 i ars S i
j( —+r V)ds+z (0} + @l Y A0 ¢)) ~TI3q [ds=0 (2.2.19)
i=1l g
arnsm S 8 N i ars S i
Q +an_¢)ds+ZI ((/)oo+(P11Yl(9 ¢)) -I',q [ds=0 (2'2'20)
ov ov = ov
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We proceed as in the previous case and simplify the integrals appear in equations (2.2.19)

gq'}ds

:¢8ojaﬁodS+I¢11Y(9|,¢) Ods quds
S

and (2.2.20).

| or,
Ifizs J.|: (000 +¢11Y1(9 1 ))

Si

_ Y% qnm a ’ is ,is 1rni i arg
= ZZ(ZM)[ j "y )+¢11IY(9 p') s

|s n=0 m=-n
Analogues to the previous case we have

Irpni i GFS _ 0 i iy\ps
é[in(H " )Eds—ngl(e W)ds ast —a.

igF

Using the spherical harmonics expansion of 77; we get

6 i i S
Y0 9rids =

isi+

O [oirni i & [t 1 e
. Y 0I1 I i Y'm QI, 1 an,n IS1 1S ds
e RAC zz[rj N @)

i,

2w

NS () 1
o2 L[] G e

0m'=—n’

Y (", y%)sing'do'dg’

0 -1t is _ is 0 1 t is _ is ti2 is s
:E(t‘ZT#Yll("” ¥ )J :E( v Yi(w".y )JZ—FYf(V/ 7")

IS IS I IS IS

S 2
Hence IYl(Q' ¢)6F° ds= razli Yi(w®,7").

is
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Therefore_[{((p(‘,O +l Y0 ' ))_86 °-rq' } ds
A%
Si

2 M n i 2 2
a; q a m is . is a i 1 is is
:;E 2 AP F |y )Ll 1 .
r (2n+1)(risj a oy r.z oY (", r")

is n=0 m=-n is

Ifi=s, J-{(@)o +(011Y1((9',(ﬂ ))

Si

ng'}ds

i ol i i iyor, S
= Pyo _‘.a_‘fds+é[€01lyll(0 9 )8_\/0ds_§[roq ds

Si

i i i .ol
=Py 1 a0y +¢11J.Y11(9 N1) )a—OdS, SO
S, v

or, . i , ore
o -1',q ds——¢oo+aq00+¢1le1(9 (0) Ods

j[(coso corie )2

Si

S ]—Vi _
Now Ol = ol = 12. Hence
ov ov  4ra

[ i iy Ol — i
o [Y10' 9) > ds = 5 10 p')ds =0
Si P8

Adral g

Therefore for i=s we have

S

J.{((Doo + (/’11Y1(0I 1 ))af

Si

_qul}ds —_%o +q qoo

Thus equation (2.2.19) reduced to

a[vs S 6(0 2 1 is
J. Q 5 -1 ds — %o"‘a%o"'z 2¢11Y (‘/f 7°)
Q) v ov l rIS

2

_Z Z(Ziniliﬂ Yo (w" ) =0 (2.2.29)

|s n=0 m=-n
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Regarding ;. weget

S

. i i i iV s i
Ifi=s, J. ((Poo +(011Y11(8 N ))W‘anq ds
S

:¢’(i)0 _[

or: , oore _
"M ds+ g, | V(00 ) —"ds~ | "} g'ds
{ a (ollé[I 1( (0) 8\/ g"l nmq

A%
. . o
= [ riads+ gk, [¥i(0"0") o ds
5 5 ov

Ifi=s then

“Y."(0°8°)  pus P _ O _ =Y (0°,4°)
a/' ' Ov ov a™t

r =rs = Thererfore

I (§0(i)0+(01i1Y11(9ia€0i ))ag—nsm—rsmqi ds
v

Si

= P I ag;m

Si

\%

i i i aI_’rfm S i
ds + g, j Yi(O'p')" i ds - j reg'ds

i .2-n i N i iNyrmopi
= qnmai2 Nm,n — P an+1 J.Yll(g 1 )Yn (0 1 )dS
iS5

2w
i .2-n i N i Ny N aim A i 4
= O "Noyo =gt ooy [ [ VIO 0) V70 9" )sin 0'd0'dg
i 00
i87Z'

= qrilmaiszm,n _(DlilNl,l = q:]maiZﬂNm,n _(pll?

Hence equation (2.2.20) reduced to

or; o " 8r
—Mm 4 —2)dS+q;.as "N, —on——
B_L(go av nm av) qnm S m,n @11 3

N . . o ors
Z(j]“jm'ds—w{JYf(@',go')a—:mds}:0. (2.2.22)
Si

i=1 \ s,
i#s
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2.3 Neumann Problem

We can apply the ideas of spherical harmonics to Neumann problem too. We treat the

case where a constant normal derivative is prescribed on the boundary of the spheres.

That is we can consider the problem, [17], find ¢ such that

Ap(x)=0, xe,

qi(x): Goor X €S;.
Thus equation (2.1.6), reduced to

n+1l

or _dg a I3 a m( i
o(y) = J-((P F )dS z|:qoo r +Emzn(n 2)(rl)nm (2n+1)rin+1 Y, (l// " ):|

(2.3.1)

Substitute the kernel in equation (2.2.2) instead of I" in equation (2.1.2) we end with

j oL a¢)dS+Zj( —T50g)ds =0, (2.3.2)
and I(@ L Lo a¢)ds +ZI( —_FS qoo)dS 0, (2.3.3)

_18

wheres=12,...,.N, n=12,....M m=-n,...,n
Analogous to the Dirichlet problem the system of equations (2.3.2) and (2.3.3) consists of
N(M +1)* equations. Again we simplify the integrals over S, that appear in this

system.

S

We consider [ (o' oL, ~T$q,)ds. Then
Si

8FS or;
o%o)d _ICD 0

I( ds qooIF ds
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Hence in the case i£s we

have
Fs s
J.((” - oqoo)ds:
(n+2)p! a L a’ .
nm i m IS’ IS +_| 1 2.3-4
nz_i,mz‘,n (2n+1) e (W 7") r. Qoo ( )
If i=s then I} =T)= 1 ang To - _12
Ara, 0v 4rma;

_12 ds
4.

Therefore [ ¢' Ty - [¢' Ol 4 - [o'
S; ov S; ov S;

n 2zrw

= ZZZJJ%Y” (6'.¢')sin0'd6'dg' =—p5,

4 n=lm=-ng o

and j(go 0T,

S

—T'5 Ggo)dS = —50 + 2,05, (2.35)

Thus j( ar rsa¢)d +Zj( sq! j(q) ars rsa¢)d

R ii(n”) =8y o)+ 2 g |=0 (2.3.6)
00 s 100 i=1 \ n=1 m=-n (2n 1)rn+1 n y . 00

: is
i#s

S

or ,
We evaluate I[(p' 6ﬂ—l“,fmq;,ons
Si

Ifi=s thenT: =T :_Y” ©.¢) jaan :_nYn (? 9')
a_n av a_n+

2rm

and IanqOOds =q,a’ ”Fnsm sin@'dd'dg' = 0.
00

ary, A nY,"(0'.¢") 4

n+1
S; al

or:
—-ds wehave I(p

FOfIgo .
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2rr M n

a’ [[> oY (@ 4, (0 ¢')sin0'd0'dg’ = nl(pnmN

a. 0 0 N=0 m=-n

S

ol
Soif i =s, —m_r ds=——@3 N,
5'7((” o qoo) ar 1€0

8¢> i
Hence r, ds+ ' q )ds=0<
j(qo -T2 lej(qo T5.a.)
ore op n N ors .
—M T —)ds — * N+ T gl )ds=0
I A GLALIRY I (o' = -Tha.,)
(2.3.7)
Therefore the system in (2.3.2) and (2.3.3) becomes
ars S a S S
J.((P ° -1 _¢)ds_¢700 +a;(g
v \%
N n+ 2) nm |n+l m is is aiZ i —_
Z ZZ( 2: Y, y) +—dy | =0, (2.3.8)
i=1 \ n=1 m=-n (2 ) is ris
are dp n N ars
— T ds — * N+ —= T, ds=0 2.3.9
[t ~To 5= L N + 2 (0 ) 23.9

Where s=12,...N, n=12,...M, m=-n,...,n

Next we consider the Neumann problem, find ¢(x) such that

Ag(x)=0, X e Q.
qi(x)zqci)o+Q1i1Y11(‘9i’¢i)a X€S,

Where q;, and q,, are scalars. Then equation (2.1.6) reduced to
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(qoor_"'q_;r_yl(wl ')

or o
¢(y)_j((p sy

i=1
n+1

+Z Z (n+2)pp, s (2n+1) el (Wi’yi)]'

n=1l m=-n

Substitute the kernels given in equation (2.2.2) in equation (2.1.2) we obtain

S

T3 (aly +0l,Y 26", 6') s =

8FOS_ 00 N
L, ro_v)ds+zsj

i=1

and

I((Darnm s a¢)d3 +ZJ.( q00+q11Y 6 ¢)))ds_

Ils

wheres=12,...,.N, n=12,...M, m=-n,...,n
Want to simplify this system of equations. Let us evaluate the integral over S,

First we consider

I(@i 8(;5 _Fos(q(i)o +q1i1Y11(‘9ia¢i)))dS

Ifizs then[(p 3 (0 + ALY, (6" 6 s

iar‘S i s i S i i
:I(P Sds— .[rods_qll,[FOYll(g ,¢')ds
5 ov ; 5,

(2n"+1)N,,

r|shlm -n’

J.ii i (aiJ Y (9 ¢ ) n":m'(ai,¢i)anj1’(l//is,7/i5) Sin 0|d0|d¢l
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Therefore n'=m’'=1and

i givae (Y0 4")
r\|ov\/£r0\(1 ', ¢ )ds_£4zx—§5 ds

is _isy\ 277w

-a7 a, Y (y" ")
=— 1 7 21 lsin 0'df'de =
r. r. 8 -! v = 2r

is i 37 0

3

is is )

‘—;

I FoqoodS—f‘ %o

So if i # s we have

i 0Ty s i i i i
SJ.((P 6\? —1I (qoo +Q11Y11(9 N ))jds:

2 3

S (n+2)§0nm i m is is a'i i ai is . is i
ZZ Y W=, r") +— qoo"‘?Yll(‘// 7" )

n=1 m=-n (2n+l) Nt I.

is is

If i =sthen

Thus

6] e Ps zj(

S i
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ars 5a S S
p— -Iy —f)dS—(DOO +a Qg +
\%

(n + 2 )¢ n+l m is is a'2 i 1 a'3 1 is is —
m Y )+ +=LY : =0
Zl(zl;] (2n+ 1)risn+1 n (V/ Y ) r Uoo 2 risg 1 (‘// /4 )

1#S

Furthermore, we have

8F s 8g0 N iarnsm_ s Al _
j( T v)ds+§s[(¢7 [ind')ds =

2 P
a[2(@— Lo

8t
nm N m,n +—af +
v % a, 3

i=l g
izs |

ZJ.( nmq(i)o nm 1 (9 ¢ )qlleS O

2.4 Levels of Approximations [17]

In general the same normal derivatives (2.1.4) on each sphere can be represented by any
finite number of spherical harmonics. It is reasonable to expect that the accuracy of the

solution to improve as this number is increased.
The simplest representation is ' =(q,.

In this case equations (2.2.1) and (2.2.16) reduced to what we called zeroth-order

equations
or o al
o= | 0551 Py a, & (241
0 i=1 i
ars S 0 s S 3 i a‘iz
and 55; (9 8\3 -I a_(i)ds ~ Qo +3,0go +ZQ00 K =0 (2-4-2)

i#s

Thesolution of equations (2.41)and (2.4.2)is called the zeroth - order solution.
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The next level of approximation corresponds to take M=1 in equation (2.1.4). Then

equations (2.2.1) and (2.2.16) reduced to

(0( ) J-( a_F'F )d3+za {qoo IY ' J’)"‘q;l[r J Y_l('// 17/)

oQ 8\/ i
2 2
qéo ( j Y (' ’}/ )_|_ qll( j Y ( ) (2.4.3)
f i
8F s 0 2 is |s i - is is
I( v e (”)ds ¢°°+aq°°+.zl“r.s{qoo\( ey )+qllr.sY1( 7
+q—,;°3Y1°(w‘s,y‘5)+%3Y5(w‘s,y“)] =0 (244)

Taking n =1 in equation (2.2.17),then m=-101 and we obtain

or? s O
I((D atl -, ﬁ)ds + q1 1 110 'ds = (2'4'5)
_1 S
ars S a S S
I((” 611/0 —Ip f)ds"‘ U1 J‘rloq ds = (2-4-6)
_1 S;
or; s 0 8ma, & o
I( a‘l/l -y (o)d S+ 0 —— 3 z.[rllq ds=0 (2.47)
i=l g

izs

Equations (2.4.3) to (2.4.7) are called the first order equations and their solution is called

the first order solution.

To evaluate — Irlzq‘ds where o =-1,0,1, notice that

Si

J aqu—j ‘(

_aznzémzn . ”Y “(9155_)?:“(9',¢')Sm Gdgas

)Z >l Y (@' g')ds

m=-n
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Figure 1

From the figure we can find a relation between 6°,¢°. Now the spherical coordinates of
xand & aregivenas x =(a,,0',¢"), & =(r,,w",7"),

thus a=(a;sin@' cosg',a, sind' sing',a cosd')

b = (r, siny"® cosy"®,r, siny® sin y®,r_  cosy ™)

and ¢ = ((x—¢&*|sin6® cosg®,|x —&°[sin 0° sin *,| x — &°|cos6”)
sincec =b-a, then
‘x—és sin@° cosg® =r, siny ™ cosy”™ —a, sind' cosg',
‘x—és sin@°sing® =r_siny®siny® —a,sin@'sing’,
‘x—fs cosé® =r cosy"™ —a, cosd'.
Hence
ing° *r.siny®cosy® —a, sin@' cosg’
siné C05¢ — _is v Y ; ¢ , (248)

-

e
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sin@°sing® _ rsiny®siny® —a, sin@'sin ¢'

249
‘X_és ‘X—fs 2 ( )

cosf® r.cosy” —a. cosd
e e (2.410)
‘X—f ‘x—é’s

Definel, tobel, = T]T'Yl*a(es’¢s)Ynm(‘9iv¢i)
00 ‘X—fﬂ

sing'd@'dg’ o =-101

and notice thatY,™ (0, ¢) = (-1)“Y,“ (6, ¢)

2z Limgt p|m| i\ain ol
L . e"” P (cosd")sin
then |, =r,siny” cosy® ”  ( 02) 4

dé'dg’
00 ‘X—fs

a ZJ?” sin?@'e™ cosg'P" (cosd')

5 do'dg'
00 ‘X—fs

277 i pipimg’' plm| i

. s sin@'e™” P (cos

+i rissmz//'ssmy“” 0 i g 9)
00 ‘X—fs

d0'dg’

. 27 5in? '™ sin ¢'P.™ (coso')

- do'dg’ (2411)
00 ‘X—fs

L™ Pl (cosg')sin 6
l, =r, cosy f -

do'dg’
00 ‘X—fs

do'dg’ (2.412)

27 sin @' cosd'e™ P" (cosd')
]

NE
00 ‘X—f

2:2 o' pIml (¢0s0' ) sin O

> do'dg’
00 ‘X—fs

and I, =r_ siny® cosy"®

dé'dg’

) ZJ’-”’ sin? 6'e™ cosg'P" (cos6')

5|2
00 ‘X—f
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227 i nipimg' p|m| i
. . e e sin@'e™” P (cosd
—i rissmz//'ssmy's_f : S )
00 ‘X—é‘s

do'dg’

27 5in2 0'e™ sing' PI™ (coso')

-3, - do'dg’ (2.413)
00 ‘X—cfs
2a.r :
Now 1 = 1 — =— 1 ~+ &l 5 Cosy' +0(s?)
‘X -¢&° a +rg —2ar, Cosy’  aj +r (af + I’if)

2a.r
where ¢ = ——=- and ¢ <1, see[15].
a” +r;

Substitute the value of ;2 in theintegral 1, wherea =-1,0,1 weget

x=¢

. o - Amar. L . 4r
—jrlilq'ds:qgo siny® cos;/'s%—smz//'s cos;x'SSﬂa—"S2
S; 8 + T 3(ai2 +ris2 )

|: i IS qin 4,08 4'7za|2r|s ; IS i oS 87zai4ris :H
+Hisiny~siny” ———-=Siny"siny” ———< | |+

Q + I 3(ai2 +r? )2
al| & cosy " siny * cosy” a8 cosy " siny ® sin " A
or L ,
s (aiz +1e )2 3 (ai2 +r? )2
+ 0y, | COsy® sin® y e gralry  4my
; 3(ai2 +1e )2 3(ai2 + risz)
_J-rsqids_qi coS is 4'7“’a‘|2r|s —Ccos is 87Z'a'|4r|s +qi 8—7TC032 is aISrISZ
S N ” v a’+r! v 3(ai2 +r? )2 © 3 v (aiz 2 )2
__Am +q.| cosy ™ siny e _8mar, +
Siaiz 4 ris ) 11 14 4 3(ai2 . risz )2
g ,| cosy® siny e " _dmty
h a7 +r2f
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S i i H is is 4 |2 r|s 7za|4 ris
—.[Fllq ds =qg| siny " cosy —siny® cosy® >
a‘i + rIS 3(ai2 + risz)

5

HIP iS o3 is 472812 rIS 87Z-a|4 r-is
=SSNy~ Siny —Slnl// smy - ||t
a‘i + r|s 3(ai2 + risz)

i | 871 IS i s is ai3 ri52 | 87 IS xS ar s ai3 ris2
Q0| —-COSY * siny® cosy® ——=— —il ——cosy " siny* siny* — -+
3 (af + rif) 3 (af + rif)

87z-a| is _
3a2+r2f 3a’ +17)

+ qnlcos;/ sin? y®e”"

i 8z sm Sln 'Se|7 aisris2 +qi cos issinz ise—iyis 87za| r|s
3 V/ V4 (aiz N I’isz )2 1-1 V4 /4 T—)B ol 41

The first level of approximation according to Neumann problem corresponds to take

@' = p,,. Then equations (2.3.1) and (2.3.8) reduced to

2

oY) = j (v 5 -r )ds+2qoo : (2414)
or; o a’

J.( 6_ -1 (/) )dS Poo + 3,00 +z qoo =0 (2-415)
Q v i=1 lis

iz
These equations are called the zeroth-order equations and their solution is called the
zeroth—order solution.

The next level of approximation corresponds to set M=1 in equation (2.1.3). Thus

equations (2.1.6) and (2.3.8) reduced to
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p(y) = j(gﬂ_ 'Fa¢)d5 Z{%o r [(olili:—izYl_l(‘//i’?/i)"'

=1 i

o a’ o - a? o
§01|0r_lelo('//l17|)+§01|1r_|2Y11(‘//|’7|)I|1

av =1 is is
i#s

ors a a’ Sy s
J. (0 )dS (Poo"'aqoo"‘Z[qoo +(P11r Y )

caloo, ki -
+§01|0_le1 (W|517ls)+¢1|1_|2Y1 (w",7*)|=0.

is is

If wetaken = 1in equation (2.3.9) weobtain

s O or; .
J.( 11 I (p)ds"‘?(Pll”LZJ.((P #'Fll%o )ds =0,

oQ i=1 g
i#s

or; s O
[tp=22 17, ¢)ds+ o+zj((p Moo 12, yds =0,
o Ov =l

ars, .o ors i
_[( a:l _Fll q))ds"‘ 11 + ZJ-((P —= - 11q00 )dS =0,
i=1 S

i#s

o'y,
Similar to Dirichlet case weevaluate theintegral I((p 5 quo )ds =0.
A%

To achieve this, let #=-101.Then

VB S S
__[Flsﬁq(i)o ds= _q(i)Ojrfﬂ ds= '%oj% ds
S Si -

Si

Using equations (2.4.8), (2.4.9), and (2.4.10) we get to order O(e?),

_ S i _ 4”qooa| is 2a —
i e )
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(2.416)

(2.417)

(2.418)

(2.419)

(2.4.20)

)

; 4my.a’r, siny® | 2a’ cosy® s [ . & 2a’siny
-1 7,0, ds=— o0 i ' —cosy"” —i| siny*® — =+
Sji 1% ( a’+r? J{ 3a?+r2) 4 4 3aZ+r?)



: 4nql,a’r, siny® | 2a’cosy® o (. 2a’siny®
_ I—vs i ds=— 00~ |s i —Cos is +il sin is i )
;[ 1200 [ a’+r? jl: 3(<31i2 + rif) 4 4 Siaf +r? )

S

_ Lors,
For theintegral I(p' ——ds wehave
5, ov

S; n=0 m=-n

o T - % Son 409 L—T(g”‘”]

[IY At )Y*ﬁ(es # ) } where

5, ‘X

x = (t, sin@' cosg',t. sin@' sing',t. cosd')

K n .
=32, 2. 0m

n=0 m=-n

YO 4 (0, 4°)
[n

x-¢°

sin 0'd0'd¢'}

277 \y M i i *B s s ) ) )
DefineJ, tobe J , = ai {HY“ (0.4, 5(9 1L )sin<9'd49'd¢'} then

[ ‘X—f
t=a
0 0 0
J,= a_tl (1,);3,= EI (15):d, = T. (1), wherel 1o, I,
ti=q ti=q; t=a

aregiven in equations (2.411),(2.412), and (2.413). Therefore

S.

ors? : ) . 6 8r(r?=3a%) 4x(r?-a’
J'(Dl aIa_vl—l ds = ai2 wlll{[risz Slnz l//IS Cosylse—ly ”(rls i ) . ﬂ-( is i )
A%

S(ai2 +rl )3 3(<31i2 +r? )2

. . s s i —8m(ri-3a%) . 4x(r’l-a’ i
—j risz Slnz l//ls sin ylse—ly ”(rIS a3'| ) —j ﬂ-(rls |2) + (ollo
S(ai2 + risz) 3(ai2 + rif)

[[87([( )2 r’siny " cosy™ cosy' J
3la’+r,

o 2 _ a2
+i rZsiny® cosy® sin y e M
3(ai2 + rusz)
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is 872'(I’is2 - 3ai2) _ 471'(ris2 - a|2)
e +r2) 3@t +rf

+ gol'l{[r,f sin?y " cosye”

_i[_Sﬂ.(risz _Saiz) 2 -472'(ris2 _aiz)J

22 S i IS Ay
rosinw®siny®e” —i
2 28 2 2\
3(ai +ris) 3(ai +ris)

ol : o e Ax(r? —3a?
Igp' —2 ds=a’| ¢, 2rZsiny® cosy e 4r(n =3a) ||
ov 3(a.2 + r.2)3
1 IS

Si

_ 2 _ g2 2 _ 333 .
(01io 47[(r|s a‘| ) +r 8ﬂ(r|s 3a| ) 2 |SJ+

3(ai2 +r? )2 ® 3(ai2 +r? )3 v

A . ; H N 4 r-z - 33.2
@] 2rl siny ™ cosy e’ 7[('5—'3) .
a2 +r2)

Lol . . . o
A%

Si

is 871'(I’i52 —33.{2) _ 47[(ri52 - aiz)
3(ai2 +re )3 3(ai2 g )2

- . H - i sois T r2 —_ 2 . 4 r2 —_ 2 .
+|[ri523|n2 l//IS sin 7lsefly 87[( is 3a| ) —i 7[( is al )J}+¢io

3(ai2 +rl )3 3(a;" +rl )2

(8”(ris2 - a.z) r2

3(a2 N rz)z 2siny "™ cosy ® cos;/‘sJ

o2 s is i is iy’ —87(rs —a;)
+i| rZsiny® cosy ®siny e —— 12
S(af + rif)

s 87Z(I’i52 - 3ai2) _ 47[(ri52 ~ alz)
Yo +rs)  Aaf i)

+ golil[(risz sin?y ™ cosy®e"”

— 2 _ 2342
+|[ 87[(r|s 3a‘|) 2

S sin? y® sin ye”" —
S(ai +ris)

i47z'(ri52 _aiz)}

3(ai2 +rl )2
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2.5 Applications

Example 1 [17]

Let us solve the Dirichlet problem for the exterior of the unit sphere.
That is, find ¢ (x) such that

Ap(x)=0 XeQ
@(X) =@y, =constant xeS

where Q is the exterior of the unit sphere.

The zeroth order equations (2.4.1) and (2.4.2) reduced to

p(y)-~2 =0 (251)

“Poo T oo =0 (2.5.2)

Hence ¢(y) = Po \which agrees with the solution obtained by Stackgold [15]
r

The fist order equations (2.4.3)-(2.4.7) reduced to equations same as (2.5.1), and (2.5.2).
Equations (2.4.5)-(2.4.7) implies that g, , =q,, =q,, =0.
Thus equations (2.4.3) and (2.4.4) implies

p(y)-= =0,
r
= Poo + oo =0,
and we obtain the same solution as the zeroth-order equations.
Example 2 (A single sphere in a half-space) [17]
In this example we consider a single sphere of radius a with center a distance d (a < d)
below the surface of the half — space -oo< X, <0, -0 < X, <oo,, X; <0. The potential

on the sphere is considered to be constant ¢,,, while on the surface of the half—space is

taken zero.
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We consider the first order equations (2.4.3)—(2.4.7), applied to the sphere and to its

image with respect to the plane x, =0. .

We denote the quantities associated with the image sphere by a prime. From the
geometry of the problem we have q;, =q,, =0=0q, =q;,, furthersincethe potential ¢
is vanishing on the surface x, =0, we obtain g, =—0g,.0;, = d,,- We enclose the sphere
and its image by a large sphere of radius R, andwe let R, — o sothat the integrals over
0L in equations (2.4.3)-(2.4.7) vanish.

Since * =0 and q,, =0=q,, then equations(2.45)-(2.4.7)are satisfied. Equation (2.4.4)

reduced to

- +aq +a_2(q +Ei =0 (253)

Doo 00 54 Moo 3 2d 5.
Setting ¢, = %(81 < %) weget
q
— @ + a0y +ag; (Ugy + %51) =0
ag,’
or ady, (1+ 81) + 0y T = Py (2.5.4)

Now equation (2.4.6) reduced to

Ama
O10 T - lrloqu =0.

But

‘IF qds =2q 2m’2d  a'(2d) 4z +gq 4ma’4d® 27’
: Pla®+4d®  (a2+ad?f 3 ) 3 | (a?+4d’f a’+4d’

_ g 8za’d  16ma‘d ‘g Rm’d®  4m’
“la*+4d® 3(az+4d?f ) 3z +4d?) 3@’ +4d’)
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_ 8m’d 1 2a’ Lo |4 4ma’ 8d? 1120
"o ad? T 3t v ad?))” 0\ 3 3t +4d?)\(af v 4d?) )"

ag, 2 & T ag; )
or 1-— + —+———\g -1)|=0. 255
qOO 812 +l( 3 812 +1J qlo[ 3 3(812 +1)2 ( 1 ) ( )
. 3 31—
Fromequation (2.54) wehave —q,, = Cl:oo + Uy ( 281),
& a 1

and fromequation (2.55)

ag, 2¢! -394, 1-¢g)) -a ag/ )
- 1- - - —a_ % (;21)|=0.
oo 6‘12 + 1( 3(812 + 1)] [ 512 a oo 812 3 3(512 + 1)2 (81 )

Thus

ag, 2¢f —a ag (512 - l) 3(1- 6‘1) 30y,
Qoo — 1- 2 =t 2 2 2 T2
g +1 3(51 + 1) 3 3(51 + 1) & g a

Hence q,, =

asg, 2¢! ag’ (812 —1) 1-¢)
. 1- —|—a+ 5 s
g2 41" 32 +1) (812 +1) &
and thefirstordersolution is given by q,,, 0,

The correspondng zeroth-order solution of thezeroth-order equations (2.41) and (2.4.2)

is given by
_Pw 1
Goo a 5 -1

Example 3 (An infinite row of spheres in a half — space) [17]
Consider an infinite row of identical spheres in a half —space. Suppose that each sphere
has a radius a and that the centers of the spheres are uniformly equal distributed along an

axis parallel to x, at a distance d (d > a) belong x, =0. Further suppose the distance

between two successive centers is L distance apart. Assume that the potential boundary of
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each sphere is constant ¢,and that the potential on the surface of the half—space
(x5 =0) is zero. In order to solve this problem, we consider a finite number of spheres

namely 2N + 1 sphere. We completely reflect the problem about the plane x: = 0 so that
the boundary condition on X, =0is satisfied identically. For conveince we index the
spheres by an integer n which takes the values from —N to N.

Let the quantities associated with the image spheres be denoted by a prime.

From the untisymmetry we have

G =—Ggo; o =Gy

Ghy =0y =0=0;" =y

Also from the symmetry about the center sphere (n=0) we have

Qoo =doo;  Oio =G G =0 =0 and g, =g/, =0

As we did in the case of a single sphere, we enclose all the spheres by a sphere of radius
R, — o sothat the surface integrals in equation (2.4.3) to (2.4.7) vanish in the limit. Next
identity sphere S in these equations with n=0 then from the symmetry of the problem
equations (2.4.5) and (2.4.7) are satisfied identically and equations (2.4.4), (2.4.6)

reduced to

2 2

a’ 0,02 L —-at
— Ppp + A0y + — (—Qgy — —2—) -2 + :
Poo Qoo Zd( Uoo 3.2d) nZ:;, (nL)qOO ’—(nL)Z —ad?
n qlnozad
) + =0 256
[q‘“’ 3.((nL)2+4d2)H (256)

q 4na+q —8na’d N 16ma’d +q 4na’ B Rnad?
03 ®la?+4ad? 3at+4d?)) " 3(a’+4d?) 3(a® +4d?)
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N

23 - | 4ma®y/(nL)* +4d? 2d
~ o 3 a2 +(nL) %o a?+(nL)?+4d? [(nL)? + 4d?

+ q (472'/3)8.3
(a +(nL) +4d 0 a +(nL)2+4d2)
_@r/y2(ny? +ad?)  ad? | -
3d(a +(nL)? +4d ) (nL)? +4d? ' 5.

Where we have dropped the superscript when n=0. Now pass to the limit N — oo and

notethat q' —dy, .0 —>0 Weget

ot a2+2ad_2§: —a2+ 3 i -al —ZZGO: 2a°d
T2 TR0 fantear )| 1207 TR g0 407 )7

=0 (2.58)

q —8ma’d | 16ma’d +2i —4m* . 87’
“la®+4d® 3@’ +4d®) (@’ + (L)’ +4d*  3d(a? + (nL)? +4d2 )

4a® 32md?  4ma i( Ama®

+q1{3(a2+4d2)_3(a2+4d2)2_ 3“2 327 + (n)?)
47’ . 8m’(ad?) )J]_ ) 259)

+
3@’ +(nL)* +4d*) 3d(a? +(nL)? +4d?)

Example 4 (A single sphere in a half — space) [17]

Consider a sphere of radius a kept at a constant normal flux is placed in a lower half-
space with a distance d (d > a) below the surface of the half - space. Further assume that
q is equal to zero at the surface of the half —sphere and equal to constant q,, on the
surface of the sphere.

Consider the image of the sphere and enclose it with the original sphere by sphere of

radius R, sothatas R, — ocothe integrals over 6Q in equations (2.4.17)-(2.4.20) vanish.

56



Now in order to have zero flux on the surface of the half -space the flux on the image
sphere is taking to be -g,, andwe take gy, =-@y, @1y =-@15, Pl =P, =@, =@, =0.
Hence the flux depend only on y and r.

Thus equation (2.4.17) reduced to

2 2

a
2d 53 Y%0 T P07 ( =0 (2'510)

-0y, +a
Do Qoo t Zd)

And equation (2.4.19) reduced to

A7 ol B
?%o +_!.(P oy dS—!FquOOdS—O.

Or

A a4 4d’ -a’ 87 o) 4d’ - 3a’
370 3 (atead?f 37 T(a®+4d?)

4n,,a° (2d) 2
-1|=0 2511
i a’+4d? 3(a2+4d2) ( )

Thus ¢,, and ¢,, determine the potintial on thesurfaceof thesphere.

Example 5

In this example we consider Dirichlet problem for the exterior of the unit sphere. That is
find ¢ such that

Ap(x)=0 ,Xe
P(X) = @y + ¢11Y1l (0,¢) ,xeS

Where Q is the exterior of the unit ball and S is the surface of the ball. Taking g = qq,,

we drop the superscripts since we have only one ball, then equations (2.2.18) and

(2.2. 21) reduced to
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oY) =5 ou(p.r) + 2 (2.5.12)
and

- o0 +Ugo = 0. (2.5.13)
Hence

1
oY) =5 0uYi(.7) +"’—;°
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Chapter Three
Special Boundary Integral Equation for Approximate Solution of
Potential Problems in Three-Dimensional Regions with Slender Cavities

of Circular Cross—section

In this chapter we consider potential problems in general three—dimensional regions with
slender internal cavities of circular cross—section. We assume that the surface potential
and its normal derivative are locally axis-symmetric. With this assumption, the surface
integrals on a cavity boundary can be reduced to contour integrals a long the center line
of the cavity. The solution at any point a long the cavity is determined by a special
integral equation formed by localing the fundamental solution at point in the center of the

cavity. The theory in this chapter based on [3].
3.1 Integral Equations [3]

As in chapter two we consider a three—dimensional open region ©Q containing n slender
cavities with variable circular cross — section. We notice the following definitions:

C, is thespacecurve along the center of cavity i where i=12,...,n .
a, (s) is the radius of the cavity i circular cross-section at a particular arc length S along

C.

I, (S) is the position vectorto points C,.

or,

A(S)= P the unit tangent vectorto C,.
S

k; is the local curvature of C,.

S

is the lateral boundary of cavity i.
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0Q is the outer boundaryof region Q.

Let ¢ bearegular harmonicfunctionin ©,a point x will be standfor the triple (x;,X,,X;).
let T(x,y) = —1
4z|x —y|

If pisa C2(Q) harmonic function then by Green's representation formula we have

or _o or _o
w(y)—j((p—-r “’)da+zj( ST s (311)
i=1 s,
1, if yeQ
wherel = . I yf_
0, if yeR*\Q

Assume that both the surface potential ¢ and its normal derivative on S;are axi-

symmetric about C, so that
Let ¢=¢(s) , % 5, = (s) ons,. (312)

The integrals on S, in equation (3.1.1) then reduced to contour integrals along C, as

follows. Let @ represent the polar angle in the cross-section of the cavity so that the

coordinates (s,0) span the lateral surface S;. In terms of these coordinates the element of

areadaon S, is

1
da=a][(a))* +(1-ak, cosd)*]2dads

1
~a[(@)?®+1°]12d&ds = a,c,d0 ds (313)
' aai . AYA 2 l
where a ey o, =[(a))" +1°]?
S

also we assumed that a;k; <<1.

Let v bethe inward unit normal to S_, then
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ol’ ol r rv

v=—_ (C)v=

5 or 'r’" 4rxr?

wherer =[x - y|. r=x-y

So that with (3.1.2) and (3.1.3) the surface integral may be expanded in the form

1
Arr

Jo ai-ra¢)da=£f[¢i —

2

1 . 1 1
:E(_!.iai(oio-i !%dws-i_aé[aiqiai J.Fde ds

0

From thefollowing figure

N\
C Oy D
A JCO

Figure 2
We get
A=l-DAL n=lneyh dE=repf,

bl =p?+(a +d;)*, and k= 42‘2d‘
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Now (r,)? =r? - p? =a’ +d?-2a,d, cos@, (Law of cosines).

Or r?=p?+a’+d?-2ad, cosd (315)
2422 +d2-2ad.
Thus r? zbi{p, +a + b,? q ,cosej

_p? pl+a’+d?+2ad.-2a,d,-2a,d, cosd
i pi2 +(& +di)2

_p2[1. 2a,d,(1+cosb) 2 1_4aidi (1+cos0)
pf +(@ +d, )’ I b’ 2

=b? (1- k? WJ =b? (1- ki cos? gj

Hence r? =b? (1- k? cos? gj (316)
So that

TdTezT do 1=2T déo =i% déo l=iK(ki)

O bi(l- k? cos® ejz 0 b, (1- k?sin® 0) ofL-k?sin?o)l

where K(ki):% a9 ,

After some calculations we end with

Then
“ry 2 1 4a’
!r—som: ﬁ[_K(ki)hﬁHZ_ o7 -k JE(Ki)}
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7
where E(Ki):J.2 do 3
2 (1—k2sin? 0

Hence

I( a—i-l‘aq))da——ja @;

j {coi 4%{-2K(ki)+(2-%-kaE(Ki)}—qi[‘jtfi K(ki)}ds

= [(p,H; -a,G,)ds (317)

Jaq _[%déds

Where =G, (1(s), y) =~ K(k)

o 4a’
H,= Hi(ri(s),y):ﬁ -2K(k; ) + bzl -ki2 E(K))

Therefore fory € Q,
o0 . or _o¢
= —-I'—)da+ Z .r~da=
o(y) = I((p 81/) Eizl, J((pa" 81/)

J' ¢2—£-F5@)da+ZJ(QH -0,G,)ds (318)

20 i=1 Cj

We introduce the special kernel 7", = I"(x,r,) = to determine either ¢, or g

_ 1
4z|x ;|
along the cavities.

Now if x =r, then AI', =0. Hence for every point on C, which is located by r,
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j( —-r a“’)da+2j( L-r 24a=0 (j=12..1) (319)

Ils

Becauseof (31.2) theintegrals on S; may be reducedto contourintegrals on C, so(319)

reducedto
oT. )
I((p_l_r )da+ZI(¢IH -0,G;)ds =0 (j=12,....n) (3110)
o 6‘/ i=1 c
4ai2_
where H,=H, (r,,r;) = b bzl i [E(K;)
ij ij
—_ — —80;
G=G, (r.r)=—"" Kk, ) (3112)
ij
And corresponding to (3.1.2) we have
Pij :‘(ri 'rj)-jvi‘v rij :‘ri _rj‘7 dz - I’ '/O,,
4a.d.

biJ? =piJ? +(ai +dij)2, and k|12 = blz i
ij

3.2 Coaxial Tori [3]

Now want to apply the integral equation (1.1.4) to collection of coaxial toroidal cavities
in unbounded region. In this case all the curves C, are circles centered on a common axis
of symmetry.

Define the following:

R, the radius of C, (i=1,2,...n)

Z. the point where the plane containing C, intersectsthe axis of symmetry

Let %«1 (321)

g = | = <<1 (32.2)
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These assumptions state that because of axially symmetric, the separation between

cavities is large compared with a,.¢, and g, are constants on each cavity and for an

unbounded region (3.1.9) is reduced to
z":go.j@da-q.jr. =0 . (j=12....n) (32.3)
i=1 Isi 81/ Isi :

In this equation the integrals depend on the geometry only. Since I'; is a regular

harmonic function inside every cavity except S; we have

0l
o SI ~ da=p, (32.4)

i=1

The resulting system is

8R ) < Rt
0=a,q, Log[a—_’J+Z aiqi(%j EKE) (=120 (3.2.5)
where &= 42R dil . (3.2.6)
(Ri'Rj) +(Zi'zj)

Example 1 [3]
Consider two identical tori with opposite potentials * ¢, separated by a distance 2d. The
corresponding flux q,,q, are equal and opposite says *q,
Thus a=a,=a, R=R,=R
Pr=Pr—Pos 0,—-09,=q,

sothat (3.2.5)and (3.2.6) will be

%
8R R
¢=a,0,Log—+a,q, [[KZJ nK (‘521)]

al 1
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8R S8R
@,—aq,Log ?-aqoéK(cf) = :)TO = Log e -EK(&) where

0

4R? R’ _R2+d2—d2_1 d? 1

G = = =1- =1-
e ((2R)2+(2d)2) R2+d? R%+d 2 R%+d?

as %—)oo %—)O sOo 250 £-50

ﬂ:Log %
ag, a

Thus

8R, R, )2
Note that p,=a,q,Log | ¢ K(Epp)

2 1

8R 8R
= -p,=—aq,Log ? +aq,¢K(¢) = ¢,=aq,Log ? -aq,¢K (¢)

Or ¢—°:L098—R-§K(§) Where&? =1-
aq, a

So weobtain thesameresult.

Example 2 [3]

Consider a torodial cavity located in the midplane of a uniform slap of thikness d has zero

potential on each surface. The solution of this problem can be obtained by solving the

equivalent problem of an infinite series of parallel tori assigned with alternating

potentials and separated by a distance d. The solution relating the flux q to the potential ¢

on the torus is

a% = Log(B?RJ + 22(- 1)n (E_,;lK(égl )) where &ﬁ =1+ (%jz

To show this assume there exist r tori under our torus, so there exist r tori above it, now
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- aglog S+ 2Y (-1"aq; K(&)

2 2 2 2
Where &% = :1R - 12 _ (2R) +2(nd) :1+(ﬂj
(2R)* +(nd) £l 4R 2R
1 8R : n -1 -1
Seté, :? then o= aq log —+2> (-1)"aq," K(&,")
n a n=1
or L- og Bioy e k)
aq a n=1
Soasr — o wehave
2 _1og R423 (16 K&
aq a ]
where &7 :1+(E)2
2r
As %—» w aﬂ approachesthatfor single torus in unbounded region, and as

R increases,wehaveia o 2. Logﬁ.
R aq a
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