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Abstract Energy detection is the most widely used technique in cognitive radio networks
to enable opportunistic spectrum access. In this paper, the problem of energy detection of
an unknown deterministic signal over fading channels is revisited. More particularly, a new
closed-form mathematical expression is derived for the average probability of detection of
the energy detector (ED) over α − μ generalized fading channels with selection combining
(SC) diversity reception. The derived expression is general and includes as special cases
Nakagami-m, Weibull, Gamma, Rayleigh and Exponential distributions. This expression is
useful to quantify the performance improvement of the ED with SC diversity reception.

Keywords Cognitive radio networks · Energy detection · Selection combining · Diversity
reception · Fading channels · α − μ generalized fading distribution

1 Introduction

The static spectrum assignment policy adopted by traditional wireless networks is faced with
spectrum scarcity at particular spectrum bands. In addition, a large portion of the assigned
spectrum is still under-utilized. To solve these spectrum inefficiency problems, cognitive
radio (CR) technology is recently proposed [1]. CR is an intelligent communication system
that is aware of its environment. It can sense and adapt its parameters to avoid interference
on licensed users. This makes spectrum sensing an important requirement for the realization
of CR networks. There are several spectrum sensing techniques proposed in the literature
such as energy detection, matched filter detection and feature detection [2]. The ultimate goal
of these techniques is to provide more spectrum access opportunities to CR users without
causing harmful interference to the primary users. Among the existing spectrum sensing
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techniques, the energy detector (ED) proposed in [3] has the advantage of low cost and
simple implementation. It simply measures the received energy on a primary band during an
observation interval and declares either a white space if the measured energy is less than a
properly set threshold, or occupied if the energy is larger than the threshold.

Several fading distributions have been proposed in the literature to describe the statistics
of the mobile radio signal [4]. Indeed, the short-term signal variation is well described by
several main distributions such as Nakagami-m, Rayleigh, Rice, Weibull, Hoyt and others.
Each of these fading distributions is suitable for certain channel conditions. In some situa-
tions, no distributions adequately fit experimental data, although one or another may yield a
moderate fitting. This motivates the need for a general fading distribution that can yield bet-
ter fitting to experimental data and can include several fading distributions as special cases.
One of these general fading distributions is the α − μ distribution recently proposed in [5].
It is an umbrella distribution and includes as special cases important distributions such as
Nakagami-m, Rayleigh, Gamma, exponential, Weibull, and one-sided Gaussian. In addition,
its probability density function, cumulative distribution function, and moments appear in sim-
ple closed form expressions. Furthermore, it can explore the nonlinearity of the propagation
medium. These features make the α − μ distribution very attractive.

Fading channels can extremely affect the transmitted signals resulting in degrading the
received signal-to-noise power ratio (SNR). In this case, antenna diversity reception tech-
niques that combine the outputs of multiple fading branches can be used to enhance the SNR
at the receiver. Equal gain combining (EGC), maximal ratio combining (MRC), and selection
combining (SC) are the most widely used diversity combining techniques [4].

During the last decade, a great deal of interest has been paid to the problem of detecting
unknown deterministic signals over a variety of fading channel distributions with or without
diversity reception at the receiver [6–8]. Indeed, in [6] the average detection probability
performance of ED is derived for Rayleigh, Rician and Nakagami-m fading channels. An
alternative analytical approach have been proposed by Digham et al. [7], where closed-form
expressions are obtained for the average detection probability over Rayleigh and Nakagami-
m fading channels with square-law combining and square-law selection diversity schemes.
In [8], the moment generating function (MGF) method and the probability density function
(PDF) method are used to evaluate the performance of ED over Rician and Nakagami-m
fading models with several diversity combining techniques. However, this yields a wide
collection of performance expressions that are applicable only for certain fading models
with specific model parameters. To avoid this drawback, Fathi and Tawfik [9] have recently
proposed a versatile performance expression for ED over the α − μ generalized fading
channels. Nevertheless, no diversity combining techniques are considered.

In this paper, we propose to extend the results in [9] by considering SC diversity reception
at the receiver. A new closed-form expression is derived for the average detection probability
of the ED over α − μ generalized fading channels with SC diversity reception.

The rest of the paper is organized as follows. Section 2 introduces the ED over α − μ

fading channels. Section 3 presents the performance of the ED with SC diversity reception.
Numerical results are discussed in Sect. 4. The conclusions are reported in Sect. 5. Finally,
the derivation of the new expression is given in “Appendix”.

2 Energy Detection Over α − μ Fading

The ED is a threshold-based decision device. Its output is one of two hypotheses H0 and
H1 denoting, respectively, signal absence and signal presence. The decision is made by
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BPF 

Fig. 1 Block diagram of the energy detector

comparing the aggregated energy of a band-pass-filtered (BPF) received signal, over an
observation period of time T s, against a predetermined detection threshold λ as shown in
Fig. 1.

Thus, the received signal r(t) can be interpreted as a binary hypothesis test:

r (t) =
{

n (t) H0

h s (t) + n (t) H1
(1)

where n(t) is an additive white Gaussian noise (AWGN) process with one-sided power
spectral density N0 Watt/Hz, s (t) is the transmitted signal, and h is the channel coefficient
amplitude having mean-square value of h̄2 and PDF fh (h). The instantaneous signal-to-
noise ratio (SNR) at the receiver antenna can be expressed as γ = |h|2 Es/N0, where
Es is the energy of the signal accumulated over the observation period. It is well known
that the PDF of the decision variable Y can be expressed in terms of the central and non-
central Chi-square distributions with u = T W/2 degrees of freedom, where W is the BPF
bandwidth and T W is the time-bandwidth product. Based on the statistics of Y and given
a fixed threshold λ, the conditional probabilities of false alarm Pf = Pr (Y > λ|H0) and
detection Pd = Pr (Y > λ|H1) for a certain value of γ can be expressed as [7]:

Pf = Γ
(
u, λ

2

)
Γ (u)

(2)

Pd = Qu(
√

2γ ,
√

λ) (3)

where �(·) is the Gamma function, � (·, ·) is the upper incomplete Gamma function, and
Qu(·, ·) is the generalized Marcum Q-function [4, eq.(4.59)].

When the fading channel is characterized by the α − μ generalized fading distribution,
the envelope h of the fading signal has the following PDF fh(h) [5, eq.(1)]:

fh (h) = αμμhαμ−1

h̄αμΓ (μ)
e
−μ

(
h
h̄

)α

(4)

where α is a positive arbitrary parameter, and μ > 0 is the inverse of the normalized variance
of hα, h̄ = α

√
E(hα) is the α-root mean value of h, and � (μ) is the Gamma function. By

setting α = K and μ = 1, the α − μ distribution reduces to the Weibull distribution with
parameter K . Setting K = 1 results in exponential distribution. In addition, Nakagami-m
distribution can be obtained by setting α = 2 and μ = m, where m is Nakagami-m severity
parameter. Furthermore, Rayleigh and one-sided Gaussian distributions are obtained from the
Nakagami-m distribution by setting m = 1 and m = 1/2, respectively. Moreover, Gamma
distribution is obtained by setting α = 1 and μ = a, where a is the parameter of Gamma
distribution. Figures 2 and 3 shows the PDF fx (x) of the normalized envelope x = h/h̄ of
the α − μ general fading distribution for several values of α and μ, resulting in several well
known fading distributions. Indeed, the α −μ distribution is general, flexible and covers vast
range of fading situations [5].
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Fig. 2 The probability density function fx (x) of the α − μ generalized fading distribution for α = 2 with
several values of μ
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Fig. 3 The probability density function fx (x) of the α − μ generalized fading distribution for μ = 1 with
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To obtain the average probability of detection P̄d when considering AWGN and α − μ

fading channel, Eq. (3) should be averaged over the PDF fγ (γ ) of the output SNR γ =
|h|2 Es/N0 as follows:

P̄d =
∞∫

0

Pd(γ ) fγ (γ ) dγ (5)

where fγ (γ ) is derived from fh (h) by simple change of variables as shown in [4, eq.(2.3)]:

fγ (γ ) = αμμγ
αμ
2 −1

2Γ (μ) γ̄
αμ
2

e
−μ

(
γ
γ̄

)α/2

(6)

where γ̄ = h̄2 Es/N0 is the average SNR.
Note that the probability of false alarm given by (2) has no terms relating to fading channel

parameters, and so, doesn’t change.

3 Performance of Energy Detector with Selection Combining

In [9], the average probability of detection for the ED is obtained over the α−μ general fading
distribution. However, no diversity combining techniques are considered. In this section, the
performance of the ED over the α − μ fading channel is revisited to derive a mathematical
expression for the average probability of detection when SC diversity technique is employed
at the receiver. When considering SC diversity technique, the diversity branch with highest
SNR is chosen by the selection combiner. The PDF of the instantaneous SNR for single
branch α − μ fading channel is given by (6). For L diversity branches, the instantaneous
SNR of the SC would be equal to the maximum of {γ1, γ2, . . . , γL}, where γi is the i th
branch instantaneous SNR. Assuming that the average SNRs for all branches are equal, let’s
denote it by γ̄ , then for any single branch, the probability that its SNR γi is less than some
value γ is given by the following cumulative distribution function (CDF) [10]:

C DF (γi ) = Pr(γi ≤ γ ) =
γ∫

0

fγi (γi ) dγi =
γ∫

0

αμμγ
αμ
2 −1

i

2Γ (μ) γ̄
αμ
2

e
−μ

(
γi
γ̄

)α/2

dγi = 1 −
Γ

(
μ,μ

(
γ
γ̄

)α/2
)

Γ (μ)
(7)

Thus, the CDF of the output SNR of L independent and identically distributed (i.i.d) selection
combiner branches can be derived as follows:

C DF (γ ) = Pr (γ1 ≤ γ, γ2 ≤ γ, . . . , γL ≤ γ ) =
L∏

i=1

⎛
⎜⎜⎝1 −

Γ

(
μ,μ

(
γ
γ̄

)α/2
)

Γ (μ)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝1 −

Γ

(
μ,μ

(
γ
γ̄

)α/2
)

Γ (μ)

⎞
⎟⎟⎠

L

(8)

By carrying-out similar steps to those leading to [11, eq. (4)], the PDF of the combiner’s
output SNR, denoted by fSC (γ ), can be obtained by differentiating the C DF (γ):
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fSC (γ ) = d C DF(γ)

dγ
= Lαμμ

2Γ (μ) γ̄
αμ
2

⎛
⎜⎜⎝1 −

Γ

(
μ,μ

(
γ
γ̄

)α/2
)

Γ (μ)

⎞
⎟⎟⎠

L−1

γ
αμ
2 −1e

−μ
(

γ
γ̄

)α/2

(9)
Therefore, the average probability of detection for the SC can be evaluated by averaging

(3) over (9) as follows:

P̄d,αμ,sc =
∞∫

0

Qu

(√
2γ ,

√
λ
)

× Lαμμ

2Γ (μ) γ̄
αμ
2

⎛
⎜⎜⎝1 −

Γ

(
μ,μ

(
γ
γ̄

)α/2
)

Γ (μ)

⎞
⎟⎟⎠

L−1

γ
αμ
2 −1e

−μ
(

γ
γ̄

)α/2

dγ (10)

Following the derivation in “Appendix”, the average probability of detection of the ED over
α − μ generalized fading channels with SC diversity reception can be expressed as:

P̄d,αμ,sc = C
∞∑

n=0

an

L−1∑
i=0

(−1)i
(

L − 1
i

) i(μ−1)∑
m=0

μml
αm
2 +n

γ̄
αm
2

βmi (μ)Gk,l
l,k

(
z; �(l,−w)

� (k, 0)

)

(11)

where C = αμμL
√

kl
1
2 (αμ−1)

2Γ (μ)γ̄
1
2 (αμ)

(2π)
k+l

2 −1
, an = Γ

(
n+u, λ

2

)
n!Γ (n+u)

, z = ll
(

(i+1)μ

kγ̄ α/2

)k
, and w = 1

2α(μ +

m) + n − 1. In addition, Gq,p
p,q

(
z; a1, . . . , ap

b1, . . . , bq

)
is the Meiger-G function [13, eq.(16.17.1)],

�(k, a) = a
k , a+1

k , . . . , a+k−1
k , l and k are some integers such that l

k = α
2 , βmi (μ) is the

multinomial expansion coefficient which can be computed recursively as illustrated in [4,
eq.(9.124)]. To the best of authors’ knowledge, (11) is new.

In the case of no diversity reception, i.e. single diversity branch L = 1, the derived
expression for the probability of detection of the ED with SC diversity reception in (11)
reduces to a previously known result found in [9, eq.(8)], as follows:

P̄d = A
∞∑

n=0

lnanGk,l
l,k

(
S; �(l,−v)

�(k, 0)

)
(12)

where A = αμμ
√

kl(αμ−1)/2

2Γ (μ)γ̄ ( αμ
2 )(2π)

k+l
2 −1

, S =
(

μ

kγ̄ α/2

)k
ll , and v = n + αμ

2 − 1. Note that a typo in

[9, eq.(8)] is fixed in (12) by adding the missing term ln .
For the special case of Rayleigh fading channels, the probability of detection for the ED

with SC diversity reception can be found from (11) by setting α = 2 and μ = 1:

P̄d,Ray,SC,L = L

γ̄

∞∑
n=0

Γ
(
n + u, λ

2

)
Γ (n + u)

L−1∑
i=0

(−1)i
(

γ̄

1 + i + γ̄

)n+1 (
L − 1
i

)
(13)

It should be noted that (13) is an alternative form to the one derived in [14, eq.(30)]. For the
no diversity case L = 1, Eq. (13) reduces to:

P̄d,Ray,L=1 = 1

1 + γ̄

∞∑
n=0

Γ
(
n + u, λ

2

)
Γ (n + u)

(
γ̄

1 + γ̄

)n

(14)
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4 Numerical Results and Discussion

In this section, the performance of the ED is quantified by depicting the Receiver Operating
Characteristics (ROC) (P̄d vs. Pf ), or equivalently, complementary ROC (probability of miss
detection Pm = 1− P̄d vs. Pf ) for different values of the environment nonlinearity parameter
α, number of multipath clusters μ, and number of SC diversity branches L . In the following
examples, the degree of freedom u of both H0 and H1 distributions are set to u = 5.

Figure 4 shows the complementary ROC of the ED over α − μ fading channel with dif-
ferent values of α when L = 1, 3. One can notice that the performance of the ED is greatly
improved when increasing the number of SC diversity branches from L = 1 to L = 3. For
example, when α = 2 and Pf = 0.1 the probability of miss detection is decreased from 0.2
to 0.04 when increasing the number of SC diversity branches from L =1 to L =3. Thus, SC
diversity reception can greatly improve the probability of detection of the ED. In addition,
increasing the value of the nonlinearity parameter α improves the performance of the ED
by decreasing the probability of miss detection. Indeed, increasing α enhances the tail under
the PDF as illustrated in Fig. 3, and hence for a given fixed threshold it decreases the miss
detection probability.

According to Fig. 5, the complementary ROC of the ED is greatly enhanced when L is
increased from L = 1 to L = 3 with the several values of μ. For example, when μ = 2 and
Pf = 0.3 the probability of miss detection is decreased from 0.1 to 0.015 when increasing
the number of SC diversity branches from L = 1 to L = 3. In addition, increasing the value
of μ increases the number of multipath clusters contributing to the envelope of the received
signal, and hence increases the diversity gain resulting in lower miss detection probability.
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Figure 6 shows the complementary ROC of the ED for several well known fading distrib-
utions obtained as special cases from the generalized α − μ fading distribution by selecting
different values of fading parameters α and μ. Exponential, Nakagami-m, Rayleigh, Weibull
and Gamma fading distributions are special cases of the α−μ fading distribution. On the one
hand, exponentially faded channel yields the worst performance. In that case, lower signal
envelope amplitudes occur more frequent than higher ones. Thus, the exponential fading
distribution can be used as a performance bound benefiting from its mathematical tractabil-
ity. On the other hand, increasing the value of the severity parameter m in the Nakagami-m
fading distribution improves the performance of the ED by decreasing the probability of miss
detection.

5 Conclusion

In this paper, a new closed-form mathematical expression is derived for the probability
of detection of the ED over α − μ generalized fading model with SC diversity recep-
tion. The derived expression covers several known fading distribution models as special
cases. Complementary ROC curves were drawn for the ED over α − μ fading channels
where enhancement of the probability of detection was achieved by using SC diversity
reception.

Appendix: Evaluation of P̄d,αμ,sc

The generalized Marcum Q-function Qu
(√

2γ,
√

λ
)

in (10) can be rewritten into series
representation using [4, eq.(4.74)] as follows:

Qu

(√
2γ ,

√
λ
)

=
∞∑

n=0

Γ
(
n + u, λ

2

)
n!Γ (n + u)

γ ne−γ (15)

In addition, the term

⎛
⎝1 −

Γ

(
μ,μ

(
γ
γ̄

)α/2
)

Γ (μ)

⎞
⎠

L−1

in (10) can be simplified into series repre-

sentation by means of binomial and then multinomial expansions, respectively, as follows:

• Binomial expansion

⎛
⎜⎜⎝1 −

Γ

(
μ,μ

(
γ
γ̄

)α/2
)

Γ (μ)

⎞
⎟⎟⎠

L−1

=
L−1∑
i=0

(−1)i
(

L − 1
i

)
⎛
⎜⎜⎝

Γ

(
μ,μ

(
γ
γ̄

)α/2
)

Γ (μ)

⎞
⎟⎟⎠

i

(16)

Using [15, eq. (8.352-4)] with the help of the equality Γ (μ) = (μ − 1)! and taking into
consideration integer values only for the μ parameter, it follows that:

Γ

(
μ,μ

(
γ
γ̄

)α/2
)

Γ (μ)
= e

−μ
(

γ
γ̄

)α/2 μ−1∑
m=0

(
μ

(
γ
γ̄

)α/2
)m

m! (17)
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• Multinomial expansion

⎛
⎜⎜⎝e

−μ
(

γ
γ̄

)α/2 μ−1∑
m=0

(
μ

(
γ
γ̄

)α/2
)m

m!

⎞
⎟⎟⎠

i

= e
−iμ

(
γ
γ̄

)α/2 i(μ−1)∑
m=0

βmi (μ)

(
μ

(
γ

γ̄

)α/2
)m

(18)

where βmi (μ) is the multinomial expansion coefficient which can be computed recursively
as illustrated in [4, eq.(9.124)].

Substituting (18) into (16) and then substituting (16) and (15) into (10), the average
probability of detection can be expressed as:

P̄d,αμ,sc =
∞∫

0

∞∑
n=0

Γ
(
n + u, λ

2

)
n!Γ (n + u)

γ ne−γ × Lαμμ

2Γ (μ) γ̄
αμ
2

L−1∑
i=0

(−1)i
(

L − 1
i

)
e
−iμ

(
γ
γ̄

)α/2

×
i(μ−1)∑

m=0

βmi (μ)

(
μ

(
γ

γ̄

)α/2
)m

γ
αμ
2 −1e

−μ
(

γ
γ̄

)α/2

dγ (19)

Following similar manipulation steps to those leading to [9, eq.(7)], the integral in (19) can
be put in the form of Laplace transform. Hence, using [12, 2.2.1-22] the average probability
of detection in (11) follows.
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