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ABSTRACT 

Using DFT molecular orbital at B3LYP 6-31G (d,p) and 

B3LYP/311+G (d,p) levels and molecular mechanics (MM2) 

calculations of the hydrolysis of Bruice’s di-carboxylic semi-esters 1–5 

several atovaquone prodrugs were designed.  It was found that the 

interconversion rate of the designed atovaquone prodrugs is largely 

determined on the strain energies of the reaction’s tetrahedral 

intermediates and reactants. Further, no correlation was found between 

the active parent drug’s release and the distance between the 

nucleophile and the electrophile in the dicarboxylic semi-ester 

(atovaquone prodrug). Using the half time needed for the 

interconversion of 50% of di-carboxylic semi-ester 1 and the 

calculated log krel values for the designed atovaquone prodrugs the t1/2   

values for interconversion of those prodrugs to their active parent drug were calculated. The 

calculated t½ value for atovaquone ProD 1 was about 26.4 hours. Utilizing the information 

gained from the prodrugs design, atovaquone ProD 1 was synthesized and fully characterized. 

In vitro kinetic study on the interconversion of atovaquone ProD 1 to atovaquone was studied 

in four different aqueous media mimicking the stomach, intestine and blood circulation. The 

kinetic results revealed that atovaquone ProD 1underwent hydrolysis in all studied media 

however with different interconversion rates. The interconversion t1/2 values were: in 1N HCl 

(11.4 hours), pH 2.2 (10.9 days), pH 5.5 (24 hours) and pH 7.4 (28.8 hours). 
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1-INTRODUCTION 

Malaria is a global public health problem, affecting about 40% of the population and causes 

about 2 million deaths per year.
[1] 

 

Most of disease cases are found in tropical Africa, Latin America, Southern Asia and 

Oceania.
[2]  

World Health Organization (WHO) assesses that 81% of cases and 91% of deaths 

are found in African regions. Children under 5years old and pregnant women are the most 

severely affected. This protozoan disease is caused by 5 parasites species of the genus 

Plasmodium that affect humans: P. falciparum, P. vivax, P. ovale, P. malariae and P. 

knowlesi.
[3]

 Most of death cases are caused by the most severe form, the P. falciparum, which 

dominates in Africa and to which most drug-resistant cases are attributed. Malaria is 

transmitted to humans via the bite of infected female mosquito of anopheles species.
[3]

 

Malaria can exist, in a mild form that most commonly associated with flu-like symptoms; 

fever, vomiting, and general malaise. While in the sever form caused by P. falciparum, a 

nervous, respiratory and renal complications frequently coexist due to serious organ failure. 

Despite of being serious infectious disease, malaria is a treatable and preventable illness and 

a number of treatments are already available.
[3] 

 

1.1. Malaria Treatment Medications 

1.1.1 Chloroquine 

Chloroquine, a 4-aminoquinoline, acts by accumulating inside the digestive vacuole of the 

infected red blood cell, where it makes complexes with toxic heme moieties and disturbs the 

detoxification mechanisms that involve heme sequestration into an inert pigment called 

hemozoin. It is an inexpensive drug used to prevent and treat malaria for decades.
[4]

 

However, the emergence of chloroquine resistance in the vast majority of malaria-endemic 

countries, and the association of tinnitus and central nervous system toxicity with chloroquine 

treatment limit its use.
[5, 6] 

 

1.1.2. Antifolates 

Currently used antifolate combinations of sulfadoxine- pyrimethamine and sulfalene-

pyrimethamine have long elimination half-lives, 81 hours for sulfadoxine, 62 hours for 

sulfalene and 116 hours for pyrimethamine.
[7, 8]

 This has both advantages and disadvantages. 

https://www.researchgate.net/publication/257066975_Antimalarial_Atovaquone_Prodrugs_Based_on_Enzyme_Models_-_Molecular_Orbital_Calculations_Approach?el=1_x_8&enrichId=rgreq-4ee36ff215d00379284f97ba89e816aa-XXX&enrichSource=Y292ZXJQYWdlOzI4MTQxMDk5MztBUzozMzY4MDcyNjM3ODQ5NjBAMTQ1NzMxMjUxNzIyMw==
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On the one hand, it allows single-dose therapy and persistence of the drugs at effective blood 

levels might protect the patients from reinfections after cure of the initial disease. On the 

other hand, the latter would be only useful in high transmission areas and the slow 

elimination favors the selection of resistant parasites.
[9]

 There is also concern with adverse 

reactions to long-acting sulfonamides,
[10]

 especially in subjects concomitantly infected with 

human immunodeficiency virus (HIV) infections.
[11] 

 

As indicated from the name ‘antifolates’, they antagonize the action of folic acid by 

inhibiting dihydrofolate reductase (DHFR) enzyme, hence inhibiting cell division.  

 

1.1.3. Artemisinin 

Replacing unsuccessful medications (chloroquine), with well tolerated artesunate 

monotherapy and artemisinin combinations resulted in decrease in malaria mortality and 

morbidity.
[12]

 Artemisinin is commonly used in Southeast Asia.
[13]

  

 

The mechanism of action of these compounds appears to involve the heme-mediated 

decomposition of the endoperoxide bridge to produce carbon-centered free radicals. 
[14]

 In 

spite of their effectiveness, artemisinin resistance appears in several areas mainly in Pailin 

and western Cambodia. Moreover, it is associated with reduced cure rates.
[15]    

 

It is worth noting that antimalarial drug resistance escalates to the major therapeutic groups 

used in malaria treatment, which constitutes a major threat to the global malaria control. 
[16] 

This can be attributed to the fact that malaria control has significantly dependent on a limited 

number of chemically related drugs, such as the quinolone or the antifolate groups, which are 

overused in poor countries due to their low price.
[13] 

 

Practice has shown that resistance ultimately shortens the life span of antimalarial drugs. 

Accordingly, this emphasizes the urgent need to develop alternative medications with a novel 

chemical structure and mechanisms of action to treat and prevent malaria in one hand, and on 

the other hand to develop strategies to avoid resistance when new drugs are introduced. 
[13]

 

In view of that, efforts were directed toward developing, novel compounds with novel 

mechanisms of action to maintain an effective malaria control.   

 

1.1.4.  Atovaquone 

Atovaquone (ATQ) is a hydroxynaphthoquinone (Figure 1). Naphthoquinones are known to 

have antimalarial, anticoccidial and antitheilerial activity.
[17]

 ATQ  is relatively a new 
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treatment option, that has a broad antiprotozoal activity including  Plasmodium spp,
[18 ,19]

 it 

has a novel mechanism of action, acts by inhibition of the electron transport system at the 

level of cytochrome bc1 complex.
[20]

 (Figure 2). In malaria parasites, the mitochondria acts as 

a sink for the electrons generated from dihydrorotate dehydrogenase; an essential enzyme for 

pyrimidine biosynthesis; an inhibition of electron transport by ATQ leads to dihydrorotate 

dehydrogenase inactivation which results in reduced pyrimidine biosynthesis and 

concomitantly to shutdown in parasite replication.
[21]

 This is because parasites depend on de 

novo production of pyrimidines and have no salvage pathway; in contrast to humans, thus the 

final outcome is the prevention of parasite replication.
[22]

 Reports indicate that protozoan 

electron transport inhibition is about 1000-fold more sensitive than that of mammalian and 

avian mitochondria.
[23]

 

 

 

Figure 1. Atovaquone chemical structure. 

 

 

Figure 2. ATQ mechanism of action. 

 

It is well established that ATQ has a long half life (70 to 84 hours), exerts its effects on the 

parasite within minutes after drug treatment,
[24]

 can be administered via the oral rout and has 

an excellent safety profile and tolerability. The most common registered side effects are rash, 

http://www.google.co.il/imgres?q=atovaquone+mechanism+of+action&um=1&hl=ar&sa=N&biw=1024&bih=509&tbm=isch&tbnid=icJ08BXZv51WdM:&imgrefurl=http://www.pdr.net/drugpages/productlabeling.aspx?productId=3320&docid=fq469xL7_OCrQM&imgurl=http://www.pdr.net/drugpages/images/1327009841.jpg&w=480&h=317&ei=KoyqT5CVCsbk4QTYu-HJCQ&zoom=1&iact=hc&vpx=610&vpy=143&dur=2742&hovh=182&hovw=276&tx=125&ty=91&sig=118176616875785905509&page=2&tbnh=135&tbnw=205&start=4&ndsp=13&ved=1t:429,r:5,s:4,i:92
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fever, vomiting, diarrhea, abdominal pain and headache,
[25]

 and there is no registration of any 

side effects that obligate withdrawal of therapy.
[18]

 The absence of severe side effects of this 

drug can be attributed to its selectivity.  

 

Despite these advantages, ATQ is associated with some limitations that affect its 

effectiveness.
[26]

  Atovaquone is a highly lipophilic compound, has low water solubility and 

low absorption, hence low bioavailability. Thus, increasing atovaquone aqueous solubility 

will improve its pharmacokinetic profile in particular bioavailability, thus improving its 

effectiveness and the ability to administer the drug through different routs of administration. 

There are a variety of approaches which can be employed to prolong the pharmacological 

activity, increase oral bioavailability and decrease inter-individual variability of ATQ.  In 

general, the prodrug approach is one of the strategies that can be used to enhance the 

pharmacokinetic behavior of drugs such as ATQ.  It includes the conjugation of the active 

parent drug to a linker to produce a system that is able to release the parent drug once it 

reaches the blood circulation or other targeted sites.  

 

1.1.2 Prodrugs 

In the past few decades the pharmaceutical industries have been subjected to considerable 

alterations,
[27]

 in terms of improving drug drawbacks related to pharmacokinetic (absorption, 

distribution, excretion, and metabolism), pharmaceutical and biological performance of 

existing drugs which may hinder drug development course.
[28]

  

 

Overcoming the undesirable physicochemical, biological and organoleptic properties of some 

existing drugs.
[27]

 can be achieved through the development of new chemical entities with 

desirable efficacy and safety. However, this is an expensive and time consuming process that 

needs a screening of thousands of molecules for biological activity.
[29]

 in addition to the 

rigorous rules and criteria that are applied today for developing new drugs.
[13]

 Therefore,  it 

becomes much more feasible to modify and improve the properties of already existing drugs 

through exploring the prodrug approach,
[29]

 in order to eliminate their undesirable properties 

and to increase their commercial  life cycle and patentability.
[28] 

 

Prodrugs are inactive forms of active drugs that are designed to exhibit pharmacological 

activity after an enzymatic or chemical reaction when they have been administered into the 

body.
[30]

 Prodrug approach is a promising and well established strategy for the development 
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of new entities that possess superior efficacy, selectivity and reduced toxicity over their 

parent compounds. Hence an optimized therapeutic outcome can be accomplished.
[29]

  

 

Approximately, 10% of all worldwide marketed medicines can be categorized as prodrugs, 

and in 2008 alone, 33% of all approved drugs having small-molecular-weights were 

prodrugs.
[31]

 These statistical numbers confirm the recent successes of the prodrug 

approach.
[28] 

 

In general, prodrugs are designed to (i) improve aqueous solubility, (ii) enhance permeability 

through modifying lipophilicity, (iii) achieve site specific delivery and increase 

gastrointestinal (GI) absorption through targeting specific transporters and enzymes and (iv) 

improve taste, odor and other pharmaceutical and pharmacokinetic properties.
[29]

  

 

The classic prodrug approach focuses on changing physicochemical parameters. Recently, 

modern computational methods are being utilized to design linkers for drugs having low 

bioavailability or suffer from unpleasant taste, poor absorption and permeation or low 

aqueous solubility.   

 

1.1.2.1. Design of innovative prodrugs using modern computational methods 

Similarly to that exploited for drug development and discovery, modern computational 

methods based on molecular orbital such as ab initio, DFT and semi-empirical and molecular 

mechanics methods are being utilized for the design of innovative prodrugs for drugs 

containing hydroxyl, phenol, or amine groups. For this purpose, mechanisms for several 

enzyme models that have been utilized to understand enzyme catalysis have been recently 

researched by Karaman’s group.
[32-54]

 and used for the design of some novel prodrug linkers. 

[55-85]
 The classic prodrug approach is focused on altering various physiochemical parameters, 

whereas the modern computational approach, considers a design of linkers to be covalently 

attached to active drugs and upon exposure to physiologic environment undergo a 

programmed intraconversion to non-toxic moiety and the active parent drug without the 

involvement of any metabolic enzyme. In addition, since the linkers used are relatively small 

molecules, it is expected that the prodrugs themselves might be with considerable biological 

effects before they intraconvert to their active parent drugs.  

 

Using ab initio, DFT, semi-empirical (AM1 and PM3) and molecular mechanics methods, 

several enzyme models were researched and explored for determining the factors playing 
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dominant role in governing the reaction rate in such models. Among the enzyme models that  

have been studied are: (1) proton transfer between two oxygens and proton transfer between 

nitrogen and oxygen in Kirby’s acetals,
[86-94]

  (2) intramolecular acid-catalyzed hydrolysis in 

N-alkylmaleamic acid derivatives,
[86-94]

 (3) proton transfer between two oxygens in rigid 

systems as studied by Menger,
[95-99]

 (4) acid-catalyzed lactonization of hydroxyl-acids as 

investigated by Cohen.
[100-101]

 and Menger, 
[95-99]

 and (5) SN2-based cyclization as studied by 

Brown,
[102]

  Bruice 
[103-104]

 and Mandolini.
[105] 

 

The interconversion of a prodrug to the active parent drug at the target site is a necessity for 

the prodrug approach to be successful. 
[106-107]

 The major obstacle facing the classical prodrug 

approach is the difficulty in predicting the bioconversion rates, and thus the pharmacological 

or toxicological effects of the prodrugs.
[108-109] 

 

However, using Karaman’s approach which utilizes the above mentioned enzyme models 

would allow for better design of an efficient chemical device to be used as a prodrug linker 

that can be attached to a drug moiety which can chemically, and not enzymatically, cleaved 

to liberate the active drug in a programmable and controlled manner. 

 

Continuing the strategy for exploring enzyme models in the design of novel prodrugs, 

Bruice’s enzyme model (hydrolysis of dicarboxylic semi-esters) was employed in the design 

of ATQ prodrugs with the potential to be more bioavailable than their active parent drug, 

ATQ.  

 

Our previous computational study on Bruice’s di-carboxylic semi-esters 1–5 (Figure 3) 

revealed that rate of the cyclization of di-carboxylic semi-esters 1–5 is solely affected by 

strain effects and proximity orientation due to the ‘reactive rotamer effect was found to be 

negligible, if any (Figure 4). 
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Figure 3. Chemical structures of di-carboxylic semi-esters 1-5. 
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Figure 4. Schematic representation of the reactants in the cyclization reactions of 

dicarboxylic semi-esters 1-5. rGM is the distance between the nucleophile (O1) and the 

electrophile (C6).  
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Furthermore, it was found that the activation energy in systems 1-5 is dependent on the 

difference in the strain energies of the tetrahedral intermediates and the reactants, and there is 

no correlation between the cyclization rate and the distance between the nucleophile and the 

electrophile, rGM (Figure 4). Therefore, the intraconversion rate of atovaquone prodrugs to 

atovaquone can be programmed according to the nature of the prodrug linker.
[79]

  

 

Given the severity of malaria, continual development of drug resistance and the undesirable 

safety profile of some existing medications, efforts were directed toward development of 

more effective and better tolerated medications with lower propensity to develop resistance, 

intended for the treatment of this endemic disease.
[1, 3-26] 

 

ATQ holds promise in malaria treatment, owing to its unique mechanism of action, 

effectiveness and safety. However, ATQ has poor oral bioavailability (<10% under fasted 

condition) and variable oral absorption, and this is due to its poor aqueous solubility (<0.2 

μg/ml) that results from its lipophilic structure (log P = 5).
[110]

 Consequently, this results in 

low and variable plasma and intracellular levels of the drug which is an important 

determinant of therapeutic outcome.
[111]

 It was demonstrated that low drug plasma 

concentrations is a powerful means for the promotion of resistant parasites.
[112]

 that leads to 

an increased morbidity and mortality among children.
[113-115]

 ATQ oral bioavailability can be 

increased either by fatty food intake.
[116-117]

 or administering larger amount of the drug to 

recompense for low oral absorption and to reach therapeutic plasma concentrations.
[17]

 This 

practice is considered to be costly with expensive drugs like ATQ. Altogether, these 

procedures hinder the use of ATQ in poor developing countries in the time in which ATQ is 

considered to be the standard antimalarial drug.
[25] 

 

Thus, the adoption of strategies to protect ATQ from parasites resistance is an urgent need.
[13]

  

In the view of this background and continuing our study on the design and synthesis of ATQ 

prodrugs,
[118]

 ATQ ProD 1 was synthesized through linking ATQ to a di-carboxylic semi-

ester linker, succinic anhydride (Bruice’s enzyme model), to produce a system that is more 

hydrophilic than its parental drug, and is able to release ATQ in a chemically driven 

controlled manner, once it reaches the blood circulation system. 

 

Consequently, this novel ATQ prodrug has the potential to serve in providing an alternative 

treatment option to the medical community that may help in addressing the critical need in 

malaria treatment. 
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ATQ ProD 1 is expected to fulfill the following requirements: (1) enhanced water solubility, 

(2) improved oral bioavailability, (3) controlled release rate, (4) predicted plasma levels and 

(5) improved antiparasitic activity.
[79] 

 

Accumulating evidence suggests that ATQ low solubility and hence low oral bioavailability 

and variable plasma concentration limits ATQ inherent efficacy.
[1, 26, 119-120] 

 

In addition, several studies reported that sufficiently high ATQ plasma levels should be 

achieved to obtain the desired therapeutic response.
[26]

 It was demonstrated in clinical study 

with a conventional tablet formulation, that the therapeutic response of ATQ against 

Pneumocystis carinii Pneumonia is reliant on plasma steady-state levels of the drug.
[17]

 

Moreover, Chung, Ferreira et al. reported that resistance to ATQ is believed to be a result of 

low and variable plasma levels that stem from variable oral absorption. This conclusion is 

supported by the fact that inconsistent drug plasma levels provide the parasite with the 

opportunity to form resistance against drugs. All of the above mentioned complications result 

from the lipophilic nature of ATQ. 

 

Despite of this, there is a general agreement that the solution to this problem is feasible.
[1, 26, 

119-120]
 Therefore, recently several different techniques were adopted in order to minimize the 

solubility and bioavailability problems of ATQ. 

 

1.2. Approaches adopted to enhance ATQ aqueous solubility. 

Atovaquone was firstly commercialized as tablets (Mepron®), from which complete oral 

bioavailability can’t be achieved. About 21% absolute bioavailability of Mepron® tablets 

was obtained in HIV seropositive volunteers in the fed state. 
[121]

 Therefore, different groups 

have focused on improving ATQ solubility via several approaches such as improving ATQ 

formulation. Strategies that were employed focused on an increment of the specific surface 

area of atovaquone particles and/or its solubility in adequate solvents or micelles to facilitate 

its dispersion in aqueous media.  For example, Cotton developed a micronized ATQ 

suspension and compared it with ATQ tablets, and he found that the micronized ATQ 

suspension achieved 2-fold increase in drug bioavailability compared to that with tablet 

formulation of the same dose. 
[122]

 These findings were reported in both the fed and fasted 

state. 
[120-123]

 It was indicated earlier that ATQ absorption can be increased when administered 

with food 
[117-120]

 for both tablet and suspension formulations. An increase of 1.4-fold in ATQ 

https://www.researchgate.net/publication/257066975_Antimalarial_Atovaquone_Prodrugs_Based_on_Enzyme_Models_-_Molecular_Orbital_Calculations_Approach?el=1_x_8&enrichId=rgreq-4ee36ff215d00379284f97ba89e816aa-XXX&enrichSource=Y292ZXJQYWdlOzI4MTQxMDk5MztBUzozMzY4MDcyNjM3ODQ5NjBAMTQ1NzMxMjUxNzIyMw==
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absorption was obtained in the fed state, compared to that achieved in the fasting state, 
[117]

 

and this value can be higher depending on the fat content of the meal.
[121] 

 

Additional methods to improve atovaquone oral bioavailability have been exploited, 

including the development of nanosuspensions, 
[120, 124]

 self-micro emulsifying drug delivery 

systems,
[125]

 liposomes.
[126]

 and polymer nano-capsules.
[127] 

 

In this context, Dearn and coworkers reported that an administration of ATQ in micro 

fluidized suspensions of 0.1-2 μm leads to 2.6-fold increase in oral relative bioavailability 

than when a  typical suspensions (of about 3 μm) was used.
[124] 

 

In another interesting study, Sek and coworkers examined the influence of a number of 

surfactants; self-microemulsifying drug delivery systems (SMEDDS), on the oral 

bioavailability of lipid based formulations of atovaquone.
[125]

 Their study revealed no 

differences in beagle dogs when comparing two different SMEDDS. In contrast, the relative 

oral bioavailability in dogs of atovaquone was about 3-fold higher when incorporated in these 

self-microemulsifying drug delivery systems SMEDDS than when formulated as an aqueous 

suspension. 

 

Another fascinating option is the association of this drug with bio-adhesive nanoparticles. In 

this case the strategy combines an increase of the specific surface area of the drug delivery 

system with the ability of these nanoparticles to develop adhesive interactions within the gut 

mucosa,
[128]

 which may assist in the formation of a concentration gradient between the dosage 

form and the gut mucosa, thus enhancing absorption potential. 

 

Despite of being attractive options, the mentioned strategies add other steps to the process, in 

addition to the increased cost. Another option was to modify the structure of the drug in such 

a way to enhance poor bioavailability by increasing aqueous solubility of the drug.
[17]

  

 

Hage et al. have synthesized new atovaquone derivatives, in which ATQ was substituted at 

the 3-hydroxy group by ester and ether functions. 
[129]

 The compounds were assessed in vitro 

for their activity against the growth of Plasmodium falciparum. It was demonstrated that all 

the compounds exhibited potent activity, with IC50 values in the range of 1.25-50 nM, 

comparable to those of atovaquone and much higher than chloroquine or quinine. 
[17, 129]
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On the other hand, Comley and Karaman have shed light on modifying ATQ at the structural 

level. However, their strategy was to link ATQ to a water soluble moiety to develop prodrugs 

rather than developing ATQ derivatives to enhance aqueous solubility. 

 

Comley developed the carbamate prodrug of ATQ, 17C91, and compared plasma levels of 

17C91 with the micronized ATQ suspension in a severe combined immuno-deficient mouse 

model of Pneumocystis carinii pneumonia (PCP). Comley found a 3 fold increase in plasma 

levels of ATQ compared to that with micronized ATQ suspension, which indicates that ATQ 

prodrugs are superior over both tablets and micronized suspensions. 

 

Comley’s prodrug 17C91 system has proved its efficacy and this confirms our expectations 

for improvement of ATQ physicochemical properties using the linker approach. However, 

17C91 releases ATQ very rapidly (t1/2 = 3 minutes at pH 7.4),
[130]

 in pH dependent manner 

without any control on the release rate of the drug.   

 

Another group adopted the development of ATQ prodrugs,
[17]

 in order to improve ATQ 

aqueous solubility.  The new prodrug, 3-(5-methyl-2-oxo-l, 3-dioxol-4-yl) methyloxy-2- 

trans- [(4-chloro phenyl) cyclohexyl] [l, 4] naphthoquinone, was synthesized by a 

condensation of atovaquone with 5-methyl-4-chloromethyl dioxalone (III) in a suitable 

solvent.
[17] 

 

The main advantage of Karaman’s proposed prodrugs lies in their ability to release ATQ via 

chemical cleavage in a controlled manner depending on the nature of the linker. This ensures 

a sufficient ATQ plasma levels that can be maintained for a long time due to controlled ATQ 

releasing rate, which subsequently increases the probability of ATQ therapeutic success.   

 

It is worth noting that enzymes have a significant role in prodrugs transformation into their 

active parent forms. Many of the marketed prodrugs undergo hydrolysis to release their active 

parent drugs, catalyzed by peptidases, phosphatases, carboxylesterases or esterases.
[131]

 

However, this pathway is associated with obstacles that hinder its usefulness.  For instance, 

the incomplete absorption obtained with several hydrolytic-enzymes-activated prodrugs of 

antibiotics, and angiotensin-converting enzyme inhibitors, such as enalaprilate, leads to about 

50% bioavailability, because of their premature hydrolysis by esterases during the absorption 

process. 
[131]

 Additional important issue is the bioactivation of the prodrug by cytochrome 

P450 enzymes. The latter are a class of enzymes that accounts for about 75% of all enzymatic 

https://www.researchgate.net/publication/8953354_Design_of_Ester_Prodrugs_to_Enhance_Oral_Absorption_of_Poorly_Permeable_Compounds_Challenges_to_the_Discovery_Scientist?el=1_x_8&enrichId=rgreq-4ee36ff215d00379284f97ba89e816aa-XXX&enrichSource=Y292ZXJQYWdlOzI4MTQxMDk5MztBUzozMzY4MDcyNjM3ODQ5NjBAMTQ1NzMxMjUxNzIyMw==
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metabolisms of drugs, including several prodrugs. There is increasing evidence that genetic 

polymorphisms of prodrug-activating cytochrome P450 enzymes significantly contribute to 

the variability in prodrug activation and thus to efficacy and safety of drugs utilizing this 

pathway.
[132-135] 

 

All together, the prodrugs chemical approach involving enzyme catalysis is perhaps the most 

vulnerable and unpredicted approach, because there are many intrinsic and extrinsic factors 

that can affect the bioconversion mechanisms. For example, the activity of many prodrug 

activating enzymes may be flocculated due to genetic polymorphisms, age-related 

physiological changes or drug interactions, leading to adverse pharmacokinetic, 

pharmacodynamic and clinical effects. In addition, there are wide interspecies variations in 

both the expression and function of most of the enzyme systems activating prodrugs which 

could lead to serious challenges in the preclinical optimization phase.
[131, 136]

  

 

Herein, lies the significance of the of Karaman’s prodrugs approach in which the prodrug is 

intraconverted by chemical means into the active parent drug without the involvement of 

metabolic enzymes, and so the challenges associated with the enzymatic hydrolysis are 

avoided. In addition, programming the drug’s release rate utilizing Karaman’s prodrugs 

approach allows for sufficient ATQ levels that are maintained long enough in the plasma. 

Therefore, ATQ frequent administrations can be replaced with once daily dose which can 

lead to improved patient compliance.  

 

2-EXPERIMENTAL 

2.1 General 

Inorganic salts were of analytical grade and were used without further purification. Organic 

buffer components were distilled or recrystallized. Distilled water was redistilled twice before 

use from all-glass apparatus. Succinic anhydride, anhydrous sodium dihydrogen phosphate, 

triethylamine, dioxane, acetonitrile (ACN), hexane, ethyl acetate, dimethylformamide 

(DMF), dimethyl sulfoxide (DMSO),  NaOH, methanol (MeOH), magnesium sulfate 

anhydrous and atovaquone were commercially obtained from sigma Aldrich. HPLC grade 

solvents of methanol, acetonitrile and water were purchased from Sigma Aldrich. High purity 

dichloromethane, THF and diethyl ether (> 99%) were purchased from Biolab (Israel). The 

LC/ESI-MS/MS system used was Agilent 1200 series liquid chromatography coupled with a 

6520 accurate mass quadruple-time of flight mass spectrometer (Q-TOF LC/MS). The 

https://www.researchgate.net/publication/8953354_Design_of_Ester_Prodrugs_to_Enhance_Oral_Absorption_of_Poorly_Permeable_Compounds_Challenges_to_the_Discovery_Scientist?el=1_x_8&enrichId=rgreq-4ee36ff215d00379284f97ba89e816aa-XXX&enrichSource=Y292ZXJQYWdlOzI4MTQxMDk5MztBUzozMzY4MDcyNjM3ODQ5NjBAMTQ1NzMxMjUxNzIyMw==
https://www.researchgate.net/publication/13242430_Age-_and_Gender-Related_Differences_in_Sensitivity_to_Chlorpyrifos_in_the_Rat_Reflect_Developmental_Profiles_of_Esterase_Activities?el=1_x_8&enrichId=rgreq-4ee36ff215d00379284f97ba89e816aa-XXX&enrichSource=Y292ZXJQYWdlOzI4MTQxMDk5MztBUzozMzY4MDcyNjM3ODQ5NjBAMTQ1NzMxMjUxNzIyMw==
https://www.researchgate.net/publication/24006132_Complications_from_Dual_Roles_of_Sodium_Hydride_as_a_Base_and_as_a_Reducing_Agent?el=1_x_8&enrichId=rgreq-4ee36ff215d00379284f97ba89e816aa-XXX&enrichSource=Y292ZXJQYWdlOzI4MTQxMDk5MztBUzozMzY4MDcyNjM3ODQ5NjBAMTQ1NzMxMjUxNzIyMw==
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analysis was performed in the positive electrospray ionization mode. The capillary voltage 

was 4.0 kV; the scanned mass range was 200-540 m/z (MS).  

 

The high pressure liquid chromatography (HPLC) system consisted of an Alliance 2695 

module equipped with 2996 Photodiode array detector from Waters (Germany). Data 

acquisition and control were carried out using Empower 2 ™ software (Waters, Germany). 

Analytes were separated on a 4.6 mm x150 mm XBridge® C8 column (5 μm particle size) 

used in conjunction with a 4.6 x 20 mm, XBridge® C8 guard column. Microfilters of 0.45μm 

porosity were normally used (Acrodisc® GHP, Waters). pH meter model HM-30G: TOA 

electronics™ was used in this study to measure the pH value for the buffers. The Sep-Pack 

C8 6cc (1 g) cartridges were purchased form Waters (Milford, MA, USA).  
1
H-NMR 

experiments were performed with a Bruker AvanceII 400 spectrometer equipped with a 5 mm 

BBO probe. All infrared spectra (FTIR) were obtained from a KBr matrix (4000–400 cm
-1

) 

using a PerkinElmer Precisely, Spectrum 100, FT-IR spectrometer. 

  

2.2 Preparation of atovaquone succinic prodrug, ATQ ProD 1 (Figure 5) 

In a 250 mL dried round-bottom flask placed on an ice bath, 500 mg of atovaquone (1.363 

mmol) was dissolved in THF (50 mL), dry sodium hydride (4.089 mmol) was added to the 

THF solution and the reaction mixture was stirred at 10  C. After 30 minutes, 136 mg (1.363 

mmol) of succinic anhydride was added to the reaction mixture, the ice bath was removed 

and the reaction mixture was stirred at room temperature for 3 days and monitored by TLC 

using ethyl acetate and hexane (1:5) system as an eluent. Few drops of 1N HCl were slowly 

added to the reaction mixture to destroy the remaining unreacted sodium hydride and the 

reaction mixture was evaporated by rotary evaporator to dryness. The product, ATQ ProD 1 

was purified using conventional column chromatography. The column was prepared using 

silica gel and the starting eluent was 10% ethyl acetate and 90% hexane. The polarity of the 

eluent was gradually increased until a complete recovery of the product. The collected 

fractions were evaporated by rotary evaporator, then the resulting pale yellow prodrug was 

dried to yield 69% product which was fully characterized. M.P. 280 
ᵒ
C; IR (KBr/νmax cm

–1
), 

3379 (-OH), 1750 (C=O), 1647-1659  (C=O), 1596 (aromatic C=C) 727 (arylchloride); 

1HNMR (400Hz, DMSO-d6) δ 7.99(dd, 2H), 7.84(dt, 1H),7.77(dt, 1H), 7.33(s, 4H),3.31(s, 

3H),3.07 (t, 1H), 2.56(t, 1H), 2.22(q, 2H),2.12(d, 2H),1.65(d, 2H), 1.56 (q, 2H), 1.49 (s, 1H), 

m/z 467 (M+1). 
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Figure 5. Synthesis of ATQ ProD 1from ATQ and succinic anhydride. Reagents and 

conditions: (i)-(ii) THF and an excess NaH, (iii) 30 minutes at10     C followed by (iv) 

room temperature for three days. 

 

2.3 Kinetic study of ATQ succinate prodrug (ATQ ProD 1) at different buffer 

conditions 

2.3.1 Buffer preparation  

7 gr. KH2PO4 was dissolved in 1L water, this yielded a solution that has a pH of 4.2 then pH 

was adjusted by either NaOH or 1N HCl to get the desired pH buffer. 

 

2.3.2 Stock solutions  

1000 ppm stock solution of each ATQ and ATQ succinate prodrug were prepared by 

dissolving 25 mg ATQ or ATQ ProD1 in 25 mL DMF placed in a volumetric flask. 

 

2.3.3 Dilution  

A 200 ppm of ATQ and ATQ ProD 1 solutions were prepared by transferring 2 mL of 1000 

ppm stock solutions of each ATQ and ATQ ProD 1 to a 10 mL volumetric flask and dilution 

using DMF and the corresponding buffer. 
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Because both ATQ and ATQ ProD 1have poor solubility in the three buffers, dilution was 

made by adding 5mL DMF and the volume was completed with each corresponding buffer to 

achieve clear solutions. 

 

Interconversion of ATQ ProD 1 solution, in 1N HCl, buffer pH 2.2, buffer pH 5.5 or buffer 

pH 7.4, to its active parent drug, ATQ, was followed by HPLC (C8 column) at a wavelength 

of 280 nm. The interconversion reactions were run mostly at 37.0 ˚C. Then the disappearance 

of ATQ ProD 1 with time was followed. Concentration versus time was plotted and the 

hydrolysis rate at different buffers was calculated.  

 

3- RESULTS AND DISCUSSION 

The effective molarity (EM) value is generally used as a measure for intramolecular 

processes efficiency. It is defined as a ratio of the intramolecular reaction rate and its 

corresponding intermolecular reaction rate where both reactions are driven by the same 

mechanism. Values of 10
9
-10

13
 M have been measured for the EM in intramolecular 

processes occurring through nucleophilic addition.
[92, 137]  

 

The experimental relative rates for the cyclization reactions of dicarboxylic semi-esters 1-5 

(Figure 3) were obtained from the division of the intramolecular rate and the corresponding 

intermolecular reaction. 
[103-104]

 For obtaining the relative rates (effective molarity, EM) for 

ATQ ProD 1 process we assume that its corresponding intermolecular process is similar to 

that for systems 1-5.  

 

Since an excellent correlation was obtained between the activation free energy values (∆G
‡
) 

for 1-5 and the difference in the strain energy values of the reactants and intermediates, ΔEs 

(INT-GM)  (Eq.  1), the calculated value of ΔEs (INT-GM) for ATQ ProD 1 was used in Eq. 1 to 

calculate its corresponding relative rate (log krel) as shown in equation 1.  

log krel =   [(∆G
‡

 -4.6065)/1.1098 -13.842]/-1.4016            (1) 

 

The calculated log krel by equation 1 for ATQ ProD 1 was 6.50.      

Using the experimental t1/2 (the time needed for the conversion of 50% of the reactants to 

products) value for process 1, 3.75 hours 
[103-104]

 and the calculated log krel values for ATQ 

ProD 1 we have calculated the t1/2 value for the degradation of ATQ ProD 1 to its active 

parent drug, atovaquone, and the value obtained was 26.4 hours.  
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3.1 Hydrolysis study 

The kinetics of the hydrolysis study of atovaquone ProD 1 was carried out in aqueous buffer 

in the same manner as that done by Bruice and Pandit 
[103-104]

 on di-carboxylic semesters 1-5 

(Figure 3). This is in order to explore whether the prodrug hydrolyzes in aqueous medium 

and to what extent or not, suggesting the fate of the prodrug in the system. The hydrolysis 

kinetics of the synthesized atovaquone ProD 1 was studied in four different aqueous media: 1 

N HCl, buffer pH 2.2, buffer pH 5.5 and buffer pH 7.4. Under the experimental conditions 

the target compounds hydrolyzed to release the parent drug as evident by HPLC analysis. At 

constant pH and temperature the reaction displayed strict first order kinetics as the kobs was 

fairly constant and a straight plot was obtained on plotting log concentration of residual 

prodrug verves time. The rate constant (kobs) and the corresponding half-lives (t1/2) for 

atovaquone ProD 1 in the different media were calculated from the linear regression equation 

correlating the log concentration of the residual prodrug verses time. The kinetic data are 

listed in Table 1. The 1N HCl, pH 2.2 and pH 5.5 were selected to examine the 

interconversion of atovaquone ProD 1 in pH as of stomach, because the mean fasting 

stomach pH of adult is approximately 1-2 and increases up to 5 following ingestion of food. 

In addition, buffer pH 5.5 mimics the beginning small intestine pathway. Finally, pH 7.4 was 

selected to examine the interconversion of the tested prodrug in blood circulation system.  

 

Table 1. t1/2 values for atovaquone ProD 1 at different pH values. 

Medium t½ (h) 

1N HCl 11.4 hours 

Buffer pH 2.2 10.9 days 

Buffer pH 5.5 24 hours 

Buffer pH 7.4 28.8 hours 

 

According to Bruice’s proposed mechanism of dicarboxylic acid semi ester hydrolysis and 

based on the results listed in Table 1 it can be concluded that ATQ ProD 1 hydrolysis rate is 

decreased as the pH of the medium is increased. This is because at basic pH the OH group of 

the succinic moiety becomes ionized (deprotonated), consequently the nucleophilicity of this 

group will be enhanced, and this facilitates the nucleophilic attack of the OH group on the 

electrophilic center (C=O) (Figure 6). 

 

It should be indicated that this explanation can be applied in the cases where the pH of the 

medium is higher than the pKa of the carboxylic acid of the succinic moiety, pH 5.5 and pH 

7.4.  In 1N HCl and pH 2.2 the prodrug transformation into its active parent drug occurs by a 
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mechanism other than cyclization reaction. It is most likely to proceed by general acid 

catalyzed hydrolysis. This conclusion is supported by the fact that the hydrolysis rate in 1N 

HCl is higher than at pH 2.2 due to the former being more acidic (higher H
+
 concentration) 

than the latter. 

 

Based on the results depicted in Table 1, an oral administration of ATQ succinate prodrug is 

feasible when administered as enteric coated tablets, in order to avoid premature 

interconversion of the prodrug into its active parent drug in the stomach, thus allowing the 

prodrug to be released in the small intestine, where  the prodrug to drug transformation will 

take place by chemical means in a controlled manner, without  relying  upon any involvement 

of any metabolic enzyme to catalyze the release of the active parent drug. 

 

The combination of releasing ATQ in a controlled manner and the long t1/2 of ATQ ProD 1, 

allows for once daily administration of the drug. This contributes in improving patient 

compliance and hence the treatment outcomes. Furthermore, a controlled release of the parent 

drug constitutes a major advantage for highly lipophilic drugs such as ATQ, since a rapid 

release leads to drug precipitation and poor re-dissolution.
[1-6, 136]

   

 

Based on the in vitro kinetics of ATQ ProD 1, we can say that the idea of simple 

administration of effective drugs that treat endemic diseases like malaria becomes feasible 

and applicable.  
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Figure 6. The hydrolysis of ATQ ProD 1 in the body. 
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It is worth noting that succinic anhydride is particularly considered suitable linkers, because 

(1) it is produced in the body in cribs’ cycle and it is non-toxic in the administered doses of 

ATQ ProD 1 and (2) it becomes ionized at physiological pH, hence, it contributes to the 

increased solubility of the prodrug.  

 

4-SUMMARY AND CONCLUSION  

Malaria is an endemic global disease and malaria control programs need efficacious drugs 

that can be used easily by the populations of endemic countries. Several medicines are used 

to treat malaria; however, the limited efficacy, severe side effects and the appearance of 

parasitic resistance limit their use. Several lines of evidence indicate that the emergence of 

drug resistant parasites stimulate research groups to explore different approaches in an 

attempt to improve the characteristics of existing medications. 

 

Atovaquone, a naphthoquinone and ubiquinone analogue, an effective drug, inhibits the 

electron transport in the parasite leading to its death resulting in an excellent safety profile.  

Nevertheless, it has poor bioavailability and it is too expensive. 

 

ATQ formulation improvements have been achieved and showed better bioavailability than 

conventional tablet dosage form. In addition, new synthesized ATQ prodrugs lead to 

improved efficacy, pharmacokinetics profile and reduced toxicity. Further, these prodrugs 

have saved money and time which is an important issue in drug development. For example, 

ATQ prodrug 17C91 showed a 3-fold increase in bioavailability over the improved ATQ 

formulation (micronized suspension) and conventional tablets.  

 

Our novel ATQ prodrug, ATQ ProD 1has shown promising results and we hope that such 

prodrug which possesses superior properties over ATQ and existing ATQ prodrugs, in terms 

of efficacy, physicochemical properties and drug releasing rate will be effective once tested 

in vivo.  

 

Based on the planned in vivo testing other ATQ prodrugs might be synthesized for achieving 

maximum bioavailability and the best clinical profile. 
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