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Abstract This paper deals with the identification of an
autoregressive (AR) process disturbed by an additive moving-
average (MA) noise. Our approach operates as follows:
Firstly, the AR parameters are estimated by using the overde-
termined high-order Yule—Walker equations. The variance of
the AR process driving process can be deduced by means
of an orthogonal projection between two types of estimates
of AR process correlation vectors. Then, the correlation
sequence of the MA noise is estimated. Secondly, the MA
parameters are obtained by using inner—outer factorization.
To study the relevance of the resulting method, we compare
it with existing algorithms, and we analyze the identifiabil-
ity limits. The identification approach is then combined with
Kalman filtering for channel estimation in mobile communi-
cation systems.
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1 Introduction

A great deal of interest has been paid to autoregressive (AR)
models. They are used in many fields such as speech process-
ing and digital communications. Several approaches either
on-line [1-3] or off-line [4—7] have been proposed to esti-
mate the model parameters when the additive measurement
noise is a zero-mean white Gaussian sequence. However, this
assumption is not always representative of the reality. There-
fore, the additive colored noise case must be studied, but
few authors have addressed this issue [8—11], and different
scenarios may happen:

1 In some applications such as speech enhancement, silent
frames can be used to estimate the measurement noise
parameters [12]. In this case, if the noise is assumed to
be AR, the Yule—Walker (YW) equations or any recur-
sive least-squares (LS) method can be considered. If the
noise is a moving-average (MA) process, there are vari-
ous ways to deduce the MA parameters such as Durbin’s
method [13]. The MA parameters can be also estimated in
the maximum likelihood sense. However, this is a highly
nonlinear problem, and solving it leads to a high computa-
tional cost. Therefore, covariance fitting approaches have
been proposed, more particularly in [14,15]. Neverthe-
less, as the estimated covariances have to form a “valid”
MA covariance sequence, i.e., a sequence guaranteeing
the positivity of the corresponding power spectral density
(PSD), some authors aimed at modifying the estimated
MA covariance sequence to obtain this property [16,17].
In [18], another approach consists in taking the inverse
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Fourier transform of the inverse of the MA PSD in order
to get to the so-called inverse covariance sequence.

2 In other applications such as mobile communications,
there is no signal-free period, i.e., no periods during which
there is only the additive noise, at the receiver. Therefore,
noisy data must be processed to estimate the parameters of
both the AR signal and the colored noise, and this is partic-
ularly the case when referring to [19]. To our knowledge,
few people have addressed this issue: In [10], the authors
consider a first-order AR noise. When the additive noise is
modeled by a MA process, an improved LS-based method
[8] (also denoted “ILS-CN”) aims at removing the biased
caused by the colored noise to yield the unbiased esti-
mates of the AR parameters. In [9], an improved LS-based
method (denoted “YWILS method”) combines low-order
and high-order YW equations. The algorithm proposed in
[11], which is based on the prediction error method (PEM)
[20,21], leads to accurate results even when the number of
samples is small. However, its computational cost is much
higher than the ones of the ILS-CN- or YWILS methods.

In this paper, as done in [8,9,11], the model orders are
assumed to be known. The approach we propose operates
with the two following steps:

1 After estimating the AR parameters by using the overde-
termined high-order YW equations and obtaining the
variance of the AR driving process by means of an orthog-
onal projection between two types of estimates of AR
process correlation vectors, the correlation function of the
noise and the corresponding PSD are deduced. If the PSD
is not positive, then an additional step based on [16,17]
should be added.

2 The MA parameters are estimated by using the inner—
outer factorization. Our contribution is twofold: We
propose a new way to compute it, different from the one
we used in [22]. In addition, we analyze the identifia-
bility limits. Indeed, a MA process can be seen as the
output of a filter, the input of which is zero mean with a
given variance. Several filters make it possible to obtain
the same correlation function of the MA process. Among
them, there is just one minimum-phase filter, also known
as “outer factor” or spectrally equivalent minimum-phase
(SEMP) filter. The other solutions can be deduced from
the SEMP filter by combining it with all-pass filters.
When the driving process of the MA process is assumed
to be Gaussian, we show that one can derive the SEMP
filter and deduce all the solutions. Nevertheless, there is
no way to say which one leads to the true MA parameters.
The theorem we propose is based on Lukacs and King
extension of Bernstein’s theorem [23].

The rest of this paper is organized as follows: The prob-
lem statement and the proposed identification method are
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described in Sect.2. A comparative study with [8,9,11] is
carried out in Sect.3. In Sect.4, our approach is used in
the field of mobile communication system for Kalman-filter-
based channel estimation using a training sequence. Finally,
conclusions and perspectives are given in Sect. 5.

2 Problem statement and the proposed
identification method

Let us consider a pth-order AR process x(n) defined by:

P
x(n) ==Y aix(n—i) +un) (1)

i=1

where {a;}i=1,.. p are the AR parameters and the driving
process u(n) is a zero-mean white Gaussian process with
variance ¢2. x(n) can be seen as the output of an infinite
impulse response filter driven by u(n), whose transfer func-
tionis only defined by the poles {p;};=1,..., p. The AR process
is then disturbed by an additive measurement noise:

y(n) =x(n) + bn) ©))

where b(n) is a gth-order MA noise:
q

b(n) = > cjw(n - j) 3)
=0

with {c;}j—0,....4 the MA parameters and w (n) is a zero-mean
white Gaussian process with variance equal to 1 uncorrelated
withu(n). Given {z;};=1,... 4 the zeros of the MA process and
using the z-transform, its transfer function is given by:

q

Bz ~~ ~
W(Z)=§Ciz =H(1—ZiZ 1) 4

i=1

C(z) =

2.1 Step 1: estimating the AR model parameters

Given (1)—(3), the overdetermined high-order Yule—Walker
equations (HOYW) equations [24] can provide the AR para-
meter estimates {d;}i—1,....p.

Let us now estimate 2. On the one hand, if 6 is the
normalized angular frequency, the AR process PSD can be
estimated, up to a multiplicative factor by:

1

R T

(&)

z=el?

By taking its inverse Fourier transform of ﬁyy( f), an
estimation of Rxx(t)/cru2 = E[x(n)x(n — t)]/ou2 can be
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obtained and the following correlation column vector can be
defined:

2 2 T
o= [Re@+9) Ra@] with 1>g+5=q+1
©)

>

where the length / — g — s + 1 of the vector is chosen by the
user.

On the other hand, let us consider the autocorrelation vec-
tor directly estimated from the noisy data:

A . . T
By = [Ryy@+9)- Ry 0] )

By computing the orthogonal projection of T, onto the
ﬁyv, the variance of the driving process can be retrieved
as follows:

AT .
2 _ Exxzyy A
Lox = f'T £ Eyy

=yy=yy

. 1,
+ residual ~ L ®)
u

Then, we suggest deducing the whole correlation sequence of
the AR process and subtracting it from the noisy observation
correlation function estimated from the data.

Indeed, we can iteratively obtain an estimation 1%)(!,2 (t) of
the AR process correlation function for lags lower than g +s,
starting from lag [:

p(l — p(l —1 A 5l .
RO = py =7 (RO + X5 akla - i),

5 5 (€))
R;EQ(I):Ryy(r)for I>t>l—p+1>q-+s,

However, depending on the initial lag /, the estimation of the
correlation function of the AR process varies. To reduce the
estimate variance, we suggest computing several correlation
function sequences obtained with different initial lags and
combining them by using a median or a mean function. This
leads to the correlation sequences Iég‘fdia“(r) and Iégg‘;a“(r),
respectively. Thus, the estimation of the correlation sequence
of the MA process satisfies:

Rpp(7) = Ryy(v)— RMeAn ormedian) 1y — g5 (10)
Then, Iébb(r) is modified so that ﬁbb(r) = 0 for |7| > ¢
and the PSD of the MA process can be deduced by using
the Fourier transform. If the PSD is not positive, then an
additional step based on [16,17] can be introduced.

2.2 Step 2: estimating the MA parameters from the
estimated MA PSD

To obtain the MA parameters, we propose a spectral factor-
ization approach based on the estimation of the outer factor

in the power spectral density. Let us first recall the main the-
oretical ideas, playing a key role in function theory in Hardy
spaces [25]. Thus, let us denote:

q
Dy (¢77) = D" Ron(e)e ™ an

T=—q

the PSD of the MA process (3). As all the results from the
function theory we consider in this section are defined in the
unit disk instead of its complement in the z-plane, the one-
sided power series are considered in the following. Instead
of the z-transform C(z) used in (4), we work with!:

q
C= a (12)
i=0
It follows from (3), (11) and (12) that:
. - . 2
D (eJ") - ‘c (ejg) . Ve el0,271] (13)

The computation of the MA parameters amounts to solving
the functional equation (13), which is generally referred to as
the spectral factorization problem. It is well known [25] that
whenever Dy, is a positive and log-integrable function on the
unit disk in the z-plane, (13) has infinitely many solutions.
The generic solution can be written as follows:
C(2) = 1(2)Co(2) (14)
where 1(z) is an arbitrary inner function—i.e., unimodular
on the unit disk in the z-plane, and Cy(z) is the unique outer
function satisfying (13). This latter particular solution Cp has
the standard explicit form:
Co@) = (15)
where ®(z) is the analytic function given by the Poisson
kernel integral:

1 2 ej@] +z % )
_ Jjo
() = 3 /0 S los (Dbb (e )) 6,

In [22], the model parameters were expressed by means of
Co(2), computed for z on a circle of radius smaller than 1
in the z-plane. In this paper, we propose an alternative way
and suggest expressing the power series of ®(z) by replacing
the complex Poisson kernel in (16) by its analytic expansion.
Indeed, one has:

(16)

! In this case, the exterior of the unit disk in the z-plane plays the role
of the unit disk when using the z-transform.
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el + 7 <
Tt +22e‘-’”91z" Vo, € [0, 27, |z| < 1
n=l1

el — 7
(17)
Combining (16) and (17) yields:
D(z) =d(0) +2 > dm)z", (18)
n>1
where:
Lo 6 3 ()6
—jn
d(n) = E/o e~ Jog (ng (e 1))d91 Vn € Z
(19)

Given (19), the sequence {d(n)} represents the Fourier
o
coefficients of log (Dbzb(eJe)), also known as the cepstral
1

coefficients of ng (e/%). Hence, they satisfy:
Lo = ,
log (ng (e-/“))) = > dmwe (20)
n=—00

Therefore, the real part of ®(e/%) coincides with

1 .
log(thh (e/?)) on the unit disk in the z-plane. Indeed, from
(18) and (20), one has:

Re (CD (eje)) = % (C[D (eje) + o (ef9))
> dwe = log (Djb (efﬁ))

n=—oo

21

Then, from (15) and (21), one can see that:

G ()} = o)~ JsPule) _ p, (o)
(15) @21

(22)

C‘o is hence a solution of the Eq. (13).
Given the above considerations, the proposed implemen-
tation to estimate the outer factor Cy is the following:

1. Given Iébb(r), estimate Dpy,(e/?) over an N -point uni-
form sampling of the unit circle, i.e., such as 6 = 6 =
2km/N,k =0,1,...N — 1. This can be done by using
the discrete Fourier transform (DFT) of the sequence
Rpp (), padded with zeros up to N values if necessary.

2. Estimate d(n) in (19), by the inverse DFT (IDFT) of the
sequence % log Dy, (e/%).
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3. Estimate ®(e/%) in (18), by means of the DFT of the
sequence d(0), 2d(1), 24(2), etc.

4. Deduce Co(e/%) = ¢®©™) according to (15).

5. Estimate the coefficients of Co by the IDFT of the
sequence Co(e/%).

2.3 Some insights on the limitations of MA identification
with a Gaussian driving noise process

As mentioned above, any other solution of (13) can be
obtained by multiplying Co(z) with any inner function I(z),
which produces an IIR filter in general. A particular class of
inner functions consists of the Blaschke products of the form:

K(Z):ny:
J

«
L= kilyl=1Llajl <1 (23)
o;z =0

where k; are the coefficients of the Blaschke products.

They can be seen as transfer functions of discrete-time
all-pass filters. In particular, if Co(z)isa polynomial corre-
sponding to a finite impulse response filter (FIR),—as in our
case—and if one looks for other polynomial solutions for
(13) of the form C(z) = K (z)Co(z), then the complex num-
bers 1/a; have to be roots of Co(z). Therefore, multiplying
Co(z) by Blaschke products K (z) amounts to replacing some
roots of C’o (z) with their inverse conjugates and hence pro-
ducing a finite number of FIR solutions C(z) in (14), which
are not minimum phase.

Letus also remark that the inner—outer factorization (14) is
related to, but distinct from the minimum-phase/maximum-
phase factorization, see e.g., [26]. This latter is obtained by
simply factorizing apart the roots of C(z) inside the unit disk
from those outside. In contrast, the inner—outer factorization
always involves the outer factor, along with the Blaschke
product corresponding to the roots of C(z) appearing in its
maximum-phase factor.

The fact that (13) has multiple solutions leads to the widely
known fact that the second-order statistics are “phase-blind.”
This means that the autocorrelation sequence alone only
allows the outer factor Cy(z) to be computed. To get C(2),
one has to tell which roots of Co(z) have to be reflected
with respect to the unit circle, or, in other words, one has
to specify the suitable Blaschke multiplier K (z). This has
to be done by using other information than the autocorrela-
tion sequence of the output of C(z) on the unknown driving
process w(n). For various classes of driving processes that
are not Gaussian, higher-order cumulants such as in [26] or
[27] can be used. This essentially works for driving processes
that have a non-symmetric probability distribution, yielding
nonzero odd-order cumulants. Unfortunately, in the Gaussian
case, not only such techniques are useless but, worse, there
is actually no way to solve this problem. More precisely, let
us consider the factorization C(z) =K (z)C’o(z). Then, the
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output b of the filter C (z), whose Gaussian driving noise is
w(n), is the same as the output of Cy(z), whose driving noise
w'(n) is given by:

w' (n) = Zk(l)w(n —1) VnelZ. (24)
[>0

Filtering w(n) with K (z) does not change its power spec-
trum, since it is all-pass. However, the question is whether
w’(n) still remains a Gaussian white noise or not. If it does,
there is no way to distinguish between filtering the unknown
Gaussian white noise w(n) with C (z), or filtering the also
unknown Gaussian white noise w’(n) with C‘o(z). Unfortu-
nately the answer is true, not only for a Blaschke product but
for any inner function (and only for inner functions). Even if
it seems to be well known in practice and is generally illus-
trated in various papers with numerical examples, we give
here a rigorous formalization of this phenomenon and its
proof:

Theorem According to (24) and if w(n) ~ N(0,c?),
w'(n) ~ N, 0"%), where o> = o>, lk(m)>) =
o?||K ||% according to the Parseval identity, this implies that:

o =0 ifandonlyif |K|, =1 25)

Proof Letusrecall Lukacs and King extension of Bernstein’s
theorem [23]: if (w(n)),cz is a family of independent vari-
ables (not necessarily identically distributed) with variance
o? andif X = > aonwn)and Y = > B,w(n) are linear
combinations of w(n), then X and Y are independent if and
only if all w(n) are normal and >, o, By a,% = 0. Therefore,
if X = w'(n) and Y = w'(m) where n # m, the above
independence condition leads to:

o2 D k(Dk(+ (n—m)) =0 (26)
1

Using the Parseval identity, (26) can be expressed by means
of the scalar product of K (z) and 2"~ K (z) in L? of the unit
circle:

0= kK + (1 = m) = (K@), 2 "R (2))

L2
]
1 2 ~ . - .
= — K (efe‘) K (6191)67(”7’”)10] do, 27
2 0
1 727, ., .\ 2 )
- 4 (619‘)‘ e (=Mt gg, (28)
2 0

Therefore w’(n) and w’(m) are independent for any n # m
if and only if all the Fourier coefficients of |K|? are zero,
except for the central coefficient. It happens if and only if
|I€| is constant on the unit circle. Given (25), (w’(n)), are

iid. N(0,02) if and only if |K| = 1 on the unit circle,
hence if and only if K is an inner function, and the proof is
complete. O

The straightforward consequence is that, besides its outer
factor, there is no way to recover any other information on a
MA process driven by a Gaussian process, by solely knowing
its Gaussian nature. To do this, one would need to know more
information on the driving noise.

3 Simulation results and comparative study

In this section, the relevance of our approach is evaluated in
terms of accuracy and computational cost. Note that we com-
pare our approach with ILS-CN [8], YWILS [9] and PEM
based [11] methods. For this purpose, two sets of simulations
are presented.

3.1 First simulations: protocol, results and comments

Let us consider the following simulation protocol: The AR
process order p is setto 2. The AR parameters are 1, —1.0463,
0.7921 corresponding to the two poles p; = 0.89¢/2%/3 and
p2 = p1. Three types of additive MA noise are now consid-
ered and are defined by their zeros:

1. z1 = —3. The detailed results are provided in Tablel for
different numbers of samples.

2. 71 = 2.853 4 j0.927 and zo = 7z1. The zeros are outside
the unit disk in the z-plane. The estimated zeros should
hence be outside the unit disk in the z-plane, as explained
in the discussion in the above Sect. 2.3. The results are
depicted in Fig. 1 where the true and estimated poles
are given in the z-plane. Moreover, Fig. 2a—c gives the
estimated zeros.

3. z1 = 0.2474;0.076 and z» = Z1. The zeros are inside the
unit disk in the z-plane. The estimated zeros should hence
correspond to estimations of their inverse conjugates. Fig.
2b—d gives the estimated zeros.

In the following and without loss of generality, let the signal-
to-noise ratio (SNR), which is the ratio between the powers
of the AR signal and the MA noise, be equal to 15dB. Con-
cerning our method, s and r are set to 1 and 5, respectively.

For the three types of zeros and according to Tablel,
Figs. 1 and 2, the approach we propose provides reliable
results. According to various tests we did, using <500 sam-
ples (e.g., 200 samples) does not make it possible to obtain
accurate estimates of MA parameters for every method. In
addition, the higher the number of available samples is, the
more accurate the estimations of the MA parameters are.
According to Table 1, the comparative study with the PEM
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Table 1 Comparative study between our method, PEM [11], YWILS [9] and ILS-CN [8] for the first simulation protocol where z; = —3
Number of samples Our method PEM [11]
p=2,qg=1 True 500 1000 2000 4000 500 1000 2000 4000
aj —1.046 —1.0462 —1.0465 —1.045 —1.0458 —1.0344 —1.036 —1.0365 —1.0361
ay 0.7921 0.7937 0.793 0.7921 0.7908 0.7782 0.7804 0.7804 0.7805
p1 0.89 0.8909 0.8905 0.8893 0.8897 0.8821 0.8834 0.8834 0.8835
01 0.9425 0.9433 0.9427 0.9434 0.9422 0.9443 0.9443 0.9439 0.9442
§23 0.89 0.8909 0.8905 0.8893 0.8897 0.8821 0.8834 0.8834 0.8835
6> —0.9425 —0.9433 —0.9427 —0.9434 —0.9422 —0.9443 —0.9443 —0.9439 —0.9442
b1“mean” 3 3.5424 3.2143 3.1111 3.0216 2.9864 2.9836 2.9861 2.9738
b1 “median” 3 3.6406 3.3784 3.1027 3.0568 -
auz 1 0.9736 0.9932 0.9942 1.0008 1.0228 1.0174 0.9587 0.9517
Number of samples YWILS [9] ILS-CN [8]
p=2,qg=1 True 500 1000 2000 4000 500 1000 2000 4000
aj —1.046 —1.0945 —1.0449 —1.077 —1.037 —1.0965 —1.0461 —1.070 —1.041
a 0.7921 0.8670 0.7946 0.8367 0.8123 0.8760 0.7469 0.8637 0.8532
1 0.89 0.93 0.8911 0.9144 0.9024 0.893 0.9101 0.9234 1.024
01 0.9425 0.9416 0.9443 0.9411 0.9421 0.9141 0.9943 0.8911 0.9331
P2 0.89 0.93 0.8911 0.9144 0.9024 0.893 0.9101 0.9234 1.024
0 —0.9425 —0.9416 —0.9443 —0.9411 —0.9421 —0.9141 —0.9943 —0.8911 —0.9331
O’uz 1 91.0336 28.7616 19.4237 6.152 -
1 Our:rr:‘e(t:)od 1 ps‘r:n o 1 lek?z) 1 'LS']C:(Z) ) ing) ourmethod 2 m(z) oumethod
05 05 . o 3»++
0 Re (2 Re(2) *

0 R Re (2) Po{z)

05 05
- 5 L 8 TS o 1 ! #++ £

Fig. 1 True and estimated AR poles in the z-plane for the first sim-
ulation protocol to evaluate estimation accuracy for SNR=15dB, the
number of samples=2000, z; = 2.853 4 j0.927 and z, = 71

also shows that there is “almost” no differences between
them, especially when the number of samples is higher or
equal than 1000 samples. The PEM is, however, less sensi-
tive to the number of samples than our method. Even if the
PEM approach is asymptotically unbiased, it is sensitive to
the initial estimate. Therefore, when the starting estimates are
poor, the final results may be poor as well. Although initial
estimates of the AR parameters can be obtained by using the
HOYW equations, this is not necessarily the case for the MA
parameters. In addition, it should be noted that the latter is an
iterative method that requires the computation of the inno-
vation of a Kalman filter at each step. Its computational load
is hence much more higher than the one of our new method.
The PEM we suggested using in [11] takes three times longer
than our approach. Our new method is hence a good com-
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(a) zero outside the unit disc “our method™. (b) zero inside the unit disc “our method”.

miz  PEM 5 m@ PEM

2

, ity 1
it R .. {Re () 0. Re{(2)

-1 H -1 +

o

2 H 2
-1 [] 1 2 3 a -1 0 1 2 3 4

(C) zero outside the unit disc “PEM”. (d) zero inside the unit disc “PEM”.

Fig. 2 Our method versus PEM [11] to estimate the zeros of the MA
process when z; = 2.853 + j0.927 and zo = 77 a—c and z; = 0.247 +
j0.076 and z = 71 b—d (in order to make it clearer, z; is only presented)

promise between estimation performance and computational
cost.

3.2 Second simulations: protocol, results and comments

Now, let us look at the second simulation protocol: p and ¢
are, respectively, set to 4 and 1. The AR parameters are cho-



SIViP (2015) 9 (Suppl 1):S235-S244

S241

Table 2 Comparative study

between our method, PEM [11], Methods ~ PEM [11] Our method YWILS [9] ILS-CN [8]
YWILS [9] and ILS-CN [8], SNR PPEV NT
based on 5000 realizations and 5 5 2 2
1000 samples available, p — 4 3 Hlleo 103 Hlloo 003 Blloo I3 0o
and g = 1 (PPEV means 5B AR 155 187 173 196 309 220 355 222
process parameter error vector
and NT the type of the norm) MA 0.30 0.92 0.45 1.29 Not considered by the model
10dB AR 1.23 1.74 1.43 1.80 2.58 2.11 2.74 2.20
MA 1.50 1.73 1.79 2.07 Not considered by the model
15dB AR 1.06 1.71 1.29 1.78 2.20 1.98 2.36 2.06
MA 2.19 3.60 2.26 4.56 Not considered by the model
20dB AR 0.77 1.51 0.92 1.72 1.12 1.93 1.34 2.01
MA 3.19 4.81 3.99 5.25 Not considered by the model
25dB AR 0.40 1.50 0.49 1.58 0.59 1.92 0.67 1.97
MA 4.92 8.35 5.25 9.78 Not considered by the model

sen randomly by selecting the corresponding AR poles, p; =
r1e/?, py = p1, p3 = e/, py = p3 where {r;}i1 2 and
{¢i}i=1,2 are independent random variables uniformly dis-
tributed in the range [0, 1[ and [0, [, respectively. The MA
parameter is chosen randomly, so that the zero z is a random
variable € [—1, —5]. As the zero is outside the unit disk in
the z-plane, the identification is here possible according to the
discussion of Sect. 2.3. We look at the AR parameter estima-
tion error vector® defined by: a = [(a) — a1) -+ - (ap — @p)]
and the MA parameters estimation error vector defined by:
¢ = [(co — o)+ (cqg — éq)].

As shown in Table 2, the PEM we presented in [11] and
our new method provide significant results compared with
YWILS and ILS-CN methods. Globally, the estimations of
the AR parameters and the MA parameter are comparatively
accurate for SNR higher than 10dB. In addition, if the SNR
increases, the MA parameter estimation error increases. This
is due to the fact that the MA process is the noise and not the
signal. Hence, the power driven by the AR process makes it
“difficult” to have a good estimation of the properties of the
disturbance i.e., the MA noise.

3.3 Conclusions

In the above simulation sets, we can see that the PEM we
suggested using in [11] is the most accurate, but its main
drawback is its computational cost. In some applications, the
accuracy is not necessarily the only priority. Thus, in mobile
communication systems, the identification of the system can
be required, but very accurate estimates of the AR and MA
parameters are not useful to deduce the transmitted symbols
when using Kalman filtering. A happy medium between esti-
mation precision and computational cost is usually rather

2 More particularly, the square of its 2-norm defined by: || . H%: aal

and its co-norm defined by | . |loo= max{(a; — a;)}i=1..p-

preferred. In the next section, we hence compare our new
method and the PEM [11].

4 Application in channel estimation

In mobile communication systems, the transmitted signal
arrives at the receiver from different propagation paths.
Indeed, multipath causes distortions on the transmitted sig-
nal. The estimation of the channel is essential to achieve
coherent symbol detection at the receiver. In this section, an
orthogonal frequency division multiplexing (OFDM) system
is considered with a flat fading channel on each subcarrier.
Thus, the received signal on the mth subcarrier y,, (n) cor-
responds to the product of the training sequence symbols
sm(n) and the channel A, (n). The symbols are assumed to
belong to a binary phase shift keying (BPSK) constellation,
i.e., s(n) € {—1, 1}. In addition, we assume that the received
signal is disturbed by a colored noise by, (n). Therefore, it
can be modeled as follows:
Ym (1) = S M)y (n) + by (1) (29)
In the following h,,(n) and b, (n) are assumed to be,
respectively, modeled by AR and MA models. Our purpose
is hence to estimate the AR and MA parameters during the
training period, i.e., by means of a training sequence known
both at the transmitter and the receiver. A specific choice
must be done on the training sequence.

4.1 State space representation of the system

In order to get the corresponding state space representation
of the system, let us introduce the following quantities:

g+1—j

Eim)= D cyjwn—i) Yjel...q
i=1

(30)
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This implies that:
q
E1(n) = ciw(n — i) (31)
i=1

and,

§in) =&j1(n =D +cjwin—1) Vg =j=2 (32)
Given &1(n), (29) can be written as follows:

Ym(n) = sm(n)hy(n) +&1(n) + cow(n) (33)
In this case, let us define the state vector as follows:

X(1) = [ (1) -+ b (1 = p+ DE) - £, 0] (34)

The corresponding state space representation of the system
satisfies:

x(n) = Fx(n — 1) + Gu(n)
Ym(n) = s(n)x(n) + cow(n) (35)

where s(n) = [s,,(n)0---010---0],

_al .« .. —ap
1 0--- 0 Opxq
0o ---1 0
F = 36
0 1--- 0 (36)
Oyxp :
1
i 0 - 0]
- T
10 00 0
G= 10 0 0 ¢ - cq:| (37)
and
T
u(n) = [u@m) wn —1)] (38)
For this case, let us define z(n) as follows:
z(n) = sy (M) ym(n) = sy (”)2hm(n) + Sm(n) by (n)
= hm(n) + sm(n)by (n) (39)
Taking the correlation of (39) we get,
R (7) = Rpp(T) + sm(n)sm(n — T) Rpp (1) (40)

One can notice that the process z(n) is not necessarily wide-
sense stationary because its correlation function expressed in

@ Springer

(40) depends on the symbol s, (1) or another previous symbol
sm(n — 7). To avoid the above phenomenon, the symbols
used in the training sequence must be the same. Indeed, in
this case, Eq. (40) becomes:

R () = Rpp(7) + Rpp(7) 41

Then, the overdetermined HOYW equations in this system
can be considered.

Remark Using subspace methods for identification such as
N4SID could have been a priori of interest. This method was,
for instance, used for speech enhancement in [28] where the
speech signal was modeled by an AR process whereas the
additive noise was white. In [29], channel estimation was
seen as a realization issue where the additive noise was also
white. The above methods operate with the following steps:

1. Estimating the quadruple defined by the transition matrix,
the observation vector and the covariance matrices of the
model noise and the observation noise of the state space
representation of the system.

2. Using Kalman filtering with this quadruple to estimate
the speech signal or the channel. In [28] and [29], the
authors suggested using this method because the obser-
vation equation in the state space representation of the
system had two distinct parts: One corresponding to the
product between the observation vector and the state vec-
tor was related to the channel alone, whereas the second
one defined the additive noise. In our paper where the
additive noise is colored, if we look at (35), one can see
that this property is not satisfied as both channel and noise
are involved in the definition of the state vector.

4.2 Simulations and results for channel estimation

We consider an OFDM system with BPSK modulation and
64 subcarriers. The fading channels are approximated by an
AR process with an order’ p set to 2; the AR parameters are
setto a; = —1.0463 and a; = 0.7921. The received signal
is disturbed by an additive colored noise modeled by a MA
process with an order ¢ set to 1; the MA parameters are set
to co = 1 and ¢; = —3. The training sequence symbols are
all set to 1 with a length N = 512.

It is well known that the received signal after the fast
Fourier transform (F F T') can be described as in (29) [30]. By
using the proposed method, and assuming the AR and MA
orders are known, the AR parameters, the MA parameters and
the variance of the driving process can be estimated during
the training sequence period. For the true data, using Kalman

3 1t should be noted that the channel is approximated with high-order
AR model. Here, we assume a second-order AR model to approximate
the channel as an example.



SIViP (2015) 9 (Suppl 1):S235-S244

5243

.............. T T T

{1 =G =known
| =+ - PEM H
—=<{r ourmethod ||
theoretical |3

;
0 5 10 15 20 25 30
SNR (dE)

Fig. 3 BER versus SNR of the OFDM using the estimated channel
based on our method, the PEM [11], when the AR and MA parameters
are known

filter with the estimated parameters makes it possible to pre-
dict the channel and then to retrieve the transmitted data. The
effect of the channel estimation error on the system perfor-
mance is shown in Fig. 3, which shows that the higher the
SNR is, the smaller the bit error rate (BER) is. By considering
a number of samples available equal to 2000, the perfor-
mance of the PEM-based approach and our new method are
approximately the same. However, the computational cost of
our new method based on inner—outer factorization is much
lower. Therefore, this application confirms the relevance of
our method.

5 Conclusions

The identification method proposed in this paper consists in
estimating the AR parameters by means of an overdetermined
set of HOYW equations and in estimating the MA parame-
ters by using the inner—outer factorization. A comparative
study with other methods such as the PEM we suggested
in a previous paper confirms the efficiency of the proposed
scheme. Our approach corresponds to a good compromise
between computational cost and estimation accuracy. Com-
bined with Kalman filtering, it can be of interest for channel
estimation in mobile communication system, as pointed out
by our simulation results.
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