Epidemiology of *Neisseria meningitidis* among Children in Gaza Strip

By

Student : Shaker Abdel-Latif Mohammed Abu Shaaban

Registration No.: 20011683

Supervisor : Dr. Abdul Rahman Issa

Co-Supervisor : Mr. Mazen Skeik

Co-Supervisor : Dr. Abdel-Moaty Al Jarosha

Master thesis submitted and accepted, Date: 21/01/2003

The names and signatures of the examining committee members are as follows:

1- Dr. Abdul Rahman Issa Head of committee Signature

2- Dr. Suzanne Shasha'a Internal Examiner Signature

3- Dr. Ahmed El-Shibi External Examiner Signature

Al-Quds University
2003
Abstract

A laboratory-based descriptive and analytical study was carried out in Gaza Strip Palestine 2001-2002. The aim of this study is to identify the incidence, the distribution and risk factors of meningococcal disease among children less than 15 years, and to assess the association between certain laboratory results and the severity and prognosis of disease. Data was collected through structured questionnaire administered to 95 subjects’ parents. Response rate was 100%. The incidence rate of meningococcal disease was 17.8/100,000 children. Clear variations were found in incidence according to sex, age groups, governorates and socio-demographic and economic status. The disease was prominent among children less than 5 years with percentage 79%. The risk age group was children less than 2 years (47.4%). Females less than 9 years old lived in North and Gaza governorates were more likely to have meningococcal disease than males. Low socio-economic status, families of high crowding index, parents of low educational level and with low income jobs were associated with the disease, and its severity. There was clear seasonal variation in incidence of disease with a peak in winter. The study showed that 74.7% of cases exposed to passive smoking. The case fatality rate of meningococcal disease was low (5.3%) in Gaza Strip in comparison with other countries. Meningococcemia was associated with hypocalcaemia ($X^2 = 28.3$, p-value 0.001) and with protein C deficiency ($X^2 = 23.5$, p-value = 0.001). Leucopenia, thrombocytopenia and hyponatremia were also considered as indicators of poor prognosis. Serogroup B (77.2%) and serogroup W135 (22.8%) found to be the only
serogroups in Gaza Strip. There was variation in serogroups distributions according to governorates. Serogroup B was more prominent in North, Gaza and Rafah governorates, while serogroup W135 was more prominent in Khanyounis governorate. The study demonstrates strains resistant to penicillin (12.3%), Ampicillin (1.5%) and sulfonamides (47.7%). No any strain was resistant to cephalosporins, chloromphenicol, and rifampicin. No secondary cases reported during the period of the study. The study contributes in highlighting the major risk factors for implementing strategies that could help in prevention of meningococcal disease. The study recommended the need for application of vaccination programs against \textit{N. meningitidis} serogroup W135 especially for risk group peoples, making serogrouping for all isolates in the health centers, conducting further studies for determining the causes of low incidence of \textit{N. meningitides} in Southern governorates and West Bank, and study about the efficacy of protein C as therapeutic agent in case of meningococcal septicaemia.
ملخص الدراسة

هدف الدراسة

الهدف من هذه الدراسة هو التعرف على مدى انتشار بكتيريا النسيجية المسببة لمرض التهاب السحايا لدى الأطفال الذين أعمارهم أقل من 15 سنة وكذلك عوامل الخطر المؤدية إلى حدوث المرض، وعلاقة بعض نتائج الفحوصات المخبرية مع تطور الحالة.

منهجية الدراسة

عينة الدراسة

تكونت العينة من 95 طفلاً، من يبلغون من العمر أقل من 15 عاماً، الذين أُدخلوا إلى المستشفيات بسبب إصابتهم بمرض التهاب السحايا وتشخيص المرض عن بكتيريا النسيجية المسببة للمرض، الذي تم توثيق تشخيصهم مخبرياً.

جمع المعلومات:

جمع المعلومات بواسطة استبانة خاصة تم تصميمها بواسطة الباحث وفحص مدى ثباتها من قبل محكمين من ذوي الاحترافية، وكذلك جمع المعلومات من الملفات الطبية للمريض ومن تقارير المختبرات وسجلات الطب الوقائي.

النتائج:

أظهرت الدراسة أن معدل حدوث مرض التهاب السحايا في قطاع غزة بلغ 0.0012/178.000 طفل. وأن هناك فروقات في معدل الانتشار بحسب الجنس والمجموعات العمرية والمحافظات واللحاء الاقتصادية والاجتماعية. ولقد كان المرض أكثر انتشاراً في الأطفال الذين يبلغون من العمر 5 سنوات (79%)، وأطفال الذين يبلغون من سنين 6 سنوات (%74). وكان المرض أكثر انتشاراً وضحايا لدى الإناث اللائي تقل أعمارهن عن 9 سنوات، ولدى الذين يقطنون في محافظات شمال غزة وغزة، وأظهرت الدراسة أن هناك ارتباطاً بين الحالة الاقتصادية الاجتماعية المنخفضة وحدود المرض، وأنه ينتشر لدى العائلات ذوي الإكتئاب العالي، وأن هناك ارتباطاً مع مستوى تعلم الأباء والدخالي. لقد كانت هناك فروقات واضحة في معدلات حدوث المرض بحسب اختلاف فصول السنة حيث وصل المرض ذروته خلال فصل الشتاء. وأظهرت الدراسة أن 47.7% من الحالات تعرضت لتأثير الدم السبلي.

وقد كان مرض التهاب السحايا الذي يصيب سائل الخليج الشوكي أكثر انتشاراً لدى الذكور (58.1%)، بينما كان تسمم الدم الناتج عن الإصابة بنفس الميكروب أكثر انتشاراً لدى الإناث (71.1%). وأظهرت الدراسة أن معدل فائدة المرض كان منخفضاً في قطاع غزة (0.3%) بالمقارنة مع دول أخرى ووكذلك أظهرت الدراسة أن انخفض
كرات الدم البيضاء وانخفاض الصفائح الدموية وكذلك انخفاض معدل الصوديوم في الدم لدى المريض هي من المؤشرات الخطرة للمرض.

أظهرت دراسة أن تسمم الدم السحائي كان مرتبطة بنقص الكالسيوم في الدم (اختبار كاي 28.3، القمية المعربية 2001)، وكذلك بنقص بروتين C (اختبار كاي 32.5، القمية المعربية 2001). وكانت سلالات الميكروب الموجودة في قطاع غزة من نوعي B (24.7%) و W135 (22.8%) وكان هناك فروقات في توزيع تلك السلالات بحسب المحافظات حيث كانت المجموعة B أكثر انتشارا في محافظات الشمال وغرب بينما كانت المجموعة W135 أكثر انتشارا في محافظة خان يونس. وأظهرت الدراسة أن هناك سلالات مقاومة للبينسين (12.1%) و لمكبات السلفا (41.2%) والأمبيسيلين (11.5%)، بينما لم تكن هناك سلالات مقاومة للسيفاسوربين والكلورامينوفول والريفاميسين.

التفاصيل:

- زيادة عدد الجمهور حول أسباب وطرق انتشار وأعراض وعواقب مرض إيثاب السحايا الناتج عن بكثيري النسوريا وذلك بالطرق المقروءة والمسموعة والمرئية.

- التركيز على الحاجة لتطبيق برامج تدريب ضد السلالة W135 وخاصة للأشخاص الأكثر عرضة للإصابة بالمرض، والمسافرين إلى المناطق المتغذية فيها المرض وذات الازدحام العالي مثل موسم الجح، وإعطاء علاجات وقائية للقادمين من تلك المناطق والمخلطين لهم.

وضع بروتوكول عمل موحد ذو جودة عالية لتشخيص وتسجيل الحالات وتكيفية التعامل معها في المركز والمحترشات الصحية التابعة لوزارة الصحة والتركيز على تحديد السلالات لكل الميكروبات المعزولة في مختلف المستشفيات.

- تعزيز وتوفر جميع المواد والأدوات اللازمة لتشخيص المرض.

- تعزيز ودعم الخطط العلاجية الخاصة بالمرض والمتبعة في مستشفيات وزارة الصحة.

عمل دراسة حول استخدام بروتين C في علاج حالات تسمم الدم الناتجة عن الأمراض الجزيئية.

- دراسات مستقلة عن وناتج المرض في الضفة الغربية وكذلك دراسات لاستكشاف لمتاعب

- معدل حدوث المرض في المحافظات الجنوبية لقطاع غزة.

VI
Table of content

<table>
<thead>
<tr>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>I</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>II</td>
</tr>
<tr>
<td>Abstract</td>
<td>III</td>
</tr>
<tr>
<td>Arabic Abstract</td>
<td>V</td>
</tr>
<tr>
<td>Table of Content</td>
<td>VII</td>
</tr>
<tr>
<td>List of Tables</td>
<td>XII</td>
</tr>
<tr>
<td>List of Figure</td>
<td>XIII</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>XIV</td>
</tr>
<tr>
<td>List of Annexes</td>
<td>XVI</td>
</tr>
</tbody>
</table>

CHAPTER (1) Introduction

1.1 Background | 1 |
1.2 Rationale of the study | 2 |
1.3 Objectives | 3 |
1.4 Research Questions | 3 |
1.5 Geographical and Demographical Background | 4 |
 1.5.1 Geographical Background | 4 |
 1.5.2 Demographical Characteristics | 6 |
 1.5.2.1 Population Size and Structure | 6 |
 1.5.2.2 Urban Rural and Refugee Populations | 7 |
1.6 Economic Situation | 7 |
1.7 Health Status | 9 |
 1.7.1 Healthcare Infrastructure and Personnel | 9 |
 1.7.2 Healthcare Facilities | 9 |
 1.7.2.1 Secondary Care | 9 |
 1.7.2.2 Primary Care | 10 |
 1.7.2.3 The Laboratories | 11 |
1.8 Education | 12 |
1.9 Environmental Status | 12 |
CHAPTER (2) LITERATURE REVIEW

2.1 History of Meningococcal Disease 14
2.2 Anatomical Structure of Central Nervous System 16
2.3 Etiological Agent 17
 2.3.1 Overview 17
 2.3.2 Virulence Factors 18
 2.3.3 Neisseria meningitidis Serogroups 19
2.4 Clinical Manifestations 20
2.5 Disease Definitions 21
 2.5.1.1 Septicaemia (Meningococcemia) 21
 2.5.1.2 Meningitis (Meningococcal meningitis) 21
 2.5.1.3 Both (Combination of Both Diseases) 21
2.6 Diagnosis of Meningococcal Disease 22
2.7 Conditions for Invasive Disease 24
 2.7.1 Transmission and Carriage of Neisseria meningitidis 24
 2.7.2 Host Defenses and Acquired Immunity 25
 2.7.3 Survival of N. meningitidis in the Bloodstream and Invasive 27
 Meningococcal Disease
2.8 Fulminant Meningococcal Sepsis (FMS) 30
 2.8.1 Shock 31
 2.8.2 Disseminated Intravascular Coagulation (DIC) 32
 2.8.3 Protein C Deficiency 33
 2.8.3.1 Protein C Therapy for Coagulopathy 34
2.9 Conditions Favoring Epidemics of Meningococcal Disease 35
 3.9.1 Environmental Factors 35
 3.9.2 Host Factors 36
 3.9.3 Factors Related to Organism Characteristics 36
 3.9.4 Other Risk Factors for Meningococcal Disease 37
2.10 Antimicrobial Resistance for Neisseria meningitidis 40
2.11 Treatment of the Meningococcal Disease 41
3.9.1 The Indirect Method

3.9.2 The Direct Method

3.9.2.1 CSF Examination

3.9.2.1.1 Collection of Cerebrospinal Fluid (CSF)

3.9.2.1.2 CSF White Blood Cell Count

3.9.2.1.3 Differential Count For CSF

3.9.2.1.4 CSF Protein

3.9.2.1.4.1 Turbidimetric Method

3.9.2.1.5 CSF Glucose

3.9.2.1.5.1 CSF Glucose Test

3.9.2.1.6 CSF Gram Stain

3.9.2.2 CSF Culture

3.9.2.3 Blood Culture

3.9.2.3.1 Collection of the Specimen

3.9.2.3.2 Culture Procedure for Blood

3.9.2.3.3 Subculture

3.9.2.4 Macroscopic Examination of Colonies

3.9.2.5 Identification of Neisseria meningitides

3.9.2.5.1 Kovac's Oxidase Test

3.9.2.5.2 API NH (Analytical Profile Index)

3.9.2.5.3 Identification of the N. meningitidis Serogroups

3.9.2.5.3.1 Agglutinative Sera Test

3.9.2.6 Antibiotic Susceptibility Tests

3.9.2.7 Quality Control of Media

3.9.2.8 CBC

3.9.2.8.1 Total Hemoglobin Concentration

3.9.2.8.2 White Blood Cell Count (WBC)

3.9.2.9 Electrolytes

3.9.2.10 Protein C Examination

3.9.2.11 Quality Control for Protein C

3.10 Limitation of The Study
CHAPTER (1)

Introduction

1.1 Background

Neisseria meningitidis (*N. meningitidis*) is a Gram-negative bacterium causes both endemic and epidemic meningococcal disease, principally meningococcal meningitis (meningitis) and meningococcemia (1), although there are other organisms which cause meningitis (2). Meningococcal meningitis is an infection which causes inflammation of the membranes covering the brain and spinal cord. Meningococcemia is an acute generalized infection of the blood stream and subsequent vasculitis. It is the more life-threatening form than Meningococcal meningitis. Case-fatality rates exceeded 50%, but with early diagnosis, modern therapy, and supportive measures, the case-fatality rate is between 5% and 15% (3).

Meningococcal disease is a contagious disease (4). The infection is transmitted from person to person through direct contact with nose and throat secretions (5), as in coughing, sneezing, kissing, and immediate sharing of unwashed eating utensils (6). As do overcrowding and climatic conditions such as dry season or prolonged drought and dust storms (7). Incubation period is from two to ten days, often three to four days (8).

Meningococcal meningitis occurs globally, the disease is endemic in temperate climates causing a steady number of sporadic cases or small clusters with a seasonal increase in winter and spring. The highest disease rates are found in
young children. During epidemics older children, teenagers and young adults are also affected (9). It is generally a very serious illness which can result in blindness, deafness, amputations, permanent brain damage, or even death. However, with proper treatment, many people recover fully (6).

1.2 Rationale of the study

In Gaza Strip, a notable number of positive cases of Neisseria meningitidis were obtained by the laboratory results of CSF and blood cultures and other specific laboratory examinations annually, which showed an increasing number of meningococcal cases in the recent years.

The nature of this disease and the mode of its transmission, make the disease one of the most serious types, and an important cause of childhood morbidity and mortality.

The geographical, social and economical conditions that are found in our region permit the spread of this microorganism.

Gaza Strip considered one of the highest overcrowded areas in the world with incomplete infrastructure and bad housing conditions.

In Gaza Strip Palestine, no previous studies carried out about Neisseria meningitidis.

So we need further study which is intended to discover more about the epidemiological factors related to this serious microorganism and to set some recommendations for better prevention policy which may be implemented in Gaza Strip.
1.3 Objectives

1- To determine the incidence and case fatality rates of Meningococcal disease among children less than 15 years old in Gaza strip, Palestinian 2001-2002.

2- To define the risk factors associated with Meningococcal disease.

3- To identify the serogroups of *Neisseria meningitidis*.

4- To determine antibiotics resistant strains of *Neisseria meningitidis*.

5- To identify the most common manifestations of the disease.

6- To examine the relationship between certain laboratory results and severity of the disease and prognosis.

1.4 Research questions

The researcher addresses the following questions:

1- What are the incidence and the case fatality rates of meningococcal disease among children in Gaza Strip?

2- What are the risk factors associated with meningococcal disease?

3- What are the prominent serogroups of *Neisseria meningitidis* in Gaza Strip?

4- Is there any strain resists to commonly used antibiotics for treatment of meningococcal disease in Gaza Strip, and to which antibiotic they resist?

5- What are the common manifestations of the disease among children in Gaza Strip?

6- Is there an association between certain laboratory results and severity of the disease and prognosis?
Chapter 6

Conclusion and Recommendations

6.1 Conclusion

The current study described the socio-demographic and economic status of patients of meningococcal disease in Gaza Strip. The incidence and the mortality of meningococcal disease according to sex, age groups, governorates and health and nutritional status of the patients were studied. The relationship between clinical manifestations and laboratory results from one side and the three forms of meningococcal disease from other side has been investigated.

Results of the study revealed that the meningococcal disease was more prevalent among children of age less than 5 years old. The risk age group was less than 2 years. Female were more susceptible to infection with *N. meningitidis* than male especially in age group less than 9 years old, where the prominence of males appears in age group 9 years and over. The incidence rate of meningococcal disease was higher in North and Gaza governorates than in Southern governorates. The difference in incidence rates according to governorates was attributed to possible under reporting or weakness of diagnostic method in those governorates. There was no difference in incidence rates of meningococcal disease according to type of residency. Meningococcal disease was more prominent in cases with low socio-economic status, overcrowded areas, low family income and low educational levels of parents. The severity of disease which presented in meningococcemiac cases was also more prominent in North and Mid-zone governorates. Furthermore, most of cases were exposed to passive smoking
at homes and more than one quarter of cases had a history of URTI preceding the onset of the disease. Although malnutrition and anemia play an important role in decreasing the innate immunity of the individual, there was no significant association between nutritional status and occurrence of meningococcal disease. Meningococcemia was more prevalent among female children less than 2 years. The highest peak of incidence of meningococcal disease was in winter where the weather is cold and the viral infection occurrence increased.

The case fatality rate of meningococcal disease was low in comparison with the nature of disease and in comparison with international rates. This indicates that there are high quality of services in diagnosis and management of cases in hospitals of MOH in Gaza Strip. The possibility of under reporting of the sever fulminant cases is also to be considered especially in the south.

Meningococcal meningitis among children in Gaza was more manifested by fever, vomiting and stiff neck, while meningococcal septicemia was more manifested by fever, petechial rash, and shock. The results of CSF culture, gram stain, cell count, and chemistry was very important in diagnosis of meningococcal disease. There was high significant association between meningococcemia from one side and leucopenia, thrombocytopenia, hypocalcaemia, and protein C deficiency from other side; these disturbances were considered as indicators of poor prognosis. The only serogroups of N. meningitidis which found in Gaza Strip were serogroups B and W 135. Serogroup B was more prominent in North Gaza, Gaza, and Rafah where serogroup W135 was more prominent in Khanyounes. There were resistant strains of N. meningitidis to penicillins and sulfonamides. There were no strains resistant to cephalosporins, chloromphenicol, and rifampicin. No secondary cases
reported during the period of the study which indicates that the prophylactic measures taken by the preventive health department are effective.

6.2 Recommendations

- Increasing health awareness of public about the causes, mode of transmission, manifestations, and complications of meningococcal diseases.
- High index of suspicion is needed among the medical staff for early diagnosis and treatment of meningococcal disease.
- Enhancing and supporting the treatment plans and protocols which followed in MOH pediatrics' hospitals.
- Focusing on the need for application of vaccination programs against \(N. meningitidis \) serogroups W135 especially for risk group peoples and travellers to risk areas.
- Giving chemoprophylaxis for arrivals and the contacts to the arrivals from risk areas.
- Setting specific and general protocol for diagnosis, registration, and management of meningococcal disease cases in all health centers and laboratories of MOH.
- Focusing on making serogrouping and serotyping for all isolates in the health centers.
- Reinforcement the availability of all materials and instruments needed for diagnosis of the disease.
• Conducting study for proving the efficacy of protein c as a useful therapeutic agent in treatment of meningococcal septicaemia.

• Conducting studies in Southern governorates for determining the causes of low incidence of *N. meningitides* in comparison with other governorates.

• Further studies and researches about the epidemiology of *N. meningitidis* in West Bank.

• Conducting further researches and prospective studies about the outcomes of meningococcal disease among recovered children.