
Leveraging upon standards to build  
the Internet of Things

Jeroen Hoebeke, David Carels, Isam Ishaq, Girum Ketema,  
Jen Rossey, Eli De Poorter, Ingrid Moerman, Piet Demeester 

Department of Information Technology (INTEC) 
Ghent University - iMinds 

Ghent, Belgium 
{firstname.lastname@intec.ugent.be} 

 
 

Abstract— Smart embedded objects will become an important 
part of what is called the Internet of Things. However, the 
integration of embedded devices into the Internet introduces 
several challenges, since many of the existing Internet 
technologies and protocols were not designed for this class of 
devices. In the past few years, there were many efforts to enable 
the extension of Internet technologies to constrained devices. 
Initially, this resulted in proprietary protocols and architectures. 
Later, the integration of constrained devices into the Internet was 
embraced by IETF, moving towards standardized IP-based 
protocols. Long time, most efforts were focusing on the 
networking layer. More recently, the IETF CoRE working group 
started working on an embedded counterpart of HTTP, allowing 
the integration of constrained devices into existing service 
networks. In this paper, we will briefly review the history of 
integrating constrained devices into the Internet, with a prime 
focus on the IETF standardization work in the ROLL and CoRE 
working groups. This is further complemented with some 
research results that illustrate how these novel technologies can 
be extended or used to tackle other problems. 

Keywords—Internet of Things, constrained devices, IETF 
ROLL, IETF CoRE, RPL, CoAP, Web of Things, standardization 

I.  INTRODUCTION 
Internet protocol technology is rapidly spreading to new 

domains where constrained embedded devices such as sensors 
and actuators play a prominent role. This expansion of the 
Internet is comparable in scale to the spread of the Internet in 
the ’90s and the resulting Internet is now commonly referred to 
as the Internet of Things (IoT). The integration of embedded 
devices into the Internet introduces several new challenges, 
since many of the existing Internet technologies and protocols 
were not designed for this class of devices. These embedded 
devices are typically designed for low cost and power 
consumption and thus have very limited power, memory, and 
processing resources and are often disabled for long-times 
(sleep periods) to save energy. The networks formed by these 
embedded devices are also constrained and have different 
characteristics than those typical in today’s Internet. These 
constrained networks have high packet loss, low throughput, 
frequent topology changes and small useful payload sizes. 

In the past few years, there were many efforts to enable the 
extension of the Internet technologies to constrained devices, 

moving away from proprietary architectures and protocols. 
Most of these efforts were focusing on the networking layer: 
IPv6 over Low-Power Wireless Personal Area Networks 
(RFC4919) [1], Transmission of IPv6 Packets over IEEE 
802.15.4 Networks (RFC4944) [2], IETF routing over low-
power and lossy networks [3] or the ZigBee adoption of IPv6 
[4]. These standardization efforts enable the realization of an 
Internet of Things, where end-to-end connectivity with tiny 
objects such as sensors and actuators becomes possible.  

However, not global connectivity was at the basis of the great 
success of the current Internet, but web service technology. 
Today, an embedded counterpart of web service technology is 
needed in order to exploit all great opportunities offered by the 
Internet of Things and turn it into a Web of Things. Recently, 
standardization work has started within the IETF Constrained 
RESTful Environments (CoRE) working group [5] to allow 
precisely the integration of constrained devices with the 
Internet at the service level. 

With these technologies, it has now become possible to 
deploy a sensor network, to interconnect it with IPv6 Internet 
and to build applications that interact with these networks using 
embedded web service technology. In this paper, we will 
briefly review the history of integrating constrained devices 
into the Internet, with a prime focus on the IETF 
standardization work in general and embedded web service 
technology in particular. This review is complemented with 
some research results that illustrate how these novel 
technologies can be extended or used to tackle other problems. 

The remainder of this paper is organized as follows. In 
Section II, we discuss the evolution from proprietary solutions 
towards IP-based integration of constrained devices. In sections 
III and IV we will discuss IETF standardization work on RPL 
and CoAP respectively, complemented with own research 
results where applicable. In section V, we conclude and outline 
some future work and opportunities. 

II. INTEGRATION OF CONSTRAINED DEVICES INTO THE 
INTERNET 

In the absence of widely accepted standard protocols for 
resource-constrained devices, many vendors were encouraged 
to develop proprietary protocols to run inside their sensor 
networks. Connectivity between the Internet and the sensor 
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Figure 1: Gateways and properietary protocols are often used to 

interconnect sensor networks to the Internet 

 
Figure 2: Internet protocols are extended to the sensor networks. The 

Gateway translates between the two protocol stacks. 

networks was achieved through the use of gateways or proxies. 
These gateways have to translate between protocols used in the 
Internet and proprietary protocols used in the sensor networks. 
Figure 1 displays two various sensor networks that are 
connected to the Internet by gateways. Users on the Internet 
have to connect to the gateways in order to obtain data from the 
respective sensor network. There are several ways how a 
gateway can handle such user requests. For example, the 
gateway from vendor 1 translates standard Internet protocols 
into proprietary sensor protocols and relays the requests to the 
sensors in its network. It then gets the answers from the 
relevant sensors by means of the proprietary sensor protocols 
and sends back the appropriate replies to the user using 
standard Internet protocols. The gateway offers an API that 
applications should use in order to create requests that can be 
understood by the gateway. Alternatively, the gateway of 
vendor 2 contains a database with pre-collected sensor data. 
When it gets a request from a user on the Internet, it replies 
directly to the requester using the data in the database. In some 
cases, the gateway is simply running a web server that makes 
the data available to the outside world. The user usually cannot 
tell, whether the returned data is coming in real-time from the 
sensors or whether it is coming from a value that has been 
previously stored in a database.  

It is clear that such an approach does not enable a real 
integration of sensors into the Internet. Due to the lack of real 
end-to-end connectivity or interaction with the resource-
constrained devices, flexibility of usage is reduced. Users can 
query the sensors only in the way that is allowed by the 
gateway. Adding new sensor resource often requires adaptation 
on the gateway. Another disadvantage is the vendor lock-in. 
Gateways and sensors often have to be from the same vendor 
in order to be compatible.  

This raised the need for standardized solutions for network 
communication with constrained devices in tandem with the 
need for interoperability with the most widely used protocols in 
the Internet, initially IP and, in a later stage, HTTP. To address 
these needs, the IETF has formed several working groups: IPv6 
over Low Power WPAN (6LoWPAN) [2], Routing Over Low 
Power and Lossy Networks (ROLL) [3] and Constrained 

Restful Environments (CORE) [4]. The 6LoWPAN group 
tackles the transmission of IPv6 packets over IEEE 802.15.4 
networks, the ROLL group develops IPv6 routing solutions for 
low power and lossy networks and the CoRE group aims at 
providing a framework for resource-oriented applications 
intended to run on constrained IP networks. Together, these 
protocols allow the IP-based integration of constrained devices 
into the Internet in a standardized way, as shown in Figure 2. 

Similar to the previous category of approaches, gateways 
are still used to translate between protocols used in the Internet 
and protocols used in the sensor networks, e.g. IPv6 to 
6LoWPAN and vice versa. However the difference here is that 
through the use of standard protocols, many of the 
disadvantages from the previous approaches are now taken care 
of. For example it is now possible to have the gateway and the 
sensors from different vendors. Flexibility is also improved by 
this approach. Users can now query the sensors without the 
need for the gateway to understand the query and the data 
itself. The application payload can now travel directly from the 
client to the sensor, where it is processed and acted upon. The 
gateway takes care of the translation between standardized 
protocols. This makes adding and removing sensor resources 
transparent to the gateway and improves interoperability of 
devices. 

In the following sections, we will briefly discuss in more 
detail the key concepts and protocols resulting from the ROLL 
and CoRE groups, complemented with own research results 
where applicable. 

III. IETF ROLL AND RPL 
Constrained networks, also called Low power and Lossy 

Networks (LLNs) have, due to their specific characteristics, 
specific requirements that are not satisfied by existing routing 
protocols such as AODV, OLSR, OSPF, etc. The ROLL 
working [6] group focuses on building routing solutions for 
LLNs. More specific, the working group focuses on industrial, 
connected home, building and urban sensor networks for which 
different routing requirements were specified. Also routing 
security and manageability issues and transport characteristics 
are kept in mind during protocol design. One of the realizations 
of this working group is the design of the IPv6 Routing 
Protocol for LLNs, also called RPL. 



 
Figure 3: Packet delivery ratio for different percentages of 

history link estimation and DIS broadcast intervals  

A. RPL concepts 
RPL [7] was designed with the objective to meet the 

routing requirements for the different application scenarios for 
LLNs. The protocol provides a mechanism whereby 
multipoint-to-point, point-to-multipoint and point-to-point 
traffic are supported. Although RPL was specified according to 
the routing requirements for LLNs, its use is in no way limited 
to these applications. RPL routes are optimized for traffic to or 
from one or more roots that act as sinks for the topology. As a 
result, RPL organizes a topology as a Directed Acyclic Graph 
(DAG) that is partitioned into one or more Destination 
Oriented DAGs (DODAGs), with one DODAG per sink. A 
DODAG is constructed based on the rank information of the 
nodes. The rank represents the individual position, relative to 
other nodes with respect to a DODAG root. Rank information 
is derived from the analysis of the received DODAG 
Information Object (DIO) messages of neighboring nodes. To 
discover the neighborhood, a node may use DODAG 
Information Solicitation (DIS) messages to solicit a DODAG 
Information Object from a RPL node. Downward routes (root 
to leaf) are constructed using Destination Advertisement 
Object (DAO) messages. RPL supports two modes of 
Downward traffic: Storing (fully stateful) or Non-Storing (fully 
source routed). In the Non-Storing case, the packet will travel 
all the way to a DODAG root before traveling down. In the 
Storing case, the packet may be directed down towards the 
destination by a common ancestor of the source and the 
destination prior to reaching a DODAG root. 

B. Mobility support for RPL 
Currently the RPL protocol does not support collection of 

information from mobile nodes, missing functionality we 
added to RPL. When optimizing the RPL protocol to support 
mobile nodes, the interoperability with the existing protocol is 
important. Therefore the behavior of the current protocol, for 
fixed nodes, is preserved as much as possible and only the use 
of existing techniques is allowed. By adapting the objective 
function for mobile nodes the selection of a parent can be 
influenced, to select faster and a better appropriate parent for 
the moving node. The switching of parent is influenced by the 
fading of the link quality due to the movement of the node. 
This implies that the importance, of the new measurements of 
link quality, increase in comparison to the importance of the 
history (ETX percentage) of the link quality. However the 
importance of new link quality measurements should not be 
overestimated, because the network may be unstable. 

To always have up-to-date link state information of the 
parent of a mobile node, active monitoring is required. The 
sending of a DIS message will force the parent to provide the 
mobile node with recent information. By the selection of an 
alternative parent for a mobile node, and also monitor it 
actively, an alternative link will be available when the 
connectivity with the preferred parent is lost. A DIS message 
(broadcast) can also be used to monitor the environment for 
new neighbors when moving across the network. Due to the 
limited resources of LLNs energy efficiency and minimal 
overhead has a high importance. Therefore in LLNs a balance 
between energy efficiency and reliability has to be made. It is 

obvious intensive monitoring of neighbors will increase 
reliability, but it will also increase the energy consumption. 

We implemented the proposed solution in the Contiki OS 
and validated its feasibility through simulations for different 
speeds (5 until 20 km/h) and different parameter combinations. 
The simulations indicate that reliability of the collection of 
information from a mobile node is improved. In Figure 3, the 
increase in packet delivery ratio is represented when increasing 
the monitor frequency of parents and environment. Also the 
negative effect of increase in importance of history link 
estimation is illustrated. 

IV. IETF CORE AND COAP 
More recently, in 2010, an IETF working group, called 

Constrained RESTful Environments (CoRE), was founded 
specifically to work on the standardization of a framework for 
resource-oriented applications, allowing realization of RESTful 
embedded web services in a similar way as traditional web 
services, but suitable for the most constrained nodes and 
networks. Their work resulted in the Constrained Application 
Protocol (CoAP), a specialized RESTful web transfer protocol 
for use with constrained networks and nodes [8]. 

A. CoAP concepts 
CoAP uses the same RESTful principles as HTTP, but it is 

much lighter so that it can be run on constrained devices [9-
10]. As a result, CoAP has a much lower header overhead and 
parsing complexity than HTTP. It uses a 4-bytes base binary 
header that may be followed by compact binary options and a 
payload. Optional reliability is supported within CoAP itself by 
using a simple stop-and-wait reliability mechanism upon 
request. Secure communication is also supported through the 
optional use of Datagram Transport Layer Security (DTLS). 
The CoAP interaction model is similar to the client/server 
model of HTTP. A client can send a CoAP request, requesting 
an action specified by a method code (GET, PUT, POST or 
DELETE) on a resource (identified by a URI) on a server. The 
CoAP server processes the request and sends back a response 
containing a response code and payload. Unlike HTTP, CoAP 
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GET /.well-known/core

2.05 "Content"
</s/t>;rt="TemperatureC";if="sensor“,
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Figure 4: An example of CoRE resource discovery and CoAP request 

 
Figure 5: Per-node average power consumption for data collection 

using normal observe and client-side filtering and using conditional 
observations (3 different thresholds) 

deals with these interchanges asynchronously over a datagram-
oriented transport such as UDP and thus it also supports 
multicast CoAP requests. This allows CoAP to be used for 
point-to-multipoint interactions which are commonly required 
in automation. 

The IETF CoRE working group considers the constrained 
restful environments as an extension of the current web 
architecture. The group envisions that CoAP will complement 
HTTP and that CoAP will be used not only between 
constrained devices and between servers and devices in the 
constrained environment, but also between servers and devices 
across the Internet [11]. An important requirement of the CoRE 
working group is to ensure a simple mapping between HTTP 
and CoAP so that the protocols can be proxied transparently. 
Thus proxies and/or gateways play a central role in the 
constrained environments architecture. These proxies have to 
be able to communicate between the Internet protocol stack 
and the constrained environments protocol stack and to 
translate between them as needed. 

Resource discovery is important for M2M interactions, and 
is supported in CoAP using the CoRE Link Format [12]. A 
well-known URI "/.well-known/core" is defined as a default 
entry-point for requesting the list of links about resources 
hosted by a server. Once the list of available resources is 
obtained from the server, the client can send further requests to 
obtain the value of a certain resource. The example in Figure 2 
shows a client requesting the list of the available resources on 
the server (GET /.well-known/core). The returned list shows 
that the server has, amongst others, a resource called /s/t that 
would return back the temperature in degrees Celsius. The 
client then requests the value of this resource (GET /s/t) and 
gets a reply back from the server (23.5C). 

In the following sections, we give two examples on how we 
use CoAP in our research. The first example is a useful 
extension to the CoAP protocol to realize a lightweight 
publish-subscribe mechanism embedded in the protocol. The 
second example shows how CoAP can be used to facilitate the 
discovery and deployment of sensors.  

B. Conditional observations using CoAP 
In addition to the main CoAP draft, a number of extensions 

have been proposed. One of those extensions is the observation 
of resource states through the introduction of the observe 

option, which allows clients to register with servers to be 
notified whenever the state of a resource changes [13]. A client 
interested in observing a resource includes the option in its 
GET request. Whenever there is a change of the resource state, 
the server sends a notification to the client. As such, observe 
offers the possibility for a client to have an up-to-date 
representation of the resource without the client having to 
constantly poll for changes. If the client acts upon these states 
and is only interested in specific states, it is up to the client to 
filter out the values sent by the server, discarding resource 
states that are not significant enough for its purpose. 

A better alternative to these observations in combination 
with client-side filtering could be to specify filtering criteria 
when sending the observe request. To avoid this, we proposed 
a new CoAP option “Condition” as an extension to the Observe 
Option in order to support conditional observations [14]. This 
option can be used by a CoAP client to specify the conditions 
the client is interested in. Several condition types, i.e. filtering 
options, have been identified based on realistic use cases. 
Using conditional observations, the CoAP server will send a 
notification response with the latest state change only when the 
criterion is met. Using this mechanism a client can indicate that 
it is interested only in temperature values above 25C and not in 
all state changes. 

This mechanism has been implemented on Erbium, a low-
power REST engine for Contiki [15] and evaluated in Cooja, 
using Sky nodes having an MSP430 16-but CPU running at 
3.9MHz and having only 48kB of ROM and 10kB or RAM. As 
such the feasibility of implementing this on a constrained 
device is proven. Further, we evaluated the correct operation 
for a simple scenario and showed that the use of conditional 
observations can result in a reduced number of packets and 
power consumption compared to normal observe in 
combination with client-side filtering. For instance, Figure 5 
shows the per node average power consumption for normal 
observe (filtering at the client) and for conditional observe. 
Three different thresholds for the condition “All Values 
Greater Than” were used and the input temperature values 
were 100 pseudo-random integers between 20 and 29 with an 
average value of 24. The result clearly shows that a lightweight 



 
Figure 6: Complete self-organization process, sensor discovery and resource access by a client and by a resource directory server 

filtering mechanism on the constrained device can reduce the 
power consumption. Of course, the concrete gain will depend 
on the conditions of interest and thus the actual use cases: more 
extreme conditions will lead to larger gains. By realizing this 
functionality as an extension of the CoAP protocol, it can be 
seen as a resource independent enabler that realizes frequently 
used application logic. For more details about conditional 
observations we refer to [16]. 

C. Facilitating discovery and deployment using CoAP 
With the presented IETF protocols, it has become possible 

to deploy a sensor network, to interconnect it with IPv6 
Internet and to build applications that interact with these 
networks using embedded web service technology. Within the 
sensor network itself, the available protocols are largely self-
organizing, requiring no human intervention. Also, if the IPv6 
address of a sensor is known, its resources can be accessed 
using CoAP. Nevertheless, there are still several important 
hurdles that need to be overcome. Several gaps exist with 
regard to the automatic discovery of sensors, integration with 
current Internet standards such as DNS, user-friendly access to 
sensors from within a web browser or the fact that several 
manual configuration steps are still needed to integrate a sensor 
network within an existing networking environment. However, 
the advent of open standards for embedded web services on 
e.g. sensors and sensor gateways, offers new opportunities to 
tackle several of these challenges related to the deployment of 
sensor networks and the realization of global user-friendly 
connectivity and access to sensor resources by making use of 
embedded web services through the CoAP protocol. 

Based on this observation, we implemented a novel self-
configuration and bootstrapping mechanism in order to 
facilitate the deployment of sensor networks and enable the 
discovery, end-to-end connectivity and service usage of newly 
deployed sensor nodes. The proposed approach makes use of 
CoAP and combines it with DNS in order to enable the use of 

user-friendly fully qualified domain names (FQDN) for 
addressing sensor nodes. It includes the automatic discovery of 
sensors and sensor gateways and the translation of HTTP to 
CoAP, thus making the sensor resources globally discoverable 
and accessible from any Internet-connected client using either 
IPv6 addresses or DNS names both via HTTP or CoAP. As 
such, the proposed approach provides a feasible and flexible 
solution to achieve hierarchical self-organization with a 
minimum of pre-configuration. It bridges the gap between the 
deployment of constrained objects and the actual consumption 
of their services by users, services or other machines. 

The overall process is summarized in Figure 6 and 
described in detail in [17]. Initially every newly deployed 
sensor knows its short address (network prefix not yet known) 
and a name (e.g. hardware ID) and this information is available 
via a well-known CoAP resource. The sensor gateway can now 
use a multicast CoAP request to query this resource on all 
sensors (pull-based) or the sensors can anycast or unicast this 
information to the gateway (push-based). Upon reception of 
this information, the gateway will store the information, create 
a complete IPv6 address (using the sensor subnet prefix) and 
Fully Qualified Domain Name (using the domain assigned to 
the sensor network). This information is then used to 
dynamically update the local DNS running at the sensor 
gateway (note that the sensor gateway acts as resolver of DNS 
requests for names in the sensor domain). When a sensor is no 
longer available (it doesn’t reply to the periodic broadcasts), 
the information is removed from the local DNS. The same 
discovery process can be repeated at a higher level in the 
network hierarchy assuming that the sensor gateways also run 
CoAP servers. In case the Internet gateway notices that the 
sensor gateway does not have a subnet prefix, domain suffix 
and name configured, the Internet gateway can take this 
information from a pool of subnets and domains and send it as 
a CoAP POST request to the sensor gateway, which will 
update its configuration accordingly. By applying this 
mechanism and creating a hierarchy of linked CoAP servers, 



 
Figure 7: Example of accessing /.well-known/core on a sensor node using 

its FQDN name and going via a transparent HTTP-CoAP proxy. 

any client (a human, another machine or a resource directory 
server) can easily discover and use any sensor without a lot of 
network overhead. Figure 6 shows how this can be used both 
by a client and a resource directory, which maintains an 
overview of all resources. 

To enable HTTP access in our solution, the sensor gateway 
and the Internet gateway were extended in such a way to not 
only act as CoAP servers, but also as HTTP-CoAP proxies 
capable of translating HTTP messages to CoAP messages and 
vice versa. Clients can access these gateways via their favorite 
web browser using HTTP requests. The gateways map the 
requests to CoAP and send the requests to the sensors. Once 
the sensor replies using CoAP, the reply is sent back to the 
client using HTTP. A transparent mode is foreseen , where a 
client can directly use the IPv6 address or FQDN of the sensor 
and the TCP connection is intercepted and translated to CoAP. 
In addition to the mapping between HTTP and CoAP, the 
proxy implementation on the gateway also performs automatic 
rewriting of response in the CoRE Link format into HTML, so 
that it can be interpreted directly by the web browser and easily 
understood by humans. This solution has been implemented on 
the gateways using our modular C++ CoAP framework and on 
the sensors using an available CoAP implementation, it has 
been deployed on a publicly reachable testbed and evaluated on 
our experimental facility w.iLab.t. Figure 7 gives an example 
of how a client accesses /.well-known/core on a sensor using 
HTTP and FQDN names from a web browser, resulting in a 
web page with links to all resources. 

V. CONCLUSION 
In this paper, we gave a high-level overview of IETF 

standardization work for realizing the Internet of Things. 
Standardized or almost standardized protocols enable the 
integration of constrained devices in the IPv6 Internet, both at 
the network level and at the service level. The IETF groups 
6LoWPAN and ROLL are focusing on the network 
connectivity and interoperability, whereas IETF CoRE focuses 
on realizing an embedded counterpart for RESTful web 
services. Anyone involved in Internet of Things research, 
whether dealing with network layer aspects or service layer 
aspects will, sooner or later, be confronted with these 
protocols. This could encompass simply using these protocols 
to realize IoT services, studying extensions and enhancements 
to these protocols or leveraging upon these protocols to solve 
open issues in the IoT world. In this paper, we have briefly 
illustrated how we enhanced RPL to support mobility, 
extended CoAP to achieve a lightweight publish-subscribe 
mechanism and build upon embedded web service technology 
to facilitate the deployment, discovery and resource access to 

IoT objects. It shows that the advent of standardized protocols 
is not an end point, but only a starting point for exploring many 
more of the open issues in realizing the IoT such as resource 
representations, security, dealing with sleeping nodes, energy 
efficiency, integration with existing web service technologies 
and tools, linking with Cloud services, use of semantics, easy 
creation of applications, scalability, interoperability with other 
wireless standards etc. . This paper merely touches the surface 
of this broad domain and aims encouraging others to further 
explore the world of Internet-connected objects and tackle 
other open issues and challenges.  

ACKNOWLEDGMENT 
The research leading to these results has received funding from the 

European Union's Seventh Framework Programme (FP7/2007-2013) under 
grant agreement n°258885 (SPITFIRE project), from the iMinds ICON projects 
GreenWeCan and O’CareCloudS, and a VLIR PhD scholarship to Isam Ishaq. 

REFERENCES 
[1] N. Kushalnagar, G. Montenegro, and C. Schumacher, “IPv6 over Low-

Power Wireless Personal Area Networks: Overview, Assumptions, 
Problem Statement, and Goals”, IETF RFC 4919, Aug. 2007. 

[2] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission of 
IPv6 Packets over IEEE 802.15.4 Networks”, IETF RFC 4944, Sept. 
2007. 

[3] Routing Over Low power and Lossy networks (roll) 
http://datatracker.ietf.org/wg/roll/ 

[4] ZigBee Alliance Plans Further Integration of Internet Protocol 
Standards, https://docs.zigbee.org/zigbee-docs/dcn/09-5003.pdf 

[5] Constrained RESTful Environments 
(core) http://datatracker.ietf.org/wg/core/ 

[6] Charter of the Routing Over Low power and Lossy networks (roll), 
IETF charter-ietf-roll-03, August 2009. 

[7] T. Winter et al., “RPL: IPv6 Routing Protocol for Low-Power and Lossy 
Networks”, IETF RFC 6550, March 2012. 

[8] Z. Shelby, K. Hartke, C. Bormann and B. Frank, “Constrained 
Application Protocol (CoAP)”, draft-ietf-core-coap-12, work in 
progress, October 2012. 

[9] D. Yazar and A. Dunkels, “Efficient Application Integration in IP-Based 
Sensor Networks”, Proc. First ACM Workshop on Embedded Sensing 
Systems for Energy-Efficiency in Buildings, 2009. 

[10] W. Colitti, K. Steenhaut and N. De Caro, “Integrating Wireless Sensor 
Networks with the Web,” Proc. workshop on Extending the Internet to 
Low power and Lossy Networks, 2011. 

[11] Z. Shelby, “Embedded Web Services”, IEEE Wireless Communications, 
pp. 52-57, Dec. 2010. 

[12] Z. Shelby, “CoRE Link Format”, draft-ietf-core-link-format, IETF RFC 
6690, August 2012. 

[13] K. Hartke, “Observing Resources in CoAP”, draft-ietf-core-observe-07, 
work in progress, October 2012. 

[14] S.T. Li, J. Hoebeke and A. J. Jara, “Conditional observe in CoAP”, 
draft-li-core-conditional-observe-03, work in progress, October 2012. 

[15] M. Kovatsch, S. Duquennoy and A. Dunkels, “A Low-Power CoAP for 
Contiki”, Proc. of the 8th IEEE International Conference on Mobile Ad- 
hoc and Sensor Systems (MASS 2011), pp. 855-860, 2011. 

[16] G. Ketema, J. Hoebeke, I. Moerman, P. Demeester, S.T. Li and A. J. 
Jara, “Efficiently observing Internet of Things Resources”, Proc. of The 
IEEE International Conference on Cyber, Physical and Social 
Computing, November 2012, to appear. 

[17] I. Ishaq, J. Hoebeke, J. Rossey, E. De Poorter, I. Moerman and P. 
Demeester, “Facilitating Sensor Deployment, Discovery and Resource 
Access Using Embedded Web Services”, Proc. of the Sixth International 
Conference on Innovative Mobile and Internet Services in Ubiquitous 
Computing, pp. 717–724, October 2012. 

https://docs.zigbee.org/zigbee-docs/dcn/09-5003.pdf�
http://datatracker.ietf.org/wg/core/�


 


	I.  Introduction
	II. Integration of Constrained Devices into the Internet
	III. IETF ROLL and RPL
	RPL concepts
	B. Mobility support for RPL

	IV. IETF CoRE and CoAP
	A. CoAP concepts
	Conditional observations using CoAP
	C. Facilitating discovery and deployment using CoAP

	V. Conclusion
	Acknowledgment
	References


