
Leveraging upon standards to build
the Internet of Things

Jeroen Hoebeke, David Carels, Isam Ishaq, Girum Ketema,
Jen Rossey, Eli De Poorter, Ingrid Moerman, Piet Demeester

Department of Information Technology (INTEC)
Ghent University - iMinds

Ghent, Belgium
{firstname.lastname@intec.ugent.be}

Abstract— Smart embedded objects will become an important
part of what is called the Internet of Things. However, the
integration of embedded devices into the Internet introduces
several challenges, since many of the existing Internet
technologies and protocols were not designed for this class of
devices. In the past few years, there were many efforts to enable
the extension of Internet technologies to constrained devices.
Initially, this resulted in proprietary protocols and architectures.
Later, the integration of constrained devices into the Internet was
embraced by IETF, moving towards standardized IP-based
protocols. Long time, most efforts were focusing on the
networking layer. More recently, the IETF CoRE working group
started working on an embedded counterpart of HTTP, allowing
the integration of constrained devices into existing service
networks. In this paper, we will briefly review the history of
integrating constrained devices into the Internet, with a prime
focus on the IETF standardization work in the ROLL and CoRE
working groups. This is further complemented with some
research results that illustrate how these novel technologies can
be extended or used to tackle other problems.

Keywords—Internet of Things, constrained devices, IETF
ROLL, IETF CoRE, RPL, CoAP, Web of Things, standardization

I. INTRODUCTION
Internet protocol technology is rapidly spreading to new

domains where constrained embedded devices such as sensors
and actuators play a prominent role. This expansion of the
Internet is comparable in scale to the spread of the Internet in
the ’90s and the resulting Internet is now commonly referred to
as the Internet of Things (IoT). The integration of embedded
devices into the Internet introduces several new challenges,
since many of the existing Internet technologies and protocols
were not designed for this class of devices. These embedded
devices are typically designed for low cost and power
consumption and thus have very limited power, memory, and
processing resources and are often disabled for long-times
(sleep periods) to save energy. The networks formed by these
embedded devices are also constrained and have different
characteristics than those typical in today’s Internet. These
constrained networks have high packet loss, low throughput,
frequent topology changes and small useful payload sizes.

In the past few years, there were many efforts to enable the
extension of the Internet technologies to constrained devices,

moving away from proprietary architectures and protocols.
Most of these efforts were focusing on the networking layer:
IPv6 over Low-Power Wireless Personal Area Networks
(RFC4919) [1], Transmission of IPv6 Packets over IEEE
802.15.4 Networks (RFC4944) [2], IETF routing over low-
power and lossy networks [3] or the ZigBee adoption of IPv6
[4]. These standardization efforts enable the realization of an
Internet of Things, where end-to-end connectivity with tiny
objects such as sensors and actuators becomes possible.

However, not global connectivity was at the basis of the great
success of the current Internet, but web service technology.
Today, an embedded counterpart of web service technology is
needed in order to exploit all great opportunities offered by the
Internet of Things and turn it into a Web of Things. Recently,
standardization work has started within the IETF Constrained
RESTful Environments (CoRE) working group [5] to allow
precisely the integration of constrained devices with the
Internet at the service level.

With these technologies, it has now become possible to
deploy a sensor network, to interconnect it with IPv6 Internet
and to build applications that interact with these networks using
embedded web service technology. In this paper, we will
briefly review the history of integrating constrained devices
into the Internet, with a prime focus on the IETF
standardization work in general and embedded web service
technology in particular. This review is complemented with
some research results that illustrate how these novel
technologies can be extended or used to tackle other problems.

The remainder of this paper is organized as follows. In
Section II, we discuss the evolution from proprietary solutions
towards IP-based integration of constrained devices. In sections
III and IV we will discuss IETF standardization work on RPL
and CoAP respectively, complemented with own research
results where applicable. In section V, we conclude and outline
some future work and opportunities.

II. INTEGRATION OF CONSTRAINED DEVICES INTO THE
INTERNET

In the absence of widely accepted standard protocols for
resource-constrained devices, many vendors were encouraged
to develop proprietary protocols to run inside their sensor
networks. Connectivity between the Internet and the sensor

978-1-4673-2115-0/12/$31.00

Figure 1: Gateways and properietary protocols are often used to

interconnect sensor networks to the Internet

Figure 2: Internet protocols are extended to the sensor networks. The

Gateway translates between the two protocol stacks.

networks was achieved through the use of gateways or proxies.
These gateways have to translate between protocols used in the
Internet and proprietary protocols used in the sensor networks.
Figure 1 displays two various sensor networks that are
connected to the Internet by gateways. Users on the Internet
have to connect to the gateways in order to obtain data from the
respective sensor network. There are several ways how a
gateway can handle such user requests. For example, the
gateway from vendor 1 translates standard Internet protocols
into proprietary sensor protocols and relays the requests to the
sensors in its network. It then gets the answers from the
relevant sensors by means of the proprietary sensor protocols
and sends back the appropriate replies to the user using
standard Internet protocols. The gateway offers an API that
applications should use in order to create requests that can be
understood by the gateway. Alternatively, the gateway of
vendor 2 contains a database with pre-collected sensor data.
When it gets a request from a user on the Internet, it replies
directly to the requester using the data in the database. In some
cases, the gateway is simply running a web server that makes
the data available to the outside world. The user usually cannot
tell, whether the returned data is coming in real-time from the
sensors or whether it is coming from a value that has been
previously stored in a database.

It is clear that such an approach does not enable a real
integration of sensors into the Internet. Due to the lack of real
end-to-end connectivity or interaction with the resource-
constrained devices, flexibility of usage is reduced. Users can
query the sensors only in the way that is allowed by the
gateway. Adding new sensor resource often requires adaptation
on the gateway. Another disadvantage is the vendor lock-in.
Gateways and sensors often have to be from the same vendor
in order to be compatible.

This raised the need for standardized solutions for network
communication with constrained devices in tandem with the
need for interoperability with the most widely used protocols in
the Internet, initially IP and, in a later stage, HTTP. To address
these needs, the IETF has formed several working groups: IPv6
over Low Power WPAN (6LoWPAN) [2], Routing Over Low
Power and Lossy Networks (ROLL) [3] and Constrained

Restful Environments (CORE) [4]. The 6LoWPAN group
tackles the transmission of IPv6 packets over IEEE 802.15.4
networks, the ROLL group develops IPv6 routing solutions for
low power and lossy networks and the CoRE group aims at
providing a framework for resource-oriented applications
intended to run on constrained IP networks. Together, these
protocols allow the IP-based integration of constrained devices
into the Internet in a standardized way, as shown in Figure 2.

Similar to the previous category of approaches, gateways
are still used to translate between protocols used in the Internet
and protocols used in the sensor networks, e.g. IPv6 to
6LoWPAN and vice versa. However the difference here is that
through the use of standard protocols, many of the
disadvantages from the previous approaches are now taken care
of. For example it is now possible to have the gateway and the
sensors from different vendors. Flexibility is also improved by
this approach. Users can now query the sensors without the
need for the gateway to understand the query and the data
itself. The application payload can now travel directly from the
client to the sensor, where it is processed and acted upon. The
gateway takes care of the translation between standardized
protocols. This makes adding and removing sensor resources
transparent to the gateway and improves interoperability of
devices.

In the following sections, we will briefly discuss in more
detail the key concepts and protocols resulting from the ROLL
and CoRE groups, complemented with own research results
where applicable.

III. IETF ROLL AND RPL
Constrained networks, also called Low power and Lossy

Networks (LLNs) have, due to their specific characteristics,
specific requirements that are not satisfied by existing routing
protocols such as AODV, OLSR, OSPF, etc. The ROLL
working [6] group focuses on building routing solutions for
LLNs. More specific, the working group focuses on industrial,
connected home, building and urban sensor networks for which
different routing requirements were specified. Also routing
security and manageability issues and transport characteristics
are kept in mind during protocol design. One of the realizations
of this working group is the design of the IPv6 Routing
Protocol for LLNs, also called RPL.

Figure 3: Packet delivery ratio for different percentages of

history link estimation and DIS broadcast intervals

A. RPL concepts
RPL [7] was designed with the objective to meet the

routing requirements for the different application scenarios for
LLNs. The protocol provides a mechanism whereby
multipoint-to-point, point-to-multipoint and point-to-point
traffic are supported. Although RPL was specified according to
the routing requirements for LLNs, its use is in no way limited
to these applications. RPL routes are optimized for traffic to or
from one or more roots that act as sinks for the topology. As a
result, RPL organizes a topology as a Directed Acyclic Graph
(DAG) that is partitioned into one or more Destination
Oriented DAGs (DODAGs), with one DODAG per sink. A
DODAG is constructed based on the rank information of the
nodes. The rank represents the individual position, relative to
other nodes with respect to a DODAG root. Rank information
is derived from the analysis of the received DODAG
Information Object (DIO) messages of neighboring nodes. To
discover the neighborhood, a node may use DODAG
Information Solicitation (DIS) messages to solicit a DODAG
Information Object from a RPL node. Downward routes (root
to leaf) are constructed using Destination Advertisement
Object (DAO) messages. RPL supports two modes of
Downward traffic: Storing (fully stateful) or Non-Storing (fully
source routed). In the Non-Storing case, the packet will travel
all the way to a DODAG root before traveling down. In the
Storing case, the packet may be directed down towards the
destination by a common ancestor of the source and the
destination prior to reaching a DODAG root.

B. Mobility support for RPL
Currently the RPL protocol does not support collection of

information from mobile nodes, missing functionality we
added to RPL. When optimizing the RPL protocol to support
mobile nodes, the interoperability with the existing protocol is
important. Therefore the behavior of the current protocol, for
fixed nodes, is preserved as much as possible and only the use
of existing techniques is allowed. By adapting the objective
function for mobile nodes the selection of a parent can be
influenced, to select faster and a better appropriate parent for
the moving node. The switching of parent is influenced by the
fading of the link quality due to the movement of the node.
This implies that the importance, of the new measurements of
link quality, increase in comparison to the importance of the
history (ETX percentage) of the link quality. However the
importance of new link quality measurements should not be
overestimated, because the network may be unstable.

To always have up-to-date link state information of the
parent of a mobile node, active monitoring is required. The
sending of a DIS message will force the parent to provide the
mobile node with recent information. By the selection of an
alternative parent for a mobile node, and also monitor it
actively, an alternative link will be available when the
connectivity with the preferred parent is lost. A DIS message
(broadcast) can also be used to monitor the environment for
new neighbors when moving across the network. Due to the
limited resources of LLNs energy efficiency and minimal
overhead has a high importance. Therefore in LLNs a balance
between energy efficiency and reliability has to be made. It is

obvious intensive monitoring of neighbors will increase
reliability, but it will also increase the energy consumption.

We implemented the proposed solution in the Contiki OS
and validated its feasibility through simulations for different
speeds (5 until 20 km/h) and different parameter combinations.
The simulations indicate that reliability of the collection of
information from a mobile node is improved. In Figure 3, the
increase in packet delivery ratio is represented when increasing
the monitor frequency of parents and environment. Also the
negative effect of increase in importance of history link
estimation is illustrated.

IV. IETF CORE AND COAP
More recently, in 2010, an IETF working group, called

Constrained RESTful Environments (CoRE), was founded
specifically to work on the standardization of a framework for
resource-oriented applications, allowing realization of RESTful
embedded web services in a similar way as traditional web
services, but suitable for the most constrained nodes and
networks. Their work resulted in the Constrained Application
Protocol (CoAP), a specialized RESTful web transfer protocol
for use with constrained networks and nodes [8].

A. CoAP concepts
CoAP uses the same RESTful principles as HTTP, but it is

much lighter so that it can be run on constrained devices [9-
10]. As a result, CoAP has a much lower header overhead and
parsing complexity than HTTP. It uses a 4-bytes base binary
header that may be followed by compact binary options and a
payload. Optional reliability is supported within CoAP itself by
using a simple stop-and-wait reliability mechanism upon
request. Secure communication is also supported through the
optional use of Datagram Transport Layer Security (DTLS).
The CoAP interaction model is similar to the client/server
model of HTTP. A client can send a CoAP request, requesting
an action specified by a method code (GET, PUT, POST or
DELETE) on a resource (identified by a URI) on a server. The
CoAP server processes the request and sends back a response
containing a response code and payload. Unlike HTTP, CoAP

CoAP Client CoAP Server

GET /.well-known/core

2.05 "Content"
</s/t>;rt="TemperatureC";if="sensor“,

</s/l>;rt="LightLux";if="sensor"

GET /s/t

2.05 “Content”
23.5C

Figure 4: An example of CoRE resource discovery and CoAP request

Figure 5: Per-node average power consumption for data collection

using normal observe and client-side filtering and using conditional
observations (3 different thresholds)

deals with these interchanges asynchronously over a datagram-
oriented transport such as UDP and thus it also supports
multicast CoAP requests. This allows CoAP to be used for
point-to-multipoint interactions which are commonly required
in automation.

The IETF CoRE working group considers the constrained
restful environments as an extension of the current web
architecture. The group envisions that CoAP will complement
HTTP and that CoAP will be used not only between
constrained devices and between servers and devices in the
constrained environment, but also between servers and devices
across the Internet [11]. An important requirement of the CoRE
working group is to ensure a simple mapping between HTTP
and CoAP so that the protocols can be proxied transparently.
Thus proxies and/or gateways play a central role in the
constrained environments architecture. These proxies have to
be able to communicate between the Internet protocol stack
and the constrained environments protocol stack and to
translate between them as needed.

Resource discovery is important for M2M interactions, and
is supported in CoAP using the CoRE Link Format [12]. A
well-known URI "/.well-known/core" is defined as a default
entry-point for requesting the list of links about resources
hosted by a server. Once the list of available resources is
obtained from the server, the client can send further requests to
obtain the value of a certain resource. The example in Figure 2
shows a client requesting the list of the available resources on
the server (GET /.well-known/core). The returned list shows
that the server has, amongst others, a resource called /s/t that
would return back the temperature in degrees Celsius. The
client then requests the value of this resource (GET /s/t) and
gets a reply back from the server (23.5C).

In the following sections, we give two examples on how we
use CoAP in our research. The first example is a useful
extension to the CoAP protocol to realize a lightweight
publish-subscribe mechanism embedded in the protocol. The
second example shows how CoAP can be used to facilitate the
discovery and deployment of sensors.

B. Conditional observations using CoAP
In addition to the main CoAP draft, a number of extensions

have been proposed. One of those extensions is the observation
of resource states through the introduction of the observe

option, which allows clients to register with servers to be
notified whenever the state of a resource changes [13]. A client
interested in observing a resource includes the option in its
GET request. Whenever there is a change of the resource state,
the server sends a notification to the client. As such, observe
offers the possibility for a client to have an up-to-date
representation of the resource without the client having to
constantly poll for changes. If the client acts upon these states
and is only interested in specific states, it is up to the client to
filter out the values sent by the server, discarding resource
states that are not significant enough for its purpose.

A better alternative to these observations in combination
with client-side filtering could be to specify filtering criteria
when sending the observe request. To avoid this, we proposed
a new CoAP option “Condition” as an extension to the Observe
Option in order to support conditional observations [14]. This
option can be used by a CoAP client to specify the conditions
the client is interested in. Several condition types, i.e. filtering
options, have been identified based on realistic use cases.
Using conditional observations, the CoAP server will send a
notification response with the latest state change only when the
criterion is met. Using this mechanism a client can indicate that
it is interested only in temperature values above 25C and not in
all state changes.

This mechanism has been implemented on Erbium, a low-
power REST engine for Contiki [15] and evaluated in Cooja,
using Sky nodes having an MSP430 16-but CPU running at
3.9MHz and having only 48kB of ROM and 10kB or RAM. As
such the feasibility of implementing this on a constrained
device is proven. Further, we evaluated the correct operation
for a simple scenario and showed that the use of conditional
observations can result in a reduced number of packets and
power consumption compared to normal observe in
combination with client-side filtering. For instance, Figure 5
shows the per node average power consumption for normal
observe (filtering at the client) and for conditional observe.
Three different thresholds for the condition “All Values
Greater Than” were used and the input temperature values
were 100 pseudo-random integers between 20 and 29 with an
average value of 24. The result clearly shows that a lightweight

Figure 6: Complete self-organization process, sensor discovery and resource access by a client and by a resource directory server

filtering mechanism on the constrained device can reduce the
power consumption. Of course, the concrete gain will depend
on the conditions of interest and thus the actual use cases: more
extreme conditions will lead to larger gains. By realizing this
functionality as an extension of the CoAP protocol, it can be
seen as a resource independent enabler that realizes frequently
used application logic. For more details about conditional
observations we refer to [16].

C. Facilitating discovery and deployment using CoAP
With the presented IETF protocols, it has become possible

to deploy a sensor network, to interconnect it with IPv6
Internet and to build applications that interact with these
networks using embedded web service technology. Within the
sensor network itself, the available protocols are largely self-
organizing, requiring no human intervention. Also, if the IPv6
address of a sensor is known, its resources can be accessed
using CoAP. Nevertheless, there are still several important
hurdles that need to be overcome. Several gaps exist with
regard to the automatic discovery of sensors, integration with
current Internet standards such as DNS, user-friendly access to
sensors from within a web browser or the fact that several
manual configuration steps are still needed to integrate a sensor
network within an existing networking environment. However,
the advent of open standards for embedded web services on
e.g. sensors and sensor gateways, offers new opportunities to
tackle several of these challenges related to the deployment of
sensor networks and the realization of global user-friendly
connectivity and access to sensor resources by making use of
embedded web services through the CoAP protocol.

Based on this observation, we implemented a novel self-
configuration and bootstrapping mechanism in order to
facilitate the deployment of sensor networks and enable the
discovery, end-to-end connectivity and service usage of newly
deployed sensor nodes. The proposed approach makes use of
CoAP and combines it with DNS in order to enable the use of

user-friendly fully qualified domain names (FQDN) for
addressing sensor nodes. It includes the automatic discovery of
sensors and sensor gateways and the translation of HTTP to
CoAP, thus making the sensor resources globally discoverable
and accessible from any Internet-connected client using either
IPv6 addresses or DNS names both via HTTP or CoAP. As
such, the proposed approach provides a feasible and flexible
solution to achieve hierarchical self-organization with a
minimum of pre-configuration. It bridges the gap between the
deployment of constrained objects and the actual consumption
of their services by users, services or other machines.

The overall process is summarized in Figure 6 and
described in detail in [17]. Initially every newly deployed
sensor knows its short address (network prefix not yet known)
and a name (e.g. hardware ID) and this information is available
via a well-known CoAP resource. The sensor gateway can now
use a multicast CoAP request to query this resource on all
sensors (pull-based) or the sensors can anycast or unicast this
information to the gateway (push-based). Upon reception of
this information, the gateway will store the information, create
a complete IPv6 address (using the sensor subnet prefix) and
Fully Qualified Domain Name (using the domain assigned to
the sensor network). This information is then used to
dynamically update the local DNS running at the sensor
gateway (note that the sensor gateway acts as resolver of DNS
requests for names in the sensor domain). When a sensor is no
longer available (it doesn’t reply to the periodic broadcasts),
the information is removed from the local DNS. The same
discovery process can be repeated at a higher level in the
network hierarchy assuming that the sensor gateways also run
CoAP servers. In case the Internet gateway notices that the
sensor gateway does not have a subnet prefix, domain suffix
and name configured, the Internet gateway can take this
information from a pool of subnets and domains and send it as
a CoAP POST request to the sensor gateway, which will
update its configuration accordingly. By applying this
mechanism and creating a hierarchy of linked CoAP servers,

Figure 7: Example of accessing /.well-known/core on a sensor node using

its FQDN name and going via a transparent HTTP-CoAP proxy.

any client (a human, another machine or a resource directory
server) can easily discover and use any sensor without a lot of
network overhead. Figure 6 shows how this can be used both
by a client and a resource directory, which maintains an
overview of all resources.

To enable HTTP access in our solution, the sensor gateway
and the Internet gateway were extended in such a way to not
only act as CoAP servers, but also as HTTP-CoAP proxies
capable of translating HTTP messages to CoAP messages and
vice versa. Clients can access these gateways via their favorite
web browser using HTTP requests. The gateways map the
requests to CoAP and send the requests to the sensors. Once
the sensor replies using CoAP, the reply is sent back to the
client using HTTP. A transparent mode is foreseen , where a
client can directly use the IPv6 address or FQDN of the sensor
and the TCP connection is intercepted and translated to CoAP.
In addition to the mapping between HTTP and CoAP, the
proxy implementation on the gateway also performs automatic
rewriting of response in the CoRE Link format into HTML, so
that it can be interpreted directly by the web browser and easily
understood by humans. This solution has been implemented on
the gateways using our modular C++ CoAP framework and on
the sensors using an available CoAP implementation, it has
been deployed on a publicly reachable testbed and evaluated on
our experimental facility w.iLab.t. Figure 7 gives an example
of how a client accesses /.well-known/core on a sensor using
HTTP and FQDN names from a web browser, resulting in a
web page with links to all resources.

V. CONCLUSION
In this paper, we gave a high-level overview of IETF

standardization work for realizing the Internet of Things.
Standardized or almost standardized protocols enable the
integration of constrained devices in the IPv6 Internet, both at
the network level and at the service level. The IETF groups
6LoWPAN and ROLL are focusing on the network
connectivity and interoperability, whereas IETF CoRE focuses
on realizing an embedded counterpart for RESTful web
services. Anyone involved in Internet of Things research,
whether dealing with network layer aspects or service layer
aspects will, sooner or later, be confronted with these
protocols. This could encompass simply using these protocols
to realize IoT services, studying extensions and enhancements
to these protocols or leveraging upon these protocols to solve
open issues in the IoT world. In this paper, we have briefly
illustrated how we enhanced RPL to support mobility,
extended CoAP to achieve a lightweight publish-subscribe
mechanism and build upon embedded web service technology
to facilitate the deployment, discovery and resource access to

IoT objects. It shows that the advent of standardized protocols
is not an end point, but only a starting point for exploring many
more of the open issues in realizing the IoT such as resource
representations, security, dealing with sleeping nodes, energy
efficiency, integration with existing web service technologies
and tools, linking with Cloud services, use of semantics, easy
creation of applications, scalability, interoperability with other
wireless standards etc. . This paper merely touches the surface
of this broad domain and aims encouraging others to further
explore the world of Internet-connected objects and tackle
other open issues and challenges.

ACKNOWLEDGMENT
The research leading to these results has received funding from the

European Union's Seventh Framework Programme (FP7/2007-2013) under
grant agreement n°258885 (SPITFIRE project), from the iMinds ICON projects
GreenWeCan and O’CareCloudS, and a VLIR PhD scholarship to Isam Ishaq.

REFERENCES
[1] N. Kushalnagar, G. Montenegro, and C. Schumacher, “IPv6 over Low-

Power Wireless Personal Area Networks: Overview, Assumptions,
Problem Statement, and Goals”, IETF RFC 4919, Aug. 2007.

[2] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission of
IPv6 Packets over IEEE 802.15.4 Networks”, IETF RFC 4944, Sept.
2007.

[3] Routing Over Low power and Lossy networks (roll)
http://datatracker.ietf.org/wg/roll/

[4] ZigBee Alliance Plans Further Integration of Internet Protocol
Standards, https://docs.zigbee.org/zigbee-docs/dcn/09-5003.pdf

[5] Constrained RESTful Environments
(core) http://datatracker.ietf.org/wg/core/

[6] Charter of the Routing Over Low power and Lossy networks (roll),
IETF charter-ietf-roll-03, August 2009.

[7] T. Winter et al., “RPL: IPv6 Routing Protocol for Low-Power and Lossy
Networks”, IETF RFC 6550, March 2012.

[8] Z. Shelby, K. Hartke, C. Bormann and B. Frank, “Constrained
Application Protocol (CoAP)”, draft-ietf-core-coap-12, work in
progress, October 2012.

[9] D. Yazar and A. Dunkels, “Efficient Application Integration in IP-Based
Sensor Networks”, Proc. First ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Buildings, 2009.

[10] W. Colitti, K. Steenhaut and N. De Caro, “Integrating Wireless Sensor
Networks with the Web,” Proc. workshop on Extending the Internet to
Low power and Lossy Networks, 2011.

[11] Z. Shelby, “Embedded Web Services”, IEEE Wireless Communications,
pp. 52-57, Dec. 2010.

[12] Z. Shelby, “CoRE Link Format”, draft-ietf-core-link-format, IETF RFC
6690, August 2012.

[13] K. Hartke, “Observing Resources in CoAP”, draft-ietf-core-observe-07,
work in progress, October 2012.

[14] S.T. Li, J. Hoebeke and A. J. Jara, “Conditional observe in CoAP”,
draft-li-core-conditional-observe-03, work in progress, October 2012.

[15] M. Kovatsch, S. Duquennoy and A. Dunkels, “A Low-Power CoAP for
Contiki”, Proc. of the 8th IEEE International Conference on Mobile Ad-
hoc and Sensor Systems (MASS 2011), pp. 855-860, 2011.

[16] G. Ketema, J. Hoebeke, I. Moerman, P. Demeester, S.T. Li and A. J.
Jara, “Efficiently observing Internet of Things Resources”, Proc. of The
IEEE International Conference on Cyber, Physical and Social
Computing, November 2012, to appear.

[17] I. Ishaq, J. Hoebeke, J. Rossey, E. De Poorter, I. Moerman and P.
Demeester, “Facilitating Sensor Deployment, Discovery and Resource
Access Using Embedded Web Services”, Proc. of the Sixth International
Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing, pp. 717–724, October 2012.

https://docs.zigbee.org/zigbee-docs/dcn/09-5003.pdf�
http://datatracker.ietf.org/wg/core/�

	I. Introduction
	II. Integration of Constrained Devices into the Internet
	III. IETF ROLL and RPL
	RPL concepts
	B. Mobility support for RPL

	IV. IETF CoRE and CoAP
	A. CoAP concepts
	Conditional observations using CoAP
	C. Facilitating discovery and deployment using CoAP

	V. Conclusion
	Acknowledgment
	References

