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Abstract: This study deals with the estimation of a vector process disturbed by an additive white noise. When this process is
modelled by a multivariate autoregressive (M-AR) process, optimal filters such as Kalman or H1 filter can be used for
prediction or estimation from noisy observations. However, the estimation of the M-AR parameters from noisy observations is
a key issue to be addressed. Off-line or iterative approaches have been proposed recently, but their computational costs can be
a drawback. Using on-line methods such as extended Kalman filter and sigma-point Kalman filter are of interest, but the size
of the state vector to be estimated is quite high. In order to reduce this size and the resulting computational cost, the authors
suggest using dual optimal filters. In this study, the authors propose to extend to the multi-channel case the so-called dual
Kalman or H1 filters-based scheme initially proposed for single-channel applications. The proposed methods are first tested
with a synthetic M-AR process and then with an M-AR process corresponding to a mobile fading channel. The comparative
simulation study the authors carried out with existing techniques confirms the effectiveness of the proposed methods.
1 Introduction

Single-channel autoregressive (AR) model has been popular
for years in signal processing applications such as in the field
of speech enhancement and coding [1], biomedical signal
processing [2], wireless communications [3], clutter rejection
for radar processing [4] and so on. In these applications,
when the observations are disturbed by an additive
measurement noise, the least squares estimates of the AR
parameters may be biased. In order to overcome this
problem, one can use the noise-compensated Yule–Walker
(NCYW) equations, which, however, require the preliminary
estimation of the additive-noise variance. In order to deal
with the estimations of both the AR process and the noise
variance, various off-line or iterative methods have been
proposed. Thus, a bias correction least squares scheme has
been proposed by Zheng [5], whereas Davila [6] has
presented a subspace-based method. Mahmoudi and Karimi
[7] have proposed an improved least-squares-based method
that combines low-order and high-order Yule–Walker (YW)
equations. Bobillet et al. [8] have proposed an errors-in-
variables-based approach, which consists in searching the
noise variances that enable specific noise-compensated
autocorrelation matrices of observations to be positive semi-
definite. The kernel of the resulting compensated matrices
corresponds to an estimation of the parameters. This method
is reliable especially for low signal-to-noise ratio (SNR) and
has the advantage of providing both the noise variance and
the parameters. Expectation–maximisation approaches using
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Kalman filtering could be also considered, but the
initialisation plays a key role in that case. Concerning on-line
methods, they can be based on Kalman filtering. In that
case, the state vector can store the AR parameters and AR
process samples. This results in a non-linear state-space
representation of the system. Therefore extended Kalman
filter (EKF) and sigma-point Kalman filter (SPKF) can be
used [9]. As an alternative, one of the authors of this paper
has suggested using two mutually interactive Kalman filter-
based solution to avoid a non-linear approach [10]. Once a
new observation is available, the first filter uses the latest
estimated AR parameters to estimate the signal, whereas the
second filter uses the estimated signal to update the AR
parameters. This approach can be viewed as a recursive
instrumental variable-based method, and hence has the
advantage of providing consistent estimates of the
parameters from noisy observations. To relax Gaussian
assumptions required by Kalman filtering, dual H1 filter-
based solution was then studied [11]. Moreover, in [12], the
relevance of these cross-coupled Kalman and cross-coupled
H1 filters are investigated for the estimation of mobile fading
channels.

Although scalar AR model is often used, a multivariate
autoregressive (M-AR) process is more suited when correlated
multi-channel signals are simultaneously processed. This is for
instance the case in wireless communications, radar and sonar
systems, and biomedical applications. Indeed, in biomedical
signal processing, the aim is to analyse physiological signals
such as the multi-channel electroencephalogram signals [13].
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In addition, when dealing with the cardiovascular system, the
purpose is to study the interactions between respiratory
movement, heart rate fluctuations and blood pressure [14]. In
radar processing, when multiple antennas are used, the sea
clutter must be rejected to detect the target. Variants of the
space-time adaptive processing algorithm such as the
parametric adaptive matched filter and the space-time
autoregressive filter [15] consist in modelling the sea clutter
by an M-AR process. Abramovich et al. [16] have also
focused their attention on the relevance of M-AR and
time-varying AR process for radar processing. In the
framework of wireless communication systems, multiple
correlated fading processes are common in multi-carrier
systems such as orthogonal frequency division multiplexing
(OFDM) [17], in multiple-input multiple-output antenna
systems [18], in spread spectrum systems [19] and so on. In
these systems, the correlated fading channels are usually
modelled as an M-AR process and hence can be jointly
estimated.

When noise-free observations are available, the comparative
study carried out by Schlögl [20] showed that the Burg-type
Nuttall–Strand method [21] is the most relevant approach to
estimate the M-AR parameters among the standard approaches
(YW equations, Levinson algorithm and so on) and the
so-called autoregressive fitting (ARFIT) approach [22].
However, when the M-AR process is disturbed by an additive
white noise, the standard estimation methods, mentioned
above, lead to biased estimates of the M-AR parameter
matrices. In order to avoid this drawback, the approach
proposed in [23] is based on a set of two equations that the
noise variances and the coefficients of the AR matrices satisfy.
The first one corresponds to the NCYW equations and the
second one allows the noise variances to be expressed from
the coefficients of the AR matrices and the autocorrelation of
the observations filtered by the inverse filter. Therefore a
Newton–Raphson algorithm is used to estimate the noise
variances and the M-AR parameters are deduced by means of
the NCYW equations. In [24], the extension of Zheng’s
method [5] to the multi-channel case has recently been
proposed. Nevertheless, this method may lead to a set of AR
parameter matrix estimates corresponding to an unstable
system when the SNR is low. Petitjean et al. [25] have
proposed to extend the method presented in [8] to the multi-
channel case. Although the approach provides significant
results even for low SNR, the computational cost could be
reduced. Concerning on-line methods, two serially connected
(SC) Kalman filters [13] or H1 filters [26] could be used to
estimate the M-AR process and its parameters (see Fig. 1).
The first filter aims at estimating the M-AR parameters,
whereas the second filter uses the estimated parameters to
estimate the M-AR process. However, these methods result in
biased parameter estimates as the parameters are estimated
directly from the noisy observations. In order to avoid this
drawback, one can consider non-linear methods such as EKF
or SPKF namely unscented Kalman filter and central
difference Kalman filter [25]. Nevertheless, the size of the
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state vector to be estimated is quite high. Indeed, it stores both
the coefficients of the AR parameter matrices and the p last
values of the M-AR process, where p is the model order. The
resulting computational cost hence becomes high. To avoid
using high-dimensional matrices, we propose to extend to the
multi-channel case the dual Kalman filters [10] and the dual
H1 filters [11, 12] originally proposed for single-channel
applications (see Fig. 2). The proposed methods are then
compared with existing methods such as [13, 22, 23, 26] in
terms of parameter estimation accuracy. All methods are first
tested with synthetic M-AR process and then with an M-AR
process that corresponds to correlated mobile fading channels.

In Section 2, the problem statement is presented. In Section
3, the joint estimation of the M-AR process and its parameter
matrices based on dual Kalman or dual H1 filters is
introduced. The results of the comparative simulation study
between dual Kalman filtering, dual H1 filtering and other
existing approaches are given in Section 4. Conclusions are
drawn in Section 5.

2 Problem statement

Let us consider multiple correlated data channels modelled by
a pth-order M-AR process

h(n) = −
∑p

l=1

A(l)h(n − l) + u(n) (1)

where {A(l )}l¼1, . . . , p are the M-AR parameter matrices,
h(n) = h1(n) h2(n) · · · hM (n)

[ ]T
is the M × 1 output

signal vector, u(n) = u1(n) u2(n) · · · uM (n)
[ ]T

is the
M × 1 input signal vector, and [.]T denotes the transpose
operation. The driving vector u(n) is assumed to be a zero-
mean white noise vector whose autocorrelation matrix Su

can be written as

∑
u
= diag([s2

u1
s2

u2
· · · s2

uM
]) (2)

where diag ([.]) denotes a diagonal matrix.

Fig. 2 Proposed dual Kalman filters or dual H1 filters
Fig. 1 Two SC Kalman filters [13] or two SC H1 filters [26]
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The M-AR parameter matrices {A(l )}l¼1, . . . , p of size
M × M can be expressed as follows

A(l) =

a(l)
11 a(l)

12 · · · a(l)
1M

a(l)
21 a(l)

22 · · · a(l)
2M

..

. ..
. . .

. ..
.

a(l)
M1 a(l)

M2 · · · a(l)
MM

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

(3)

To satisfy stability conditions, the roots {pi}i¼1, . . . , pM of

det([IM + A(1)z−1 + A(2)z−2 + · · · + A(p)z−p]) (4)

must lie inside the unit circle in the z-plane, where z21

denotes the backward shift operator, IM is the M × M
identity matrix, and det([.]) is the determinant operator.

However, in practical applications, the M-AR process h(n)
is usually disturbed by additive zero-mean white noise vector
b(n) = [ b1(n) b2(n) · · · bM (n) ]T uncorrelated with u(n).
Its correlation matrix satisfies

∑
b
= E[b(n)bT(n)] = diag([s2

b1
s2

b2
· · · s2

bM
]) (5)

Thus, the noisy observation vector can be written as

y(n) = h(n) + b(n) (6)

with y(n) = [ y1(n) y2(n) · · · yM (n) ]T.
Given the noisy observation vector y(n), the purpose of our

approach is to estimate the M-AR parameter matrices
{A(l )}l¼1, . . . , p by means of mutually interactive dual
optimal filters.

3 Dual H1 against dual Kalman filters

According to the dual optimal filter structure shown in Fig. 2,
the first optimal filter uses the latest estimated AR parameter
matrices to estimate the M-AR process, whereas the second
optimal filter estimates the parameter matrices from the
estimated process vector. These optimal filters are based on
linear state-space model as described in the following
subsection.

3.1 Linear state-space model

Let us first define the following state vector, whose dimension
is Mp × 1

h(n) = [ h(n)T h(n − 1)T · · · h(n − p + 1)T ]T (7)

Hence, the state-space representation of the system (1) and (6)
can be expressed as

h(n) = Fh(n − 1) + Gu(n)
y(n) = Hh(n) + b(n)

{
(8)

where the transition matrix F is defined as follows

F =

−A(1) −A(2) · · · −A(p)

IM 0M · · · 0M

0M
. .
. . .

. ..
.

0M · · · IM 0M

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (9)
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with 0M is the M × M zero matrix. In addition, the M × Mp
output matrix H is related to the input matrix G as given by

H = GT = [ IM 0M · · · 0M ] (10)

When using H1 filters, one focuses on the estimation of a
specific linear combination of the state vector components,
as follows

z(n) = Lh(n) (11)

where L is a M × Mp linear transformation operator. Here, as
we aim at estimating the process h(n), this operator is selected
to be L = H = GT = [ IM 0M · · · 0M ].

3.2 Purpose of Kalman or H1 filtering

Based on the state-space model (8) and (11), optimal
recursive filters make it possible to recursively estimate the
state vector h(n). In the following, let ĥ(n/l) denotes the
estimation of h(n) given {y(i)}i¼1, . . . , l. Two kinds of
approaches can be used. On the one hand, a Kalman filter
provides an estimate of the M-AR process
ĥ(n/n) = GTĥ(n/n) by minimising the trace of the
following a posteriori error covariance matrix

P(n/n) = E[(h(n) − ĥ(n/n))(h(n) − ĥ(n/n))T] (12)

It should be noted that this covariance matrix satisfies the
so-called Ricatti equation

P(n + 1/n) = FP(n/n − 1)FT + GSuG
T

−FKKal(n)HP(n/n − 1)FT (13)

where KKal(n) is the Kalman filter gain.
On the other hand, the a posteriori H1 filter aims at

estimating ĥ(n) = Lĥ(n) by minimising the H1 norm of the
transfer function that maps the noise vectors u(n), b(n), and
the initial state error e0 = h(0) − ĥ(0) to the estimation
error e(n) = h(n) − ĥ(n), as follows

J1 = sup
u(n),b(n),h(0)

J (14)

where

J =
∑N−1

n=0 e(n)Te(n)

eT
0 P−1

0 e0 +
∑N−1

n=0 (u(n)TQ−1
u u(n) + b(n)TR−1

b b(n))

(15)

with N the number of available data samples, Qu and Rb are
weighting positive matrices that are tuned by the
practitioner to achieve performance requirements. In
addition, P0 denotes a positive matrix that reflects how
small the initial state error e0 = h(0) − ĥ(0) is.

However, as a closed-form solution to the above optimal
H1 estimation problem does not always exist, the following
suboptimal design strategy is usually considered

J1 , g2 (16)

where g . 0 is a prescribed level of disturbance attenuation.
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Following the method presented in [27], there exists an H1

estimator ĥ(n) for a given g . 0 if there exists a stabilising
symmetric positive definite solution P1(n) . 0 to the
following Riccati-type equation

P1(n + 1) = FP1(n)D(n)−1FT + GQuG
T (17)

where

D(n) = IMp − g−2LTLP1(n) + HTR−1
b HP1(n) (18)

This leads to the following constraint

P1(n)D(n)−1 . 0 (19)

It should be noted that the level attenuation factor should be
carefully selected to satisfy the condition in (19) as
proposed by Shen and Deng in [28]

g2
. max(eig[LTL[P1(n)−1 + HTR−1

b H]−1]) (20)

where max(eig[F ]) is the maximum eigenvalue of the matrix
F.

At that stage, one can either set g2 to a specific constant
value that is high enough to satisfy (20) or adjust it
according to (20) as follows

g2(n) = zmax(eig[LTL[P1(n)−1 + HTR−1
b H]−1]) (21)

with z . 2.

3.3 Kalman or H1 filtering for state-vector
estimation

For both Kalman or H1 filtering, the state vector and the
M-AR process are, respectively, estimated as follows

ĥ(n/n) = Fĥ(n − 1/n − 1) + K(n)y(n) (22)

and

ĥ(n/n) = GTĥ(n/n) (23)

where the so-called innovation process y (n) is given by

y(n) = y(n) − HFĥ(n − 1/n − 1) (24)

However, the way the gain K(n) in (22) is defined depends on
the kind of filtering. Thus, when a Kalman filter is used, the
gain, now noted KKal(n), is given by

KKal(n) = P(n/n − 1)HT[HP(n/n − 1)HT + Sb]−1 (25)

where the covariance matrix is updated by using the following
set of relations

P(n/n − 1) = FP(n − 1/n − 1)FT + GSuG
T (26)

P(n/n) = P(n/n − 1) − KKal(n)HP(n/n − 1) (27)

In addition, the covariance matrix of the innovation process
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y (n) satisfies

C(n) = HP(n/n − 1)HT + Sb (28)

When an H1 filter is used, the gain is denoted as K1(n) and is
given by

K1(n) = P1(n)D(n)−1HTR−1
b (29)

According to Yaesh and Shaked [29], the matrix P1(n) can be
seen as an upper bound of the error covariance matrix in the
Kalman filter theory, that is

P1(n) ≥ P(n/n)

= E[(h(n) − ĥ(n/n))(h(n) − ĥ(n/n))T] (30)

Considering the equations of Kalman and H1 filters, three
remarks can be drawn.

Remark 1: Owing to (18), the H1 filter has a computational
cost slightly higher than Kalman’s one.

Remark 2: Unlike Kalman filter, the H1 filter needs to adjust
the level attenuation factor g such as to satisfy (20).

Remark 3: If the weighting matrices Qu, Rb and P0 are,
respectively, chosen to be Su, Sb and the initial error
covariance matrix of h(0) then the H1 filter reduces to the
Kalman one when g � 1.

Kalman or H1 filter can be carried out provided that the
parameter matrices {A(l ) }l¼1, . . . , p are available. They will
be estimated using the method presented in the following
subsection.

3.4 Kalman or H1 filtering for M-AR parameter
estimation

In this subsection, we propose to estimate the M-AR
parameter matrices {A(l )}l¼1, . . . , p from the estimated
process ĥ(n/n). To this end, (22) and (23) are first
combined to express the estimated process as a function of
the parameter matrices

ĥ(n/n) = GTFĥ(n − 1/n − 1) + GTK(n)y(n)

= −Qĥ(n − 1/n − 1) + n(n) (31)

where the parameter matrix

Q = [ A(1) A(2) · · · A(p) ]

=
a(1)

11 · · · a(1)
1M

..

. . .
. ..

.

a(1)
M1 · · · a(1)

MM

⎡
⎢⎢⎣

⎤
⎥⎥⎦ · · ·

a(p)
11 · · · a(p)

1M

..

. . .
. ..

.

a(p)
M1 · · · a(p)

MM

⎡
⎢⎢⎣

⎤
⎥⎥⎦

⎡
⎢⎢⎣

⎤
⎥⎥⎦

(32)

and the noise vector

n(n) = GTK(n)y(n) (33)

When a Kalman filter is used, the covariance matrix of n(n) is
IET Signal Process., 2011, Vol. 5, Iss. 5, pp. 471–479
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equal to

Sn(n) = GTKKal(n)C(n)KKal(n)TG (34)

By stacking the columns of the matrix QT on top of each
others, the resulting M2p × 1 state vector can be expressed as

u(n) = [ [ a(1)
11 · · · a(1)

1M
] · · · [ a(p)

11 · · · a(p)
1M

]

· · · [ a(1)
M1 · · · a(1)

MM
] · · · [ a(p)

M1 · · · a(p)
MM

] ]T

(35)

Hence, (31) can be rewritten as follows

ĥ(n/n) = Hu(n)u(n) + n(n) (36)

where

Hu(n) = −IM ⊗ ĥ(n − 1/n − 1)T (37)

with ⊗ denotes the matrix Kronecker product.
When the M-AR process is assumed stationary, the AR

parameters are time-invariant and, hence, satisfy the
following relationship

u(n) = u(n − 1) (38)

Thus, (36) and (38) define a state-space representation for the
estimation of the AR parameters. A second optimal filter is
then used to recursively estimate u(n). If a second H1 filter
is chosen to recursively estimate u(n), the AR parameter
estimation error is defined as eu = Hu(n) (u(n) − û(n)).
This second H1 filter requires two weighting positive
matrices Rn .0 and Pu0 . 0 that can be tuned by the
designer. In addition, it needs the disturbance attenuation
level gu, which should be selected in the same manner as g
in (20).

The dual Kalman and H1 filtering algorithms are
summarised respectively in Tables 1 and 2. The estimation
and tuning of other parameters required by the dual optimal
filters are addressed in the following subsection.

3.5 Other parameters to be estimated or tuned

Labarre et al. [10] have proposed an iterative procedures for
the estimation of the variances of both the driving process

Table 1 Dual Kalman filtering algorithm

First Kalman filter: M-AR process estimation

P (n/n 2 1) ¼ FP (n 2 1/n 2 1) FT + GSuG
T

y(n) = y (n) − HFĥ(n − 1/n − 1)

C(n) ¼ HP(n/n 2 1)H T +Sb

KKal(n) ¼ P (n/n 2 1)H TC(n)21

ĥ(n/n) = Fĥ(n − 1/n − 1) + K Kal(n)y(n)

ĥ(n/n) = GTĥ(n/n)

P (n/n) ¼ P (n/n 2 1) 2 KKal(n)HP(n/n 2 1)

Second Kalman filter: M-AR parameter estimation

Hu(n) = −IM ⊗ ĥ(n − 1/n − 1)T

Pu(n/n 2 1) ¼ Pu(n 2 1/n 2 1)

Cu(n) ¼ Hu(n)Pu(n/n 2 1)Hu(n)T +Sn(n)

Ku(n) ¼ Pu(n/n 2 1)Hu(n)TCu(n)21

u(n) = u(n − 1) + K u(n)(ĥ(n/n) − Hu(n)u(n − 1))

Pu(n/n) ¼ Pu(n/n 2 1) 2 Ku(n)Hu(n)Pu(n/n 2 1)
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and additive noise for single-channel applications. Here, we
propose to extend these results to the multi-channel case.
Thus, the covariance matrix Su of the driving noise vector
u(n) can be iteratively estimated by using the Kalman
filtering (25)–(28) as follows

Ŝu(n) = lŜu(n − 1) + (1 − l)FM(n)FT (39)

where the matrix M(n) = P(n/n) −FP(n − 1/n − 1)FT+
K(n)y(n)y(n)TK(n)T,F = [GTG]−1GT = [ IM 0M · · · 0M ]
and l is the forgetting factor.

In addition, the covariance matrix Sb of the driving noise
vector b(n) can be iteratively estimated based on (25)–(28)
in the following manner

Ŝb(n) = lŜb(n − 1) + (1 − l)(y(n)y(n)T − HP(n/n

− 1)HT) (40)

Instead of manually tuning the weighting matrices Qu and Rn

in the H1 filters, a recursive and heuristic approach is here
presented. Thus, by analogy with the Kalman filter theory,
the weighting matrix Qu in the first H1 filter can be
recursively tuned as follows [11]

Q̂u(n) = lQ̂u(n − 1) + (1 − l)LM1(n)LT (41)

where M1(n) = P1(n) −FP1(n − 1)FT + K1(n)y(n)y(n)T

K1(n)T. Furthermore, the weighting matrix Rn in the
second H1 filter could be tuned in the following manner

Rn = LK1(n)y(n)y(n)TK1(n)TLT (42)

Here, the weighting matrix Rb is assigned to Ŝb(n). Moreover,
as there is no a priori knowledge about the initial state error,
the weighting matrices P0 and Pu 0 are assigned to the identity
matrices IMp and IM, respectively.

4 Simulation results

In this section, we carry out a comparative simulation study
on the estimation of M-AR parameter matrices between
several methods:

† the proposed dual H1 filters,
† the proposed dual Kalman filters,
† the two SC H1 filters [26],

Table 2 Dual H1 filtering algorithm

First H1 filter: M-AR process estimation

D(n) ¼ IMp 2 g22LTLP1(n) + H TRb
21HP1(n)

K1(n) ¼ P1(n)D(n)21H TRb
21

y(n) = y (n) − HFĥ(n − 1)

ĥ(n) = Fĥ(n − 1) + K 1(n)y(n)

ĥ(n) = Lĥ(n)

P1(n + 1) ¼ FP1(n)D(n)21FT + GQuG
T

Second H1 filter: M-AR process estimation

Hu(n) = −IM ⊗ ĥ(n − 1)T

Du(n) = IM2p − g−2
u Hu(n)THu(n)P u(n)

+Hu(n)TRn(n)−1Hu(n)P u(n)

K u(n) = P u(n)Du(n)−1Hu(n)TRn(n)−1v

u(n) = u(n − 1) + K u(n)(ĥ(n) − Hu(n)u(n − 1))

P u(n + 1) = P u(n)Du(n)−1
475
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† the two SC Kalman filters [13],
† the so-called ARFIT method [22],
† Hasan’s method [23],
† the NCYW equations.

We have tested two kinds of M-AR processes. The first one
is a synthetic M-AR process, whereas the second one
corresponds to correlated mobile fading channels.

4.1 Synthetic M-AR process

Here, we have considered a second-order (p ¼ 2) two-
channel (M ¼ 2) AR process

h(n) = −A(1)h(n − 1) − A(2)h(n − 2) + u(n) (43)

where the M-AR parameter matrices are those defined by
Hasan in [23]

A(1) = −0.71 0.32
−0.88 −0.24

[ ]
, A(2) = 0.57 −0.15

−0.49 −0.30

[ ]

In that case, the M-AR parameter matrices lead to four roots of
det ([IM + A(1)z−1 + A(2)z−2]), namely p1 ¼ 0.941 × ej1.125,
p2 ¼ 0.941 × e2j1.125, p3 ¼ 0.599 and p4 ¼ –0.461. In
addition, u(n) is the two-channel stationary Gaussian white
noise, uncorrelated between channels and with unit variance
on each channel. The additive noise b(n) is also a two-channel
stationary Gaussian white noise, uncorrelated with u(n).

In all of our simulations, the results are averaged over 1000
realisations. The criterion we considered is the mean square
error (MSE) of the estimated modulus and the estimated
argument of the roots.

According to Table 3, the ARFIT, the YW equations and
the SC Kalman filters result in large MSE and thus yield
biased estimates. Hasan algorithm leads to a smaller MSE
but might diverge in some cases. Our approaches and the
NCYW equations with true noise variances provide quite
similar results and lead to the smallest MSE.

Figs. 3 and 4 show the MSE of the estimated modulus of
the first pole p1 for different number of samples and
different SNR, respectively. According to these figures,
increasing the number of samples or SNR will decrease the
MSE. In addition, the SC-Kalman filters and the SC-H1

filters yield large MSE when compared with the other
methods and hence lead to biased estimates. Moreover, the
proposed approaches and the NCYW equations with true
noise covariance matrices provide quite similar results and
yield smallest MSE.
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In order to study the performance of our approaches when
only estimated values of noise variances are available, let us
introduce b whose ith element is defined as follows

b(i) =
ŝ2

ui

s2
ui

=
ŝ2

bi

s2
bi

, i = 1, 2, . . . , M (44)

Fig. 3 MSE of the modulus of p1 for different number of samples
with SNR ¼ 10 dB over each channel

True values of noise covariance matrices are used

Fig. 4 MSE of the modulus of p1 for different SNR with 1024
samples

True values of noise covariance matrices are used
Table 3 MSE of the estimated modulus and argument of the poles. SNR ¼ 10 dB over each channel, 300 samples and 1000 realisations

MSE of p1 MSE of p2 MSE of p3 MSE of p4

mod. arg. mod. arg. mod. arg. mod. arg.

(×1023) (×1023) (×1023) (×1023) (×1023) (×1023) (×1023) (×1023)

ARFIT [22] 2.74 0.30 2.74 0.30 136.04 0 42.81 0

SC-Kalman [13] 2.81 0.31 2.81 0.31 127.15 0 41.36 0

YW 3.16 0.30 3.16 0.30 129.82 0 43.44 0

Hasan [23] 1.04 0.25 1.04 0.25 252.68 0 16.36 0

NCYW 0.23 0.28 0.23 0.28 3.67 0 10.00 0

Dual Kalman 0.21 0.29 0.21 0.29 4.05 0 21.99 0

Dual H1 0.22 0.27 0.23 0.27 2.89 0 11.86 0
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Table 4 MSE of the estimated modulus and argument of the pole p1 for different b(i). SNR ¼ 10 dB for the first channel and SNR ¼ 5 dB

for the second channel, 1024 samples and 1000 realisations

b(i) MSE of estimated mod. of p1 (×1026) MSE of estimated arg. of p1 (×1026)

NCYW Dual Kalman Dual H1 NCYW Dual Kalman Dual H1

0.01 3618.10 164.30 138.71 160.85 161.42 152.21

0.10 2897.50 132.21 113.68 141.07 145.40 138.61

0.80 445.06 116.51 107.93 106.56 113.27 124.05

0.90 197.06 106.78 92.60 87.92 119.22 123.86

0.95 191.88 92.23 83.77 79.13 96.47 98.08

1.00 91.82 52.98 60.19 81.93 83.89 95.88

1.05 91.62 83.92 89.97 96.20 88.70 74.36

1.10 188.25 101.85 96.73 112.79 124.27 117.90

1.20 219.21 119.96 112.52 147.42 124.49 117.10

10.00 775711.10 144.60 135.72 692295.60 143.01 133.37
where ŝ2
ui

and ŝ2
bi

denote, respectively, the estimated driving
and additive noise variances over the ith channel. Different
values of b(i) are used to study the influence of under
estimate (b(i) , 1) and over estimate (b(i) . 1) the noise
variances on the MSE of the estimated modulus and
argument of the poles. For the sake of clarity, we only
provide simulation results dedicated to the first pole p1. The
results of the other poles are omitted for convenience, as
they produce approximately the same kind of results.
According to Table 4 and for every method, the MSE of
the argument and the modulus of the estimated pole
increase when increasing b(i) above 1 or decreasing it
below 1. For b(i) ≥ 1.1 and b(i) ≤ 0.1, the dual H1 filtering
algorithm yields less MSE than the dual Kalman filtering
algorithm, whereas the NCYW equations provide the worst
performance. Thus, the dual H1 filtering algorithm is more
robust to driving and additive noise variance deviations
than the dual Kalman filtering algorithm.

In order to study the convergence characteristics of the dual
Kalman filtering algorithm and the dual H1 filtering
algorithm, we present in Fig. 5 the estimated parameters of
the first matrix A(1) against the number of samples. From
this figure, one can notice that the two algorithms provide
approximately the same convergence characteristics and
converge to the true parameter values after ≃200 samples.

4.2 Correlated mobile fading channels

In this subsection, we use the method presented by Baddour
and Beaulieu in [30] to generate M-AR processes that
corresponds to correlated mobile fading channels. More
particularly, we generate two correlated fading channels
h(n) = [ h1(n) h2(n) ]T from a second-order (p ¼ 2) two-
IET Signal Process., 2011, Vol. 5, Iss. 5, pp. 471–479
doi: 10.1049/iet-spr.2010.0066
channel (M ¼ 2) AR process. The generated channels are
based on the following correlation matrix

Rhh(k) = E[h(n + k)h(n)H]

=
J0(2pfm|k|) 0.6 × J0(2pfm|k|)

0.6 × J0(2pfm|k|) J0(2pfm|k|)

[ ]
(45)

Fig. 5 Convergence characteristics of the estimated parameters of
the first matrix A (1)

a Dual Kalman algorithm
b Dual H1 algorithm
Table 5 MSE of the estimated modulus and argument of the poles. SNR ¼ 10 dB for each channel, 300 samples and 1000 realisations

MSE of p1 MSE of p2 MSE of p3 MSE of p4

mod. arg. mod. arg. mod. arg. mod. arg.

(×1023) (×1026) (×1023) (×1026) (×1023) (×1026) (×1023) (×1026)

ARFIT [22] 62.52 9.57 67.51 101.17 181.26 15.31 789.88 2589.1

SC-Kalman [13] 62.61 9.65 67.28 101.21 181.25 15.36 790.13 2592.1

YW 63.97 9.95 68.39 101.50 188.02 15.85 792.98 2541.6

Hasan [23] 8.71 24.21 8.23 31.97 15.61 119.05 18.20 83.83

NCYW 15.65 5.09 18.23 4.26 10.28 1.56 9.75 1.33

dual Kalman 0.51 0.25 0.30 0.15 3.092 0.77 5.14 4.46

dual H1 0.46 0.31 0.57 1.50 26.27 1.09 19.58 18.66
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where (.)H denotes the Hermitian operation, J0(.) is a zero-
order Bessel function of the first kind and fm denotes the
Doppler rate. When the Doppler rate is set to fm ¼ 0.1 then
the corresponding M-AR parameter matrices A(1) and A(2),
obtained from the YW equations, satisfy

A(1) = −1.7625 0
0 −1.7625

[ ]
,

A(2) = 0.9503 0
0 0.9503

[ ]

In addition, the driving process covariance matrix Su satisfies

Su = 0.0178 0.0124
0.0124 0.0178

[ ]

The M-AR parameter matrices A(1) and A(2) lead to the
following poles

p1 = p3 = 0.9748 × ej0.4417, p2 = p4 = 0.9748 × e−j0.4417

Note that the parameter matrices are diagonal, whereas the
driving process covariance matrix is not diagonal. In that
case, the correlation between the generated channels is
because of the two-channel driving vector
u(n) = [ u1(n) u2(n) ]T.

According to Table 5, Figs. 6 and 7, the proposed
approaches result in lower MSE than the NCYW equations,
whereas the other approaches yield much larger MSE.

From Table 6 and for b(i) ≥ 1.05 and b(i) ≤ 0.1, the dual
H1 filtering algorithm provides less MSE than the dual
Kalman filtering algorithm, although the NCYW equations
yield the largest MSE. Thus, the dual H1 filtering
algorithm is more robust to driving and additive noise
variance deviations than the dual Kalman filtering algorithm.

The order of computational complexity per data sample
for the investigated methods are summarised in Table 7.
The EKF and the SPKF approaches have the highest
computational cost as the size of the state vector
(Mp + M2p) × 1 to be estimated is quite high. Indeed, it
stores both the p last values of the M-AR process and the
coefficients of the AR parameter matrices. The dual filters
as well as the SC ones have lower computational cost than
the EKF. In these filters, the size of the state vector for
estimating the M-AR process is Mp × 1, whereas that for
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estimating the coefficients of the AR parameter matrices is
M2p × 1. Thus, they require a complexity of the order of
O((Mp)3) and O((M2p)2) for estimating the M-AR process
and its parameters, respectively. Hasan’s method requires

Fig. 6 MSE of the modulus of p1 for different number of samples
with SNR ¼ 10 dB over each channel

True values of noise covariance matrices are used

Fig. 7 MSE of the modulus of p1 for different SNR with 1024
samples

True values of noise covariance matrices are used
Table 6 MSE of the estimated modulus and argument of the pole p1 for different b(i). SNR ¼ 10 dB for the first channel and SNR ¼ 5 dB

for the second channel, 1024 samples and 1000 realisations

b(i) MSE of estimated mod. of p1 (×1026) MSE of estimated arg. of p1 (×1026)

NCYW Dual Kalman Dual H1 NCYW Dual Kalman Dual H1

0.01 117 059.6 1750.20 1255.90 97 072.7 2224.30 377.53

0.10 92 132.7 1116.70 883.80 54 750.6 2023.60 517.57

0.80 12 320.5 611.26 729.92 1916.50 1159.20 924.38

0.90 2469.7 595.60 591.33 1624.80 1130.00 512.56

0.95 1944.2 396.90 413.73 1445.10 494.19 678.77

1.00 1559.3 489.01 537.05 214.15 266.99 276.66

1.05 1347.2 667.98 376.30 6264.60 535.65 297.33

1.10 9360.5 524.79 500.60 11 249.4 646.91 366.94

1.20 23 984.9 578.30 534.67 69 000.5 537.46 451.66

10.00 171 722.9 905.84 636.11 102 701.3 1065.50 970.22

20.00 408 634.8 766.65 619.68 986 772.7 1745.00 1017.10
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solving the NCYW equations, which can be done using
recursive techniques such as the Levinson algorithm with
complexity of the order of O((Mp)2). Although solving the
NCYW equations requires the lowest computational cost,
the dual filter approaches have the advantage of not only
estimating the coefficients of the AR parameter matrices but
also providing an estimate of the M-AR process.

5 Conclusion

In this paper, we present a method for the joint estimation of
a multivariate AR process and its parameter matrices from
noisy observations. In particular, we propose to extend to
the multi-channel case the so-called dual Kalman or H1

filters based scheme initially proposed for single-channel
applications. According to the comparative simulation study
we carried out on M-AR parameter estimation, the proposed
dual optimal filters outperform the existing two SC Kalman
or H1 filter-based methods. In addition, the dual H1

filtering algorithm is robust to noise variance deviations and
outperforms the dual Kalman filtering algorithm and the
NCYW equations in that case.
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