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Abstract 

 

Breast cancer is the most common cancer and the leading cause of death among 

women worldwide. Mainly imbalance between tumor suppressor genes and 

oncogenes lead to cancer transformation. This imbalance usually arises from 

mutations in one or more of either tumor suppressor genes or oncogenes. Different 

gene expression patterns among breast cancer subtypes lead to heterogeneity and 

give different phenotypes. Our preliminary data showed that different TP53 variants 

resulted in different gene expression patterns. So we hypothesized here that 

combinations between HRAS G13R and different TP53 variants will lead to different 

gene expression patterns and different phenotypes. To test this hypothesis, we 

infected MCF10A cell harboring different TP53 variants (TP53 KO, TP53 R175H, 

and TP53 R273H) with HRAS G13R viral vector. Afterward we tested proliferation, 

migration, survival, and apoptotic resistance of manipulated cells. In addition, we 

tested some of phenotypic related target genes expression. Our results showed that 

HRAS G13R overexpression increases tumorigenicity of infected cells with HRAS 

G13R-TP53 R175H combination having highest tumorigenic effect. Also results of 

different tested assays shows that cell proliferation, migration, survival, and 

resistance to apoptosis was affected differentially in each of HRAS G13R and TP53 

variants combination. This phenotypic diversity was combined with difference in 

gene expression patterns between different combinations. Overall our study provides 

a new model that spots the light on the role of two hit system in cancer 

transformation and progression. In addition, this model may help in understanding 

TP53 and HRAS crosstalk in breast cancer and help in cancer diagnosis and 

treatment.  
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Chapter 1 
 

  

1. Introduction  

 

1.1. Cancer transformation  

 

Cancer is a generic term for a large group of diseases characterized by the growth of abnormal cells 

beyond their usual boundaries that can then invade adjoining parts of the body and/or spread to other 

organs. It accounts for 9.6 million deaths worldwide in 2018 (WHO, 2019). Many factors are 

responsible for cancer development and progression. All these factors lead to the main cause of cancer 

which is the imbalance between tumor suppressor genes and oncogenes. This imbalance can be either 

due to mutations in tumor suppressor genes, oncogenes or in DNA repair genes (Osborne et al., 2004). 

The involvement of epigenetics in this process of cancer development added more complexity to 

understating cancer initiation and progression mechanisms (Wu et al., 2015). So in order to make 

progression in cancer diagnosis and therapy, greater understanding of cancer molecular mechanisms 

is needed on both direct gene alterations and epigenetic alterations (Hinshelwood and Clark, 2008). 

During cancer transformation, a lot of phenotypic properties related to transformed cells are 

uncovered, these properties are called cancer hallmarks and are described as major hallmarks that in 

part include self-sufficiency in growth signals, insensitivity to anti-growth signals, evading apoptosis, 

limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis (Hanahan 

and Weinberg, 2011). 

 

1.2. Breast Cancer  

 

Breast cancer is the leader cause of female cancer related deaths worldwide. It’s responsible for more 

than half million deaths among women in 2018 (15% of cancer deaths), and yearly there are about 2 

million new cases of breast cancer are reported among women (WHO, Breast Cancer 2019). Several 

factors affect breast cancer prognosis and survival rate. Those factors include age, ethnic group, 

hormones, and genetic factors (Libson and Lippman, 2014). Breast cancer is a very heterogeneous 

type of cancer which can be classified into different categories based on breast cancer type, 
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appearance of the tissue, stage of cancer, and gene profile (cancer genome Atlas 2012). Huge efforts 

are targeted toward developing strategies to fight this cancer starting with early detection of disease 

and not limited to surgical procedures, radiotherapy, chemotherapy and biological and targeted 

therapy (Libson and Lippman, 2014). Targeted therapy is very important due to heterogeneity of the 

disease (Sousa et al., 2019). This heterogeneity makes the war against breast cancer more complicated, 

increase treatment cost in addition to decrease the chances of treatment availability to vast group of 

patients (especially in low-income and middle-income countries were individual therapy is not always 

provided) (Jamison et al., 2015). For instance, not all HER2 positive patient’s respond to trastuzumab 

(a drug targeted toward HER2 receptor) in the same way, and survival rate are different among them. 

This thought to be underlined by several resistance mechanisms including heterodimerization, with 

other HER receptors, and bypassing HER2 signaling pathways (Baselga et al., 2012). These resistance 

mechanisms of cancer made researchers focus towards developing new strategies to overcome 

resistance mechanisms and prevent recurrence of disease (Luo et al., 2015). Moreover, it has been 

determined that within single breast carcinoma there are multiple cancer cell clones, harboring distinct 

genetic and epigenetic profiles (Sousa et al., 2019). This intra tumor heterogeneity is highly affected 

by tumor micro-environment (McGranahan and Swanton, 2017, Colak and Medema, 2014). Due to 

the mentioned reasons, standard therapies against breast cancer are not enough and do not prevent 

cancer recurrence (Sousa et al., 2019), and more studies focusing on different underlying molecular 

mechanisms of different breast cancer categories are needed. 

 

1.3. The Oncogene-RAS 

 

RAS genes are one of the earliest oncogenes discovered in human tumors. This family  includes K-

RAS, HRAS, and N-RAS (Downward, 2003). The protein products of RAS proto-oncogenes family are 

a group of small GTPases that play vital role in signal transduction through numerous growth factors 

to stimulate cell proliferation and movement. RAS proto-oncogene is frequently mutated in cancers 

and affects a variety of processes involved in cancer progression (Pylayeva-Gupta et al., 2011, Kiaris 

and Spandidos, 1995). Mutations in RAS genes were found in about 30% of all human cancers(Adjei, 

2001). The mutations in RAS proteins make the protein product constituently active due to 

unresponsiveness to GTPase activating protein (GAPs) (Downward, 2003).  
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Mutated HRAS proteins are found in different type of cancers. However, RAS mutations are rare in 

breast cancers (Miyakis et al., 1998). Even though, they still have a lot interest due to the vital role of 

HRAS, PI3K and MAPK signaling pathway (Myers et al., 2016). HRAS gene mutations are found 

mainly in amino acid 12, 13, and 61 (Myers et al., 2016). Despite that these mutations are in the same 

domain of protein, they have distinct structural and biochemical defect. Moreover, different amino 

acid substitutions at any of these hotspot positions can rise into different functional consequences and 

oncogenic power of cancer formed (Hobbs et al., 2016). This diversity in HRAS mutations, pathways 

and power; urge the need of understanding how each hotspot mutation works (Figure 1.1). 

 

Figure 1. 1: HRAS most common mutations. Most common mutations in HRAS gene found in position 12,13, 

and 61. 

 

HRAS G13R is a hotspot mutation that lies within the GTP binding domain of the HRAS protein and arise 

from substitution of G in position 37 with C (c.37G>C) which lead to replacement of amino acid glycine 

with arginine (p. G13R)(Hobbs et al., 2016). The G13R mutation forms about 85% of mutation at position 

13 in HRAS isoform and mostly found in salivary gland cancer and less common in breast cancer (Hobbs 

et al., 2016). Still several studies connected between HRAS overexpression and aggressiveness of breast 

cancer. For instance; in his study, Koh M found that MCF10A cells with HRAS transformation showed 

more invasiveness and aggressiveness over MCF10A cell transformed with N-RAS (Koh et al., 

2016).Other study showed that over expression of HRAS alone or with PI3K or P53 in MCF10A cells 

give them very high oncogenic features (Geyer et al., 2018).When focusing on mutation site, it is found 

that the mutation at G12 site are more stringent than at G13. Nevertheless, the G13R mutation has a 

strong effect on GTPase activity since it prevent binding of factors needed for acceleration of GTPase 

activity (Gremer et al., 2008).  

 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Koh%20M%5BAuthor%5D&cauthor=true&cauthor_uid=26413934
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1.4. TP53 tumor suppressor gene  

 

 Well known as” guardian of the genome”, TP53 protein product is a tumor suppressor protein that 

functions in many ways to protect the cell under stress conditions (Niazi et al., 2018). This protein 

encoded by TP53 gene is located on the short arm of chromosome 17 (Matlashewski et al., 1984).  TP53 

coding sequence (CDS) gives a 393 amino acid protein which is composed mainly from 3 domains (1) 

RNA binding domain which recruits RNA polymerase and activates transcription of several genes 

(transactivation domain), (2) Regulatory domain which binds to specific regulatory sites present on 

DNA/response elements, and (3) tetramerization (TET) domain (Niazi et al., 2018).  

The main role of TP53 protein is to provide antiproliferative cellular response that may lead to either, 

cell-cycle arrest, senescence, modulation of autophagy, or apoptosis in response to cellular stress such as 

DNA damage, oncogene activation, or hypoxia (Yee and Vousden, 2005). Still, this response depends 

on many factors such as type of cell, microenvironment, and tumor evolution events. So TP53 targets 

can be altered depending on the above mentioned factors. Simply, p53 function starts with stabilization 

process; in which under stress p53 is freed from its negative regulator MDM2 through phosphorylation 

of p53 amino acid terminus (Appella and Anderson, 2001). Then, p53 binds to specific sequences on 

DNA. This step will lead to the third step in which p53 will activate or repress its target genes (el-Deiry 

et al., 1992, Iyer et al., 2004). But this understanding is very humble and thing are much more 

complicated. For example; it’s found that p53 bind through its carboxy-terminal domain  even in 

unstressed conditions, which means it can control gene expression in stressed and unstressed 

conditions,(Appella and Anderson, 2001). Also, p53 does not only affect transcription of its target genes 

through traditional transcriptional factors, but also interacts with transcriptional activators and repressors 

to modulate transcription. One clear example on this mode of gene expression modulation is p300-p53 

interaction that facilitates both histone and p53 acetylation, leading to a more open chromatin 

conformation near p53 targets and a more active p53 protein, respectively (Chan and La Thangue, 2001). 

TP53 expression is regulated through protein-protein interaction between MDM2 and TP53. This 

interaction is formed as loop in which p53 bind to MDM2 promoter and starts its transcription so increase 

MDM2 levels. In its turn, MDM2 binds to p53b and prevents it from interacting with transcriptional co-

activators; keep it out of nucleus, and targets TP53 ubiquitination and degradation. In other words p53 

produce its inhibitor. This loop is functional and maintains cellular balance by maintaining low p53  level 

during unstressed conditions (Fig1) (Haupt et al., 1997, Honda et al., 1997, Kubbutat et al., 1997, Nag et 

al., 2013). 
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Figure 1. 2: MDM2-TP53 regulatory pathway. The feedback regulation involving the TP53 and MDM2 (Nag 

et al., 2013)(adapted). 

 

Since TP53 discovery, researchers have studied TP53 target genes thoroughly. To date, with recent 

genome-wide analysis from hundreds to thousands of potential p53 target genes have been identified 

(Wei et al., 2006, Li et al., 2012). The p53 regulation of its targets can be either by activating, repressing, 

or both. For instance, one study shows that from 346 p53 targets 246 were reported to be activated by 

p53 and 91 repressed while 9 found to be both activated and repressed by TP53(Haupt et al., 1997). 

Among studied p53 targets there are high-confidence p53 targets. These targets function in many cell 

processes such as cell cycle arrest, DNA repair, apoptosis, metabolism, autophagy, translation control, 

and feedback mechanism (Fig1.2) (Haupt et al., 1997, Fischer, 2017). 
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Figure 1. 3: Various TP53 target genes and their functions. TP53 target genes produce proteins that regulate 

many cell activities like cell cycle arrest, DNA repair, apoptosis, metabolism, autophagy, translation control and 

feedback mechanisms(Fischer, 2017)(adapted) 

 

Mutations in TP53 can lead to dramatic changes in cellular activity. It’s the most mutated gene in cancer. 

It’s found to be mutated in about 50% of cancers (Fischer, 2017). Interestingly, only about 15% are 

defined as “disruptive mutations” while 85% of TP53 mutations are missense mutations and most of 

them are in DNA-binding domain. In addition, some of them are considered “gain of function” mutations 

in which TP53 not only lose its function as tumor suppressor gene but also gain a new oncogenic function. 

That’s why when TP53 was first discovered it was considered as an oncogene (Fischer, 2017, Perri et 

al., 2016). Back to breast cancer, mutations in TP53 are found in 28% of most aggressive breast tumors 

(Silwal-Pandit et al., 2014). Moreover status of TP53 gene is considered a strong marker of prognosis 

(Borresen-Dale, 2003, Olivier et al., 2006). The distribution of mutations in TP53 gene in early breast 

cancer is listed in Fig (1.3) with majority of mutations fall in the DNA-binding domain (Fountzilas et al., 

2016). 
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Figure 1. 4: TP53 mutation that occur in early breast cacner. Mainly TP53 mutations were aggregated in the 

area coding for the DNA binding domain of the protein.(Fountzilas et al., 2016)(adapted) 

 

In addition, TP53 mutation status can also determine therapeutic strategies for breast cancer treatment 

since TP53 mutation status can predict response to treatment. For example, breast cancer patients with 

wild type TP53 show less survival than patient with mutant TP53 when treated with chemotherapy, while 

the addition of hormonal therapy to chemotherapy increases wild-type TP53 patient survival compared 

to mutant TP53 patients (Ungerleider et al., 2018).  

Among all TP53 mutations there are four hotspot mutations at positions 175, 245,248,273 (Hainaut and 

Hollstein, 2000). While R273H mutation is a contact mutation R175H is a structural mutation (Sigal and 

Rotter, 2000). Both R175H and R273H mutations are gain of function mutations that were studied 

extensively due to their high oncogenic activity and their worse clinical effect. For example, patients 

with R175H mutation show worse prognosis than those with TP53 null mutation (Alsner et al., 2001, 

Poeta et al., 2007) .It’s well documented that Gain of function mutations can promote cancer formation 

and progression by increasing cell proliferation, metastasis and migration, resistance to apoptosis, and 

induction of genome instability (reviewed) (Zhou et al., 2019).   
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1.5. TP53 variants and HRAS combination role in cancer transformation 

 

TP53 has a wide range of targets and mutant TP53 interacts with oncogenes efficiently when transfected 

into normal cells. Mutant TP53 interaction with oncogenic HRAS induces normal cell transformation in 

vivo (Eliyahu et al., 1984, Parada et al., 1984).  In addition, RAS and mutant TP53 are involved in cancer 

initiation and progression cooperatively, and enhance cancer hallmarks (Solomon et al., 2010). For 

example, mutated K-RAS gene overexpression proliferation is arrested in normal cell by TP53-WT and 

did not form tumor in mice, on the other hand when mutated K-RAS combined with inactivation of TP53 

or mutated TP53, tumor formation was promoted with high metastatic form in TP53-R175H mutated 

mice (Morton et al., 2010). Also , Xia and Land found in 2007 that combination between TP53 R175H 

mutation and HRAS G12V mutation increase cell motility and invasiveness in mouse colon cells(Xia and 

Land, 2007). In another study, it was found that the combination between TP53 KO or TP53 mutation 

and HRAS G12V results in cancer transformation (Buganim et al., 2010).  

TP53 and HRAS interaction control many target genes because both of them have wide range of 

downstream targets. In one study Buganim et al using  microarray expression profiling found unique 

gene cluster that regulate precancerous secreted molecules controlled mainly by crosstalk between  TP53 

and HRAS (Buganim et al., 2010). Those molecules include  interleukins (IL8, IL6, IL1b), chemokines 

(CXCL1, CXCL2, CXCL3), and extracellular matrix related genes (MMP3, CLECSF2) (Solomon et al., 

2010). Another study provided evidence and molecular links between TP53 and RAS pathways by 

revealing that mutated TP53 cells invasiveness and motility is mediated by enhancement 

of integrin and epidermal growth factor receptor (EGFR) recycling and activity. Mutant TP53-harboring 

cells showed higher levels of activated EGFR, AKT, and, to a lesser extent, ERK, which are close 

neighbors of RAS in the signaling network that controls motility (Muller et al., 2009, Solomon et al., 

2010). 

 

1.6. Problem statement and motivation of study: 

 

During the last two decades evidences viewed breast cancer as a very heterogeneous disease rather than 

a homogeneous entity of fast proliferating neoplastic cells (Sousa et al., 2019). Because of breast cancer 

heterogeneity, huge effort targeted toward revealing genetic changes and mechanisms that are associated 

with breast cancer epithelial cell transformation(Solomon et al., 2010). In attempt to understand how 

different mutations are involved in cancer prognosis and treatment regimens, it’s important to study 

http://www.discoverymedicine.com/category/therapeutic-technology-and-methodology/therapy/targeted-therapy/integrin-targeted-therapy-therapy/
http://www.discoverymedicine.com/tag/epidermal-growth-factor-receptor/
http://www.discoverymedicine.com/category/therapeutic-technology-and-methodology/therapy/targeted-therapy/egfr-targeted-therapy-therapy/
http://www.discoverymedicine.com/tag/egfr/
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particular mutations. In fact, many efforts toward understanding and treating breast cancer have passed 

through targeting RAS and TP53 pathways (Suter and Marcum, 2007). In recently accepted paper from 

our lab, to understand how TP53 and HRAS are regulated in breast cancer; using Hi-C data, we have 

found that HRAS G12V can regulate TP53 by redistribution of chromatin binding with minor alteration 

in TP53 expression level(Michal Schwartz, 2019). Since there are growing evidence that different RAS 

mutations will lead to different consequences (Hobbs et al., 2016); we believe that studying how HRAS 

G13R functions with different TP53 variants in breast cancer could help in elucidating behavior of 

different tumors.  

 

1.7. Hypothesis: 

 

This research is part of larger project based on the assumption that different oncogenic phenotype are 

underlined by various gene transcription reprogramming. We hypothesized that HRAS G13R 

overexpression combined with different TP53 variants in MCF10A cells will give different phenotypic 

changes based on different transcriptional reprogramming events.   

 

1.8.Aim of the study: 

 

The main aim of this research is to create different breast cancer transformation models by infecting 

normal immortalized MCF10A cells harboring different TP53 gene variants with HRAS G13R. The 

second goal is to test the differences in distinct cellular phenotypes (cancer hallmarks) caused by the 

combination between HRAS G13R and different TP53 variants.  
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Chapter 2  

 

 

2. Materials and Methods 

 

2.1.Materials 

 

Table 1 List of used materials 

# Name  Company  

1 Analytical Balance METLER TOLEDO AB104 

2 Autoclave HIRAYAMA HV-110 

3 Vortexes: SA6, Genie 2, Reax top Stuart Scientific, neoLab, 

Heidolph 

4 Biological hood (HERA guard) Heraeus 

5 Biofuge Stratos Reconditioned Heraeus 75005289R 

6 Biofuge Fresco Heraeus 75005521 

7 Digital dry bath Labnet 

8 Elisa reader RAL  

9 Hera cell 150 CO2 Incubator Heraeus 

10 Inverted microscope Olympus ck40-SLP 

11 Labofuge 200 centrifuge Heraeus 

12 RT-PCR (Applied Bio-systems 7500 

Real Time PCR 

13 GlobMax discover reader   Promega 
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15 Benchtop centrifuges: Labofuge 200, Biofuge 

fresco 

Therom Fisher Scientific 

Heraeus  

16 Cell counter CASY Casy , Innvatis 

19 Computers hp, Fujitsu, Siemens  

20 Floor centrifuge – Heraeus Multifuge 4KR  Thermo Fisher Scientific 

22 Freezer -20 ℃   Libherr 

23 Freezer -80 ℃   ,VIP Sanyo 

24 Freezing container  Sigma-Aldrich 

25 Fridge 4℃    Liebgerr 

26 Horizontal roller shaker ,RM5 neoLab 

27 Ice machine  Hoshizaki 

28 Image Xpress microscope  Molecular Device  

30 Liquid nitrogen storage system  Cryotherm  

32 MilliQ Biocel Water Purification System  Millipore 

33 Multichannel pipette  Eppendorf  

34 Multistep pipette Biohit ( 5-100 μl)  Biohit 

35 Multistep pipette Ripette ( 200 μl – 5 ml)  Ritter Medical  

36 Thermomixer comfort Eppendorf 

38 Pipettes ( 0.5 – 1000 μl)  Eppendorf , Gilson 

40 Scanner  Epson 

41 Suction device for cell culture  neoLab 

42 SPIN-micropipette site Nano Spinreact 

43 Ultracentrifuge BECKMAN COULTER 

optima LE80H 
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44 Water Bath Orbital Shaking Grant OLS200 

45 Water Baths  Grant LTD6G, Julabo TW20 

46 PCR machine 96 well  
 

Applied Biosystem #9902 

47 Neubauer count chamber ( 0.1 mm depth ) BLAUBRAND 

 

Table 2: Reagents and Chemicals 

# Name  Company 

1 DMEM-F12 medium Biological industries , Gibco  

2 DMEM medium Invitrogen  

4 RPMI (1640) medium Gibco  

5 Horse serum  Biological industry  

6 Fetal bovine serum (FBS) Gibco  

7 Hydrocortisone  Sigma-Aldrich  

8 Insulin  Sigma -Aldrich 

9 Epidermal growth factor (EGF)  Sigma -Aldrich 

10 Cholera toxin  Sigma -Aldrich 

11 L-Glutamine  Biological industries  

12 Penicillin/streptomycin  Biological industries  

13 Dimethyl sulfoxide  Sigma -Aldrich 

14 Sterile phosphate buffer saline PBS  Biological industries  

15 Puromycin  ,  Sigma -Aldrich 

16 XTT kite  Biological industries  

17 Trypane blue  Biological industries  
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18 Isopropanol biological gradient  Sigma -Aldrich 

 

19 Ethanol biological gradient  Sigma-Aldrich  

20 Chloroform biological gradient  Sigma -Aldrich 

21 qScript™cDNA synthesis kit  Quanta Biosciences  

22 SYBR® Green  Applied Biosystems  

23 TRIZOL  Sigma -Aldrich 

24 Diff-Quick System  Sigma -Aldrich 

25 0.5% and 0.05% Trypsin-EDTA  Invitrogen  

26 Agrose Sigma-Aldrich 

27 BCA protein assay kit Thermo Fisher Scientific  

28 Deoxynucleoside triphosphates (dNTPS) New England Biolab 

29 DNA Loading dye (6x) Thermo Fisher Scientific  

30 GeneRuler 1 kb DNA Ladder Thermo Fisher Scientific 

31 GeneRuler 100 bp DNA Ladder Thermo Fisher Scientific 

32 Geneticin G148 (Neomycin) Gibco  

33 Methanol Sigma-Aldrich 

34 Nuclease Free Water  Ambion 

35 Phosphate buffered saline ( PBS) Gibco 

36 OptiMEM Invitrogen  

37 Lipofectamine  Invitrogen  

38 Matrigel matrix Corning  

39 Anti-p53 Santa Cruz Biotechnology 
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40 Anti-B-Actin Santa Cruz Biotechnology 

41 Hygromycine 50mg/dl Sigma 

42 Mini-prerp kit invitrogen 

43 Trypton sigma 

44 Yeast extract sigma 

45 AGAR sigma 

46 poly-lysine-coated 100 mm dish  

47 poly-lysine-coated  75 cm2 flasks  

48 DMSO Sigma 

49  Mirus ivitrogen 

50 Polyhema sigma 

51 HiPure plasmid Maxiprep kit invetrogen 

 

Table 3: Cell lines 

# Name  Origin  

1 MCF10A TP53KO Sigma-Aldrich 

2 MCF10A Wtres  

DKFZ,Genomic and 

Proteomics core facility  

4 MCF10A Mutated TP53 (R175H) 

5 MCF10A Mutated TP53 (R273H)  

6 2nd generation of HEK293T(phoenix) Invitrogen  

7 MCF10A parental  Sigma-Aldrich 
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Table 4: Plasmids &Bacteria  

# Name  Origin  

1 rwpLX305_hRAS_G13R_Hygro  

DKFZ,Genomic and 

Proteomics core facility  
2 PCL-ECO 

 

3 

VSVG 

4 DH5-Alpha  

DKFZ,Genomic and 

Proteomics core facility  

 

2.2.Methods 

 

2.2.1. Cell culture 

 

Stable MCF10A cell lines expressing different TP53 mutations were established by the Genomics and 

Proteomics Core Facility at the DKFZ- Germany. These lines were generated by overexpressing different 

TP53 constructs in MCF10A TP53KO cells from Sigma-Aldrich (catalogue number CLLS1049). 

Overexpression was achieved by using the lentiviral vector pLx305 that expresses either FLAG-tagged 

TP53 R175H or TP53 R273H or wild-type TP53.  

All MCF10A cell lines were cultured in DMEM-F12 supplemented with 5% horse serum, 20 ng/mL 

EGF, 0.5μg/mL hydrocortisone, 1% L-glutamine, 100ng/mL cholera toxin, 1% penicillin/streptomycin 

(50 U/μL penicillin and 50μg/mL streptomycin as final concentration) and 10μg/mL insulin. RPMI 

medium supplemented with 1% L-glutamine, and 1% penicillin/streptomycin were used for culture of 

phoenix cells 

Cells were passed every 3-4 days. For this purpose, the medium was eliminated and cells were washed 

with 1 mL PBS X1 one time. Afterwards, 0.5 mL trypsin (0.05% concentration) was used followed by 

incubation for 5 to 10 minutes in 37 ℃, 5% CO2 incubator. Then, 5 mL full growth medium was added 
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to detach the cells. Cells were counted by using Neubauer counting chamber (0.1 mm depth) and 0.5x106 

cells were seeded in 75cm2 flasks.  

 

2.2.2. Cells cryopreservation 

 

To prepare the freezing medium, full growth DMEM-F12 medium supplemented with 20% horse serum 

and 10% DMSO was used. Trypsinized cells were collected and then counted with Neubauer counting 

chamber and spun down. The preferred quantity of the cells (1 – 2 x 106 cells/mL) was suspended in the 

freezing medium and was distributed into cryo-vials. To obtain a gradually cooling rate of the cells (1℃ 

/min), cryo-vials were placed inside freezing container with isopropanol and left into a -80℃ deep 

freezer. Finally, cells were moved to liquid nitrogen tank for long term storage.  

To restore and thaw the cells from freezing, a cryo-vial holding cells were suspended in 1 mL full growth 

medium, centrifuged at 1600rpm, then supernatant were removed and new 5ml of growth medium were 

added. Finally cells were transferred into 75 cm2 flask having 6 mL full growth medium. 

 

2.2.3. Generation of stable cell lines pools  

 

Plasmids preparation (Maxiperp) 

 

To prepare plasmid and increase their concentration plasmids were transformed into DH-5 alpha bacteria 

by mixing 20ng of plasmid with 50ul of bacteria, then bacteria was incubated for 30 min on ice, then 

subjected to heat shock at 42℃ for 1 min. Afterward, bacteria were centrifuged and sediment was 

cultured on LB agar containing ampicillin for 24 hours in order to select bacteria than get the plasmid. 

Then two colonies of bacteria were cultured on LB broth at 37 with shaking for 17 hours. Finally, 

plasmids were extracted from bacteria using Invitrogen maxiprep kit according to manufacturer 

instructions.  

 

Viral particles production and Transduction  

 

Phoenix cells (2 X 105) were seeded on poly-lysine-coated 100 mm dish with full growth medium. Next 

day (when cells growth reach 30% of plate), 1.2ug of VSVG plasmid (envelope) and 3.3ug of pwzl-
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hygro-HRASG13R (plasmid contain target gene) were mixed together at RT. Meanwhile, 670ul of SFM 

and 13.4ul of mirus were mixed together and incubated for 5min at RT. Then plasmids mixture and 

mirus-SFM were mixed together and incubated at RT for 15 min. Finally, this mixture added to 5ml full 

growth medium and replaced old medium on cells. Then cells were incubated for 24 hour in 5%CO2, 

37C incubator. Next day, media changed on plate by aspirating old media and adding new 5ml of full 

growth medium, then cells incubated for 24 hours. Then (1st day of collection), media on plate (containing 

generated virus) aspirated and collected into sterile conical tube and new 5ml of media added then cell 

were incubated for 24 hours. Next day (2nd day of collection), media collected in same sterile conical 

tube from last day and plate discarded. Finally, collected virus was centrifuged for 10min at 3500 rpm 

then supernatant was filtered using 0.45um filter, and virus was stored at -80. 

 

Infection of MCF10A cells 

 

For infection, 5X105 cells were seeded in poly-lysine-coated 100 mm dish in full growth medium. Next 

day 2ml of medium containing virus were added to cells for two days at 37 ℃, 5% CO2 incubation.  

 

Selection of infected cells 

 

To select for clone pools, the transduction medium was changed with fresh full growth medium 

containing the appropriate selection antibiotics, Hygromycin (stock = 50 mg/mL, diluted 1:500, final 

concentration 100μg/ml) and Geneticin (Neomycin, stock = 50 mg/mL, diluted 1:100, final concentration 

500 μg/ml). The selection antibiotic was kept on cells until control non infected cells totally died.  

 

2.2.4. Gelatin coating 

 

To increase cell adhesion in specific assays (Cell count, XTT, Wound healing, and Colony formation)  

used cell culture plates were coated with 0.1%gelatin prepared by dissolving 0.2 g of gelatin in 200ml of 

DW. Then gelatin was placed on plate for 45 min and washed twice with DW. Finally coated plates were 

sterilized by UV.  
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2.2.5. Cell count 

30000 cells from each cell line were cultured with full growth medium in 12 wells of 6 well plates. Then 

each day 3 wells were trypsinized and cells in each well were centrifuged at 1600rpm for 10 min then 

sediment were suspended with new 1ml media and counted under microscope using Neubauer chamber. 

So each cell line were counted for four continuous days named as day 0 , day 1, day 2, and day 3(3 

wells/day for 4 days= 12 well). Then the mean and standard deviation of cells count of each day wells 

were calculated.  

 

2.2.6. XTT test  

Triplicate of 2x103 cells/well were seeded in 96 well plate and incubated at 37℃   , 5% CO2 for 24, 48, 

72 hours and cell proliferation was assessed using XTT stain according to manufacturer instructions by 

aspirating old media then adding 50 ul of prepared XTT reagent (reagent prepared by adding 1 part of 

activation reagent to 50 part of XTT reagent), then cells were re-incubated for 2 hours at 37℃. Finally, 

the reagent transferred to ELISA plate, and absorbance of samples was red against control blank at 450 

nanometer using ELISA reader.  

2.2.7. Wound healing assay  

Triplicates of 2x105 cells/well were seeded in 12 well plates in full growth medium and incubated at 37 

℃, 5% CO2 until having 100% growth confluence. To generate wound, cell monolayer was scratched 

using 10μl pipet tip. Afterwards, floating cells were washed out using PBSX1. Finally, cells were 

supplied with starvation medium that lacks serum and EGF, then wound was photographed over 24 hrs.  

 

2.2.8. Survival assay (colony formation assay) 

Triplicate of 200 and 400 cells were seeded in 6 well plates in full growth medium. Every 3-4 days the 

medium was changed until visible colonies were seen. Later, the growth medium was removed and the 

plates were washed using PBS x1. Next, cells were fixed for 15 minutes by using absolute methanol and 

then left to air dry. After fixation, colonies were stained using Coomassie blue, washed and counted using 

naked eye.  
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2.2.9. Adhesion assay 

 

Triplicate of 100000 cells were seeded in 6 well cell culture plates and incubated for 5 hours at 37 ℃, 

5% CO2. Then supernatant were discarded and remaining cells were collected and counted using 

Neubauer chamber. 

 

2.2.10. Anoikis (Anchorage-Dependent Cell Death) assay 

 

Triplicate of 100000 cells were seeded in 6 well coated with polyhema cell culture plates and incubated 

for 48 hours at 37C , 5% CO2. Then supernatant and adhered cells were collected, centrifuged at 1600rpm 

for 10min. Then old media discarded and new 1ml media was added and cells were stained using typan 

blue . Then dead and alive cell were counted and ratio between them were calculated 

 

2.2.11.  Soft agar assay   

 

The assay medium is composed of a lower and upper agar layers. The lower layer was prepared by using 

RPMI 1640 medium containing 1% Agar. 2 mL of this mixture was poured in each well of 6 well plates 

and kept at 4 °C for at least one hour. Then, 2X104 cells were mixed with 1.2 mL of the upper layer that 

contained 0.7% agar. This cell mixture was then added on the top of the lower layer and put back in CO2 

incubator. Cells then were checked daily, and media was added every 2 days until colonies were visible 

to naked eye.   

 

2.2.12. RNA Extraction  

 

Cells were cultured in 10 cm cell culture plates in full growth medium and incubated at 37 °C and 5% 

CO2 for 24 hours. Next day, the medium was aspirated and 1 mL Trizol was added to the plates and 

incubated on ice for 5 minutes. The cells collected in RNase free tubes and incubated on ice and mixed 

with 200 μL chloroform using vortex and incubated for 15 minutes on ice. Then, tubes were centrifuged 

for 15 minutes at 12000 RPM at 4 °C, then the supernatant was transferred to new RNase free tubes and 

500 μL pre-cooled isopropanol was added, mixed and incubated for 15 minutes on ice. Then tubes were 

centrifuged at 12000 RPM for 15 min at 4 °C. Finally, supernatant was discarded and 500 μL 70% Ethyl 

alcohol was added. Thereafter, the tubes were centrifuged at 12000 RPM for 10 min at 4 °C and the pellet 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=2ahUKEwjyzt_xkZDmAhWtwsQBHRWFD6oQFjACegQIBBAB&url=https%3A%2F%2Fwww.cellbiolabs.com%2Fanoikis-anchorage-dependent-cell-death&usg=AOvVaw0fuXokxfabam-tq0J5mQX_
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=2ahUKEwjyzt_xkZDmAhWtwsQBHRWFD6oQFjACegQIBBAB&url=https%3A%2F%2Fwww.cellbiolabs.com%2Fanoikis-anchorage-dependent-cell-death&usg=AOvVaw0fuXokxfabam-tq0J5mQX_
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left to dry for 1 minute and the pellet was suspended with DEPC treated water and incubated at 60 °C 

for 5 minutes in dry bath.  

 

2.2.13. cDNA synthesis  

 

RNA was diluted to get concentration of 0.2ug/ul then in PCR tubes, 5μl (1ug) of extracted RNA was 

mixed with 4 μL RT buffer, 1μl enzyme and ultra-pure water added to complete the mix volume to 20 

μL. Later, the tubes were put in PCR machine according to manufacturer recommendations.  

 

2.2.14. Real time PCR  

 

In 96 q-PCR well plate, 3 μL of diluted cDNA (1:10), 1 μL of primer (10 μM), 10 μL SYBR® Green 

and 6 μL ultra-pure water were added per well. Then, the q-PCR plates were sealed and centrifuged for 

5 minutes. Lastly, the plate was put in q-PCR machine with pre-conditioning at 50 °C for 2 minutes, 

activation at 95 °C for 10 minutes, denaturation at 95 °C for 15 seconds and annealing and extension at 

60 °C for 1 minute. Primer 3 software (http://primer3.ut.ee/) was used to design primers for each target gene. 

 

2.2.15. Statistical analysis 

 

 All statistical analysis was done using Microsoft EXCEL 2010. Student t.test used to measure p value 

to detect statistical significance. Regarding real time PCR analysis, delta-delta-ct value was used to 

measure fold of gene expression for each target gene. 

 

  

 

 

 

 

 

http://primer3.ut.ee/
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Chapter 3 

 

  

3. Results and Discussion 

 

3.1.Generation of HRAS G13R MCf10A clones harboring different TP53 variants.  

 

In order to investigate the effect of HRAS G13R overexpression in MCF10A cells harboring different 

TP53 variants, we infected the MCF10A cells with HRAS G13R retroviral vector (pwzl-hygro-HRAS-

G13R). Our control cells were generated by infecting all our cell lines with empty retroviral vector (pwzl-

hygro-EV), Here the used cell lines were TP53 knockout MCF10A cells that are overexpressing either 

Wild-type TP53 (MCF10A TP53 Wtres), TP53 R273H mutation (MCF10A TP53 R273H), TP53 R175H 

mutation (MCF10A TP53 R175H), or lack of TP53 gene (MCF10A TP53 KO). Afterward created clones 

were placed under selection of hygromycin to eliminate uninfected cells. As shown in figure 3.1 while 

infected cells was resistant to hygromycin treatment control non-infected cells died after selection. These 

results indicate that we were able to generate HRAS G13R overexpressing and control clones. To ensure 

the generation of HRAS G13R clones we did real-time PCR using primers that target HRAS. Here our 

results show that cells infected with HRAS G13R overexpress HRAS more than those with EV by 5 folds 

at least; so only cells infected with HRAS G13R are overexpressing HRAS compared to EV control cells 

(Figure 3.2).  
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Figure 3. 1:MCF10A cells with different TP53 variant infection and selection. Representative Image shows 

MCF10A cells harboring different TP53 variant after infection with either pwzl-hygro-HRASG13R or pwzl-

hygro-EV, and selection with hygromycin compared to non-infected control 

 

 

Figure 3. 2: HRAS expression in MCF10A transduced cells. Real time PCR results showing the relative 

expression level of HRAS gene correlated to the house keeping gene UBC. All gene expression folds were 

calculated relative to the expression of level in normal MCF10A cell (parental). Then Final relative expression 

index for each HRAS G13R infected clone was correlated to its EV control. Bars indicate standard error mean 

(SEM) of three replicates. The statistical significance of the results was determined by measuring the p value. (* 

indicates p-value <0.05) 
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Table 3.1 shows the list of each created clone and its control. Here we have included in comparison 

MCF10 TP53 Wtres in order to consider any effect come from TP53 null background since mutant TP53 

variant should be tested in TP53-null to avoid effect of WT TP53(Freed-Pastor and Prives, 2012). Overall 

our results show that we were able to generate 10 stable Clones; 4 overexpressing HRAS G13R with 

different TP53 variants (TP53 Wtres, TP53 KO, TP53 R273H, and TP53 R175H); and 4 with retroviral 

empty vector with different TP53 variants used as control.  

  

Table 5: List of created clones names and their control 

Created MCF10A clones Control 

MCF10A TP53 Wtres + HRAS G13R MCF10A TP53 Wtres + EV 

MCF10A TP53 KO + HRAS G13R MCF10A TP53 KO + EV 

MCF10A TP53 R273H + HRAS G13R MCF10A TP53 R273H + EV 

MCF10A TP53 R175H + HRAS G13R MCF10A TP53 R175H + EV 

 

3.2.Characterization of phenotypic changes in HRAS G13R transduced MCF10A cells. 

 

Previous studies showed that activation of RAS signaling pathway usually results in transformed 

phenotype in MCF10A cells (Basolo et al., 1991, Giunciuglio et al., 1995) . To examine the effect of 

HRAS G13R overexpression on MCF10A cells with different TP53 variants, we have done several 

functional assays to test different cancer hallmarks, those assays were: total cell count, XTT, wound 

healing (migration), survival, anchorage-dependent cell death (Anoikis), and soft agar assays. 

 

 

3.2.1. HRAS G13R overexpression in combination with different TP53 variants effect on MCF10A 

cells proliferation. 

 

One of most important cancer hallmarks is uncontrolled growth and proliferation(Hanahan and 

Weinberg, 2011).While HRAS was previously found to increase cell growth and proliferation(Karnoub 

and Weinberg, 2008), TP53 limits cell proliferation(Levine and Oren, 2009). We hypothesized that 



24 
 

different combination between HRAS G13R and different TP53 variants will affect cell growth and 

proliferation in different manners. To examine this hypothesis, total cell count and XTT assays 

performed. At the beginning, we were not able to get reliable results compared to eye observation because 

cells overexpressing RAS formed clumps (data not shown). To overcome this problem, we coated cell 

culture plates with 0.1% gelatin. Our total cell count results show that MCF10A TP53 Wtres cells with 

HRAS G13R overexpression have higher proliferation rate than cells infected with EV, while MCF10A 

T KO and mutated TP53 cells show almost same proliferation rate as control (Figure 3.3). To further 

investigate proliferation rate we performed XTT assay. In this assay we also obtained the same results as 

in total cell count assay (Figure 3.4). Our results go in line with previous studies which showed that 

HRAS mutations including G13R lead to cell transformation into aggressive metastatic 

phenotypes,(Hobbs et al., 2016). In addition Sonal Datta, et.al found that MCF10A-HRAS cell produced 

enlarging tumors when injected into mammary fat bad (Datta et al., 2007). Regarding MCF10A TP53 

KO, MCF10A TP53 R273H, and MCF10A R175H cells phenotype, it seems that TP53 manipulation 

induces the highest cell proliferation capacity that cannot be increased by HRAS G13R overexpression. 

 

 

Figure 3. 3: Relative proliferation rate for the transduced MCF10A clones using total cell count assay: The 

bars show the effect of HRAS G13R over expression on cell proliferation of MCF10A cells with different TP53 

variant. Cells were counted in triplicate; the relative proliferation rate index of day3 was correlated to day 0 for 

each clone. Final relative proliferation index for each HRAS G13R infected clone was correlated to its EV control. 

Bars indicate standard error mean (SEM) of three replicates. The statistical significance of the results was 

determined by measuring the p value. (* indicates p-value <0.05). 
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Figure 3. 4: Relative proliferation rate for the transduced MCF10A clones using XTT assay: The graph shows   

the effect of HRAS G13R overexpression on MCF10A cells with different TP53 variants cell proliferation. The 

relative proliferation rate index of day3 was correlated to day 0 for each clone. Final relative proliferation index 

for each HRAS G13R infected clone was correlated to its EV control. Bars indicate standard error mean (SEM) of 

three replicates. The statistical significance of the results was determined by measuring the p value. (* indicates 

p-value <0.05). 

 

3.2.2. HRAS G13R overexpression in combination with different TP53 variants effect on MCF10A 

cells migration. 

 

Enhanced cell mobility and cell migration phenotype is one important characteristic of cancer cells. 

HRAS overexpression is found to support this phenotype(Solomon et al., 2010).In contrast TP53 prevent 

cell migration as a defense against cancer progression by different mechanisms (Gadea et al., 2002, 

Gadea et al., 2004, Guo et al., 2003). However, gain of function TP53 mutation as R175H and R273H 

are found to promote cell migration and invasion (Dong et al., 2009, Coffill et al., 2012). Here we 

hypothesized that combination between HRAS G13R mutation and TP53 R175H, TP53 R273H, and TP53 

KO will increase cell migration. In order to investigate this hypothesis, cell migration assay was 

performed. Our results show that combination of HRAS G13R with TP53 R175H show fastest healing 

pattern followed TP53 Wtres + HRAS G13R, while TP53 KO, and TP53 R273H overexpressing HRAS 

G13R both has almost same migration as their control and all of them have higher healing rate than Wtres 

EV (Figure 3.5).In one hand  increased migration in MCF10A TP53 Wtres in combination with HRAS 

G13R correspond with previous studies suggest that HRAS over expression increase cell migration in 
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MCF10A cells in presence of TP53 (Moon et al., 2000). On the other hand, the equivalent migratory 

level between both HRAS G13R and EV in MCF10A TP53 KO and MCF10A TP53 R273H is prove to 

our hypothesis that different TP53 and HRAS will give different forms of transformed phenotypes. 

Regarding TP53 R175H, it was expected to have higher migration when combined with constituently 

active HRAS G13R, because previous study showed that TP53 R175H co-expression with RAS induces 

cell migration in-vitro as well as in-vivo (Jiang et al., 2015).This high migratory phenotype was found to 

be specific for HRAS but not N-RAS and determined by signaling program in hypervariable region (HVR) 

in HRAS(Yong et al., 2011). This migration phenotype is highly connected to cancer ability of metastasis, 

and integration within secondary organ and form colonies (Hanahan and Weinberg, 2011). Overall, 

HRAS G13R migratory phenotype was very similar to HRAS G12V mutation which is the usually studied 

HRAS variant in breast cancer (Koh et al., 2016). 

      

 

Figure 3. 5: Effect of HRAS G13R over expression on the migration of MCF10A cells with different TP53 

variants. Representative pictures taken for indicated cells at 0 hours and 14 hour after wounding cell monolayer. 
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3.2.3. HRAS G13R overexpression in combination with different TP53 variants effect on MCF10A 

cells survival. 

 

One of cancer hallmarks is the ability of cancer cell to grow and survive independently; without the need 

of exogenous growth and survival signals.(Solomon et al., 2010, Hanahan and Weinberg, 2000). To test 

this feature, we performed colony formation assay. In all clones with HRAS G13R overexpression 

MCF10A cell survival increased in different manners with most survival with TP53 R175H (Figure 3.6). 

Of note, all cell lines formed much more colonies compared to MCF10A TP53 Wtres EV cells. Cell 

autonomous growth is a hall mark of cancer cell growth that depends on imbalance between tumor 

suppressor genes like TP53 and oncogenes like RAS. Previous studies have shown that TP53 inhabits 

RAS induced cell survival (Ma et al., 2002). These findings explain the higher survival index we noticed 

in our TP53 manipulated cells. Since TP53 R175H is gain of function mutation, it seems that this 

mutation in our cells has a synergistic effect on cell survival when combined with HRAS G13R mutation 

(Tan et al., 2015). 

 

 

Figure 3. 6 : HRAS G13R overexpression effect on survival of MCF10A cells with different TP53 variants. 

Representative statistical analysis of the survival rate of HRAS G13R overexpressing cells in comparison to EV 

cells using colony forming assay. The relative colony number of each clone was correlated to MCF10 TP53 Wtres 

+ EV clone. Bars indicate standard error mean (SEM) of three replicates. The statistical significance of the results 

was determined by measuring the p value. (* indicates p-value <0.05). 
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3.2.4. HRAS G13R overexpression in combination with different TP53 variants effect on MCF10A 

cells anchorage-independent growth. 

 

Anchorage-dependent cell death (Anoikis) is a form of apoptosis induced in normal cells when they 

detach from surrounding cell-matrix (Frisch and Screaton, 2001).Since MCF10A cells are normal 

epithelium breast cells, they induce anoikis and lack the ability of anchorage independent 

growth(Debnath et al., 2003). However, Cancer cells develop mechanisms to resist this type of apoptosis 

during transformation of solid tumors including breast cancer (Wise et al., 2016) and perform anchorage-

independent growth in absence of extracellular matrix and solid surface(Hanahan and Weinberg, 2011). 

We hypothesized that with combination of HRAS G13R with mutant TP53 will stimulate anchorage-

independent growth and resist anoikis. To test this hypothesis, we performed anchorage-dependent cell 

death assay. It was clear that HRAS G13R overexpression increases cells resistance to anoikis in all 

MCF10A cells compared to EV (Figure 3.7). Of note, MCF10A TP53 R175H cell line show highest 

resistance to anoikis. In the same context, to more investigate the ability of live cells to form colonies 

with anchorage-independent growth phenotype we performed soft agar assay. Soft agar assay results 

show that MCF10A TP53 Wtres + EV failed to form colonies, while all other MCF10A cell lines were 

able to form visible colonies after 10 days with variable capability to do so. For example, the number of 

colonies formed by HRAS G13R infected cells is more than EV control cells. Also, in MCF10A TP53 

KO and MCF10A TP53 R273H infected with HRAS G13R cells was able to form more and larger 

colonies than control EV (Figure 3.8). Between the TP53 manipulated cells, R175H mutation resulted in 

the highest colony number formation compared to other cells. In fact, the ability of MCF10A clones 

TP53 KO, TP53 R275H, and TP53 R175H to form colonies even without HRAS G13R was not surprising 

and conforms to other previous studies which showed that knockout of TP53 from MCf10A cell may 

lead to appearance of clones with ability of anchorage-independent growth (Weiss et al., 2010). So it’s 

expected for mutated TP53 with HRAS G13R clone to become more aggressive and form more colonies 

than in clone that express WT TP53. Also, other studies proved that HRAS-MCF10A cells gain anchorage 

independent growth ability even in the presence of normal TP53 protein (Yoh et al., 2016, Moon et al., 

2000). This speculation is supported by findings of one study which found that HRAS transformed 

MCF10A cells were able to form colonies in soft agar while Bmi-1-transformed cell could not. However, 

co-overexpression of both HRAS and Bmi-1 give more aggressive and invasive phenotypic changes 

(Datta et al., 2007), which supports our findings that demonstrated that double manipulation of HRAS 

and TP53 gives more aggressive phenotypic changes. 
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Figure 3. 7: HRAS G13R overexpression effect on anchorage-dependent cell death of MCF10A cell with 

different TP53 variants. Representative statistical analysis of the anchorage-dependent cell death of HRAS G13R 

overexpressing cells in comparison to EV cells using anchorage-dependent cell death assay. The relative dead cell 

number of each clone was correlated to MCF10 TP53 Wtres + EV clone. Bars indicate standard error mean (SEM) 

of three replicates. The statistical significance of the results was determined by measuring the p value. (* indicates 

p-value <0.05). 
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Figure 3. 8: Soft agar assay. Representative Image at 10X show the colonies shape and size of 

MCF10A cells infected with HRAS G13R VS EV . 
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3.2.5. HRAS G13R overexpression in combination with different TP53 variants effect on 

expression of genes related to different cancer phenotypes. 

 

In order to investigate the gene expression pattern responsible for different phenotypes in MCF10A cells 

with different TP53 variants infected with HRAS G13R, we did real time PCR for specific genes related 

to different cell phenotypes that we examined. The tested target genes were divided into groups according 

to their functions: cell proliferation related genes, epithelial to mesenchymal transition (EMT) related 

genes, and cell death and survival related genes. First of all, when taking a look at all gene expression; it 

was clear that different MCF10A cells express some genes in different manners which comply with our 

hypothesis that different combination may lead to diversity in gene expression as well as appeared 

phenotype. On the other hand, other genes were expressed in the same manner in all cells. And here, this 

group of genes supports our hypothesis behind our bigger group which speculates that the presence of 

common changes and phenotypes between different transformation models could be explained, in part, 

by common gene expression pattern that stems from transcriptional reprogramming. Such common 

reprogramming can be used as molecular markers for cancer diagnosis, prognosis and targeted therapy 

(Figure 3.9). 

After looking at the global pattern of gene expression, we looked at the expression pattern related to 

specific cell phenotypes. Firstly, we looked at proliferation related genes. P21 decreased in KO and 

mutant TP53 MCF10A cells regardless of presence of HRAS G13R. This was expected, because P21 is 

a known TP53 target. Thus when TP53 is deleted or mutated p21 expression is downregulated (Macleod 

et al., 1995).Of note, we noticed that the P21 expression is increased by 1.5 fold in cells harboring Wtres 

TP53 after over expression of HRAS G13R compared to EV cells. This observation is in concordance 

with a previous study which sowed that RAS induction of P21 depend on the presence of WT 

TP53(Swarbrick et al., 2008). The downstream RAS signaling pathway AKT gene was found 

overexpressed significantly (about 1 fold increase compared to EV cells) in all kind of MCF10A cell 

infected with HRAS G13R except MCF10A TP53 R175H in which the expression was the same as 

control, this could be explained since the TP53 R175H mutation found to induce HRAS expression which 

will lead to AKT expression even in EV cells (Solomon et al., 2012). Other important result is that 

Cyclooxygenase 2(COX-2) gene expression increased in all HRAS G13R infected MCF10A cells with at 

least 1.5 folds compared to EV. This gene encodes an enzyme known as prostaglandin endoperoxide 

synthase that catalyzes the rate limiting step in prostaglandin biosynthesis by converting arachidonic acid 

to prostaglandin endoperoxide (prostaglandin H2). Prostaglandin was found to be higher in malignant 
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breast tumors than benign tumor or normal breast tissue. One study relates the increased prostaglandin 

in breast tumors to increased cox expression  and the use of aspirin is known to beneficial in reduction 

of COX related breast cancer risk (Hwang et al., 1998). Thus our results could demonstrate that HRAS 

can increase prostaglandins in breast tumors via COX-2 dependent mechanism (Figure 3.9). 

 

CYCLINB1 expression is correlated in several studies with poor breast cancer prognosis (Aaltonen et al., 

2009).Its downregulated by WT TP53 protein while both R175H and R273H mutation increase 

CYClINB1 expression (Innocente et al., 1999)and previous studies suggest that HRAS enhance cell cycle 

through CYCLINB1 dependent pathway (Santana et al., 2002). In this context, we examined expression 

of CYCLINB1. Generated models show different changes in expression pattern of CYCLINB1. While 

with MCF10A TP53 Wtres the HRAS G13R overexpression increases CYCLINB1 by 0.5 fold compared 

to EV, it has little effect on MCF10A TP53 KO, MCF10A TP53 R273H, and MCF10A TP53 R175H. 

This expression can be correlated to insignificant difference that we observed in cell proliferation rate in 

those three models. Also we have investigated expression of C-MYC, which also promote cell cycle and 

proliferation. In addition, it’s upregulated in high-grade breast cancer and connected to cancer resistance 

to anti-cancer therapy (Fallah et al., 2017).  Also, it’s known that TP53 represses C-MYC expression 

through miR-145(Sachdeva et al., 2009). On contrast, HRAS enhances C-MYC activity (Sears et al., 

2000). Here, the effect of HRAS overexpression was almost the same as EV in all generated models. This 

can be explained by previous study result, which found that HRAS G12V can enhance C-MYC by 

stabilizing protein product not by increase it on transcriptional level. However to elucidate how HRAS 

G13R regulate C-MYC further investigation is needed (Kapeli and Hurlin, 2011) (Figure 3.9). 

 

Previous reports found that TP53 control several genes related to EMT, migration and invasion. Those 

genes include SLUG and SNAIL(Muller et al., 2011). Other reports demonstrated that RAS oncogene 

induce migration and invasion by altering specific genes like, SNAIL and SLUG (He et al., 2015, 

Horiguchi et al., 2009, Lamouille et al., 2014). In our effort to reveal the molecular changes that produce 

the different migration and invasion phenotypes we tested expression of genes which are important in 

breast cancer progression like SLUG, SNAIL, and WNT5A (Fernandez-Cobo et al., 2007, Huang et al., 

2017, Vuoriluoto et al., 2011, Wang et al., 2016). In addition, we tested TP63, and TIMP2. Our results 

show differential expression of different EMT markers. While SNAIL was almost not affected, SLUG 

shows higher expression in TP53 R175H cells (8 folds), which is in concordance with the migration 

phenotype we observed with this cell line (Figure 3.5). WNT5A was overexpressed in all MCF10A with 

different TP53 variants after HRAS G13R overexpression. The expression folds of WNT5A was variable 



33 
 

between different generated clones (Figure 3.9). This result was expected since WNT5A expression is 

correlated EMT transition (Gujral et al., 2014). This overexpression of WNT5A could be with great value 

in therapeutic field of breast cancer because previous study proposed WNT5A as a therapeutic target 

(Prasad et al., 2018). TP63 is down regulated in all HRAS G13R infected MCF10A cell lines. This 

downregulation corresponds with previous study suggest that increased EMT in HRAS transformed cells 

is mediated by RAS down regulation of TP63 (Yoh et al., 2016). Other EMT related gene is TIMP2 which 

found to be increased in all HRAS G13R infected MCF10A cells except the one with TP53 Wtres. This 

is thought to be expressed as a defense mechanism against migration and invasion since previous study 

proved the ability of TIMP2 overexpression to inhabit HRAS induced migration in dose dependent 

way.(Ahn et al., 2004). Overall different TP53 variant can induce different invasive phenotypic changes 

with HRAS G13R overexpression combined with different EMT genes expression pattern (Figure 3.9). 

 

We also investigated cell death and survival group of genes to elucidate molecular mechanism of 

transformed cell ability to overcome anchorage-dependent cell death (anoikis) and colony formation in 

soft agar. It’s well known that wild-type TP53 increase normal cells sensitivity to anoikis while mutated 

TP53 induce breast cancer survival and anoikis resistance (Lim et al., 2009, Tan et al., 2015). To test the 

balance between pro-apoptotic and anti-apoptotic genes we investigated two main player in apoptosis; 

pro-apoptotic gene BAD and anti-apoptotic gene BCL2 (Chipuk et al., 2004). BCL2 increased in all cells 

with highest folds showed by MCF10A TP53 Wtres (7 folds) (figure 3.9). BAD is BCL2 antagonist pro-

apoptotic gene. Previous report suggested that BAD is not only downregulated in breast cancer but also 

its upregulation can help in anti-invasiveness effect in addition to promotion of mitochondrial-mediated 

apoptosis(Cekanova et al., 2015). Here the BAD expression almost not affected by HRAS G13R 

overexpression in MCF10A cell with different TP53 variant which suggest that HRAS overexpressed cell 

avoid anoikis is not mediated by regulation of BAD gene except for MCF10A R175H which shows BAD 

downregulation (Figure 3.9). The slight downregulation of BAD in TP53 R175H cell can be more 

investigated to indicate if mutated TP53 interact or regulate BAD since previous study demonstrate TP53 

BAD interaction(Jiang et al., 2007). Finally, we investigated expression of PDL-1 gene. Several studies 

reported that high expression of PDL-1 is with clinical benefits(Sun et al., 2018). Fortunately, in all 

MCF10A with different TP53 variants HRAS G13R overexpression increased PDL1 in a significant way 

(Figure 3.9). With at least 4 folds increase in PDL-1 in MCF10A with HRAS G13R overexpression 

compared to EV. This gene was previously reported that HRAS increases its expression through 

stabilization of PDL1 mRNA, and could be a therapeutic target (Coelho et al., 2017). 
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 Altogether, in this study our results show that different combinations between different mutations in 

cancer will rise into different phenotypes that underlined by different gene expression patterns. One 

limitation of this study is the rarity of G13R mutation in breast cancer which makes it hard to study this 

mutation real human breast tissue. Also, to our knowledge, there are no previous studies on this mutation 

in breast cancer. So in order to further investigate the effect of these combinations in vivo we need to 

generate mouse models. But if we look at this model as a part of bigger project that aim to identify 

common transcriptional changes, this model is one of many models that we are going to generate in this 

large project and the use of HRAS G13R mutated gene in this study; despite that its not common in breast 

cancer; can be explained since it comprises one of many models that we are going to generate. The 

presence of even rare type of breast cancers will help in detection of more universal changes in breast 

cancer. In other words the heterogeneity of breast cancer can be covered by including rare types of cancer.    

4. Conclusion and future outlook. 

 

Although G13R is not an HRAS common mutation in breast cancer, we used it as a proof concept to show 

that although there is heterogeneous molecular changes in breast cancer still there are common changes 

that can be used as biomarker for breast cancer diagnosis, prognosis, and therapy. Overall, here we 

demonstrate that HRAS G13R interacts with different TP53 variants in different ways to induce different 

tumorigenic and aggressiveness cell phenotypes. On the molecular level, we noticed that the expression 

pattern of some genes was variable and differential between different cell lines. On the other hand, we 

noticed that the expression pattern of specific genes was common between all tested cell lines. This 

indicate that despite the heterogeneity in breast cancer we still have common molecular changes that can 

be used as molecular markers in breast cancer. Our future aim is to generate more breast cancer cell 

models that will be used to better understand the pathogenesis of breast cancer especially transcriptional 

reprogramming. In specific our major goal will be to identify common changes between different 

transformation models in order to identify biomarker for breast cancer diagnosis, prognosis, and therapy. 
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Figure 3. 9. Real time PCR results showing the relative expression level of different genes correlated to the 

house keeping gene UBC. All gene expression folds were calculated relative to the expression of level in normal 

MCF10A cell (parental). Bars indicate standard error mean (SEM) of three replicates. The statistical significance 

of the results was determined by measuring the p value. (* indicates p-value <0.05) 
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6. Appendix: 

 

6.1.Appendix 1: plasmid construction: 

 

 Figure 1: pCL-Eco plasmid from addgene website accessed in 14-1-2020 

(https://www.addgene.org/browse/sequence/254697/) 

 

https://www.addgene.org/browse/sequence/254697/
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Figure 2: VSV-G plasmid from addgene website accessed in 14-1-2020 

(https://www.addgene.org/browse/sequence/221993/) 

 

https://www.addgene.org/browse/sequence/221993/
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Figure 3 : pWZL hygro H-Ras G13R: pwzl hygro backbone from addgene accessed in 14-1-2020 

 

6.2.Appendix 2: Table of used primer: 

 

NO Gene Primer Refernce 

1 HRAS F.P_5'- tgccatcaacaacaccaagt-3' 

R.P-5'- agccaggtcacacttgttcc-3' 

NM_001130442.2 

2 P21 F.P 5’- cgtcaaatcctccccttcct-3’ 

R.P 5’- atgggttctgacggacatcc -3’ 

NM_001291549.1 

3 AKT F.P 5’- cacaaacgaggggagtacat-3’ 

F.P 5’- tgcgccacagagaagttg-3’ 

NM_009652.3  

4 COX2 F.P 5’- tcccttccttcgaaatgc-3’ 

F.P 5’-aggttagagaaggcttcccag-3’ 

NM_000963.4  

https://www.ncbi.nlm.nih.gov/nuccore/NM_009652.3
https://www.ncbi.nlm.nih.gov/nuccore/NM_000963.4
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5 CYCLINB1 F.P_5'- gtcaccaggaactcgaaaat -3' 

R.P-5'-ttaccaatgtccccaagagc-3' 

NM_031966.3 

6 C-MYC F.P 5’- tagtggaaaaccagcagcct-3’ 

F.P 5’- ctcgtcgcagtagaaatacgg-3’ 

NM_002467.6 

7 SLUG F.P_5'- atacagtgattatttccccg -3' 

R.P-5'- agcggtagtccacacagtga-3' 

NM_003068.4 

8 SNAIL F.P_5'- acactggcgagaagccctt -3' 

R.P-5'- gcctggcactggtacttctt -3' 

NM_005985.3 

9 WNT5A F.P-5'- atgaagaagtccattggaat -3' 

R.P-5'- ctgggcgaaggagaaaaata -3' 

NM_003392.4 

10 TP63 F.P-5’- acaggaagacagagtgtgct-3’ 

F.P-5’- catccctccaacacaactgc-3’ 

NM_003722.5 

11 TIMP2 F.P-5’-agcagataaagatgttcaaaggg-3’ 

R.P-5’ttctttcctccaacgtccag-3’ 

NM_003255.5 

12 BCL2 F.P-5'- gccctgtggatgactgagta-3' 

R.P-5'- gaaatcaaacagaggccgca-3' 

NM_000633.2 

13 BAD F.P_5'- ctcctttaagaagggacttc-3' 

R.P-5'- gatgtggagcgaaggtca-3' 

NM_004322.3 

14 PDL-1 F.P-5’- tgaaagtcaatgccccatac-3’ 

F.P-5’- ttgatggtcactgcttgtcc-3’ 

NM_014143.4  

15 HUBC 

 
F.P 5’- gtcgcagttcttgtttgtgg-3’ 

R.P 5’-gatggtgtcactgggctcaa-3’ 

NM_021009.6 

 

 

 

 

 

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/nuccore/NM_002467.6
https://www.ncbi.nlm.nih.gov/nuccore/NM_003722.5
https://www.ncbi.nlm.nih.gov/nuccore/NM_003255.5
https://www.ncbi.nlm.nih.gov/nuccore/NM_014143.4
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 الملخص

 

يعد سرطان الثدي أكثر أنواع السرطان شيوعا لدى النساء، وهو المسؤول الاول عن الوفيات لدى النساء في العالم. 

ان اختلال التوازن في الخلية بين الجينات المسرطنة والجينات المثبطة هو من اهم أسباب نشوء الورم السرطاني في 

حد هذه الجينات. ان التغير الذي تنشئه الطفرات في عملية الجسم، ويظهر هذا الخلل عادة بسبب حدوث طفرة في أ

التعبير الجيني لمختلف الجينات في سرطان الثدي عادة ما يكون كثير التنوع ويظهر طرزا شكلية مختلفة. من خلال 

عة. تؤدي الى تعبيرات جينية متغايرة ومتنو TP53العمل المبدئي لمجموعتنا تبين ان مختلف انوع الطفرات في جين 

 TP53بالإضافة الى طفرة مختلفة من HRAS G13Rمن هذه النتيجة افترضنا ان عمل عدة نماذج لخلايا تحوي جين 

 HRASفي كل نموذج سيؤدي الى ظهور طرز شكلية وتعبيرات جينية متنوعة. لاختبار هذه النظرية قمنا بإدخال جين 

G13R  الى خلايا من نوعMCF10A ختلفة في جين تحتوي كل منها على طفرة مTP53 ثم قمنا بفحص علامات .

بالإضافة لفحص التعبير الجيني لجينات محددة. أظهرت النتائج ان ادخال  (cancer hallmarks)السرطان الأساسية 

أدى الى زيادة القوة السرطانية للخلايا سواء من حيث سرعة النمو والقدرة على الانتقال  HRAS G13Rجين 

لخلايا لعملية الموت المبرمج بدرجات متباينة. وقد صاحب هذه التغيرات اختلاف في التعبيرات بالإضافة الى تخطي ا

الجينية لكل خلية. بالإجمال وفرت هذه الدراسة نموذج لدراسة تأثير حدوث طفرتين في الخلية على تطور السرطان، 

في سرطان  TP53و HRASمن جيني بالإضافة الى ذلك فان هذا النموذج يمكن من خلاله دراسة الية تداخل كل 

  الثدي بما يساعد في تشخيصه وعلاجه.  

 
 

 

 

 




