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Abstract 
 

This work is concerned with the numerical solution of the heat radiation equation and 

 the mathematical analysis of the problem involving coupling radiation with heat 

conduction. First , we present a systematic derivation of the equation of the heat 

radiation. This is proceded by thorough definitions of all quantities needed to derive 

this equation. As the governing equation of radiation is a Fredholm integral equation, 

the idea of using the boundary element method to the solution of this equation 

naturally arises. Hence only the boundary of the domain needs to be discretized. This 

is equivalent to a reduction of the dimensionality of the problem by one. This 

reduction leads to a substantial time economy in both data preparation and 

computing. The typical discretization  used in boundary element method is the 

Galerkin-Bubnov scheme. This discretization process transforms the governing 

integral equation to a linear system of algebraic equations. As the linear system is 

symmetric and positive-definite we use the conjugate gradient method to solve it. To 

demonstrate the high efficiency of this iterative method, we construct a numerical 

experiment for two-dimensional convex enclosure geometries.  

Moreover, we analyze a model for the radiative heat transfer in materials that are 

conductive, grey and semitransparent. The most important feature of this model is 

the non–local interaction due to exchange of radiation. This, together with the 

nonlinearity arising from the well–known Stefan–Boltzmann law, makes the 

resulting problem non–monotone. We will prove that the operator defining the 

problem is pseudomonotone. Hence we can prove the existence of weak solution for 

the cases where the coercivity can be obtained. 
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In the general case, we prove the solvability of the system using the technique of sub 

and supersolutions. 
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 الملخص
 

 

لذلك نقوم , المتقدمة بالطرق الرياضية الحراريوالتوصيل الأشعاع  دراسة وتحليل ظاهرتي

  .هي عبارة عن معادلة تكاملية من النوع الثاني الحراري والتى الاشعاعبداية باشتقاق معادلة 

 "Fredholm integral equation of the second kind".          والتي تعرف ب  

   Boundary element method باستخدام طريقة تحويل هذه المعادلة التكامليةم ومن ث

النظام  اهذحل  بالتالي و. خطية تمعادلانظام الى  scheme   Galerkinوالذي يعتمد على

 . Conjugate gradient method    ستخدام طريقةالخطي با

مع  الحراري فيه ربط  الاشعاع يتم الذي  النظام فحص وتحليلعلى ذلك نقوم ايضا ب علاوة

 . Boundary value problemالمعطي على شكل التوصيل الحراري و

 .نتيجة للاشعاع الحراري محليالغير  صفة التفاعل هي النظاممن أهم صفات هذا  

 المشكلةبولتزمان  يجعل   –من قانون ستيفان  ةالناتج ةالغير خطي وبالاضافة الى الصفة  اهذ 

non-monotone  . لقد قمنا ببرهنة انOperator  الذي يعرف هذة المشكلة

في الحالات  Weak solutionنتيجة لذلك قمنا ايضا ببرهنة وجود  . Pseudomonotoneهو

في الحالة العامة قمنا ايضا ببرهنة وجود حل للنظام باستخدام .  Coercivityالتي يوجد فيها 

Sub and supersolutions . 
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Introduction 
 

 
       All bodies at high temperatures emit energy in a form of electromagnetic waves. 

A portion of this energy when impinging other bodies is absorbed. As a result, net 

energy flow occurs from a body of higher temperature to a body having lower 

temperature. This mode of energy transfer is called heat radiation. Heat radiation is, 

as each wave propagation phenomenon, of dual nature. It possesses the continuity 

properties of electromagnetic waves and the corpuscular properties characteristic of 

photons.  

Radiation plays a very significant role in energy transfer at elevated temperatures and 

in the presence of rarefied gases. The amount of heat transported by radiation in 

industrial furnaces and combustion chambers typically reaches 90%. Heat exchange 

in space and solar heating devices is 100 % due to heat radiation. Even at relatively 

low temperatures characteristic of central heating systems, nearly half of the heat is 

transferred by radiation. Thus, radiative heat analysis constitutes the crucial portion 

of the calculation of temperature fields in various branches of science and 

technology.  

Owing to the progress in computer technology, mathematical modeling has become a 

cheap and reliable tool of engineering design. Almost all phenomena that scientists 

deal with are governed by differential equations. There are many well established 

numerical techniques for solving differential equations of mathematical models. 

Radiation is one of the few phenomena that is governed by an integral equation. This 

feature is a source of both conceptual and computational difficulties to most 

scientists and engineers whose mathematical backgrounds are based on differential 
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equations. Additional complexities inherent in heat radiation computations result 

from the severe nonlinearity and very complex characteristics of the material 

properties appearing in the radiation transport equations. Another important energy 

transfer mode is heat conduction. The difference between heat radiation and heat 

conduction can be discussed briefly as follows. First the physical consequences 

arising from the nature of the integral equations will be pointed out. Consider a point 

laying on a boundary of an enclosure formed by solid walls. The temperature field 

within the solid walls is obtained upon solving a differential equation. The 

conductive heat flux is then obtained by differentiation of the temperature field at 

that point. Thus, the conductive heat flux depends mostly on temperatures laying in 

the close vicinity of the point under consideration. Radiative heat flux gained by a 

point laying on the concave surface of the solid is obtained upon solving an integral 

equation. This means that the radiative flux depends on all the temperatures of this 

surface. Contrary to the case of heat conduction, temperatures at points laying far 

from the considered point can significantly influence the heat flux at that point. 

Moreover, temperatures in the nearest vicinity of the point under consideration often 

do not exert any influence on the radiative flux at this point. Because radiation is 

transporterd via electromagnetic waves, it can be transferred even a vacuum. Other 

heat transfer modes, i.e. conduction and convection, require a physical medium for 

heat interchange to occur.  

The simplest possible case of radiative heat exchange is two parallel isothermal black 

surfaces separated by a transparent medium. The Steffan–Boltzmann law states that 

in this case the heat flux is proportional to the difference of the fourth powers of the 

surface temperatures. This is in contrast with conductive heat transfer where the heat 
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flux is proportional to the temperature gradient. Typically, material properties 

entering the equations of radiative transfer depend strongly on the length of the 

electromagnetic wave. In the case of gases this dependence assumes a very complex 

form, arising from quantum mechanics. 

Another characteristic feature of radiation is that it can be transferred directly from 

one location to another only when one point can be 'seen' when looking from 

another, i.e. it does not lay in a shadow zone. The presence of shadow zones should 

be taken into consideration in heat radiation calculations. This leads often to complex 

algorithms and long computing times, see for example [10, 11, 12]. Most of heat 

transfer problems are solved now a days using numerical method. The common 

feature of these numerical methods is the discretization of the problem, i.e. 

transforming the governing equations to a system of algebraic equations. There are 

three discretization methods among many other available techniques that are 

commonly used to solve heat transfer problems. These are Finite Differernce Method 

(FDM), Finite Element Method (FEM) and Boundary Element Method (BEM). The 

popularity of these methods is due to their simplicity and practicality in solving these 

types of problems. As the governing equation of radiation is an integral one, the idea 

of using the boundary element method to the solution of radiation problems naturally 

arises. Employing BEM for the solution to the heat radiation problems has been 

addressed in the literature [1, 4, 13, 14, 15, 16]. This technique is proved to be 

efficient and easy to implement. Because the integral equation of the BEM is 

formulated usually only on the boundary of the domain, hence only the boundary 

needs to be descretized. It is equivalent to the reduction of the dimensionality of the 

problem by one. This reduction leads to a substantial time economy in computing. 
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This thesis is organized in the following manner: The initial part of Chapter 1 

contains general characteristics of heat radiation and the derivation of the radiation 

integral equation. Chapter 2 contains the details of the boundary element method 

discretization technique applied to the heat radiation integral equation. This 

discritization scheme will transform the integral equation into a set of algebraic 

equations. In Chapter 3 we present an efficient iterative method called Conjugate–

Gradient method to solve this linear system including some numerical examples. 

Chapter 4 examines the problem of coupling radiation with heat conduction. We 

analyze a model for the radiative heat transfer in bodies that are conductive, grey and 

semitransparent.   
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Index of Special Notation 

 
 

 nR                   Euclidean n–dimensional  space    
 

 R                    The set of all real numbers 

 

                     Solid angle 

 
Ωd                   Differential solid angle 

 
                      Azimuth angle 
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                         Wavelength 

 

                         Absorptivity 

 

                          Scattering 

 
xQ                    Radiative heat flux. 
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y                         The angle between the line of sight and the normal at point  y 
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Chapter 1 

 

Formulation of the problem 

 
 

The heat flux of radiative energy emitted by an element blackbody surface known as 

the blackbody emissive power can be computed upon integrating the normal 

component of the intensity vectors over the hemisphere centered at that surface, 
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where bJ  is the blackbody intensity of radiation. We can express the differential 

solid angle  Ωd  in terms of the polar angle    and the  azimuth angle     by  
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By virtue of equation (1.2) and performing an appropriate integration, equation (1.1) 

yields 
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Equation (1.3) links the intensity and the emissive power of the blackbody. The 

blackbody spectral emissive power can be expressed as a function of temperature and 

wavelength, that is, 
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Equation (1.4) is known as the Plank's function, where     is the wavelength, T  is 

the temperature, 1c and 2c  are constants which have the value 216 .1059544.0 mW  

and Km.104388.1 2  respectively. 

 

The energy emitted by a unit blackbody surface in a unit time within the entire 

spectrum can be computed from the Stefan–Boltzmann law 
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where   is the Boltzmann constant which has the value ).(/10669.5 428 KmW . 

Let  J  denote the intensity of radiation emitted in a direction inclined by an angle   

to the surface normal. For surfaces that are diffusive and gray as emitters and 

reflectors the emissivity     does not depend on the direction. It follows  
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                      bJJ                                                                                   (1.6) 

 

 

 

Consider an elemental surface impinged by rays incoming from all directions. In this 

case only normal components of the incoming intensity vectors contribute to the 

energy absorbed by the surface. Let     be the angle made by the incoming ray and 

the normal to the surface, the irradiation can be written as  
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where  iJ   is the radiation intensity incident on the infinitesimal surface from the 

direction inclined by    to the normal. For diffusively reflecting and emitting 

surfaces, radiosity and irradiance are related by a simple heat balance over the 

infinitesimal surface. That is, ( see [20] ) 
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where )1(    is the reflectivity. 

 

Let  xQ   be the radiative heat flux defined by  
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In view of equations (1.1) and (1.7) equation (1.9) can be written as  

 

 

 

 

                      b

x EiQ                                                                            (1.10) 

 

 

 

With the help of equation (1.8), equation (1.10) takes the form  
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Let  oJ   be the radiation intensity leaving the surface in the direction inclined by the 

angle    to the normal. This outgoing radiation associated with an elemental solid 

angle can be expressed as  
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Integrating equation (1.12) over the solid angle 2  yields  
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To this end, the intensity of radiation leaving the surface can be written in terms of 

emissive power and radiative heat flux. Inserting (1.11) into equation (1.13) gives 
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Consider a pencil of rays traveling from point  x  to point  y  a long a line of sight. 

The increase of radiation intensity taking place as the radiation passes an 

infinitesimal path along the line of sight can be described by a differential equation 

see [21]. 
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where  xyLd   is the infinitesimal path along the line of sight and mT  denotes the 

temperature of the medium. Let )(xJ  denote the intensity of the point where the ray 

originates and  )(xTJ m

b  denote the intensity of radiation of blackbody having a 

temperature at point  x. Hence the integrated equation of radiation can be written as  
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According to equation (1.14) the intensity outgoing from the surface in a direction of 

the line of sight can be expressed as a linear combination of radiative flux and 

blackbody emissive power. Taking into account, and making use of equation (1.3) to 

replace the blackbody intensity by its emissive power, equation (1.16) can be written 

into the form  
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An alternative form can be obtained by substituting equation (1.17) into the heat 

balance on the unit surface equation (1.9). The resulting equation reads as  
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where  y  denotes the angle between the line of sight and the normal at point  y. The 

integral in equation (1.18) can be converted to a surface integral. This can be 

accomplished by noting that the infinitesimal solid angle can be expressed in terms 

of the infinitesimal area of the bounding surface  
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where  yx   stands for the distance between the points  x and y.  

 

Setting equation (1.19) into equation (1.18) we obtain the boundary integral equation 

of radiation  
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where the kernel ),( yxG  denotes the view factor between the points  x and  y of  S. 

For two–dimensional enclosure geometries ),( yxG  has the representation [15], [16] 
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Moreover, for three–dimensional enclosure geometries ),( yxG  has the 

representation [15], [16] 

 

 

 

                   
   

4

)(.)(.)(.)(
),(

yx

xyynyxxn
yxG







                               (1.22) 

 

 

 

The visibility function ),( yx  appearing in equation (1.20) takes into account the 

shadow zones and is defined by [15], [16]  
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In fact equation (1.20) can also be written in the more simplified form ( see for 

example [13] ), 
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This is a Fredholm integral equation of the second kind with the kernel ),( yxG  as 

defined in (1.21) – (1.22).    

The properties of the radiosity equation (1.20) have been thoroughly investigated in 

[12] [16].  
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Chapter  Two 

 

 

 

Discretization and boundary element method 

 

 

 
2.1.    Boundary element method and 

                Galerkin discretization 
 

 

 

 

In a two–dimensional case we let S be a curve that is given by a regular parameter 

representation [19]. 
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Let   rd

hS ,  be a family of 1–periodic piecewise polynomials of degree (d – 1) with 

respect to the partition h  in the sense of Babuska an Aziz [2] which is (r –1) times 

continuous and differentiable. We denote with )(tk the basis trial functions with a 

smallest possible support (B–splines) (see Fig.1). The approximate solution has the 

general form  
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where  n  is the number of free grids and RQk  , k = 1,……….,n are the partition 

coefficients. On partition in the parameter domain we use 1,1m

hS –Lagrange–System of 

finite elements. Then the local representation of S  transplant these finite element 

function onto hS . The ansatz function (2.1.3) on hS  will then be defined by  
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Fig.1 
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2.2      Representation of System of Equations  

 

 

 
The Fredholm integral equation (1.24) can be expressed as  
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We let 
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The Galerkin discretization of the integral equation (1.24) with the ansatz function 

(2.1.3) is given by  

 

                



n

k

SnlnkkSnl

n

k

Snlnkk KQgQ
1

,,,

1

,, ,,,      (2.2.3) 

 

 

 

 



 

 

13 

Equation (2.2.3) can be written in the following short form: 
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nklBB kl ,.....,1,)( ,   for the view factor matrix with  

 

 

 

           

   

1

0

,

1

0

,,,, )()()(),()()(1,  ddtxtxtGttKB nknlSnlnkkl
   

                                                                                                                         (2.2.6)    

 

 

and the vectors nkQa k ,.....,1)(   and nlgb Snl ,.....,1,, ,  . 

 

 

Properties of the matrices 

 
 

 

The mass matrix A in (2.2.4) is symmetric, positive definite and diagonal dominant 

hence it is invertible. Let maxmin and  be the minimum and the maximum 

eigenvalues of  the matrix  A, respectively. Then follows the known estimations 
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2

max

2

min 22 ),(
lnl

QQQAQ                                                 (2.2.7) 

 

 

 

           
2

max

12

min

22

1
),(

1
lnl

QQQAQ


                                      (2.2.8) 

 

 

 

 

where  ( . , . )  denotes the Euclidean scalar product of  nR   with 
2

2),(
l

QQQ  . 

Furthermore  

 

           max2 
lnA , min1

2

1




l
nA

.                                                   (2.2.9) 

 

 

 

Also the system of equations )( nn BA  is symmetric and positive definite. Since the mass 

matrix A is invertible, equation (2.2.4) can then be expressed in the form  

 

 

           nnnnn bAaBAI 11 )(                                                          (2.2.10) 

 

 

 

Equation (2.2.10) can also be written as  

 

 

           nnnn QKgQ  ,                                                                     (2.2.11) 

 

 

where nn aQ  , nnn bAg 1 , nnn BAK 1 . 
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Chapter  Three 

 
 

Iterative method and numerical results  
 

 
3.1    Conjugate Gradient Iteration  
 

 

 

In this section we apply a general iteration method for solving simultaneous linear 

system, one called the conjugate gradient method, to the solution of discretizations of 

integral equations of the second kind. The conjugate gradient method is restricted to 

solving linear systems   

 

 

 

                    lll baC                                                                                       (3.1.1) 

 

 

where 

 

 

                   )( lll BAC  . 

 

 

 

It is an effective method for symmetric and positive definite systems. 

 

This CG–iteration is given by the following algorithm [8]: 

 

 

1. Choose an initial vector 0

la  and compute lll baCr  0

0  . 

 

Set   00 rp   and  0k  
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2. Compute  

                                                

                                                 
kl

T

k

k

T

k

k
pCp

pr
  

 

                                                       kk

k

l

k

l paa 1    

               

                                                       1

1



  k

llk aCr   

                                                      

         

      3.    Stop if   


2

21

k

k

r

r
   

 

 

 

4.    Compute  

 

 

                                                       
kl

T

k

kl

T

k

k
pCp

pCr 1    

                                                         

                                                       klkk prp   11  .  

 

 

 

 

Convergence of the conjugate gradient method  
 

 

From [13] follows that  

 

 

 

          
)()()( 222 ,.)2(,,.

SLSLSL
QQQQAQQ                               (3.1.2) 

 

 

where  A = (I - K). 
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Let  )(2 SLHQ l   then we define  

 

   

 

         



ln

k

kk tQtQ
1

)()(                                                                             (3.1.3) 

 

 

 

Set equation (3.1.3) into (3.1.2) we get 

 

 

 

 

       

2

)(1

)(
,

2

)(1

2

2

2

.)2(

,.

SL

n

k

kk

SLjk

n

jk

jk

SL

n

k

kk

l

ll

Q

AQQQ

















                                     (3.1.4) 

 

Now  

 

       

),()()(

)(

1

0,

2

1

1

0

2

)(1 2

QQAdtttQQ

dttQQ

ljk

n

jk

jk

k

n

k

k

SL

n

k

kk

l

ll










             (3.1.5) 

 

 

Substituting (3.1.5) into (3.1.4) yields 

 

 

       ),()2(),(),( QQAQQCQQA lll   .                                          (3.1.6)   
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Theorem 3.1.1  

For a positive matrix lC  converges the conjugate gradient iteration with the 

convergence estimation [9]  

 

 

 

                        
 

  ll C

k

l

l

C

k e

C

C
e 0

2

1

2

1

1)(

1)(
2























                                      (3.1.7)  

 

where  

 

                       
ll C

l

k

l
C

k aae       

 

 and        

 

                      
ll C

ll
C

aae  00  . 
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3.2     Numerical results 

 

 

3.2.1  Numerical examples for the solution of the system 

          of equations 
 

 

 

Since the convergence requirements of the CG–iteration method is satisfied [13], 

then we can apply now this method to solve the two–dimensional convex enclosure.  

 

Convex Enclosure  
 

 

Example  

 

Let  Ω  be the domain of an ellipse. The boundary of this ellipse has the following 

parameterization 

 

 

 

                  
















 10,2,4,

2sin

2cos
:2 tba

tb

ta
xRxS




           (3.2.1) 

 

 

 

 

The computation of the coefficients   

 

 

 

 

                   nlnkklA ,,, , ,   nln gb ,,  ,  nlnkkl KB ,,, ,  

 

 

 

 

have been carried out by Gaussian quadrature form.  
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Here we have )()()( 4 tTttg   with 

The emissivity coefficient  9.0  

The Boltzmann coefficient 8106696.5      and 

The surface temperature     tTTTTtT 2cos
2

1

2

1
)( 1221  ,where           

10001 T  and 18002 T  .  

Table ( I ) shows the numerical results for the solutions by using CG –iteration 

method for the ellipse. The number
ln  denotes the dimension parameter of the solved 

problem and  l  is the level number.  

 

 

 

 

 

 

 

Table I. conjugate gradient scheme 

 

CG           ln 
Sec  Iter 

  

<1   16  

  

32   

<1   18  

  

64   

<1   19  

  

128  

0.51  20  

  

256  

2.05  20  

  

512  

8.16  20  

  

1024 
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 Chapter Four 

 

 

Coupling heat radiation with conduction 
 

 

4.1   Introduction  
    

          

  Let us consider a three–dimensional connected domain   filled by conductive–

semitransparent and gray material. We assume that   is surrounded by an opaque 

medium and we denote the boundary of     by   . If we assume that the system is 

at steady state, the temperature field is modeled by stationary heat equation that is 

augmented by the terms modeling radiative heat exchange. Locally, the role of 

radiation is that of an additional heat source. Hence we can write the balance 

equations for absolute temperature   T   as 

 

 

 

 

                  ΩinradhfΔTk                                           (4.1.1)                  

 

 

 

                  Γonradqg
n

T
k 



                                            (4.1.2) 

 

 

 

where radh  is the heat source due to radiation, radq  is the heat flux due to radiation, k 

is the coefficient of heat conductivity and  f  and  g  are known data, namely the 

internal heat source and the heat flux coming to the surface from outside of the 

system.  
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We denote by  iQ
~

  the amount of emitted and scattered radiation in the volume, and 

by sQ
~

 the corresponding quantity on the surface. Here we distinguish with “ ~ ” the 

physical variables from their scaled variants that are used in mathematical analysis. 

The radiative heat source can be written as  

 

 

 

 

                    isisiiirad QQKQKγ)(αh
~~~~~

                                         (4.1.3) 

 

 

 

 

Where s

~~~~
QKQK isiii   is the amount of incoming radiation, 0α  is  

emission absorbtion coefficient and 0γ  is the scattering coefficient. 

isii KK
~

and
~

 are integral operators with kernels defined on ΩΩ   and Ω , 

respectively. On the radiating boundary we have the radiative heat flux 

 

 

 

  

                  ssssisirad QQKQKq
~~~~~

                                                      (4.1.4)   

 

 

 

 

with similar interpretation. The radiosities si QQ
~

and
~

 depend on the temperature in 

a non–linear and non–local fashion. Namely, we have that radiosity at a point is a 

sum of Stefan–Boltzmann radiation emitted by the point and the scattered reflected 

part of incoming radiation. Thus, we can write  
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                   sisiiii QKQKγTζαQ
~~~~

4
~ 4                                    (4.1.5)  

         

 

 

 

                   sssisis QKQKεTζεQ
~~~~

)1(
~ 4                                (4.1.6) 

 

 

 

   

where 10  ε  is the emissivity coefficient of the surface. In the some cases the 

radiative coefficients εγ,α and  may depend on temperature. However, in this 

thesis we shall restrict ourselves to materials which do not have this property. To this 

end, the organization of this chapter is as follows: In section 2 we derive in detail the 

model that was sketched above, in section 3 we analyze the integral operators 

appearing in the model. Furthermore, we show that  si QQ and  can be solved from 

(4.1.5) and (4.1.6), so that (4.1.1) – (4.1.2) can be viewed as a non–linear and non–

local problem for T alone. In section 4 we study the solvability of the problem. The 

main problems are that 4T  is not necessarily integrable on the boundary when T is in 

),(1 H  and that the problem is not monotone. First we consider situations where we 

have sufficient a priori information to deal with  4T  on the boundary. This means 

that either T is known on   or we can prove the coercivity in  )Γ()( 51 LH  . The 

case lacking the proof of coercivity is more difficult. However, we can prove the 

solvability provided there exists a pair of sub–and supersolutions. Then we give 

some examples of cases where the super–and subsolutions can be constructed. 

Throughout this thesis we shall assume that Ω  is connected and it has Lipschitz  

boundary, that is, the boundary   can be locally presented as a graph of a Lipschitz 

function.  
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We shall also use the standard Lebesque and Sobolev spaces, for their notation see 

for example [ 6 ]. We denote by )( f  the positive part of a function fff )(:  

when  f > 0  and 0)( f  otherwise. We shall call an operator positive, if it maps 

nonnegative functions to nonnegative functions.  
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4.2   Heat radiation model 
 

 

 

The basic theory for radiative heat transfer is well established in [20, 21]. However, 

the point of view and notation adopted in this thesis is some what different to those 

references. Hence we try to give brief introduction to the basic principles behind the 

radiative terms   radrad qh and . 

 

 

Interior heat balance  

 

Let x be an interior point of a three–dimensional semitransparent material Ω . The 

radiative heat source at x equals to the difference between absorbed and emitted 

energy. In addition, part of the radiation may be redirected by scattering. Moreover, 

let  J(w)  be the intensity of radiation that is incident from direction  w, and  )(ˆ wQi   

be the intensity of radiation that leaves  x to direction   w   due to emission and 

scattering. Then the radiative heat source is given by  

        

 

 

        ,)(
~

)()()( xQdwwJxγxαh i

S

rad                                        (4.2.1)     

                                    

 

 

where  S  is the surface of the unit ball , α   is emission absorption coefficient and 

γ  is the scattering coefficient. In fact these coefficients depend on both direction w 

and wavelength  λ  of the radiation. In this case, J  and  iQ̂  are also functions of λ  
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and one has to integrate the corresponding formula over λ . We assume that the 

material is gray this means, that  γandα  do not depend on  λ . Thus we need to 

model only the total intensities, not the spectral quantities. Moreover, we assume that 

the material is isotropic absorber, emitter and scatterer. This means that the 

coefficients and  iQ̂  do not depend on   w  and  we can deal with the volumetric 

radiosity    

 

 

                           .ˆ4ˆ~
i

S

ii QπwdQQ     

 

 

 

J on the other hand depends always on  w and, also, it depends on radiosity in all 

points that are visible to  x. If we let )(wpp   be the point where the direction  w  

meets the boundary  ( for the first time )  and by  r and  s  the points on the line x p,  

then  

 

 

       dr
π

rQ
dssβdssβwpQwJ

x

wp

x

wp

x

r

i

s   
)( )(

4

)(
~

)(exp)(exp)(ˆ)(   (4.2.2)  

 

 

 

 

where  γαβ   determines the rate of attenuation due to absorption and scattering. 

 )(ˆ wpQs  is the intensity of emitted and scattered surface radiation at  p. Now, we 

assume that the surface is gray and diffuse as emitter and reflecter.  

Then we can write   ),(
~1

)(ˆ pQ
π

wpQ ss   where  )(
~

pQs   is the radiosity at  p.  
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Integration of (4.2.2) over S    

gives    

 

 

                           
S

iiisis QKQKwJ ,
~~~~

)(        

 

 

where 

 

 

 

                 

x

wpS

ssis dwdssβwpQxQK
)(

)(exp)(
~1

)(
~~


 ,  

 

  

 

              ,)(exp
4

)(
~

)(
~~

)(

  

x

rS

x

wp

i

iii dwdrdssβ
π

rQ
xQK                                                     

 

 

 

Hence we have  

 

 

 

            )(
~

)(
~~

)()(
~~

)( xQxQKxβxQKxβh iiiisisrad                  (4.2.3) 

 

 

 

Surface heat balance  

 

As in the interior, the radiative flux on the surface consists of the difference of 

incoming and outgoing radiation. Let  x  be a point on the surface  that separates the 

semitransparent material from its opaque surrounding. We assume that    has a 

unique outer unit normal vector n at x. The surface can emit and receive radiation 
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only in directions pointing to the semitransparent material. Thus the radiative flux at   

x  is  

 

 

               )(
~

)()()( xQdwxnwwJxq s

S

rad  


   , 

 

 

 

 where   J(w) is as in  (4.2.2) . By denoting  

 

 

 

 

                   




x

rS

x

wp

i

isi dwxwdrdssβ
π

rQ
xQK )n()(exp

4

)(
~

)(
~~

)(

  , 

 

 

 

 

                  




x

wpS

s

sss dwxwdssβ
π

wpQ
xQK

)(

)n()(exp
))((

~

)(
~~

  , 

 

 

 

Thus we can write 

 

 

 

              

                  )(
~

)(
~~

)(
~~

)( xQxQKxQKxq ssssisirad                    (4.2.4)  
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Radiosities 

 

It remains to couple the radiosities iQ
~

 and sQ
~

 with the absolute temperature. 

According to Stefan–Boltzmann law, emission over unit volume equal to 

,4 42 Tζnα  where n is the index of refraction and ζ  is the Stefan–Boltzmann 

constant. For simplicity we assume n = 1 throughout this thesis. Now the volumetric 

radiosity iQ
~

 consists of Stefan–Boltzmann radiation together with the scattered part 

of the incident radiation  

 

 

 

             )
~~~~

(4
~ 4

iiisisi QKQKγTζαQ                                          (4.2.5) 

 

 

 

 

Similarly, on the surface we have that the emission obeys the law ,4Tζε  where 

10  ε  is the emissivity absorptivity of the surface. The reflected part of the 

incoming intensity is  Jε)1(   . Thus  

 

 

 

              sssisis QKQKεTζεQ
~~~~

)1(
~ 4                                         (4.2.6) 
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Cartesian form of integral  

 

Let 
xz

xz
w






)(
. If z is an interior point we have the coordinate transform    

2
xz

dV
dwdr


  and when z is on the surface we have     

2

)(.

xz

dSznw
dw


 .  

In a non–convex domain we consider the radiosities only in points which are visible 

on x. Hence we multiply the kernels by visibility factor: v(x,z) = 1 if x and z can see 

each other and v(x,z) = 0 otherwise.  

If we denote  

z

x

zxvdssβzx ),()(exp),(τ , then the integral formulas above 

can be expressed in Cartesian coordinates 

 

 

               )()(
~

4

),(τ
)(

~~

Ω

2
zdVzQ

xzπ

zx
xQK iiii 


                                      (4.2.7)   

             
 

 

               )()(
~)(z),(τ

)(Q
~

K
~

Γ

3sis zdSzQ
xzπ

xnzx
x s

z





                       (4.2.8) 

 

 

 

               )()(
~

4

)-(z),(τ
)(

~~

Ω

3
zdVzQ

xzπ

xnzx
xQK i

x

isi 



                        (4.2.9) 

 

 

 

              )()(
~)-(z)(z),(τ

)(Q
~

K
~

Γ

4sss zdSzQ
xzπ

xnxnzx
x s

zx





        (4.2.10)  
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Systems where part of the radiation can escape 
 

 

 

In some practical cases part of the boundary allows the radiation to escape the 

system. Think of an oven with a hatch, for example. In this case we denote  

0ΓΓΩ  , where Γ  is radiating part of the boundary as earlier and 0Γ  is the 

transparent part of the boundary. Γ  separates Ω  from opaque surroundings whereas  

0Γ  is an interface between Ω  and transparent surroundings. This does not change 

the structure of the model derived above. However, additional data terms appear in 

(4.2.3) – (4.2.6), namely the radiation coming from outside of the system. Moreover, 

the integral operators become contractive in the sense specified in the next section.  
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4.3   Operator form of the radiative heat sources  
 

 

 

In this section we introduce simplifying notations and derive tools for the existence 

result. In particular, we show  radrad qh and  can be expressed by means of the 

temperature  T  only. Unless otherwise stated we consider the problem where Γ  is 

an enclosure  )ΓΩ(  . Now, we assume that the radiating body is absorbing and 

emitting at every point of  ΓandΩ , so that there exist a constant  c, such that 

cα  > 0  and  cε  > 0. Moreover, we assume that  )Ω(L,β,γα . To simplify 

the notation , let us define the scaled radiosity   Q   as                                                              

 

 

                                                      















xxQ

xxxQ

Q

s

i

if)(
~

if)(4)(
~



 (4.3.1) 

 

 

 

 

Next we define ε  also in the interior :Ω  we set .Ωfor)()()(  xxβxαxε  In 

this way we have  1ε  in both  ΓandΩ  and  εβ  1γ . Now,  we rewrite The 

system (4.2.3) – (4.2.6)  as 

  

 

 

 

               Ω4  xQKIβhrad                ,                    (4.3.2) 
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                xQKIqrad                      ,                   (4.3.3) 

 

 

 

 

 

               ΓΩ)(4  xQKEIITζε            ,                  (4.3.4) 

 

 

 

 

where E is the operator induced by multiplication with ε . The operator K is defined 

as 

 

 

 

                                 

 
   

   













xxQKxQK

xxQKxQK

xQK

sssi

isii

if)()(

if)()(

)(                              (4.3.5)   

 

  

 

where  

 

 

 

             iiii KK
~

              

   

 

             isis KK
~

4

1
  

 

                

             sisi KK
~

4               

 

 

             ssss KK
~

  
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Next, we introduce function spaces for  Q  and  K. The standard  )Ω(PL   will not 

do, as we want to measure  Q  also on Γ . Hence, we define a measure  μ   such that  

 

   

 

           
Ω Γ

)(4 dSQdxQxβdμQ                                                (4.3.6) 

 

 

 

 

Let us denote by   μ;LL pP

μ ΓΩ   the class of functions Rf ΓΩ:  

whose p–th  powers are integrable with respect to  .μ  The corresponding norms are  

 

 

     
Ω Γ

11
)(4

ppppp

p
dSfdxfxβdμff   (4.3.7)  

 

 

 

when  p1 < ∞,  and  cfcf 


:inf   when  p  =  ∞. Note that p

μLf   if   

and only if  )Γ()Ω( pp LLf  .  

 

Moreover,   

 

 

 

              
)Γ()Ω(

,max 
 LL

fff   .                                      (4.3.8)  

 

 

 

 

 

 



 

 

35 

We shall also use the dual systems   q

μ

p

μ LL ,   defined as 

 

 

 

 

              
Ω Γ

4, gfgfβgf μ                                                      (4.3.9) 

 

 

when 1
11

thatsuchand 
qp

LgLf q

μ

p

μ . We extend the notation of self–

adjointness to dual systems: We shall call the operator K self–adjoint, if 

μμ KgfgfK  ,,   for every  ).1,[ p  Of course, this makes sense if  K 

maps p

μL   to itself for every  p. To begin with, we consider the integrability of the 

kernels of K. In this we have to note that the terms     )(and)( xQKxQK ssssi  

are not defined for non–smooth Γx . However, for Lipschitz boundary the set of 

non–smooth points has zero surface measure and zero µ–measure. In what follows 

we denote the kernels of   sssiisii KKKK and,,   by corresponding lowercase 

letters. 

Lemma 4.3.1 

 Let Ω  be bounded with a Lipschitz boundary Γ .  

Then the integrals  
ΓΩ

),(and),( dzzxKdzzxK isii  exist for all Ωx . 

 The integrals   


ΓΩ

),(and),( dzzxKdzzxK sssi  exist  for all x   

for which the surface normal is defined. Moreover, every non zero constant is an 

eigenfunction  of  K with eigenvalue λ  = 1. 
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Proof:   
   

   Clearly we have  

 

 

 

             dwdssβ
S

x

wp

 
)(

)(exp  <  ∞,  

 

 

 

which shows integrability of  ssis kk and . Moreover  

                    
 

         

               
S

x

p(w

x

r

ii dwdrrβdssβ
π

K
)

)(])(exp[
4

1
)1(  

 

 

                             





S

x

r

xr

p(w)r

dwdssβ
π

])(exp[
4

1
  

 

                              
S

x

p(w)

dwdssβ )(exp
4π

1
1  

 

 

                            )1(1 isK  . 

 

 

Using similar arguments, we observe that   (1)1(1) sssi KK   .                        □        

 

 

The following two Lemmas show that the formulation (4.3.2) – (4.3.4) and the 

measure μ  are, in the some sense, natural for the problem. 
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Remark 4.3.1  

If Γ  is not an enclosure, K does not have constant eigenfunctions associated with 

eigenvalue 1λ  . If x sees  0Γ   we have   )()1( xK < 1 and if  x does not see 0Γ , we 

have   1)((1) xK . 

 

Lemma 4.3.2  
 

The operator   K   is self–adjiont. 

 

 

Proof:   
      

    Let  .and q

μ

p

μ LgLf  Then 

 

 

     

            dSgfKfKdVgfKfKβgKf sssiisiiμ   
Ω Γ

4, . 

 

  

 

Now ),(),(and),()(4),()(4 xzkzxkxzkzβzxkxβ ssssiiii  .  

 

 

This implies that  

 

 

 

                      
Ω Γ Ω Γ

44 fgKfgKβgfKgfKβ ssiissii .  

 

 

 

Thus it remains to show that  

 

 

 

 

                
Ω Γ

4 dSfgKdVgfKβ siis . 
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 This follows from the fact that ).,(),()(4 xzkzxkxβ siis                                           

□ 

Lemma 4.3.3  

Let   p1 . Then the operator  K maps  p

μL  into itself compactly, and, in  

addition,  1
p

K . 

Proof:  

Let first ),1,(, qp  such that 1
11


qp
. From Lemma 4.3.1 and Hölder's  

inequality it follows that,  

  

 

 

             
 

Ω Γ

1111 )()( fkfkfKfK qp

is

qp

iiisii
  

                                     

                                           pp

is

p

ii

q

isii fkfkkk
1

ΓΩ

1

ΓΩ

   

 

                                       

                                         pp

is

p

ii fKfK
1

  , 

and similarly  

 

 

 

              .
1 pp

ss

p

sisssi fKfKfKfK    

 

 

Therefore, 

 

 

   
Ω Γ

4 dSfKfKdVfKfKβfK
p

sssi

p

isii

p

p
 

                                                  

   
Ω

4
Γ

p

ss

p

si

p

is

p

ii dSfKfKdVfKfKβ  
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                              .)1(,1,
p

pμ

p

μ

p
fKffK   

 

 

The cases with  p = 1 and  p = ∞ are straight–forward.     

To prove the compactness, we show that there is a sequence  εK  of compact 

operators, that is, uniformly convergent to K. 

Let ε  > 0. We define εK  as in (4.3.5) except that we make the kernels of  


sssiisii KKKK and,, bounded. We define  

 

 




















yxyxk

yx

yxk

ss

ss

if),(

if0

),(              

 

 

and treat other kernels of   εK  similarly. Then  εK  is compact operator.  Moreover,  

 0
p

εKK   when  0ε ,  as the kernel of   K is integrable .                       □                          

 

As we assumed that    ε  >  0ε   > 0    we have that     
p

KEI )(  <  1,  and  

hence,  

( I – ( I – E ) K )  is invertible. Thus, Q can be eliminated from (4.3.2), and the 

radiation heat source and flux can be expressed by means of  T  alone  

 

 

 

             Ω,)(4 4  xTζGβhrad                                                (4.3.10) 

 

 

 

 

             Γ,)( 4  xTζGqrad                                                 (4.3.11) 
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where the operator G is defined by 

 

 

 

 

               EEIIKIG
1

K)()(


 .                                           (4.3.12) 

 

 

 

The operator  G  maps  p

μL   to itself, and it can be written also as  

 

 

 

      .)EI()(
11

EKKIEEEKEIIKEEG


       (4.3.13) 

 

 

 

In the following Lemmas we formulate some properties of G. An important argument 

here is Riesz–Thorin  theorem, see [3] for example.  

 

Lemma 4.3.4  

The operator G is self–adjiont. As a mapping from 2

μL  into itself, G is positive 

semidefinite with respect to  μ .,.  inner product. 

 

Proof:  
 

The self–adjiont is a consequence of (4.3.13).  

 

Let 2

μLv  be arbitrary and denote by u the solution of  

 

  vEuKEII  )( .  

 

Then  

 

 

  μμ uKI,uKEIIEvG,v   )()(1
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0)()()()( 1  

μμ uKI,uuKIIEKI,u  

 

 

as  1and1
2

 εK .                                                                                           □  

 

 

 

Lemma 4.3.5  

The operator G can be written as G = I – H, where H is self–adjoint positive and 

1.
p

H Moreover, every nonzero constant is an eigenfunction of H with 

eigenvalue   1.λ  

 

Proof:  
 

Indeed we can write  

 

 

 

                EKEIIKEEIIHIG
1

)()(


      (4.3.14) 

 

 

 

where  H  is self–adjoint. We can write the inverse term in  H  as 

 

 

 

 

                







0i

1
.)()(

i
KEIKEII   

 

 

 

All terms in the series are positive, as  K  is positive.  Consequently,  H  is positive. 

As  G  is self–adjoint, we can write  
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                )()(
1

KIEIKIEIGIH 


                    (4.3.15) 

 

 

 

 

From Lemma  4.3.1 it follows that  H(c) = c for every constant c.   

 

 

Next we show that 1and1
1




HH . Then, from Riesz–Thorin theorem it  

 

 

follows that 1
p

H  for  1 < p < ∞. As H is positive we have that  

 

 

  01 


ffH  for all 0  f,Lf μ . Hence   

 

 

               11)1(sup 







H

f

fH
H .  

 

 

Moreover,  

 

    from self–adjointness  it follows that  

 

 

 

               1
1




 HHH  .                                                              □ 
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Remark 4.3.2  

If  Γ  is not an enclosure, H does not have constant eigenfunctions associated with 

eigenvalue 1.λ  However, from (4.3.15) we see that ,H 1)1(   as 

  0)1( KI   1
)(and


 EIKIE  is a positive operator. 

Let us now consider the case where part of the radiation can escape the system. Then, 

With the exception of the facts mentioned in remarks after Lemma 4.3.1 and 4.3.5, 

all the previous Lemmas hold. In addition, the operators  K  and  H  become 

constractive. 

 

Lemma 4.3.6   

Assume that  \Ω  has positive surface measure. The 
P

K < 1 and 
P

H < 1  

for  1 < p < ∞. 

 

Proof:  
 

We shall prove the norm estimates in the case p = 2. When )2,1(p  or 

),2( p , we can apply the Riesz–Thorin theorem. As K is self–adjoint the 

spectral radius r ( K ) equals to ,K
2

see [17]. Now, we prove that r ( K ) < 1 by 

comparing K with operators defined in  ΩΩ  . For this reason, let  û be defined in 

ΩΩ   and extend K by zero to 0Γ : We define     )(ˆ)(ˆˆ
ΓΩ xuKxuK   

when ΓΩx and   0)(ˆˆ xuK  when 0Γx . Now clearly  r ( K ) = )ˆ( Kr .  
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Let us now consider a system where also  0Γ  is radiating and consider the radiation 

operator K̂ associated to enclosure 0ΓΓΩ  . Now 1)
~

( Kr . To conclude the 

proof, we have to show that )ˆ( Kr <  ).
~

( Kr As K̂  is positive and compact, 

)ˆ( Kr is an eigenvalue with non–negative  eigenfunction û ;  see [22]. Moreover, if 

û  were zero in some region ΓΩ
~

 ,  hadû  to be zero in every point that sees 


~

. Hence û > 0  in ΓΩ . Now let  1~ u ,  which is eigenfunction of  .K̂  Then 

000

~ˆ)ˆ(u~)ˆ~
(ˆ~ˆ

μμμ
u,uKrKK,uu,u  , where 0μ   is the measure 

associated to the enclosure  0ΓΓΩ  .  Now,  uKK ~)ˆ~
(   > 0  in those regions 

of  ΓΩ  that sees 0Γ . This together with 0

~ˆ
μ

u,u  >  0  implies that  )ˆ( Kr < 1. 

Let us now consider the  2

μL   norm  of  H. As  H  is self–adjoint and positive,  

 r( H ) =
2

H  an eigenvalue of  H; see [18]. Hence )(1 Hrδ   is an eigenvalue 

of  G with real eigenfunction .μ From the proof of  Lemma 4.3.4 we see that G is 

positive definite if 
2

K  < 1. Thus, μμ uG,uu,uδ  > 0, which concludes 

the proof.                                                                                                                   □                                                                                 
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4.4    Conductive – radiative   problem 
 

 

 

Let us now analyze the problem of determining temperature in a system where 

conduction and radiation are present. We shall analyze situations that is in general 

enough to give ideas of the difficulties related to radiation terms and of results that 

can be obtained. We consider a system that consist of conductive materials 

occupying ΓΩΩΩ 0  . In Ω  the material is assumed to be gray and 

semitransparent, where as  0Ω   is opaque. By  Γ  we denote the common boundary 

of  Ω and 0Ω . The exterior boundary of 0Ω  is denoted by  1Γ  and possible exterior 

boundary of Ω by 0 . First, we assume the situation in which part of the wall 0  is 

assumed semi– transparent  allowing part of the radiation to escape .  

 

Coercive cases  
 

Let us consider the situation analyzed above. The heat balance is governed by the 

system  

 

 

             0ΩinfTΔk                                                               (4.4.1) 

 

 

 

 

             Ωin)(4 4  iqTζGβfTΔk                                  (4.4.2) 

 

 

 

 

             Γon)(][ 4  sqTζGnTk                               (4.4.3) 
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where ].[  denotes the jump across )(lim)(lim][:Γ
ΓΓ

xfxff
xx  

 . Here 

iq and 



sq   denote the additional radiative heat source flux arriving from outside of the 

system. On  1   we need some appropriate boundary condition. Here, we choose the 

condition  

 

 

 

 

               10 Γon0



TTc

n

T
k                                       (4.4.4) 

 

 

 

 

On  0   we have the condition  

 

 

 

             0Γon0




n

T
k                                                             (4.4.5) 

 

 

 

 

as 0  does not conduct or radiate outside of the system. As the Stefan–Boltzmann 

law makes physical only for positive values of T, we can alter it freely for 

mathematical convenience, if T is negative. Thus, we make the Stefan–Boltzmann 

law Monotone by replacing  4Tζ  with TTζ
3

. From now on, we write simply 

4T  even when we actually mean .
3

TT  The next step is to write the system in 

variational form. This is not entirely trivial as the non–linear terms on the boundary 
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  are not necessarily integrable if  T   in )Ω(1H . In fact, as G  maps p

μL  to itself, 

the natural space to work is 

 

             








 )Γ(:)Ω( 5

Γ

1 LvHvV                                             (4.4.6) 

 

 

 

Then   G   is defined for all )Ω()(, 45

Ω

4 LvGVv  and  ).Γ()( 45

Γ

4 LvG   

If  V  is reflexive Banach space and we can write  (4.4.1) – (4.4.5)  in weak form as 

 

 

              Vvv,fv,Tbv,Tav,TA 
~

)()()(              (4.4.7) 

 

 

where 

 

  

             
 ΓΩΩ

)( vTcvTkv,Ta



                                             (4.4.8) 

 

 

 

 

            μvTζGvTζGvTζGβv,Tb   ,)()()(4)( 4

Γ

44

Ω

     (4.4.9) 

 

 

 

            vqvTcvqfv,f si 




 
ΓΓΩΩ

)(
~





                           (4.4.10) 

 

   

As the radiative term )( 4TζG  is not monotone, we shall apply the theory of 

pseudomonotone operators; see [23].  

Now, if we can prove coercivity in   V, the existence result follows. 
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Theorem 4.4.1  
 

Assume that Ω   is bounded, connected and that all the boundaries are Lipschitz. Let 

Vf 
~

and assume that   \Ω  has positive surface measure. Then there exists a 

solution  of  ( 4.4.7 ). 

 

Proof:   
 

By using Lemma  4.3.6 we get  

 

 

                        5

55

4

5

5

5
)( TTHTTζT,Tb   

 

                   

                                          5

5

5

545
1 TcTHζ   ,  

 

 

 as H  < 1. Moreover, 

  

                                        
2

)Ω(2)(
L

TcT,Ta   .  

 

 

The norm   

 

 

)Γ(L)Ω(L 52 uuu  , is an equivalent norm in V, see [5].  

 

Hence we have that 

 TT,TA )( , as T . This means that A is coercieve in V. As  A 

is also pseudomonotone the problem (4.4.7) has at least one solution ; see [23].       □ 
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Another important situation where the coercivity can be obtained is that of two–

dimensional models. If  2Ω R   the coercivity with respect to   )(5 L  norm is not 

needed as )Γ()Ω( 51 LH  , i.e. ).Ω(1HV   Heat transfer can be modeled in  2D, if 

the radiating body has adequate symmetry; see [20]. Atypical example of this is a 

cross–section of a long cylindrical body. Of course, in 2D the definition of K must be 

changed to keep the physical properties.  

 

General case  
 

Let us consider the situation in which   is an enclosure. This system is modelled 

with equations (4.4.1) – (4.4.4) and it has variational formulation (4.4.7), except that 

now 0

iq  and  0.

sq  Now the form  A  is not necessarily coercieve in V (at least 

we have no proof for coercivity ). Hence we shall prove the existence by assuming 

the existence of sub–and supersolutions. For this reason, let us denote by V  the 

cone of non–negative elements  .0 v:VvV  

Theorem 4.4.2  
 

Assume that Ω  is bounded, connected and that all boundaries are Lipschitz. 

Let Vf 
~

and assume that there exist functions  ψφ and  in V, such that ψφ   

and  

 

                w,fw,φA
~

)(        Vw  

 

               w,fw,ψA
~

)(       
 Vw  

 

 

Then there exists a solution T  for  (4.4.7). Moreover, ψTφ   Ωin .  
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Proof:  
 

By using  Lemma  4.3.5 we can rewrite the problem as  

 

 

 

               Vv,v,fv,Tdv,Tcv,Ta 
~

)()()(  ,           (4.4.11) 

 

where  

 

 

               μv,Tζv,Tc  4)(  and μvTζHv,Td  ,)()( 4 . 

  

 

 

We choose now ψT 1  and  construct a sequence  nT  as follows:  

 

 

 

               Vww,fw,Tdw,Tcw,Ta nnn   ,
~

)()()( 11 . 

 

 

We claim that nT   is a decreasing sequence of supersolutions that is bounded from 

below. To prove this, assume that nT   is a supersolution. Then 

 

   

,Vww,Tdw,Tcw,Taw,f

w,Tcw,Taw,Tcw,Ta

nnn

nnnn









0)()()(
~

 )()()()( 11

      

 

 

 

as nT  was a supersolution. In particular, for  

  )( 1 nn TTw  we set  

 

0),()( 1  wwaw,TTa nn  , and  

 

 

0444)()(
Γ

2323

Ω

1   wTζwTζβw,Tcw,Tc ξξnn , where ξT  is  
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between  nT  and 
1nT . Consequently, 0.)( w,wa  As the form a is coercieve in 

)Ω(1H , it follows that 0w  and n1 TTn  . On the other hand, 

)()( 1 w,Tdw,Td nn  , as 0wH * . Hence, it is easy to see that 1nT  is also a 

supersolution. Moreover, if φ,Tn   then φTn 1 . The case with subsolutions is 

treated analogously. This means that the sequence  nT  converges monotonically to 

a limit which clearly solves the problem.                     □    

 

                                                                                                

Now we give some examples of cases, where the super and subsolutions can be 

easily constructed. Here we use the fact that 0)( 4 TζG , whenever  T  is a 

constant.  

 

Example 4.4.1   
 

 

Assume that there is no internal heating source, so that  f = 0 in Ω , and let 

).Γ(LT   Then we can choose ψφ and  as constant functions which satisfy 

ψTφ   .  In the case of internal heating the construction is not as simple. 

 

Example 4.4.2   
 

 

Assume that 0f  in Ω . Now, we try to construct ψ  as follows: 

 

 

(i)     in Ω  we set ξψ  , where ξ  is a constant to be determined;  

 

 

(ii)   ψ  solves the problem  
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         0Ωinf Δψ-k   

 

 

 

           Γonξψ   

 

 

 

         Γon 0)( 0 



Tψc

n

ψ
k ; 

 

 

 

(iii)  Γon0 
n

ψ





 . 

 

 

 

These conditions can be satisfied, for example, if   has 1C  smoothness and 0Ω  

 

satisfies the interior ball condition on  : for every Γx  there is a ball 0ΩB  

with Bx  . 

To construct ψ  in 0Ω  , let 1T  and 2T  be solutions to 

 

 

 

    021 Ωin0 ΔT-k,f ΔT-k ,  

 

 

 

    1T  =  0, 2T  =  1    on      
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Due to the regularity of   and 0Ω  we have that 
n

T



 1  is bounded and 
n

T



 2 > 1c > 0   

on  , see [ 7 ]. 

 

 

 If we choose  ξ   such that nTnTξ  12 ,  we can take  
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Ω

TξTψ 


 . 

 

 

A subsolution  φ   of can be constructed similarly . 
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