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Abstract

This work is concerned with the numerical solution of the heat radiation equation and
the mathematical analysis of the problem involving coupling radiation with heat
conduction. First , we present a systematic derivation of the equation of the heat
radiation. This is proceded by thorough definitions of all quantities needed to derive
this equation. As the governing equation of radiation is a Fredholm integral equation,
the idea of using the boundary element method to the solution of this equation
naturally arises. Hence only the boundary of the domain needs to be discretized. This
is equivalent to a reduction of the dimensionality of the problem by one. This
reduction leads to a substantial time economy in both data preparation and
computing. The typical discretization wused in boundary element method is the
Galerkin-Bubnov scheme. This discretization process transforms the governing
integral equation to a linear system of algebraic equations. As the linear system is
symmetric and positive-definite we use the conjugate gradient method to solve it. To
demonstrate the high efficiency of this iterative method, we construct a numerical
experiment for two-dimensional convex enclosure geometries.

Moreover, we analyze a model for the radiative heat transfer in materials that are
conductive, grey and semitransparent. The most important feature of this model is
the non—local interaction due to exchange of radiation. This, together with the
nonlinearity arising from the well-known Stefan—Boltzmann law, makes the
resulting problem non-monotone. We will prove that the operator defining the
problem is pseudomonotone. Hence we can prove the existence of weak solution for

the cases where the coercivity can be obtained.



In the general case, we prove the solvability of the system using the technique of sub

and supersolutions.
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Introduction

All bodies at high temperatures emit energy in a form of electromagnetic waves.
A portion of this energy when impinging other bodies is absorbed. As a result, net
energy flow occurs from a body of higher temperature to a body having lower
temperature. This mode of energy transfer is called heat radiation. Heat radiation is,
as each wave propagation phenomenon, of dual nature. It possesses the continuity
properties of electromagnetic waves and the corpuscular properties characteristic of
photons.
Radiation plays a very significant role in energy transfer at elevated temperatures and
in the presence of rarefied gases. The amount of heat transported by radiation in
industrial furnaces and combustion chambers typically reaches 90%. Heat exchange
in space and solar heating devices is 100 % due to heat radiation. Even at relatively
low temperatures characteristic of central heating systems, nearly half of the heat is
transferred by radiation. Thus, radiative heat analysis constitutes the crucial portion
of the calculation of temperature fields in various branches of science and
technology.
Owing to the progress in computer technology, mathematical modeling has become a
cheap and reliable tool of engineering design. Almost all phenomena that scientists
deal with are governed by differential equations. There are many well established
numerical techniques for solving differential equations of mathematical models.
Radiation is one of the few phenomena that is governed by an integral equation. This
feature is a source of both conceptual and computational difficulties to most

scientists and engineers whose mathematical backgrounds are based on differential

viii



equations. Additional complexities inherent in heat radiation computations result
from the severe nonlinearity and very complex characteristics of the material
properties appearing in the radiation transport equations. Another important energy
transfer mode is heat conduction. The difference between heat radiation and heat
conduction can be discussed briefly as follows. First the physical consequences
arising from the nature of the integral equations will be pointed out. Consider a point
laying on a boundary of an enclosure formed by solid walls. The temperature field
within the solid walls is obtained upon solving a differential equation. The
conductive heat flux is then obtained by differentiation of the temperature field at
that point. Thus, the conductive heat flux depends mostly on temperatures laying in
the close vicinity of the point under consideration. Radiative heat flux gained by a
point laying on the concave surface of the solid is obtained upon solving an integral
equation. This means that the radiative flux depends on all the temperatures of this
surface. Contrary to the case of heat conduction, temperatures at points laying far
from the considered point can significantly influence the heat flux at that point.
Moreover, temperatures in the nearest vicinity of the point under consideration often
do not exert any influence on the radiative flux at this point. Because radiation is
transporterd via electromagnetic waves, it can be transferred even a vacuum. Other
heat transfer modes, i.e. conduction and convection, require a physical medium for
heat interchange to occur.

The simplest possible case of radiative heat exchange is two parallel isothermal black
surfaces separated by a transparent medium. The Steffan—Boltzmann law states that
in this case the heat flux is proportional to the difference of the fourth powers of the

surface temperatures. This is in contrast with conductive heat transfer where the heat



flux is proportional to the temperature gradient. Typically, material properties
entering the equations of radiative transfer depend strongly on the length of the
electromagnetic wave. In the case of gases this dependence assumes a very complex
form, arising from quantum mechanics.

Another characteristic feature of radiation is that it can be transferred directly from
one location to another only when one point can be 'seen’ when looking from
another, i.e. it does not lay in a shadow zone. The presence of shadow zones should
be taken into consideration in heat radiation calculations. This leads often to complex
algorithms and long computing times, see for example [10, 11, 12]. Most of heat
transfer problems are solved now a days using numerical method. The common
feature of these numerical methods is the discretization of the problem, i.e.
transforming the governing equations to a system of algebraic equations. There are
three discretization methods among many other available techniques that are
commonly used to solve heat transfer problems. These are Finite Differernce Method
(FDM), Finite Element Method (FEM) and Boundary Element Method (BEM). The
popularity of these methods is due to their simplicity and practicality in solving these
types of problems. As the governing equation of radiation is an integral one, the idea
of using the boundary element method to the solution of radiation problems naturally
arises. Employing BEM for the solution to the heat radiation problems has been
addressed in the literature [1, 4, 13, 14, 15, 16]. This technique is proved to be
efficient and easy to implement. Because the integral equation of the BEM is
formulated usually only on the boundary of the domain, hence only the boundary
needs to be descretized. It is equivalent to the reduction of the dimensionality of the

problem by one. This reduction leads to a substantial time economy in computing.



This thesis is organized in the following manner: The initial part of Chapter 1
contains general characteristics of heat radiation and the derivation of the radiation
integral equation. Chapter 2 contains the details of the boundary element method
discretization technique applied to the heat radiation integral equation. This
discritization scheme will transform the integral equation into a set of algebraic
equations. In Chapter 3 we present an efficient iterative method called Conjugate—
Gradient method to solve this linear system including some numerical examples.

Chapter 4 examines the problem of coupling radiation with heat conduction. We
analyze a model for the radiative heat transfer in bodies that are conductive, grey and

semitransparent.
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Index of Special Notation

R" Euclidean n—-dimensional space
R The set of all real numbers
Q Solid angle
dQ Differential solid angle
0 Azimuth angle
¢ Polar angle
T The temperature

C, and C, constants in Planck’s spectral energy distribution
C, =0.59544x10°*W.m? and C, =1.4388x10> m.K

o Stefan—Boltzmann constant which has the value

5.669x10°W /(m*.K*)

£ Emissivity

o Reflexivity

A Wavelength

a Absorptivity

¥ Scattering

Q* Radiative heat flux.

i,0 Incoming and Outgoing radiation respectively.

d, The angle between the line of sight and the normal at point y
L,y Line of sight
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T" Temperature of medium

0\ Heat flux due to radiation

h,.q Heat source due to radiation

k The coefficient of heat conductivity

8% Differentiation along the outward normal

() Inner product

q”° and q; Additional radiattive heat source/flux arriving from outside of the
system

L) =L (QUT; u)
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Chapter 1

Formulation of the problem

The heat flux of radiative energy emitted by an element blackbody surface known as
the blackbody emissive power can be computed upon integrating the normal

component of the intensity vectors over the hemisphere centered at that surface,
E, =j J, cosg dQ (1.1)
2

where J, is the blackbody intensity of radiation. We can express the differential

solid angle d€Q in terms of the polar angle ¢ and the azimuth angle 6 by

dQ = singdgdé (1.2)

By virtue of equation (1.2) and performing an appropriate integration, equation (1.1)

yields

27 71'/2

E, = J, | [cosgsingdgde = zJ, (1.3)

6=0 $=0



Equation (1.3) links the intensity and the emissive power of the blackbody. The
blackbody spectral emissive power can be expressed as a function of temperature and

wavelength, that is,

27C,

S T el ¢/ AT )1 ]

(1.4)

Equation (1.4) is known as the Plank’s function, where A is the wavelength, T is

the temperature, c,and c, are constants which have the value 0.59544x107*°* W.m?

and 1.4388x107° m.K respectively.

The energy emitted by a unit blackbody surface in a unit time within the entire

spectrum can be computed from the Stefan—Boltzmann law
E, = [ E,di=0T" (1.5)
0

where o is the Boltzmann constant which has the value 5.669x107° W /(m®.K*).
Let J, denote the intensity of radiation emitted in a direction inclined by an angle ¢

to the surface normal. For surfaces that are diffusive and gray as emitters and

reflectors the emissivity ¢ does not depend on the direction. It follows



J, = ¢, (1.6)

Consider an elemental surface impinged by rays incoming from all directions. In this
case only normal components of the incoming intensity vectors contribute to the

energy absorbed by the surface. Let ¢ be the angle made by the incoming ray and

the normal to the surface, the irradiation can be written as
i :j J, cosg dQ (1.7)
2r

where J; Is the radiation intensity incident on the infinitesimal surface from the

direction inclined by ¢ to the normal. For diffusively reflecting and emitting
surfaces, radiosity and irradiance are related by a simple heat balance over the
infinitesimal surface. That is, ( see [20] )

b =c¢E, +pi (1.8)

where p =(1-¢) is the reflectivity.

Let Q* be the radiative heat flux defined by

Q* = gI(J;—Jb )cos¢ dQ (1.9)



In view of equations (1.1) and (1.7) equation (1.9) can be written as

Q* = i —¢E, (1.10)

With the help of equation (1.8), equation (1.10) takes the form

b= E, + —— Q" (1.11)

Let J; be the radiation intensity leaving the surface in the direction inclined by the

angle ¢ to the normal. This outgoing radiation associated with an elemental solid

angle can be expressed as

db= J; cos¢ dQ (1.12)

Integrating equation (1.12) over the solid angle 27 yields

b= 7 3¢ (1.13)



To this end, the intensity of radiation leaving the surface can be written in terms of

emissive power and radiative heat flux. Inserting (1.11) into equation (1.13) gives

J¢ zi(Eb+iQx). (1.14)

Consider a pencil of rays traveling from point x to point y a long a line of sight.
The increase of radiation intensity taking place as the radiation passes an
infinitesimal path along the line of sight can be described by a differential equation

see [21].

T =-19-3,amM ] (1.15)

where dL,, is the infinitesimal path along the line of sight and T™ denotes the
temperature of the medium. Let J(x) denote the intensity of the point where the ray
originates and Jb( T™(x) ) denote the intensity of radiation of blackbody having a

temperature at point x. Hence the integrated equation of radiation can be written as

3,0N=300+ [ 3, [T"(0 JdL, (%) (1.16)

Ly



According to equation (1.14) the intensity outgoing from the surface in a direction of
the line of sight can be expressed as a linear combination of radiative flux and
blackbody emissive power. Taking into account, and making use of equation (1.3) to
replace the blackbody intensity by its emissive power, equation (1.16) can be written

into the form

1- g(x)

B =1[E0+ =200 1+ 2 [ [T700 JdL,  @17)

ny

An alternative form can be obtained by substituting equation (1.17) into the heat

balance on the unit surface equation (1.9). The resulting equation reads as

] 1- E(X)

QW+ E[TW) ] dWI o[ T00 Je =05

Q*(x) }cos¢, dQ

(1.18)

where ¢, denotes the angle between the line of sight and the normal at point y. The

integral in equation (1.18) can be converted to a surface integral. This can be
accomplished by noting that the infinitesimal solid angle can be expressed in terms

of the infinitesimal area of the bounding surface

dS(x) cos g,

dQ= -
x|

(1.19)



where |x - y| stands for the distance between the points x andy.

Setting equation (1.19) into equation (1.18) we obtain the boundary integral equation

of radiation

QW +eM ELTH 1=e) [ {ELT00 2% 00 J60x,y) A(x,y) dS()

£(X)
(1.20)

where the kernel G(x,y) denotes the view factor between the points x and y of S.

For two—dimensional enclosure geometries G(X, y) has the representation [15], [16]

S0y = L10:-6=) M 0w (y-x ]
2|x~y|

(1.21)

Moreover, for three—dimensional enclosure geometries G(X,y) has the

representation [15], [16]

Gixy)= LN0O-0=9) J n(y).(y-x) |

. (1.22)
X~y

The visibility function A(x,y) appearing in equation (1.20) takes into account the

shadow zones and is defined by [15], [16]



1 , if the point x and y can see each other

LB(X,y) =
0O , otherwise.
(1.23)

In fact equation (1.20) can also be written in the more simplified form ( see for

example [13] ),

Q)= () oT*(x) +( 1-£(x) ) [ G(x,y) A(x,y) Q(Y) dS, (1.24)

This is a Fredholm integral equation of the second kind with the kernel G(x,y) as
defined in (1.21) — (1.22).
The properties of the radiosity equation (1.20) have been thoroughly investigated in

[12] [16].



Chapter Two

Discretization and boundary element method

2.1. Boundary element method and
Galerkin discretization

In a two—dimensional case we let S be a curve that is given by a regular parameter

representation [19].

S:y =Z;(t) forteR, j=1...,L

We choose on R a family of 1—periodic interval partition:

(2.1.1)

(2.1.2)



Let S{" be a family of 1-periodic piecewise polynomials of degree (d — 1) with
respect to the partition IT, in the sense of Babuska an Aziz [2] which is (r —1) times
continuous and differentiable. We denote with @, (t) the basis trial functions with a

smallest possible support (B—splines) (see Fig.1). The approximate solution has the

general form

Qn ®= Z qu)k,n ®) (2.1.3)
k=1
where n is the number of free gridsand Q, e R, k=1,.......... ,n are the partition

coefficients. On partition in the parameter domain we use S"** —Lagrange—System of

finite elements. Then the local representation of S transplant these finite element

function onto S, . The ansatz function (2.1.3) on S, will then be defined by

Shiy=2Zy() (2.1.4)

with

Zjh(t) = Zj(tk)'



Fig.1




2.2 Representation of System of Equations

The Fredholm integral equation (1.24) can be expressed as

Q = g+KQ (2.2.1)
where
KQ=(1-s)KQ
and
KQ(x) = !G(x,y)ﬁ(x,y)Q(y)dSy for xes  (2.2.2)
We let

u,v)g = j u(t) v(t) |x(t)| dt.

The Galerkin discretization of the integral equation (1.24) with the ansatz function

(2.1.3) is given by

i Qk<q)k,n1q)|,n>s = <g,q)|,n>3 +Zn: Qk<Kch,n’cD|,n>s (223)



Equation (2.2.3) can be written in the following short form:

(A -B, )a,=Db, (2.2.4)

using the abbreviation A =(A )1,k =1,.....,n for the mass matrix, with

1
Al,k= <q)k,n’q)l,n>s = J. (Dl,n (t) q)k,n (t) |X(t)| dt, (2'2'5)
0
B =(B,,)l,k=1.....,n for the view factor matrix with

Bl,k: ( Kq)k,n'q)l,n>s = ( 1-¢(t) )CDI,n (t) G(t,7) D, (7) |X(t)| |X(T)| dtdr

O ey
O Ly

(2.2.6)

and the vectors a =(Q,)k=1...,nand b =(g, @, )s,1=1....,n.

Properties of the matrices

The mass matrix A in (2.2.4) is symmetric, positive definite and diagonal dominant

hence it is invertible. Let A and A, be the minimum and the maximum

min

eigenvalues of the matrix A, respectively. Then follows the known estimations



Aoin | Q2 < (A, Q. Q) < A, [ Q)2 2.2.7)

= Qi = (AMQ.Q) = [l (2.28)

where (.,.) denotes the Euclidean scalar product of R" with (Q,Q) = ||Q|||22

Furthermore

1
. ;i’ﬁlax T ;i’min : (229)
[ A A

|2

Also the system of equations (A, — B, ) is symmetric and positive definite. Since the mass

matrix A is invertible, equation (2.2.4) can then be expressed in the form

(I —A'B))a, = A''b, (2.2.10)

Equation (2.2.10) can also be written as

Q. =9, +K,Q,, (2.2.11)

where Q, = a,, g, = A'b, K = A'B .



Chapter Three

Iterative method and numerical results

3.1 Conjugate Gradient Iteration

In this section we apply a general iteration method for solving simultaneous linear
system, one called the conjugate gradient method, to the solution of discretizations of
integral equations of the second kind. The conjugate gradient method is restricted to

solving linear systems

C a =h (3.1.2)
where

C, =(A-B).
It is an effective method for symmetric and positive definite systems.
This CG-iteration is given by the following algorithm [8]:

1. Choose an initial vector a and compute r, =C,a’ —b, .

Set p,=r,and k=10



2. Compute

[Tl

[l

3. Stop if <&

4. Compute

e Py
a, = =
Py Ci Py
a|k+1 = a|kJr o, Py
k+1
ha = C| q
;
B = N Ci Py
ko T
Py Ci Py

Pea = Tea + 5P -

Convergence of the conjugate gradient method

From [13] follows that

£AQQ e, SAQQ) s, <) (QQ) g, (312)

where A = (I - K).



Let Qe H, c L?(S) then we define

AV=3 Q®, )

(3.1.3)
Set equation (3.1.3) into (3.1.2) we get
n 2 n
&. Zqu)k < Qij<A(Dk'(Dj>LZ(S)
k=1 2s) ki
(3.1.4)
n 2
<(2-¢). (D Q D,
k=1 LZ(S)
Now
o 2 1 fy 2
ZchDk :I ZQkCDk(t) dt
k=1 L2(S) 0 k=1
(3.1.5)
n 1
=> QQ, [ o, ()@, (t)dt = (AQ,Q)
K, 0

Substituting (3.1.5) into (3.1.4) yields

¢(AQ,Q)=(C,Q,Q)=<(2-¢)(AQQ). (3.1.6)



Theorem 3.1.1
For a positive matrix C, converges the conjugate gradient iteration with the

convergence estimation [9]

E k
o], < 2 LR o) @17)
“ (&)1 )2 ¢
where
e ], =[a ~a,
and

|¢° ], =l -l -
CI CI



3.2 Numerical results

3.2.1 Numerical examples for the solution of the system
of equations

Since the convergence requirements of the CG-iteration method is satisfied [13],

then we can apply now this method to solve the two—dimensional convex enclosure.

Convex Enclosure
Example

Let Q be the domain of an ellipse. The boundary of this ellipse has the following

parameterization

5 a cos 2t
S=4 XxeR":Xx=

) ,a=4,b=20<t<1 (3.2.1)
b sin 2zt

The computation of the coefficients
Al,k :<(Dk,n7q)l,n> , b= <qu)|,n> ' Bl,k = <K(Dk,n'q)l,n>

have been carried out by Gaussian quadrature form.



Here we have g(t) = e(t) o T *(t) with

The emissivity coefficient £=0.9

The Boltzmann coefficient o =5.6696x107°

The surface temperature T (t) = % (T, +T,)- %(T2 —T, ) cos 2zt where

T, =1000 and T, =1800 .

Table ( I ) shows the numerical results for the solutions by using CG —iteration

method for the ellipse. The number n, denotes the dimension parameter of the solved

problem and 1 is the level number.

and

Table I. conjugate gradient scheme

n, CG
Iter Sec
32 16 <1
64 18 <1
128 19 <1
256 20 0.51
512 20 2.05
1024 | 20 8.16




Chapter Four

Coupling heat radiation with conduction

4.1 Introduction

Let us consider a three—dimensional connected domain Q filled by conductive—
semitransparent and gray material. We assume that Q is surrounded by an opaque
medium and we denote the boundary of ©Q by I'. If we assume that the system is
at steady state, the temperature field is modeled by stationary heat equation that is
augmented by the terms modeling radiative heat exchange. Locally, the role of
radiation is that of an additional heat source. Hence we can write the balance

equations for absolute temperature T as

—KAT =f + h, in Q (4.1.1)

kﬁ =g + Q. On I 4.1.2)
on

where h,,, is the heat source due to radiation, q,,4 is the heat flux due to radiation, k

is the coefficient of heat conductivity and f and g are known data, namely the
internal heat source and the heat flux coming to the surface from outside of the

system.



We denote by di the amount of emitted and scattered radiation in the volume, and

by 65 the corresponding quantity on the surface. Here we distinguish with “ ~ ” the

physical variables from their scaled variants that are used in mathematical analysis.

The radiative heat source can be written as

hrad =(OC+)/)( IZiiéi + IZisés )_6i (413)

Where K, Q, + K, Q. isthe amount of incoming radiation, o > 0 is
emission/absorbtion coefficient and y >0 is the scattering coefficient.

K, and K, are integral operators with kernels defined on QxQ and QxT,

respectively. On the radiating boundary we have the radiative heat flux

Qrag = lzsiéi + lzsséﬁs - 65 (414)

with similar interpretation. The radiosities @ and 65 depend on the temperature in

a non—linear and non-local fashion. Namely, we have that radiosity at a point is a
sum of Stefan—-Boltzmann radiation emitted by the point and the scattered / reflected

part of incoming radiation. Thus, we can write



éi = 4oaoT*+ y( IZHQ + Kisés ) (4.1.5)

Q = eoT +(1-¢)( K,Q +K.Q, ) (4.1.6)

where 0<¢ <1 is the emissivity coefficient of the surface. In the some cases the
radiative coefficients « , y and & may depend on temperature. However, in this
thesis we shall restrict ourselves to materials which do not have this property. To this
end, the organization of this chapter is as follows: In section 2 we derive in detail the
model that was sketched above, in section 3 we analyze the integral operators
appearing in the model. Furthermore, we show that Q, and Q. can be solved from
(4.1.5) and (4.1.6), so that (4.1.1) — (4.1.2) can be viewed as a non—linear and non—
local problem for T alone. In section 4 we study the solvability of the problem. The
main problems are that T* is not necessarily integrable on the boundary when T is in

H'(Q), and that the problem is not monotone. First we consider situations where we

have sufficient a priori information to deal with T* on the boundary. This means
that either T is known on T" or we can prove the coercivity in H'(Q) ~ L*(I). The

case lacking the proof of coercivity is more difficult. However, we can prove the
solvability provided there exists a pair of sub—and supersolutions. Then we give
some examples of cases where the super—and subsolutions can be constructed.
Throughout this thesis we shall assume that Q is connected and it has Lipschitz
boundary, that is, the boundary I" can be locally presented as a graph of a Lipschitz

function.



We shall also use the standard Lebesque and Sobolev spaces, for their notation see
for example [ 6 ]. We denote by (f)" the positive part of a function f:(f) = f
when f>0 and (f)" =0 otherwise. We shall call an operator positive, if it maps

nonnegative functions to nonnegative functions.



4.2 Heat radiation model

The basic theory for radiative heat transfer is well established in [20, 21]. However,
the point of view and notation adopted in this thesis is some what different to those
references. Hence we try to give brief introduction to the basic principles behind the

radiative terms  h,, and Q.-

Interior heat balance

Let x be an interior point of a three-dimensional semitransparent material Q. The
radiative heat source at x equals to the difference between absorbed and emitted

energy. In addition, part of the radiation may be redirected by scattering. Moreover,
let J(w) be the intensity of radiation that is incident from direction w, and Qi (w)

be the intensity of radiation that leaves x to direction w due to emission and

scattering. Then the radiative heat source is given by

Mg = [ (20 +7(0) )IW) dw —Q (%) (4.2.)

where S is the surface of the unit ball , o is emission/absorption coefficient and

v Is the scattering coefficient. In fact these coefficients depend on both direction w

and wavelength 2 of the radiation. In this case, J and O, are also functions of A



and one has to integrate the corresponding formula over 1. We assume that the

material is gray this means, that o and y do not depend on A. Thus we need to

model only the total intensities, not the spectral quantities. Moreover, we assume that

the material is isotropic absorber, emitter and scatterer. This means that the
coefficients and Q, do not depend on w and we can deal with the volumetric

radiosity

J on the other hand depends always on w and, also, it depends on radiosity in all
points that are visible to x. If we let p = p(w) be the point where the direction w

meets the boundary ( for the first time ) and by rand s the points on the line x p,

then

IW) =Q,(pw)ep[ - [ ps)ds |+ [ e[ —[B(s)ds ]QA—“) dr (4.2.2)
)

p(w p(w) " T

where S =a +y determines the rate of attenuation due to absorption and scattering.

Qs(p(w)) is the intensity of emitted and scattered surface radiation at p. Now, we

assume that the surface is gray and diffuse as emitter and reflecter.

Then we can write Q, (p(w)) = = Q,(p), where Q,(p) is the radiosity at p.

R



Integration of (4.2.2) over S

gives

where

(Ko@) == [ Q(pw) e — [A(s)ds ] dw,
7[5

p(w)

(KiQ ) = I I QAE:) —I B(s)ds ]drdw
S p(w) r
Hence we have
hay =B00( Ky Q) + B (K Q )0 -Q () (4.2.3)

Surface heat balance

As in the interior, the radiative flux on the surface consists of the difference of
incoming and outgoing radiation. Let x be a point on the surface I' that separates the
semitransparent material from its opaque surrounding. We assume that I' has a

unique outer unit normal vector n at x. The surface can emit and receive radiation



only in directions pointing to the semitransparent material. Thus the radiative flux at

X is

() = [ IW) (w-n(x) )" dw - Q,(x)

where J(w)isasin (4.2.2) . By denoting

(oG =] [ 2 ool -] ps)ds Jor (wonn) )" dw
S p(w r

(R, 8, )00 = [ 2P0 g

Thus we can write

~

— [ Als)ds J( w-n(x) )" dw

p(w)

U = (K Q)0 + (Kg Q)0 -Q,(x) (4.2.4)



Radiosities

It remains to couple the radiosities éi and (55 with the absolute temperature.
According to Stefan—Boltzmann law, emission over unit volume equal to
4an’cT*, where n is the index of refraction and & is the Stefan-Boltzmann
constant. For simplicity we assume n = 1 throughout this thesis. Now the volumetric
radiosity éi consists of Stefan—Boltzmann radiation together with the scattered part

of the incident radiation
6i = daoT®+ y( lzis 65 + Izii 6i ) (4.2.5)

Similarly, on the surface we have that the emission obeys the law ¢ o T*, where
0< e <1 is the emissivity / absorptivity of the surface. The reflected part of the
incoming intensity is (1—¢&) J . Thus

Q =coT'+(1-2)( K,Q +K.Q, ) (4.2.6)



Cartesian form of integral

Let w= ﬁz |)| If z is an interior point we have the coordinate transform
Z—X

dr dw = 5 and when z is on the surface we have dw=wz)(2jS .
|z=x] |z x]

In a non—convex domain we consider the radiosities only in points which are visible
on x. Hence we multiply the kernels by visibility factor: v(x,z) = 1 if x and z can see

each other and v(x,z) = 0 otherwise.

If we denote t(x,2) = exp[ —j S(s) ds ]v(x, Z) , then the integral formulas above

can be expressed in Cartesian coordinates

(K, 3 )J00=] ’”(X Z’" 3. V(@) (42.7)
Q Am|z — X
(R, 0. oo = [ DN C20 5 ) g5 y) (42.8)
o afe-x
(K, Q )x = j T(X4Z)”n (”Z X) Qi(2) dV(2) (4.2.9)
Q TT||Z —

(KeQ ) = | ) N,-@20N 20 5 5y 452)  (4.2.10)

3 72—’



Systems where part of the radiation can escape

In some practical cases part of the boundary allows the radiation to escape the
system. Think of an oven with a hatch, for example. In this case we denote
oQ=TuT,, where T is radiating part of the boundary as earlier and I'; is the
transparent part of the boundary. I" separates Q from opaque surroundings whereas
I, is an interface between Q and transparent surroundings. This does not change
the structure of the model derived above. However, additional data terms appear in

(4.2.3) — (4.2.6), namely the radiation coming from outside of the system. Moreover,

the integral operators become contractive in the sense specified in the next section.



4.3 Operator form of the radiative heat sources

In this section we introduce simplifying notations and derive tools for the existence
result. In particular, we show h_, and q,, can be expressed by means of the
temperature T only. Unless otherwise stated we consider the problem where T is
an enclosure (0Q=T"). Now, we assume that the radiating body is absorbing and
emitting at every point of Q and T, so that there exist a constant c, such that
a>c>0 and ¢>c> 0. Moreover, we assume that «,y ,f €L”(Q). To simplify

the notation , let us define the scaled radiosity Q as

Q()/4B(x) if  xeQ

O
I

_ (4.3.1)
Q. (x) if xel

Next we define ¢ also in the interior Q: we set &(x) = a(x)/B(x) for xeQ. In
this way we have ¢<1linboth Q and T and y/f = 1—¢. Now, we rewrite The

system (4.2.3) — (4.2.6) as

he = —48(1-K)Q xeQ , (4.3.2)



Oag = —( 1=K )Q xel , (4.3.3)

eoT*=(1-(1-E)K )Q xeQuT , (4.3.4)

where E is the operator induced by multiplication with ¢. The operator K is defined

as

(KiQ)) + (K Q)x) if  xeQ
(KQ)(x) = (4.3.5)
(KaQ)(x) + (K Q)x) if  xel

where
Kii = IZii ﬂ
Kis = 1 Ris
4
Ksi = 4 'Zsi ﬁ

SS Ss



Next, we introduce function spaces for Q and K. The standard L°(Q) will not

do, as we want to measure Q also on T . Hence, we define a measure u such that

deﬂ = _[4/3(x)de + des (4.3.6)

Let us denote by L5 = L°( QuT;u ) the class of functions f:QuUT —R

whose p—th powers are integrable with respect to . The corresponding norms are

|0, =Cl1f[Pda )™ = ([ape] f [ ax+[]|f[ds )" (437)

when 1< p<c, and | f |, =inf{c:| f [<c} when p = o. Note that f e L” if

andonlyif felL?(Q)nL°(I).

Moreover,

| £, = max{|f (4.3.8)

L (Q) ’” f ”L@(r) } )




We shall also use the dual systems (L% , L} ) defined as

(f.9), = [4Bfg + [fg (4.3.9)

Q

when f eL) and gel; such that 1 + 1 =1. We extend the notation of self-
p

adjointness to dual systems: We shall call the operator K self-adjoint, if

(Kf,g), =(f,Kg), forevery pe[l,0). Of course, this makes sense if K
maps L/ to itself for every p. To begin with, we consider the integrability of the

kernels of K. In this we have to note that the terms ( K, Q )(x) and ( K Q, )(X)
are not defined for non-smooth x € I'. However, for Lipschitz boundary the set of
non-smooth points has zero surface measure and zero p—measure. In what follows
K

we denote the kernels of K K, and K, by corresponding lowercase

i is 1

letters.
Lemma 4.3.1

Let Q be bounded with a Lipschitz boundary T.

Then the integrals f K, (x,z)dz and I K, (x,2z) dz exist forall xe Q.
Q r

The integrals

[ Kg(x2)dz and [ K (x,2)dz exist forall xeT
Q r

for which the surface normal is defined. Moreover, every non zero constant is an

eigenfunction of K with eigenvalue A = 1.



Proof:

Clearly we have

J.exp[ - j.ﬂ(s)ds Jdw < oo,

p(w)

w

which shows integrability of k,, and k.. Moreover

(1) = 2] ] ewl-] 45 ds140) drw

S pw)

r=xX
dw
r=pw)

ﬁiempjﬂ@mﬂ

1 - ijs‘exp[ —jﬁ(s)ds ]dw

p(w)
=1 - K(1).
Using similar arguments, we observe that K (1) =1 — K (1) . m

The following two Lemmas show that the formulation (4.3.2) — (4.3.4) and the

measure i are, in the some sense, natural for the problem.



Remark 4.3.1

If T is not an enclosure, K does not have constant eigenfunctions associated with

eigenvalue A =1. If x sees I', we have (K(l))(x) <1andif xdoesnotsee I';, we

have (K(1))(x) =1.

Lemma 4.3.2

The operator K is self-adjiont.

Proof:

Let fel) and gel;. Then

(KF,g), = [4(K; f+K, f)gdv+[ (K, f+K,f)gds.
r

Q

Now 4 f(x) k;; (x,z) = 4 B(2) k;(z,x) and ki (X,z) = k(z,X).

This implies that

I4IB(Kiif)g+I(Kssf )gzj4ﬁ(Kiig)f+j(Kssg)f'

r r

Thus it remains to show that

[4p(Kgf)gdv = [(K,g)fds.

Q



This follows from the fact that 4 g(x) ki (x,z) = Kk (z,X).

Lemma 4.3.3
Let 1< p <oo. Then the operator K maps L7 into itself compactly, and, in

addition, | K ||p <1.

Proof:
Let first p, qe(1,o), such that 1 + % =1. From Lemma 4.3.1 and Holder's
p

inequality it follows that,

Ki f+Kgf ‘ = J'(kii)]/pﬂ/q f + _[ (kis)MH/q f
T

Q

S(Ikii+Ikis )Vq(jkii|f|p+Jkis|f|p )]/p

Q r

= (Ky| F]° + Kg| F1° )P,
and similarly

Kg fF+KF| < (Kg|fIP+Kg | F]P )P
Therefore,

[KE[D = [ap] Ky f+Kgf[7dv + [|K; f+Kf[°dS
r

Q

< [4p( K[ £+ K[ 17 )av+ K[ £ +K, [ f]"ds
r

Q



= K|y, =R R@), =] F]

The cases with p=1and p = o are straight—forward.

To prove the compactness, we show that there is a sequence {K} of compact
operators, that is, uniformly convergent to K.

Let ¢ > 0. We define K* as in (4.3.5) except that we make the kernels of

K, Ks, K and KZ bounded. We define

0] if |x—yl<e
kK&s(X, y) =
K. (X,Y) if  |[x—y||>e

and treat other kernels of K* similarly. Then K¢ is compact operator. Moreover,

| K-k 0 when &0, asthe kemel of Kis integrable . O
As we assumed that ¢ > ¢ >0 wehavethat |(I-E)K ||p < 1, and
hence,

(I-(1-E)K) isinvertible. Thus, Q can be eliminated from (4.3.2), and the

radiation heat source and flux can be expressed by means of T alone

h.g = —4B8G(cT*) , XxeQ (4.3.10)

Uy = —G(oT?) , xell (4.3.11)



where the operator G is defined by

G=(1-K)( I-(1-E)K )'E. (4.3.12)

The operator G maps L} to itself, and it can be written also as

G=E-EK(I1-(1-E)K J"E=E-E( I-K(I-E) J"KE. (4.3.13)

In the following Lemmas we formulate some properties of G. An important argument

here is Riesz—Thorin theorem, see [3] for example.

Lemma 4.3.4
The operator G is self-adjiont. As a mapping from Li into itself, G is positive

semidefinite with respectto (.,.), inner product.

i

Proof:

The self-adjiont is a consequence of (4.3.13).
Let ve Li be arbitrary and denote by u the solution of
(1-(1-E)K )u = Ev.

Then

(V,Gv), =(E*( 1=(1-E)K )u, (I-K)u),



=(u,(1-K)(E™*= 1) (1-K)u ), +{u,(1-K)u),>0

as |K|,<1and e<1. O
Lemma 4.3.5
The operator G can be written as G = | — H, where H is self-adjoint positive and

IH ||p <1. Moreover, every nonzero constant is an eigenfunction of H with

eigenvalue 1=1.

Proof:

Indeed we can write
G=I-H=1-[(1-E)+EK(I-(1-E)K )"E] (43.14)

where H is self-adjoint. We can write the inverse term in H as

(1-(1-E)K )1=2( (1-E)K ).

All terms in the series are positive, as K is positive. Consequently, H is positive.

As G is self-adjoint, we can write



H=1-G=1-E(I1-K(I-E) )" (1-K) (4.3.15)

From Lemma 4.3.1 it follows that H(c) = c for every constant c.

Next we show that || H ||1 <1 and | H | <1.Then, from Riesz-Thorin theorem it

follows that | H ||p <1 for 1 <p <. As H is positive we have that

H(1-f/| f], )=0forall felL:, f=0.Hence

= fl
IR = swomm= <AL =1 = 1.

Moreover,

from self-adjointness it follows that

IHl= R =IH ] <t :



Remark 4.3.2

If T is not an enclosure, H does not have constant eigenfunctions associated with
eigenvalue A=1. However, from (4.3.15) we see that H(1) <1, as
(1-K )®)>0 and E( I-K(1-E) )" isa positive operator.

Let us now consider the case where part of the radiation can escape the system. Then,
With the exception of the facts mentioned in remarks after Lemma 4.3.1 and 4.3.5,

all the previous Lemmas hold. In addition, the operators K and H become

constractive.

Lemma 4.3.6
Assume that oQ\T" has positive surface measure. The | K |, <land [H |, <1

for 1<p<oo.

Proof:

We shall prove the norm estimates in the case p = 2. When pe(1,2) or

pe(2,0), we can apply the Riesz—Thorin theorem. As K is self-adjoint the
spectral radius r (K) equals to | K |,, see [17]. Now, we prove that r (K ) <1 by
comparing K with operators defined in QuUoQ . For this reason, let U be defined in

QuUAQ and extend K by zero to I'y: We define ( K )(x) = ( K G‘Qur )(X)

when x e QuTand ( Kd )(x) = 0 when xeT',. Nowclearly r(K)=r(K).



Let us now consider a system where also T, is radiating and consider the radiation
operator K associated to enclosure Q UT UT,. Now r ( K ) =1. To conclude the
proof, we have to show that r (K ) < r( K ). As K is positive and compact,

r (K ) isan eigenvalue with non-negative eigenfunction 4 ; see [22]. Moreover, if
U were zero in some region QcQuUT, G had to be zero in every point that sees
Q.Hence 4>0 in QUT.Nowlet T =1, which is eigenfunction of K. Then
(4,0) = ¢ a,( IZ—K)G)HO +r(K)(a,d ) o Where 4 is the measure

associated to the enclosure QU T UT';. Now, ( K-K )U >0 inthose regions

of QuUT thatsees I',. This together with { G ,J>ﬂ0 > 0 implies that r(K) <1.

Let us now consider the Li norm of H. As H is self-adjoint and positive,

r(H)=||H |, an eigenvalue of H; see [18]. Hence = 1—r(H) is an eigenvalue
of G with real eigenfunction x. From the proof of Lemma 4.3.4 we see that G is
positive definite if | K |, <1. Thus, 6 (u,u), = (u,Gu),> 0, which concludes

the proof. O



4.4 Conductive — radiative problem

Let us now analyze the problem of determining temperature in a system where
conduction and radiation are present. We shall analyze situations that is in general
enough to give ideas of the difficulties related to radiation terms and of results that
can be obtained. We consider a system that consist of conductive materials

occupying Q= QuQ, uI'. In Q the material is assumed to be gray and
semitransparent, where as Q, is opaque. By T we denote the common boundary
of Q and Q,. The exterior boundary of Q, is denoted by I', and possible exterior
boundary of Q by I',. First, we assume the situation in which part of the wall I’ is

assumed semi— transparent allowing part of the radiation to escape .

Coercive cases
Let us consider the situation analyzed above. The heat balance is governed by the

system

—kAT = f in Q, (4.4.1)

—KkAT = f —4BG(sTH+q” in Q (4.4.2)

[koT /on]=-G (6T*)+q> on T (4.4.3)



where [.] denotes the jump across T':[ f ]= lim f(x) — lim f(x). Here g, "and
x—>T* Xx—>T~

q. denote the additional radiative heat source/flux arriving from outside of the

system. On I, we need some appropriate boundary condition. Here, we choose the

condition

ka—+c(T—T0):O on T, (4.4.4)
n

On I, we have the condition

k— =0 on T, (4.4.5)

as I', does not conduct or radiate outside of the system. As the Stefan—Boltzmann

law makes physical only for positive values of T, we can alter it freely for

mathematical convenience, if T is negative. Thus, we make the Stefan—Boltzmann

law Monotone by replacing ¢ T* with o|T |3 T . From now on, we write simply

T* even when we actually mean |T |3 T. The next step is to write the system in

variational form. This is not entirely trivial as the non—linear terms on the boundary



" are not necessarily integrable if T in H'(Q). In fact, as G maps L? to itself,

the natural space to work is
vV = {VEHl(Q)ZV| eLS(F)} (4.4.6)
r

Then G isdefined forall veV,(Gv*)| e”*(Q) and (Gv*)| eL¥(I).
Q r

If V is reflexive Banach space and we can write (4.4.1) — (4.4.5) in weak form as

A(T v)=a(T ,v)+b(T,v) =(f,v) VveV (4.4.7)
where
a(T,v) = IkVTVv + I cTv (4.4.8)

b(T,v) =j 4ﬁG(aT4)v+j GTYYWV=(G(T",v), (449

Q

(?,v) = I(f+qi°°)v +IcTov - I q. Vv (4.4.10)

QuQ, r

As the radiative term G (¢T*) is not monotone, we shall apply the theory of

pseudomonotone operators; see [23].

Now, if we can prove coercivity in 'V, the existence result follows.



Theorem 4.4.1

Assume that © is bounded, connected and that all the boundaries are Lipschitz. Let

f eV’ and assume that OQ\T" has positive surface measure. Then there exists a

solution of (4.4.7).

Proof:

By using Lemma 4.3.6 we get

b(T.T) = a(|T—TI|HT|ITI

> o (1| H |, )TE=c|TI,

5/4

as |H | <1.Moreover,

2
()’

a(T.,T) = c|VT|
The norm

[ul] = v

+ | u is an equivalent norm in V, see [5].

L2(Q) Loy !

Hence we have that
A(T.T)/[|T||->.as||T||->co. This means that A is coercieve in V. As A

is also pseudomonotone the problem (4.4.7) has at least one solution ; see [23]. m



Another important situation where the coercivity can be obtained is that of two—
dimensional models. If Q — R* the coercivity with respect to  L°(I") norm is not
needed as H'(Q) < L*>(T), i.e. V = H'(Q). Heat transfer can be modeled in 2D, if

the radiating body has adequate symmetry; see [20]. Atypical example of this is a
cross—section of a long cylindrical body. Of course, in 2D the definition of K must be

changed to keep the physical properties.

General case

Let us consider the situation in which I is an enclosure. This system is modelled
with equations (4.4.1) — (4.4.4) and it has variational formulation (4.4.7), except that
now ¢;” =0 and g =0. Now the form A is not necessarily coercieve in V (at least
we have no proof for coercivity ). Hence we shall prove the existence by assuming
the existence of sub—and supersolutions. For this reason, let us denote by V™ the

cone of non-negative elements V* ={veV :v>0 }

Theorem 4.4.2

Assume that Q is bounded, connected and that all boundaries are Lipschitz.

Let f €V’ and assume that there exist functions @ and y inV, such that ¢ <

and

A(p,w) < (f w) vweV”

A(y,w) <(f,w)y VweV"

Then there exists a solution T for (4.4.7). Moreover, o <T <y in Q.



Proof:

By using Lemma 4.3.5 we can rewrite the problem as

a(T,v)+c(T,v)—-d(T,v) = <f~,v> ,VYveV , (4.4.11)

where

c(T,v) =(aT*, vy, and d (T ,v)=(H (aT*),v),.
We choose now T, =y and construct a sequence { T, } as follows:

a(T,, w)y+c(T,, ,w) =d(Tn,W)+<f~,W> ,YweV.

We claim that T, is a decreasing sequence of supersolutions that is bounded from

below. To prove this, assume that T, is a supersolution. Then

a(T W)+C(Tn+llw) - a(Tn’W)_C(Tn’W)=

n+l

(f w)y—a(T, ,w)—c(T, ,w)+d(T, , wW)<0 VweV",

as T, was a supersolution. In particular, for w= (T, —T, )" we set

n+1

a(T,.,,-T,,w)=a(w,w)>0,and

n+1

C(Tp W)= (T, W) = [ 48-40|T. W + [ 4o|T.['w? 20, where T, is
r

Q



between T, and T Consequently, a (w,w)=0. As the form a is coercieve in

n+1"*

H'(Q), it follows that w=0 and T,,<T. On the other hand,

n+1

d(T,,,w)<d(T,,w),as H w >0. Hence, it is easy to see that T, is also a

n+l ! n+l

supersolution. Moreover, if T, >¢, then T, , >¢. The case with subsolutions is

n+1

treated analogously. This means that the sequence {Tn} converges monotonically to

a limit which clearly solves the problem. m

Now we give some examples of cases, where the super and subsolutions can be
easily constructed. Here we use the fact that G (¢T*)=0, whenever T is a

constant.

Example 4.4.1

Assume that there is no internal heating source, so that f = 0 inQ, and let
T, eL”(I'). Then we can choose ¢ and y as constant functions which satisfy

o < T <. Inthe case of internal heating the construction is not as simple.

Example 4.4.2

Assume that f =0 in Q. Now, we try to construct y as follows:

(i) inQ weset w=¢,where ¢ isaconstant to be determined;

(if) vy solves the problem



@) — >0 on I'.

These conditions can be satisfied, for example, if T' has C* smoothness and Q,
satisfies the interior ball condition on T': for every xe I there is a ball B c Q,
with xe 0B.

To construct y in Q, , let T, and T, be solutions to

kAT, = , k4T, =0 inQ,

T,=0,T,=1 on T

oT. oT.
a_nl +¢c(T,-T,)=0 6_r12 +¢c(T,-T,) =0 on T.



Due to the regularity of T" and Q, we have that % is bounded and aai >c,>0
n n

on I',see[7].

If we choose ¢ suchthat £0T,/on > 0T, /on, we can take

w|zﬂ+§ﬂ.
Q,

A subsolution ¢ of can be constructed similarly .
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