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Abstract 

 

 

 
              This work deals with the three fundamental concepts of heat transfer modes 

(radiation, conduction and convection) with great emphasis on heat radiation and 

interaction with conduction. 

Determining radiation interchange between surface areas is needed in heat transfer, 

illumination engineering and applied optics. In fact, since 1960 the study of  radiant 

interchange has been given impetus by technological advances that provides systems 

in which thermal radiation is very important. 

The geometric configuration factors derived here are an important component for 

analyzing radiation exchange. The computation of configuration factors involves 

integration, either analytically or numerically, over the solid angles by which 

surfaces can view each other. 

Some examples are given to demonstrate analytical integrations arise in radiant heat 

analysis. Moreover, the question of coupling heat radiation with conduction has been 

dealt with. To analyze this problem we consider a conductive - radiative heat transfer 

model containing two conducting and opaque materials which are in contact by 

radiation through a transparent medium bounded by diffuse - grey surfaces. Some 

properties of the radiative integral operator are presented. The question of existence 

and uniqueness of weak solutions for this problem is investigated. The existence of 

weak solution is proved by showing that our problem is pseudo-monotone and 

coercive. The uniqueness of solution is proved using some ideas from the analysis of 

nonlinear heat conduction.         
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 الملخص

 

يغ انخشكٍز  (الاشؼاع وانخىطٍم وانذًم)هزة انشسانت حُاونج انًفاهٍى الأساسٍت لاَخقال انذشاسة 

 

ػهى  الأَخقال انذشاسي بالأشؼاع ، وحىػٍخ دالاث دذورها ، وحقذٌى انقىاٍٍَ انشٌاػٍت انقشٌُت 

الأَخقال انذشاسي بالأشؼاع ٌذذد بٍٍ انسطىح بذسجاث دشاسة يخباٌُت  وهزا .  نكم وادذة يُها

الأَخقال انذشاسي بانخىطٍم ٌذذد أيا .  The Stefan _ Boltzmann""يا وػذه قاَىٌ 

الأَخقال انذشاسي  بًٍُا "Fourier's law "ػبش الأجساو انظهبت ، وانسىائم يىػذا بقاَىٌ 

يُز ػاو . بانذًم ٌذذد بٍٍ انسىائم انًخذشكت انًذاطت بسطىح راث دسجاث دشاسة يخباٌُت 

 أطبذج حطبٍقاث ألأشؼاع انذشاسي يهًت فً انخقٍُت انًخقذيت، وبُاءا ػهٍه اَخجج اجهزة 1960

 بٍٍ انسطىح  واشخقاقه" configuration factor "حؼشٌف .   ٌسخخذو فٍها ألأشؼاع انذشاسي 

 " اٌ دساب .  جزء يهى نخذهٍم انخبادل الأشؼاػًانسىداء ، وركش خظائظها 

configuration factor " وكزنك  نهسطىح غٍش .   ٌخؼًٍ انخكايم سىاء حذهٍهٍا أو سقًٍا

انًخانفت نهسطىح انسىداء بىجىد اشؼت يُؼكست ،وانخً سخُؼى نلأشؼت  (انشيادٌت )انسىداء 

وقذ أوسدث بؼغ الايزهت  نبٍاٌ انخكايم انخذهٍهً انزي ٌظهش فً حذهٍم الأشؼاع . انًُبؼزت 

اػافت نزنك حى طشح ويُاقشت حزاوس الاشؼاع انذشاسي يغ انخىطٍم بفشع اٌ . انذشاسي

وقذ . انسطىح انًؼًىل بها يىطهت و يشؼت و قاحًت وٌذىٌها وسط شفاف سيادي باػذ نلاشؼت

 وقذ طشح انسؤال ػٍ وجىد . " Radiative integral operator"ػشػج بؼغ خظائض 

دم ودٍذ نهزة انًسأنت ،  وًٌكٍ ارباث وجىد انذم بارباث اٌ انًسأنت انًطشودت نذٌُا  حخًخغ 

وأٌ ودذاٍَت انذم سٍزبج بالاسخؼاَت ".  "Pseudomonotone and coercive بانخىاص  

". The analysis of nonlinear heat conduction"ببؼغ الأفكاس يٍ   
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Introduction 

 

 
       Thermal radiation is very important in some applications because of the manner 

in which radiant emission depends on temperature. For conduction and convection, 

energy transfer between two locations depends on their temperature difference to 

approximately the first power. For free convection, or when variable property effects 

are included, the power of the  temperature difference may become larger than one, 

but usually in  conduction and convection it is less than two.  

Thermal radiation energy transfer between two bodies, however, depends on the 

difference between their absolute temperatures, each raised to about the fourth 

power. From this basic difference between radiation and conduction or convection, it 

is clear that the importance of radiation is intensified at high absolute temperatures. 

Consequently, radiation contributes substantially to energy transfer in furnaces, 

combustion chambers, fires, and to the energy emission from a nuclear explosion. 

Radiative behavior governs the temperature distribution within the sun, and the solar 

emission. The nature of radiation from the sun is important in the technology for 

solar-energy utilization. Some devices are designed to operate at high temperature 

levels to achieve good thermal efficiency. Hence radiation must be considered in 

calculating thermal effects in rocket nozzles, power plants, engines and high 

temperature heat exchangers. Another distinguishing feature is that an intervening 

medium is not required between two locations or radiant exchange to occur. 

Radiation energy passes perfectly through a vacuum. This is in contrast to convection 

and conduction, where the physical medium must be present to carry energy with the 

convective flow or transport it by conduction. When no medium is present, radiation 



 ix 

is significant mode of heat transfer, such as for the heat leakage through the 

evacuated space in the world of the thermos bottle. Radiation is important in some 

instances because its action from a distance provides local heat sources that modify 

temperature distributions, thereby influencing conduction, free convection, or forest 

convection. Radiation can penetrate into fiberglass insulation to add to heat flow by 

conduction.  Radiation can heat the walls of an enclosure, producing free convection 

where it would not ordinarily occur.  

An important application of thermal radiation is in the practical utilization of the 

sun's radiation as an energy source. Solar energy transferred through the vacuum of 

space and the earth's atmosphere is received by a solar collector that converts the 

solar radiation into internal energy. 

In fact, we note that the thermal radiation considered here is in the wave length 

region that gives humans the benefit of heat light, and photosynthesis. This is strong 

motivation for studying thermal radiation. Our existence depends on the solar radiant 

energy absorbed by the earth and it's atmosphere. 

Due to the importance of  heat transfer modes, different methods and techniques 

have been introduced and developed over the years for the computations of energy 

transfer problems ( radiation, conduction and convection)  as well as the coupling of 

these modes (see for example  1,2,4,9,10,11-17,20,21,22 ). 

This thesis is organized as follows: 

In chapter one we outline the fundamental concepts of heat transfer modes. These 

modes are radiation, conduction and convection. 

In chapters two and three we analyze configuration factors for radiant black and grey 

surfaces respectively. The computation of configuration factors involves integration, 
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either analytically or numerically, over the solid angels by which surfaces can view 

each other. Some examples are given to demonstrate analytical integrations. 

In chapter four we investigate the existence and the uniqueness of the solution of the 

coupled conduction- radiation energy transfer on diffuse- grey surfaces.                                                                               
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   Stefan–Boltzmann  constant which has the value   

                        )./(10669.5 428 KmW   
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   Frequency 
c  Light speed in any medium other than a vacuum. 

oc   Light speed in a vacuum. 

n  Unit normal vector  

N  Number of the surfaces of the enclosure. 

q  Radiative heat flux. 

Q  The total heat transfer rate. 

oi ,    Incoming and Outgoing radiation respectively. 

   Azimuth angle 

   The angle in Y-Z plane 

   Polar angle  

T   The  absolute temperature 

AT   The temperature of area. 

bT   The temperature of black body.  
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CHAPTER ONE 

 

Fundamental concepts of heat transfer  

 

The heat is the form of energy that can be transferred from one system to another. The heat 

transfer is the energy that results from a temperature difference. Whenever there exists a 

temperature difference in a medium or between media, heat transfer must occur. We refer 

to different types of heat transfer processes as modes. These modes are heat radiation, heat 

conduction and heat convection. All surfaces of finite temperature emit energy in the form 

of electromagnetic waves. See for example 4 . 

 

1.1   Radiation 

 

Thermal radiation is the energy emitted by matter that is at a finite temperature.  Although 

radiation occurs from solid surfaces, it occurs also from liquids and gases. Thermal 

radiation is transmitted through a vacuum since the sun's energy emits millions of 

kilometers of space before reaching the earth.      

 

Assume a solid that is initially at a higher temperature Ts than that of its surroundings 

temperature 2T , where 2T  is the temperature of the surroundings, but around which there 

exists vacuum. However, it's obvious that the solid's temperature Ts will cool and finally 

achieve thermal equilibrium with its surroundings. This cooling is associated with a 

reduction in the internal energy stored by the solid and is a direct consequence of the 

emission of thermal radiation from the surface. However,  if 2sT T  the  net   heat  transfer  
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rate by  radiation  Q is from the surface to the surroundings, and the surface will cool  until  

Ts reaches 2T . 

 

Thermal radiation is emitted by all surfaces that surround us: by the walls of the room, the 

furniture if we are inside, or by the sun, buildings, cars and the ground if  we  are outside. 

The mechanism of emission is related to energy   released as a result of many electrons that 

constitute matter. These oscillations are, in turn, obtained by the internal energy, and 

therefore, the temperature, of the matter. Hence, we associate the emission of   thermal   

radiation with thermally excited conditions within the matter. All forms of matter emit 

thermal   radiation. For gases and for semitransparent solids, such as glass and salt crystals 

at elevated temperatures, hence emission is a volumetric phenomenon. That is radiation 

emitting from a finite volume of matter is the integrated effect of local emission   

throughout the volume. However, in this thesis, we will concentrate on situations for which 

radiation   is surface phenomenon. Accordingly, radiation that is emitted from a solid or a 

liquid originates from molecules that are within a distance of approximately 1 μm from the 

exposed surface, where 1μ m=10
-6   

m. Because of this reason, mission from a solid or a 

liquid into a gas or a vacuum is called a surface phenomenon. 

   

Since radiation transport does not require the presence of any matter, one theory viewed 

radiation as propagation of electromagnetic waves like radio waves and X- rays. The other    

theory in the twentieth century states that radiation is composed of particles called photons.   

In any case the two properties of waves, frequency υ and wavelength λ are related by  

 

             c =     υ λ                                                                                               (1.1.1) 
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 Where c is the speed of light in the medium.  The speed of light in a vacuum, 

c0=2.998x10
8
 m/s.             

 

The unit of wavelength is commonly the micrometer ( μ m). The  short   wavelength   

gamma (γ )  rays,  X- rays and  ultraviolet ( UV ) radiation  are primarily  of   interest  to  

the high  energy  physicist, medicine and  the nuclear engineer, while the long wavelength 

microwaves and radio waves are of concern to  the  electrical    engineer. Thermal radiation 

emitted by a surface includes a range of wavelengths. 

 

There are many applications for radiation in biological field, when radiation passes through 

living cells; it can damage their structure which causes death of them and consequently 

death of the organism. The most rapidly growing cells are immature cells; often cancer 

cells are rapidly growing which are highly affected to radiation. In one study it was found 

that children whose mothers received X- rays during pregnancy had a 0
030  to 0

040  

increase in the incident of cancer. In medical researches, amino acids, sugars, DNA and 

penicillin are a few of hundreds of medical compounds containing 
14 3 35 32, , , .C H S P  The 

radioactivity of these elements makes it possible to follow their pathways and metabolism 

conveniently.             

 

The flux at which radiation may be emitted from a black surface is given by the Stefan _ 

Boltzmann Law:  

 

               
4

sq T                                                                                                     (1.1.2a) 

 



 4 

Where Ts the absolute temperature of the surface, σ is the Stefan _Boltzmann constant   

which has the value σ =5.67 x 10
-8

 (w/m
2
.k

4
 ). Such a surface is called ideal radiator. The 

heat flux emitted by a real surface is less than that and is given by 

 

             
4

sq T                                                                                                   (1.1.2b) 

 

Where ε is the emissivity of the surface, with  0 ≤  ε  ≤ 1,  for black bodies , 1   , the 

total  emissivity   

 

             
( )

  
( )b

e T

e T
                                                                                               (1.1.3) 

 

Where ( )e T  is the emittance of any surface which is always less than the emittance of 

black surface  ( )be T  which proves that  0 ≤  ε  ≤ 1.  Conversely, if radiation is incident 

upon a surface, a portion will be absorbed. On the other hand, the rate at which energy is 

absorbed per unit surface area termed the absorptivity α. See for example 10 . 

 

            2 incq = q                                                                                                    (1.1.4)  

 

Where 2q  is the absorbed radiation, incq  is the incident radiation, and  0 ≤ α ≤ 1, whereas 

the  emission reduces the thermal energy of matter, but absorption increases this energy. 

Equation (1.1.4) determines the rate at which radiant energy is emitted and absorbed 

respectively at a surface. Determination of the net rate at which radiation is exchanged 

between surfaces is generally good to deal with. The special case occurs frequently in 

practice involves the net exchange between a small surface and a much larger surface that 
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completely surrounds the smaller surface. This is what we will introduce in chapters two 

and three. See for example 7 .   

 

The surface and the surroundings are separated by a gas has no effect on the radiation 

transfer. Assume a grey surface that has the property α = ε. The net rate of radiation 

exchange between the surface and its surroundings is given by 

 

             4 4

2( ) sq
Q

T T
A

                                                                                   (1.1.5) 

 

Where A is the surface area, ε is its emissivity, sT  is temperature of the surface and  2T  is 

temperature of the   surroundings.  

 

There are many applications for which it is convenient to express the net radiation heat 

exchange in the form 

 

             s 2 Q A (T   T )rh 
                                                                                    (1.1.6) 

 

Where  rh  is the radiation heat transfer coefficient  

 

             
2 2

2 2( T )( T ) r s sh T T   
                                                                        (1.1.7)          

 

The total emissivity ε of a surface is determined only by the physical properties and 

temperature of that surface. The total absorptivity α on the other hand depends on the 

source from which the surface absorbs radiation as well as the surface's own 
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characteristics. This happens because the surface may absorb some wavelengths better than 

others. Thus, the total absorptivity will depend on the way that incoming radiation is 

distributed in wavelength. And that distribution, in turn, depends on the temperature and  

physical   properties  of  the  surface  or  surfaces  from  which  radiation is  absorbed . The 

total absorptivity α thus depends on the temperature and physical properties of all bodies 

involved in the heat exchange process.  

 

There is a relationship between the emissivity and the absorptivity for a surface that is in 

thermodynamic equilibrium with its surroundings in which   Kirchhoff's law deals                             

  

             ( , , ) ( , , )T T                                                                               (1.1.8)  

 

Where   is angle   between the incident rays and the normal line with 0 <   < 
2


  ,    is 

the angle  at the base of the hemisphere  with 0 <   < 2  ,   and   are the  emissivity 

and the absorptivity for the surface respectively  and T is the surface temperature. 

Kirchhoff's law states that a body in thermodynamic equilibrium emits as much energy as 

it absorbs in each direction ( , )   and at each wavelength .  If this were not so, for 

example, a body might absorb more energy than it emits in one direction 1 , and might also 

emit more than it absorbs in another direction, 2 . Then the  body  would  thus  pump   

heat out of its surroundings from  the  first  direction , θ1 , and  into  its  surroundings  in 

the  second   direction , θ2 . See for example 10,20 .   

 

For a diffuse body, the emissivity and the absorptivity do not depend on the angles, and   

Kirchhoff's law becomes    
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             ε λ(T)   =      α λ(T)                                                                                          (1.1.9)             

  

If, in addition, the body is grey, Kirchhoff's law is further simplified    

 

             ε (T) =   (T)                                                                                                    (1.1.10 ) 

 

Equation (1.1.10 )  is the most widely used form of Kirchhoff's law. However, this form is 

not valid if surfaces are not grey.  

 

 1.2   Conduction 

 

Conduction may be viewed as the transfer of energy from the higher energetic to the lower 

energetic particles of a substance. Conduction in the case of gases and liquids takes place 

as a result of the diffusion and collisions of the material molecules during its random 

motion. However, in solids conduction occurs as a result of vibrations of the molecules at 

fixed positions called a lattice vibration and as a free flow of electrons. Thermal 

conduction needs the presence of medium. In solids, molecules have greater energies with 

high temperature, but in fluids, the thermal energy incident in molecules. The movement of 

these molecules from high   temperature places to the lower places formed a flow of heat. 

The rate of heat conduction depends on many factors such as the geometry of the medium, 

its thickness, the material of the medium and the temperature difference a cross the 

medium. See for example 7 .           

For heat conduction, the rate equation is known as Fourier's law expressed algebraically as 

 

             xq
dT

K
dx

                                                                                               (1.2.1) 



 8 

Where K is the thermal conductivity of the material which is a measure of the ability of a 

material to conduct heat and is given in tables 4 . 
dT

dx
 is the temperature gradient, which 

is a vector quantity curve on a T x diagram. In fact equation (1.2.1) can be further 

expressed as  

 

             1 2
x

( )
 q

T T
K

L


                                                                                             (1.2.2) 

 

Where T1 and T2 are the temperatures of the surfaces of the wall, and L is the thickness of 

the wall. In general, metals are good conductors. Copper is the common substance with 

highest conductivity at ordinary temperature which value is 401W/m.
0
C which means that  

the wall of copper of thick  1 m  can conduct heat at a rate of 401 W/m.
0
C a cross the wall. 

Note that there are good electric conductors and heat conductors such as copper, silver 

which have high values of thermal conductivity. On the other hand, there are poor 

conductors such as rubber and wood which have low conductivity values. The thermal 

conductivity of materials vary over a wide range as noted in the table 7 . The thermal 

conductivity of gases are too smaller than metals like copper. Note also metals have the 

highest thermal conductivity and gases the lowest thermal conductivity. Pure metals have 

high  thermal conductivity, alloy metals should also have high conductivity, where the 

alloy is made up of two metals of thermal conductivities k1 and k2 to have a conductivity k, 

where k between k1 and k2 in some cases, usually, the thermal conductivity of an alloy is 

much lower than that of either metals. For example, the thermal conductivity of steel 

containing 1 percent of chrome is 62 W/m.
0
C, while the thermal conductivities of iron and 

chromonium are 83 and 95 W/m.
0
C respectively. The thermal conductivity is normally 
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highest in solids phase and lowest in gases phase. There are metals which are good heat 

conductors but poor electrical conductors, such as silicon, such materials find wide spread 

use in electronics industry.                     

 

There are many examples. The exposed end of a metal spoon suddenly immersed in a cup 

of hot coffee will eventually be warmed due to the conduction of energy through the 

spoon. On winter day, there is significant energy loss from a heated room to the outside air. 

This loss is due to conduction heat transfer through the wall that separates the room from 

the outside air. For more examples see 4,7 . 

 

1.3   Convection 

 

The convection heat transfer mode is obtained by random molecular motion and by the 

bulk motion of the fluid within the boundary surface with different temperatures. The 

contribution due to random molecular motion occurs near the surface where the fluid 

velocity is low. In fact, at the   interface between the surface and the fluid closed to the 

surface, the fluid velocity is zero and heat transferred by random molecular motion only. 

 

Convection heat transfer may be classified according to the nature of the flow. There is    

forced convection when the flow is caused by external means, such as by a fan to provide 

forced convection  air  cooling  of hot  electrical  components, and  there is  free (natural )  

convection in which the  flow is  induced by buoyancy forces which arise from density 

differences caused by temperature  variations in the fluid. The convection heat transfer is 

given as 
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             sq = h  (T )T                                                                                            (1.3.1)           

  

Where q the convection heat flux which is proportional to the difference between the 

surface and fluid temperatures Ts , T∞ respectively and h is the convection heat transfer 

coefficient. This expression is known as Newton's of cooling, h depends on the boundary 

of the layer, which is influenced by surface geometry, the nature of the fluid motion, and 

on assortment of fluid thermodynamic and transport properties. In the solution of such 

problem we assume h to be known. When equation (1.3.1) is used, the convection heat flux 

is positive when (Ts ≥ T∞) and negative when (Ts ≤ T∞). There are many examples of heat 

convection; one of them is the movement of water through the solar panels on top of our 

houses.  

 

The total heat transfer rate Q may be obtained by integrating the local  flux over the entire 

surface, that is 

 

             

sA

 Q = sq dA                                                                                                (1.3.2) 

 

But sq = h  (T )T consequently, equation (1.3.2) becomes                                                           

                                                                    

             

s

s

A

Q =  (T ) sT h dA                                                                                   (1.3.4) 

 

Defining an average convection coefficient h   for the entire surface, the total heat transfer 

rate may be expressed as  
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             sQ = h (T )sA T                                                                                         (1.3.5) 

 

Hence the average and local convection coefficients are related by 

 

              
( )s s

Q
h

A T T




                                                                                         (1.3.6)     

 

Substituting    equation (1.3.4) into   (1.3.6)    we obtain 

 

             h  =  
1

s

s As

h dA
A                                                                                            (1.3.7) 

 

Note that for special case of flow over a flat plate with length L, h varies with the distance      

x from the leading edge, hence equation (1.3.7) becomes 

 

             h  =  
0

1
l

h dx
L 

                                                                                              (1.3.8) 

 

The surface within the surroundings may also simultaneously transfer heat by convection 

to the adjoining gas. The total rate of heat transfer from the surface is then the sum of the 

heat rates due to the two modes. That is  

 

           4 4

rad s 2+ Q hA(T ) + ( ).con sQ Q T A T T                                            (1.3.9)                                                                                         
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CHAPTER TWO 

 

Configuration factor for radiant black surfaces 

 

A blackbody is a body that can emit the maximum amount of radiation by the surface at a 

given temperature. Or it is defined as a perfect absorber and emitter of radiation. At a given 

temperature no surface can emit more energy than a black body. A blackbody absorbs all 

incident radiation with all wavelengths and radiation. Also black bodies emit radiation 

uniformly in all directions that is; a blackbody is a diffuse emitter. Any body that absorbs 

light completely would appear black to the eye. On the other hand, any surface that reflects 

it completely would appear white. Consequently, some surfaces such as snow and white 

paint reflect light and thus appear white. But they are black with respect to the infrared 

radiation since they absorb the radiations. The blackbody properties can be summarized in                 

1- Black surfaces are completely absorbers, which simplifies the energy exchange process, 

since there is no reflected energy to be considered. 

2- All black surfaces emit in a perfectly diffuse fashion. For more[20]    

 

Definition: A configuration factor is a fraction of radiation leaving one surface reaches 

another surface, denoted by    

 

             1 2
1 2

1

Q
F

Q


                                                                                                           (2.1) 
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Where 1 2Q   is the energy radiated from  1A  to 2A  only, 1Q is the total energy radiated 

from 1A .     

 Now, we will illustrate the calculation of configuration factor in the following cases 

 

2.1  Configuration factor  between two differential elements 

 

Assume   there is a differential element dA 1  with temperature T 1  at a distance S from 

another differential element dA 2  with temperature T 2  in 3R as shown in figure (2.1), then 

the configuration factor is derived from the definition as: 

 

             
1 2

4 2

1 1 2 1 2

4

1 1

( cos cos / )
d d

T S dA dA
F

T dA

   


                                                      (2.1.1)   

 

 

 

 

 

 

 

 

 

Where 1  is the angle between S and the normal to 1dA , 2  is the angle between S and the 

normal to 2dA , (2.1.1)  can be simplified as     

           

ß 

1   

dA1 

T1 

dA2 

T2 

x 

Y 
L 

S 

Z 

x 

Fig. (2.1) 

L cos   

  

2   
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1 2

1 2 2

2

cos cos
d d

dA
F

S

 


                                                                                (2.1.2) 

 

 Equation (2.1.2) shows that 
1 2d dF   depends only on the size of 2dA  and its orientation with 

respect to 1dA .    

 

             
1

2 2

2

cos
w

dA
d

S


                                                                                         (2.1.3) 

 

Where 
1wd  is the solid angle subtended by 2dA  when viewed from 1dA . Hence equation 

(2.1.2) becomes  

 

             
1 2

1 1
d d

cos 
F =  

dw


                                                                                       (2.1.4) 

 

             1 

L cos            
 cos =

S


                                                                              (2.1.5) 

 

             
1

2
w 2

Projected area of dA
d = 

S
                                                                     (2.1.6) 

 

        
1

2 2
w 2

(Projected width of dA )( Projected length of dA )
d =  

S
                            (2.1.7) 

 

                  
2

( ) ( cos )
 

L d dx

S

 
                                                                             (2.1.8) 
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Fig. (2.2) 

L dA1 

T1 

dA2 

T2 

x 

Y 

S 

Z 

x 

ß 

dx  

dA Strip, 2 

d ß 
 

      With cos
L

S
  , substitute equations (2.1.5) and (2.1.8) into (2.1.4) , we get   

 

             
1 2

3

2 2 2

cos

( )
d d

L d dx
F

L x

 


 


                                                                            (2.1.9)        

 

Where β is the angle in the Y – Z plane, L is the distance between dA 1  and  dA 2   after the 

projection in Y-Z plane,  and 2 2 2S L x   as shown in figure (2.1).  

 

We can further illustrate the computation of the configuration factor   between differential 

elements by the following example. 

 

Example 2.1 

 

The configuration factor between differential element and an infinitely long strip of 

differential width as shown in figure   (2.2) 
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1 2

3

2 2 2

cos

( )
d stip

L d dx
F

x L

 










                                                        (2.1.10)                                             

 

Our integral is improper with symmetric integrand, equation (2.1.10) can be written as                                            

 

             
1 2

03

2 2 2

cos
2

( )
d stip

L d dx
F

x L

 






 
  

 
                                                  (2.1.11) 

 

             
1 2

03

2 2 2

cos
2 lim

( )
d stip

a
a

L d dx
F

x L

 






 
  

 
                                              (2.1.12) 

 

Let  x   = L tan   then d x  =L sec
2  d  ,  consequently equation (2.1.12) becomes 

 

             
1 2

03 2

2 2 2 2

cos sec
2 lim

( tan )
d stip

a
a

L d L d
F

L L

   

 




 
  

 
                                  (2.1.13) 

 

Simplifying by using some mathematical relations we obtain       

 

             
1 2

0

1

2 2

cos
lim (tan ( )

( )
d stip

a
a

d x xL
F

L x L

 








 
  

 
                                    (2.1.14) 

 

Taking the limit of 

0

1

2 2
(tan ( )

( )
a

x xL

L x L

 
 

 
 as a  -    , we get  

 

            
1 2

cos sin
( )  

2 2
d stip

d d
F

   


                                                             (2.1.15) 
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2.2 Configuration factor between a differential element and a finite area  

 

Suppose now an isothermal black element dA1 at T1 exchanging energy with a surface of 

finite area A2 that is isothermal at temperature   T2 as shown in figure (2.3) the angle 1  will 

be different for different positions on A2, 2  and S will also vary as different differential 

elements on A2. 

 

 

 

 

 

 

 

 

 

Here, there are two configuration factors, the configuration factor Fd1-2 is from the 

differential area dA 1   to finite area A2 and 
12 dF    is from A2 to dA 1 , we can derive the 

configuration factors using the definition as 

 

             
1 2

4 2

1 1 2 1 2

4

1 1

( cos cos / )
d d

T S dA dA
F

T dA

   


                                                     (2.2.1) 

 

Integrating over A2 to obtain 

            

ө2 

Fig. (2.3) 

dA 1 

T1 

Normal 

to dA1 

ө1 ө2 

A2 

T2 

dA 2 

T2 

S 

S 

Normal to dA2 
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1

2

1 2 2
2 2

cos cos
   d

A

dA
F

S

 


                                                                    (2.2.2a) 

 

Hence, 

 

             
1 1 2

2
2d d d

A
F F                                                                                       (2.2.2b) 

 

Equation (2.2.2b)  shows the fact that the fraction of the energy reaching A2 is the sum of 

fractions that reach all of the parts of A2. 

 

The energy reaching an element area  1dA  from a finite area A2 is given by 

 

             
1

2

4

2 1 2 2
2 1 2

cos cos
  d

A

T dA
Q dA

S

  


                                                        (2.2.3) 

 

The total energy leaving A2   is 

 

             

2

4

2 2 2 Q  
A

T dA                                                                                      (2.2.4) 

 

The   configuration factor  
12-dF  then is 

 

             
1

2

1 1 2 2
2 2

2

cos cos
 d

A

dA dA
F

A S

 


                                                                    (2.2.5) 
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Note that there is a symmetry (reciprocity) relation for configuration factor between 

differential element and a finite area, that is 

 

             
12 2 1 1 2 d dA F dA F                                                                                       (2.2.6) 

 

The energy radiated from 1dA  that reaches 2A  is 

 

             
1 1

4

2 1 1 2d dQ T dA F                                                                                   (2.2.7) 

 

The energy radiated from 2A  that reaches 1dA   is 

 

             
1 1

4

2 2 2 2d dQ T A F                                                                                    (2.2.8) 

 

Consequently, the net energy transfer from dA1 to A2 is 

 

             
1 2 1

4 4

, 2 2 1 2( )netd dQ A F T T                                                                       (2.2.9a) 

 

or 

 

             
1,2 1

4 4

1 2 1 2( )  netd dQ dA F T T                                                                     (2.2.9b)  
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Example 2.2 

 

An elemental area 1dA  is oriented perpendicular to a circular disk of finite area 2A  with 

outer radius r as shown in figure (2.4) 

 

 

 

 

 

 

 

 

 

 

Using equation (2.2.2), and the following relations 

 

             1

cos
cos

L

S

 



  ,    

      

             2cos
h

S
   

and 

      

             2 2 2S h B   

  

Where 2B  can be evaluating by using the law of cosines   

h 

L 

S 

dA1 

T1 ө1 

ө2 

dA2 

T2 

d 





d 

Fig. (2.4) 

A2 

r 

B 

Normal to dA2 
Normal to dA1 
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             2 2 2 2 cos( )B L L                                                                   (2.2.10a) 

 

             2 2 2 2 cosB L L                                                                         (2.2.10b) 

 

And hence we obtain 

 

             
1

2

2 4

( cos )
d

A

h L d d
F

S

    





                                                            (2.2.11) 

 

As shown in figure (2.4) with 0 r    ,  0 2     and by the symmetry of   

configuration factor then equation (2.2.11)    becomes 

 

             
1 2 2 2 2 2

0 0

2 ( cos )
  

( 2 cos )

r

d

h L d d
F

h L L



 

    

   


 




                                   (2.2.12) 

 

2.3 Configuration factor between two finite areas 

 

Suppose there are two finite areas 1.A  and 2A  with T1 and T2 respectively,   then we have 

F1-2 and 2 1F   configuration factors for radiation emitted from an isothermal surface A1 as 

shown in figure (2.5) and reaching A2, 1 2F   is the fraction of energy leaving A1 that arrives 

to A2. 

 

The total energy leaving A1 is 
4

1 1T A  since A1 is isothermal at T1, the radiation leaving 

dA1 reaches dA2 is given: 
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1 2

4 1 2 1 2
1 2

cos cos
 d d

dA dA
Q T

S

 



                                                     (2.3.1) 

 

 

 

 

 

 

 

 

 

If we integrate equation (2.3.1) over both A1 and A2 and then divide by  
4

1 1T A  we 

will obtain the fraction of energy leaving A1 reaches A2 as 

 

             
1 2

1 2

1 2 2 1

2

1

cos cos1

A A

dA dA
F

A S

 


                                                        (2.3.2)                     

 

Similarly, one can show that 

 

             

1 2

1 2 2 1
2 1 2

2

cos cos1

A A

dA dA
F

A S

 


                                                                (2.3.3)     

 

As noted there is symmetry relation between configuration factors, that is   

             2 2 1 1 1 2A F A F                                                                                                (2.3.4)    

  

1

T2 

A2 

dA2 2

T1 

A1 dA1 

 

Fig. (2.5) 

Normal to dA1 

Normal to dA2 
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A1 A2 

Fig. (2.6) 

Depending on the previous three cases, one can determine the configuration factor for any 

two surfaces, such that if  2A  is divided into 1 2A A , then 

 

             1 2 1 3 1 4F F F                                                                                   (2.3.5)    

 

This enables us to derive an expression for 
1d ringF     

 

             
1 1 1 1 2d ring d A d AF F F                                                                          (2.3.6)   

 

 Where A1 and  A2  are the outer and the inner areas of the ring respectively. 

  

Sometimes we may need to use set theory notations, if we have two areas A1, A2   the 

configuration factor   from an area AE  to  1 2A A , with intersection   as shown in 

figure  (2.6)  then 

 

    

 

 

 

                

             
1 2 1 2 1 2E A A E A E A E A AF F F F                                                          (2.3.7)   

 

The relation can be cleared by knowing that the fraction of energy leaving    AE  is incident 

upon  1 2A A   can be divided into two fractions. Once leaving    AE   incident upon   A1, 
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A1 

Fig. (2.7) 

A3 A4 
A5 

A6 
AN 

Ai A2 

the other leaving  AE incident upon A2. However, the portion  1 2A A  is covered twice, so 

we must subtract   
1 2E A AF   , for example    the configuration factor    between   AE    and 

the L-shaped area. 

 

2.4 Configuration factor   in arbitrary convex enclosures 

 

For an enclosure of   N surfaces shown in figure (2.7), the entire energy leaving any   

surface inside the enclosure, say Ak, must be incident on all the surfaces making  up the 

enclosure. Thus, all the fractions of   the energy leaving   any surface reaching the surfaces 

of the enclosure must total to unity, that is   

 

 

 

 

 

 

            1 2 3 ...... 1k k k k NF F F F                                                                         (2.4.1a)   

 

Or 

 

             
1

1
N

k j

j

F 



                                                                                                     (2.4.1b)      

 

Where k=1,2,3,4, ….. N ,   k kF   is included if   AK   is concave. 
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A1 

A2 

Fig. (2.8) 

Example 2.4 

 

We consider two black isothermal concentric spheres that exchange radiant energy, where 

A1 is the surface area of the inner sphere,   A2  is the surface area of the outer sphere  as 

shown in  figure  (2.8 ) , the configuration factor can be computed as follow: 

   

           

 

 

 

 

Since all the energy leaving A1 is incident upon A2 only that is 1 2 1Q Q   then by equation 

(2.1), we get  

 

             1 2 1F                                                                                                              (2.4.2) 

 

and by symmetry relation, we get 

 

             2 1F  = 1

2

A

A
                                                                                                       (2.4.3) 

 

also by equation (2.4.1) we obtain 

         

             1
2 2

2

1
A

F
A

                                                                                                     (2.4.4) 
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Example 2.5 

 

An enclosure of triangular cross section is made up of three plane plate. Each of finite 

width and infinite length as shown in figure (2.9), we can derive an expression for the 

configuration factor between any two of the plates in terms of their widths L1, L2 and L3 . 

For plate 1, 

 

             1 2 1 3 1F F                                                                                                  (2.4.5) 

 

Using similar relations for each plate and multiply through by the respective plate areas: 

   

             1 1 2 1 1 3 1A F A F A                                                                                         (2.4.6a) 

 

             2 2 1 2 2 3 2A F A F A                                                                                       (2.4.6b) 

 

             3 3 1 3 3 2 3A F A F A                                                                                       (2.4.6c)  

 

By applying the symmetry relations  

 

             1 1 2 1 1 3 1A F A F A                                                                                        (2.4.7a) 

              

             1 1 2 2 2 3 2A F A F A                                                                                       (2.4.7b)   

              

             1 1 3 2 2 3 3A F A F A                                                                                        (2.4.7c)    
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Subtract the third from the second adding to the first we obtain 

 

             
11 1 2 2 32A F A A A                                                                                     (2.4.8) 

 

             1 2 3

1 2

12

A A A
F

A


 
                                                                                       (2.4.9) 

 

If   1 2L L ,   is the angle between 1L  and     2L  then 

 

             1 2 1 sin( )
2

F


                                                                                             (2.4.10) 

 

 

 

 

 

 

 

2.5 Another approach for evaluating the configuration factor    

 

There are many methods for evaluating the configuration factor. We will take one of them 

called "the unit - sphere method ". This method can determine the configuration factor by 

constructing a hemisphere of unit radius over the area element 1dA , and then the 

configuration factor from 1dA  to any other area A2 is 

A2 

A1 

A3 

 

Fig (2.9) 
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1

2

1 2 2
2 2

cos cos1
d

A

dA
F

S

 


                                                                          (2.5.1) 

 

Where 1  is the angle between the normal to 1dA and the radiation from  1dA  to A2 , 2  is 

the angle between the normal to 2dA  of A2 and the radiation from  1dA  to A2.  

 

             
1

2

2 1 1

1
cosd

A

F dw


                                                                                  (2.5.2) 

 

Where  1dw   is the projection of  2dA  onto the surface of the unit hemisphere,   

2 2

1 2

cos dA
dw

S


   ,    hence equation (2.5.2) becomes                                        

 

             
1

2

2 1

1
F cosd s

A

dA


                                                                                     (2.5.3) 

 

Where 1 2

s
s

dA
dw dA

r
  .  But, 1cos sdA is the projection of   sdA onto the base of unit  

hemisphere equals to say b A  ,( See for example 20 ). 

 

             

1 2F     b
d

A


                                                                                                    (2.5.4) 

 

This relation can be further extended to any arbitrary hemisphere of radius er , that is              

             
1 2 F   b

d

e

A

r
                                                                                                 (2.5.5)
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2.6 Using the configuration factor for evaluating the radiation exchange 

 

We can use the configuration factor for evaluating the Radiation exchange by taking the 

difference between the emitted from the surfaces.  

 

 2.6.1 Radiant exchange between   two finite  black areas 

 

               
4

1 2 1 1 1 2Q T A F                                                                                (2.6.1.1)       
 
 

 
 

       
        4

2 1 2 2 2 1 Q T A F                
                                                                     (2.6.1.2) 

 

 So the net heat transfer from 1A  to 2A  is  

 

              4 4

1,2 1 2 2 2 1( )netQ T T A F                                                                     (2.6.1.3a)        

 

or 

 

             4 4

1,2 1 2 1 1 2( )netQ T T A F                                                                         (2.6.1.3b)        

 

 

2.6.2 Radiation exchange in black enclosure  

 

Consider a black enclosure with a typical  surface kA , the energy supplied to kA by the 

other all surfaces of the enclosure to maintain kA  at  kT  is kQ . The emission from kA is 
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4

k kT A , while the received radiant energy by kA from the other surfaces jA  is 

4

j j j kT A F 
,  where j= 1,2, ……..,N  , the heat balance is 

 

             
4 4

1

N

k k k j j j k

j

Q T A T A F  



                                                               (2.6.2.1)
 

 

Where the energy arriving from  kA  included if  kA is concave, applying reciprocity in     

equation (2.6.2.1) and we know that 
1

1
N

k j

j

F 



  , we can replace  equation (2.6.2.1) by:
 

 

             
4 4

1 1

N N

k k k k j j k k j

j j

Q T A F T A F  

 

                                                    (2.6.2.2)
 

 

Simplifying equation (2.6.2.2) , we obtain 

 

             
4 4

1

( )
N

k k k j k j

j

Q A F T T 



                                                                       (2.6.2.3)  

 

This relation indicates that the heat balance is the net energy transferred from the surface 

area kA to each surface in the enclosure. 

 

Example 2.6 

The three sided black enclosure has it's surfaces maintained at 1 2,T T  and 3T   respectively, 

we can determine the amount of energy that must be supplied to each surface per unit time. 

Equation (2.6.6) can be written for each surface as 
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4 4 4 4

1 1 1 2 1 2 1 1 3 1 3( ) ( )Q A F T T A F T T                                                  (2.6.2.4)  

 

             
4 4 4 4

2 2 2 1 2 1 2 2 3 2 3( ) ( )Q A F T T A F T T                                              (2.6.2.5)                                 

 

             
4 4 4 4

3 3 3 1 3 1 3 3 2 3 2( ) ( )Q A F T T A F T T                                               (2.6.2.6)       

   

All factors on the right hand side of these equations are known, and so the Q values may be 

computed. Using the symmetry relations on the set of Q equations, we obtain 

 

                  

3
4 4 4 4

1 1 2 1 2 1 1 3 1 3

1

4 4 4 4

1 1 2 2 1 2 2 3 2 3

4 4 4 4

1 1 3 3 1 2 2 3 3 2

( ) ( )

( ) ( )

( ) ( )

k

k

Q A F T T A F T T

A F T T A F T T

A F T T A F T T

 

 

 

 



 

 

   

   

   



                                 (2.6.2.7)    

 

On the right hand side of equation (2.6.2.7) three terms will cancel the others and hence  

3

1

0k

k

Q


 , which  supports  numerically the energy conservation. 
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CHAPTER THREE 

  

Configuration factor for radiant grey surfaces 

 

The analysis of radiation transfer in enclosures consisting of non black surfaces is 

more complicated than what we have seen in chapter two. Here a multiple 

reflections will occur. But radiation analysis is simplified by assumptions. It is 

common to assume the surfaces of an enclosure to be grey, diffuse and opaque. 

That is, the surfaces are diffuse emitters and diffuse reflectors and their radiation 

properties are independent of wavelength. In addition, each surface of the 

enclosure is isothermal. Moreover, the incoming and out coming radiation are 

uniform over each surface of the enclosure. (For example see[20] )         

 

In this chapter methods were developed for treating energy exchange within 

enclosures having grey surfaces. The surfaces may be of finite or infinitesimal size. 

Since a gray surface is not a perfect absorber, part of the incident energy on a 

surface is reflected. With regard to the reflected energy, there are two assumptions:  

1- The reflected energy of grey surface is diffuse i.e there is a reflected energy 

in all directions of the boundary uniformly. 

2-  It is uniform over all surfaces of the enclosure. 

 

The reflected and emitted energy can be combined into single energy quantity 

leaving the surface. Fore more see [20].    
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1 

2 

N 
K 

J 

Fig. (3.1) 

"The enclosure boundary is composed of areas, so that over each of 

these areas the following restrictions are met: 

1- The temperature is uniform.  

2- ,    and  are independent of wavelength and direction, so that 

( ) ( ) 1 ( )A A AT T T     , where   is the reflectivity. 

3- All energy is emitted and   reflected. 

4- The incident and reflected energy flux is uniform over each 

individual area"  

 

3.1     Radiation exchange between finite areas 

 

A complex radiative exchange occurs inside the enclosure when radiation incident 

from  a surface say KA travels to the other surfaces, part of these are reflected and  

then re–reflected many times, as shown in the figure (3.1). Assume the thk  inside 

surface area KA of the enclosure. The heat balance at the surface area KA  is 

 

             , ,( )k k o k i kQ A q q                                                                         (3.1.1)  

 

 

 

 

 

 

Where Qk is the net radiative loss from surface k to other surfaces of the enclosure, 

,o kq  is the rate of the outcoming radiant energy from KA .  ,i kq  is the rate of the 
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incoming radiant energy to the surface area KA . The energy flux leaving the 

surface is composed of directly emitted and reflected energy as 

 

             4

, ,o k k k k i kq T q                                                                   (3.1.2) 

 

But   (1 )k k     then equation   (3.1.2)    becomes     

 

             4

, ,(1 )o k k k k i kq T q                                                               (3.1.3) 

                 

The incident  flux  ,i kq  is derived  from the portions  of the energy  leaving the 

surfaces  in the  enclosure  that arrive  to the  thk  surface. The incident energy is 

then 

 

             , ,

1

N

k i k j o j j k

j

A q A q F 



                                                                    (3.1.4) 

 

Where jA  is the th j  surface and j=I,2,3,……,N, using the symmetry relation of    

configuration factor yields 

 

             , ,

1

  
N

k i k k o j k j

j

A q A q F 



                                                                  (3.1.5) 

                                                                                

Simplifying, we get  
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             , ,

1

N

i k k j o j

j

q F q



                                                                          (3.1.6) 

 

Substituting equations   (3.1.3),   (3.1.6) respectively into   (3.1.1) we obtain 

 

             4

,( ) 
1

k
k k k o k

k

Q A T q





 


                                                    (3.1.7 a)    

 

             , ,

1

( )
N

k k o k o j k j

j

Q A q q F 



                                                         (3.1.7 b)       

 

These formulas provide 2N equations for 2N unknowns, where N belongs to the 

natural numbers. These 2N unknowns are ,o jq 's and 'kQ s . The following 

examples illustrate the use of these   equations.   

 

Example 3.1 

 

Consider two uniform temperature concentric grey spheres 1A  and 2A  as in figure 

(3.2). We can derive an expression for the net radiation exchange between them. It 

is clear that 1 2 1Q Q  , by equation (2.1)    1 2 1F    

 

 

 

 

 

A2 qi2 

A2 qo2 

A1 

A2 

Fig. (3.2) 

A1 qi1 A1 qo1 
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By symmetric relation we can compute 2 1F   which is   

 

1
2 1

2

A
F

A
     and equation (2.4.1) enables us to obtain 2 2F   as    

 

1
2 2

2

1
A

F
A

     . 

 

Substitute these relations   into equation (3.1.7) we obtain 

For 1A  

 

             
41

1 1 1 ,1

11
oQ A T q





   

                                                               (3.1.8a)    

 

             
1 1 ,1 ,2o oQ A q q                                                                              (3.1.8b)    

  

Similarly for   2A ;  

 

             
42

2 2 2 ,2

21
oQ A T q





   

                                                            (3.1.9a)    

 

             1 1
2 2 ,2 ,1 ,2

2 2

(1 )o o o

A A
Q A q q q

A A

 
    

 
                                              (3.1.9b)   
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Since we have four equations for  four  unknowns, so we can solve for  ,1oq  ,  ,2oq  ,  

1Q  and 2Q , where    is a function of  T, so if  T1 and T2  are  given,  1   and 2   

can be evaluated  then  it is easy to find  the   unknowns. Moreover the net heat 

transfer from 1A to 2A is 

 

             
  

4 4

1 1 2
1

1 1 1 2 2 2

( )

1/ ( ) 1/ ( ) 1

A T T
Q

T A A T



 




 
                                            (3.1.10)        

 

This is valid only if q , qi and qo are uniform over each  sphere 1A  and 2A . 

 

Example 3.2  

 

A completely enclosed grey isothermal body with surface area A1 and temperature 

T1 is enclosed by a much larger grey isothermal enclosure with surface area A2 

with T2.  We can compute how much energy is being transferred from A1 to A2. 

No part of A1  can emit to any part of  A1, hence F1-1=0, F1-2 =1,  F2-1  =
1

2

A

A
     and  

1
2-2

2

F   = 1    
A

A
   as shown in example 3.1. Using equation (3.1.10), and  

1 2A A  the net energy transferred reduces to             

 

             
4 4

1 1 1 1 1 2( ) ( )Q A T T T                                                                  (3.1.11)        

 

Equation (3.1.11) shows that the net energy transferred is independent of the 

emissivity of 2A . 
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Example 3.3 

 

Consider two infinite parallel plates A1 and A2 with temperatures T1 and T2   

respectively. We can compute the net radiation heat exchange between them. 

Surely all the radiation leaving one plate will arrive to the other one, that is  

1 2 1Q Q   and 2 1 2Q Q  . Hence  1-2 2-1F F = 1  

Applying equations (3.1.7a) and (3.1.7b) for each plate:               

For plate 1 

 

             
41

1 1 1 0,1

1

( )
1

Q A T q





 


                                                            (3.1.12a)       

 

              1 1 0,1 0,2( )Q A q q                                                                         (3.1.12b)       

 

 For plate 2     

 

             
42

2 2 2 0,2

2

( )
1

Q A T q





 


                                                          (3.1.13a)        

 

             2 2 0,2 0,1( )Q A q q                                                                         (3.1.13b)   

 

It is clear that 2 1q q  , solving for  0,1 0,2,q q   from equations (3.1.12a) and  

(3.1.13a)   respectively then substituting into  (3.1.12b)  we obtain      
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4 4

1 2
1

1 1 2 2

( )

1/ ( ) 1/ ( ) 1

T T
q

T T



 




 
                                                           (3.1.14) 

 

Where 1  and 2  are functions of 1T  and  2T   respectively. So if  1T  and 2T   will 

be given  1  and 2  can be solved easily. Consequently  1q  and 2q  can be 

evaluated. Also we can find  T1  when q1 is given and at specified value T2 in any 

parallel –plates as 

 

             
   

1 4

41
1 2

1 1 2 2

1 1
1

q
T T

T T  

   
     
   

                                          (3.1.15)       

 

Since  1 1T  is a function of  1T  which is required, an iterative method is used by 

selecting 1T , and then to choose  1  at this temperature. Equation (3.1.15) will find 

a new  1T  and for this value   to choose anew 1 . This process will continue until  

 1 1T  and  1T  no more change with more iterations.    

 

Example 3.4 

 

Consider a long enclosure of three surfaces. We can evaluate how much heat has to 

be supplied to each surface to maintain the surfaces at 1 2,T T  and 3T  respectively. 

Applying    (3.1.7 a)    and (3.1.7 b) for each surface, we get 

 

             
41

1 1 1 ,1

1

( )
1

oQ A T q





 


                                                              (3.1.16a)  
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1 1 ,1 1 1 ,1 1 2 ,2 1 3 ,3o o o oQ A q F q F q F q  

                                          (3.1.16 b) 

 

             42
2 2 2 ,2

2

( )
1

oQ A T q





 


                                                          (3.1.17 a)  

 

             
2 2 ,2 2 1 ,1 2 2 ,2 2 3 ,3o o o oQ A q F q F q F q  

                                       (3.1.17 b) 

 

             
43

3 3 3 ,3

3

( )
1

oQ A T q





 


                                                           (3.1.18 a)     

 

             
3 3 ,3 3 1 ,1 3 2 ,2 3 3 ,3o o o oQ A q F q F q F q  

                                        (3.1.18 b)     

 

Solving for ,1 ,2,o oq q  and ,3oq  in the first equation of each pair in terms of  ,kT s  

and ,kQ s . Then substituting these 'oq s  into the second   equation of each pair, we 

obtain   

 

 

             

 

3 31 1 2 2
1 1 1 2 1 3

1 1 1 2 2 3 3

4 4 4

1 1 1 1 2 2 1 3 3

11 11

1

QQ Q
F F F

A A A

F T F T F T

 

   

  

  

  

   
   

 

   

                 (3.1.19 a)     

 

             

 

3 31 1 2 2
2 1 2 2 2 3

1 1 2 2 2 3 3

4 4 4

2 1 1 2 2 2 2 3 3

11 11

1

QQ Q
F F F

A A A

F T F T F T

 

   

  

  

  

   
    

 

    

              (3.1.19 b)     
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 

3 31 1 2 2
3 1 3 2 3 3

1 1 2 2 3 3 3

4 4 4

3 1 1 3 2 2 3 3 3

11 1 1

1

QQ Q
F F F

A A A

F T F T F T

 

   

  

  

  

  
    

 

    

                  (3.1.19 c)     

 

Since the 'jT s  are known, the 'j s can be determined at these certain 'jT s . These 

equations solved for required Q's supplied to each surface.    

 

3.2     Radiation exchange between infinitesimal   areas 

 

Assume as before there is an enclosure  consists of N finite areas. These areas 

would generally be the major geometric division of the enclosure. Each of these 

areas is subdivided   into differential area elements. A heat balance on an element d 

Ak  located at a position  rk  is     

 

             , ,( ) ( ) ( )k k o k k i k kq r q r q r                                                             (3.2.1) 

 

The outcoming flux is composed of emitted and reflected energy 

 

             4

, ,( ) ( ) (1 ) ( )o k k k k k k i k kq r T r q r                                            (3.2.2) 

 

The incoming flux is composed of the portions of the outgoing flux from the other 

area elements of the enclosure. Using integration to determine the total flux leaving 

the surfaces to  ,i kq ( )kr .                 
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1

1

, ,1 1 1 1

,

( ) ( ) ( , ) ......

( ) ( , )

k

N k

N

k i k k o d d k

A

o N N d d N k N

A

dA q r q r dF r r dA

q r dF r r dA





  



                            (3.2.3) 

 

             i,k ,

1

q ( , )

j

N

o j dk dj j k

j A

q dF r r



                                                            (3.2. 4)  

 

Substituting equations (3.2. 4) and (3.2.2) into (3.2.1) we obtain  

 

               
4

,( ) ( ) ( )
1

k
k k k k o k k

k

q r T r q r





   
                                       (3.2.5a)    

 

             , ,

1

( ) ( ) ( , )

j

N

k k o k k o j dk dj k j

j A

q r q r q dF r r



                                        (3.2.5b)     

 

These formulas provide 2N equations for 2N unknowns, where N belongs to the 

natural numbers. These 2N unknowns are , ( )o j jq r  's and  ( )j jq r 's, with 

j=1,2,…..,N 

 

3.3 Heat transfer in arbitrary grey enclosure bodies  

 

We can also evaluate the heat transfer between any grey body enclosed by other 

grey body using equation (2.6.3b) 
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4 4

1 2
1 2

1 2

1 1 1 2 2

( )

1 11
net

T T
Q

A A A



 

 






  
  

 

                                                        (3.3.1) 

 

Where        1 2
1

1 2 2

1

1 1
( 1)

F
A

A 

 

 

                                                                 (3.3.2) 

 

For the enclosed bodies 

 

             1 2 2 1net netQ Q                                                                              (3.3.3) 

 

Using equations (3.3.1)  and (3.3.2): 

  

             
4 4 4 4

1 1 2 1 2 2 2 1 2 1( ) ( )A F T T A F T T                                           (3.3.4) 

 

We obtain                                 

  

                1 1 2 2 2 1A F A F                                                                                (3.3.5) 

  

Hence, we have 

 

             1
2 1 1 2

2

A
F F

A
                                                                                      (3.3.6) 

 

By equation (3.3.2), we get 
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             2 1
2

1 1 2

1

1
( 1)

F
A

A 

 

 

                                                                        (3.3.7) 

 

Also by equation (3.3.2), if 1 2A A  , then 

1 2 1F    

 

3.4 Radiation shields     

 

A radiation shield is a surface that has high reflectance which is placed between a 

high temperature and other cooler. Let us now examine what happens to the 

emisivity   in the presence of the radiation shields. Assume a grey body of area 

1A  surrounded by another grey body of area 2A , and assume that there is a thin 

sheet of reflective surface  placed between them as a radiation shield. The sheet 

will reflect radiation arriving from 1A  back towards itself, it will radiate little 

energy to 2A . The radiation from 1A  either to the inside of the shield or from the 

outside of the shield to 2A  be two body exchange coupled by the shield 

temperature. Consequently, the net radiation is 

 

             
4 4

1 2
1 2

1 2

1 1 1 2 2

( )

11 11 1
2( )

net

s

s s s

T T
Q

A A A A A



 

  





   

    
 

                              (3.4.1) 

 

Where 
1 1

2( )s

s s sA A






  is the added to the denomerator by the shield. If the radiation 

shield is high reflective it reduces    1 2netQ   more.  (For more see [10] ). 
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3.5 Solving equations in terms of outgoing radiation flux ( qo )     

 

We can solve for kT 's and kq 's whenever kT 's  are given  for 1 k m  and kq 's  

are given for 1 m k N   with 1 m N  . N is the number of the surfaces. ,o jq  

are  given for  1 j N  . Substituting equation (3.2.3) into (3.2.2), we get 

 

             4

, ,

1

( ) ( ) (1 ) ( ) ( , )

j

N

o k k k k k k o j j dk dj j k

j A

q r T r q r dF r r   



               (3.5.1) 

 

This equation provides a relation between oq and T along a surface. When 

( )k kq r which is the heat supplied to a surface kA is known in equation (3.2.5b), 

then it can be used to relate oq and kq . Hence, we get a complete set of N 

equations for 'oq s in terms of either kT 's or kq 's. The obtained system of N 

equations consists of m equations for 'oq S  are given kT 's  with 1 m N   and 

1 k m    and  (N-m) equations for 'oq S  are given kq 's with 1m k N     

  

       4

, ,

1

( ) ( ) (1 ) ( ) ( , )

j

N

k k k o k k k o j j dk dj k j

j A

T r q r q r dF r r   



     , 1≤ k ≤ m  (3.5.2)      

    

        , ,

1

( ) ( ) ( ) ( , )

j

N

k k o k k o j j dk dj k j

j A

q r q r q r dF r r



       ,   m + 1≤ k ≤ N   (3.5.3)           

 

Since 'oq s are given in equation (3.5.2) then we can compute kT 's with 1≤ k ≤ m.   

Consequently, by the following equation we can find the unknowns kq 's which are   
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        4

,( ) ( ) ( )
1

k
k k k k o k k

k

q r T r q r





   
      ,    1≤ k ≤ m                   (3.5.4)           

 

Similarly, 'oq s are given in equation (3.5.3) then we can compute kq 's  with m + 

1≤ k ≤ N .  Then by the following equation we can find the unknowns kT 's  which 

are   

 

        
4

,

1
( ) ( ) ( )k

k k o k k k k

k

T r q r q r






       ,       m + 1≤ k ≤ N.              (3.5.5)           
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CHAPTER FOUR 

 

Investigation of the existence and uniqueness solution of the coupled 

conduction–radiation problem 
 

The main goal of this chapter is to prove the existence and the uniqueness of a weak 

solution for the following proposed problem [16]. The existence of a solution will be 

proved by showing that our problem is pseudo-monotone and coercive. The uniqueness of 

the solution will be proved using an idea borrowed from the analysis of nonlinear heat 

conduction. For the sake of simplicity we will use the following notations: 

 

(i)     The duality between  pL   and  qL    for a Borel measure   is defined as 

 

                           qp LgLfdgfgf   and,,  

         with   p1  ,  p and  q are conjugate exponents, that is, .1
11


qp
 

 

(ii) An operator K is positive if  0f  implies 0fK . We denote the positive  

            and negative parts of a function by either sub–or superscript: 

                          max ( ,0 ) and max ( ,0 ) .f f f f f f 

       

(iii) Let   be a subset of    where local heat transfer occurs and define an  

             Operator A through  

                         
1

,
p

i j i ja f g dx f f g ds


 

      p > 1 

             The coefficients 0and jia  are bounded.  The domain of  A is 
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            )()( 11  pLH    Where the measure   is the surface measure of    weighed  

             with the coefficient  . The null space of A is denoted by  

 

                          0:)()()( 11   fALHfAN p

 . 

 

(iv)      ija   is strictly elliptic, that is, there exists a constant  C > 0  such that 

 

                         )(allfor, 12
 



HfdxfCffA . 

 

4.1   The mathematical model  

 

Suppose that  
3

21 R  is a union of two disjoint, conductive and opaque bodies 

surrounded by transparent and non–conductive medium. Moreover, we suppose that the 

radiative surfaces  1  and  2  are diffuse and grey, that is, the emissivity   of the surfaces 

does not depend on the wavelength of the radiation. Under the above assumptions the 

boundary value problem reads as 

         

              in)(. gTk                                                                             (4.1.1) 

 

             1

4

0

4 on)( 



 TT

n

T
k                                                                 (4.1.2) 

 

             20 on 



 iqqq

n

T
k                                                                     (4.1.3)  



 49 

 where k is the heat conductivity, n is the outward unit normal, g is the given heat 

generation distribution and q is the radiative heat flux, which is defined as the difference 

between the outgoing radiation 0q and the incoming radiation iq .   is the emissivity 

coefficient (0 ≤   < 1),   is the Stefan–Boltzman constant which has the value 

),/(10669996.5 428 KmW  T  is the absolute temperature and 0T  is the effective external 

radiation temperature. The outgoing radiation 0q  and the incoming radiation iq  are related 

by the relation  

 

             20 on  qKqi .                                                                                  (4.1.4) 

 

Moreover, the outgoing radiation 0q  on 2  is a combination of the emitted and reflected 

energy [20]. This yield 

 

             0

44

0 )1()1( qKTqTq i                                          (4.1.5)  

                    

  The integral operator )()(: 22   LLK  appearing in equations (4.1.4) and (4.1.5) has 

the explicit form  

 

             

2

0 0 2 2( ) ( , ) ( , ) ( ) ( ) ,K q x G x y x y q y d y x



                                (4.1.6) 

 

Where ( , )G x y
 called the view factor between x and y on 2  and is defined as ( see, e.g., 

[9] ).  
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2

cos cos
( , )

x y
G x y

x y

 



 


                                                                                (4.1.7)  

 

    Or equivalently  

 

          
   

4

( ) . ( ) ( ) . ( )
( , )

n y x y n x y x
G x y

x y


 




                                       (4.1.8)   

 

Where, n( x ) is the inner normed to   at the point x and x  denotes the angle between  

n( x ) and x  -y, n(y) and y  are defined analogously. The function  ( , )x y   appearing in 

equation (4.1.6) takes account of the shadow zones.  This function, termed the visibility 

(shadow) function, is defined as 

        

    















.otherwise,0

pointfromlooking

whenseenbecanpointaif,1

),(
y

x

yx                (4.1.9)      

 

In the following we recall some properties of the operator K defined in (4.1.6) and the 

corresponding kernel ( , )G x y
defined in (4.1.7)–(4.1.8). These properties have already 

been investigated in [14, 11]. Therefore, we will state some of these results without proof 

unless there is a new approach for the proof. Methods for the computation of the visibility  

function  ( , )x y  can be found in [12]. 

Lemma 4.1.1 [11] let be a Ljapunow surface in 1,C  with )1,0[  then for any 

arbitrary point x  ,  

 



 51 

Γ∗
 

∂Γ∗
 

Γγ x 

.(4.1)Fig

             

2

( , ) ( ) 1G x y d y



  ,                                                                (4.1.10)                                         

 

Where   ( , )G x y  is given by   (4.1.8) .                                                                       

 

Proof: First we choose a local coordinate system in the point x   so that x     =   (0,0,0) 

 and the plane 1 2( , )  is tangent to  in x as shown in figure (4.1). Furthermore, we choose 

y = 1 2 1 2( , , ( , ))f     in the neighborhood of 1 2 0   . Using the assumption that 

1,C   with )1,0[ ,    together with the Taylor expansion of y in the local coordinate 

system and some trivial estimates, we get the following inequalities: 

 

            
1

12

( ) . ( )n x y x
c

y x









 ,  
1

22

( ) . ( )n y x y
c

x y









                    (4.1.11) 

 

With  1, 1d   and d = 2or 3. Consequently, one obtains from (4.1.11) 

 

             
2(1 ) 3

3( , )
d

G x y c



                                                                 (4.1.12) 

 

with an arbitrary constant 3c and d = 2 or 3. This shows that ( , )G x y
is a weakly singular 

kernel of type 
-2(1- )

x-y


and hence it is integrable with ( , )G x y   = ( , )G x y ( , )X Y  

 

 

 

                                         


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In order to calculate 
y( , ) dG x y



 , we use Stoke’s theorem. For the following, we 

consider a closed surface Γ and an arbitrary point 1, 2 3(  , ) y y y y  . At this point, the 

normal to the area A is constructed. Let the functions 1 2P (y), P (y) and 3P (y) be any twice 

differentiable functions of 1 2y , y , and 3 y and n is the normal. Stoke’s theorem in three 

dimensions provides the following relation:  

 

   

1 1 2 2 3 3

A

3 32 1 2 1
1 2 3

2 3 3 1 1 2

(p p p )

( ) ( ) ( )
A

dy dy dy

p pp p p p
n y n y n y dA

y y y y y y



  

          
          

          




              (4.1.13) 

 

Hence this relation can now be applied to express area integrals in view factor 

Computations in terms of boundary integrals. To this end, we consider the surface Γ as 

shown in figure (4.1), let  Γγ = Z(x,γ)∩Γ be a small neighborhood of the point x, and define 

 as \ y

   . 

 

 

Here Z(x,γ) is a cylinder which is defined by the relation 
2 2 2

1 2x x   . Since  is not  

 

independent of x, the integral 
y( , ) dG x y



   can be expressed as 

        

         y y y( ) ( , ) d ( , ) d ( , ) dF x G x y G x y G x y






  

  

                            (4.1.14) 

 

where the first integral tends to zero for γ → 0 because of the weakly singular kernel 

 

( , )G x y
. Hence (4.1.14) is reduced to 
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2 1 1 2

2 2 20
1 2 3

1
( ) lim

2

y dy y dy
F x

y y y


 




 


 

            y
0

( ) lim ( , ) dF x G x y









                                                      `            (4.1.15) 

 

Since the view factor ( , )G x y is smooth in  , the application of Stoke’s theorem leads  

 

        
0 0

( ) lim ( , ) d lim ( ). ( )yF x G x y p y n y dy
 

 



 
 

    


                              (4.1.16) 

 

       1 1 2 2 3 3
0

( ) lim (p p p )F x dy dy dy







                                                         (4.1.17) 

 

where 1 2 3P (y), P (y), and P (y) are given respectively, by 

 

1

2 3 3 3 2 2
( ) 2

( )( ) ( )( )

2
y

n x x y n x x y
p

x y


   


,                                                               

    
2

1 3 3 3 1 1
( ) 2

( )( ) ( )( )

2
y

n x x y n x x y
p

x y


  


,                                                        (4.1.18) 

    
3

1 2 2 2 1 1
( ) 2

( )( ) ( )( )

2
y

n x x y n x x y
p

x y


   


 

 

The normal to the area element is perpendicular to both the 1x - and 2x -axes and parallel 

 

to the 3x -axis. Hence (4.1.17) becomes 

                 

                                                                                                                          (4. 1. 19) 

                                                                                                                                                             

using the fact that the area element is located at the origin of the coordinate system.With 

 

the help of the relation 2y , we get 
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∂Γ∗
 

D1 

Γ∗
 

Γγ x 

 
               (4.1.20) 
 
 

Let the boundary of the domain  be described by the triple 1 2 1 2( y  , y  , f ( y , y  )) then the 

first integral will be integrated over the circle 
2 2 2

1 2y y   . Using the polar 

coordinates 1y   =  cos    and 2y   =  sin    , one obtains directly the first integral = 1 .For 

the second integral, we have 3 1 2y   =  f ( y  , y  ).  Applying Taylor’s expansion, it can easily be 

shown that it is equal to zero. Hence, we have the desired result for convex enclosure 

geometries(4.1.10). Next we have to show that this result holds also for the non convex 

case; see figure (4.2).Therefore, we consider the set y\ ,   where       y  = x  / (x,y)= 1   

This set consists in general of many disjoint components. For the sake of simplicity, we take 

one of these components and denote it by i D , where i D  is the boundary of i . Clearly,.

  

 

                                              

 

 

 

 

 

 

 

 

                                                          Fig.(4.2)     

 

 

All i  are dependent on the choice of 
i D  . Due to the discontinuity of the visibility 

Function ( , )x y , the Stoke theorem cannot be applied directly for ( , )G x y , but we write 

first 

 

1

2

3 2 1 1 22 1 1 2

2 2 2 20 0
3

( )1 1
( ) lim lim

2 2 ( )

y y dy y dyy dy y dy
F x

y


      
 

 

   
 

 


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         y y( , ) d ( , ) d ( ). ( )
iD

i

G x y G x y p y n y dy








      


                       (4.1.21) 

 
Since the second integral vanishes over the closed surface  

i D , the assertion follows directly. 
 

Lemma 4.1.2 [11] For the integral kernel G(x , y), it holds that 0),( yxG . The mapping  

)()(: 22  Pp LLK  is compact for   p1 . Furthermore, 

(a) K is symmetric and positive 

(b) 1K  in pL  for  p1  

(c) The eigenvalue 1 of K is simple. 

(d) The spectral radius 1)( K .  

Proof: See [14].  

Lemma 4.1.3 [16]  For  p1  and 0  < 1 the operator KI )1(   from )( 2
pL  

into itself is invertible and this inverse is positive. 

Proof: See [11].  

 

4.2  Variational form  

 

In order to write (4.1.1)–(4.1.5) into variational form, we first assume that )( 2

5  LT , and 

solving for 0q  from equation (4.1.5), we have 

 

               441

0 )1()()( TETKIKIqKIq  


           (4.2.1) 

 

where E is a linear operator from pL  to itself for  p1 . Next, we define the mapping  

A from  
1 5

2( ) ( )H L   to  
1 5

2( ) ( )H L   by 
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             sdTTxdTkTA   
 


3

1

.,                             (4.2.2)        

      

Note that since the Stefan–Boltzmann law is physical only for non–negative value of 

temperature we can replace 4T by  TT
3

 for mathematical convenience. Finally, by setting 

sdd   , we can write our problem in variational form as                 

 

    
5513

)(,,~,

2

 LLHXgdTTETA  


    (4.2.3) 

where  g~   now contains also the data term on  1 . 

Lemma 4.2.1 [16] The operator E is self–adjoint. As a mapping from 2

L  into itself, E is 

positive semidefinite with respect to  .,.  inner product. 

 

Proof: The self–adjointness of E is a consequence of equation (4.2.1). Let 2

Lq  be 

arbitrary and denote by  q  the solution of   qqKI   )1( . Then  

 

                  qKIqKIqEq )(,)1(, 1  

 

                                qKIKIq )()1()(, 1 0)(,  qKIq   

                            

                                      as 1and1
2

 K  .                                                     □  
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Lemma 4.2.2  [16] The operator E can be written as E = I – F, where F is self–adjoint 

positive and  1
p

F . Moreover, every nonzero constant is an eigen function of F with 

eigenvalue  1 . 

 

Proof: One can write  

 

                
1

)1()1(


 KIKIFIE                                (4.2.4) 

 

where F  is self–adjoint. The inverse term in F can be written as  

 

                  







0

1
)1()1(

i

i
KKI  . 

As K  is positive, all terms in the series are also positive. This implies that F is positive. 

Since E is self–adjoint, then we can write 

  

               )()1(
1

KIKIIEIF 


                                             (4.2.5) 

Next, we show that 1
1
F  and 1


F . From Riesz–Thorin theorem [6] it follows that 

1
p

F  for 1 < p < ∞ . Since F is positive we have  

       01 


qqF , for all  0,   qLq  .  

Hence  

                11)1(sup 


F
q

qF
F                                                           

as F(a) = a for every constant a. Moreover, self–adjointness implies that 

                 1*

1



FFF  .                                                                        □ 
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4.3 Existence results   

 

In order to prove that the original boundary value problem has a solution, it is sufficient to 

prove that our problem is pseudo-monotone and coercive [23, 24]. To do that we introduce 

next the operator *: XXR   defined by  

              2

3

1 5 5

, , , ,

( )

R T A T E T T d g

X H L L 

    





        

   

 

 

     (4.3.1) 

Note that the space X is reflexive by the arguments given in [5]. To show that R  is pseudo-

monotone we consider the following Lemma  

 

Lemma 4.3.1 [16] The operator  *: XXR   is pseudo-monotone, that is, iT T  

weakly in  X  and 0,mli 


TTTR ii
i

, imply that 

 

             XTTRTTR ii
i




 ,lim,                                           (4.3.2)                                                                      

 

Proof: One can write SME   where M  is a multiplication operator  

    1)(0with)()()( 0  xmmxTxmxTM  and  S is a compact operator in 45

L .   

    Since the operator  

 

             XTTMTATA    ,,,,
~ 3

                                  (4.3.3)  

 

is monotone then it is sufficient to prove that the mapping 
3

T S T T is pseudo–   

monotone in  X. Let iT T  weakly in X . Then iT T  weakly in 5

L  and 
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iT T  weakly in )(1 H . Thus TTi   strongly in 2

L  as the embedding 

)()( 2

21  LH  is compact [3, 6]. Consequently, .e.a TTi  in 2  and hence 

also TTTT ii

33
  ..ea  Hence  ii TT

3
 TTi

3
  weakly in 45

L  as the 

sequence  ii TT
3

 is bounded in 45

L . Finally the compactness of  S  implies that  

 

 

              
3 3 3 3

, , ,i i i i i iS T T T S T T T S T T T T T                

                                                                 
3

, 0 ,iS T T T T X        (4.3.4)                                                                                                                        

 

The coercivity in 5

L  can be proved through the following two Lemmas: 

 

Lemma 4.3.2 [16] For  p1  and 5

LT   , it holds  1pL
F



 and 0,
3

 TTTE . 

 

Proof: Let 1

LT   be positive. Then  

                     dTdFTdTF 1*  

Since F is positive, this implies that  11 
L

F . On the other hand   01  pL
F



  and 

thus 11  
 LL

FF . Using Riesz interpolation theorem [24] it follows that 1pL
F



,  

 p1 . To show the second part of this Lemma we use the Holder  inequality  

                    5 5 4 5 5

3 5 3 5
, 1 0

L L L L
E T T T T F T T T F T

   
          □ 
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Lemma 4.3.3 [16] For 5

LT   , )(ENT   implies that   TTE ,
3

 > 0  . 

 

Proof: Since F is positive, then we have  

 

                TTETTETTE ,,, 443
                                         (4.3.5) 

 

Under the assumption that 0T  and 15 L
T , we can use the Riesz interpolation 

theorem [5,6] to show that  

 

              TTF ,4   
54

5,


 L
TTT   if  )(ENT                                      (4.3.6) 

where )(EN is the null space of  E  defined as  0,)( 1  TELTEN  .  

As S is compact then it can be expressed as an integral operator [6]. Moreover, one can 

write  FT  as  

                0for)(),(lim)1(
0

 



 fdyTyxfTSTmTF y . 

Next, we let 45p  , 561 p ,  22 p  and let 21 ,, qqq  be the corresponding 

conjugate exponents. Further, let  109  so that 
21

11

ppp

 
 .  

Hence for 0, T  we can write  

               

    
 

 




 ddfTddfT

pp
p

21

1

)1(






     

 

Using Holder inequality we get  

 



 61 

                                






 ddfdfT
p

p

p

p



 
1

21  

 

                                





 



1

2211 ddfTddfT
p

p

q

q

p

p

q

q

 

 

let 0  we obtain 

 

             



   12211 ,,,

p

p

q

q

p

p

q

q

FTFTFT                                     (4.3.7) 

 

 For  4T    (4.3.7)  yields  

 

               25254 ,, TFTTFT                                                             (4.3.8) 

 

Finally, assume  
52525

5,
L

TTFT  . Then, letting  25T  we have  

 

    222

2
,0



  LLL
FF    so that   22




LL

F  . 

 

Since  

 

                  0,,)(, *    FFFFI  

 

we have  
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            0)()()(,, ***2

2   


FFIFIFIEEE
L

 

 

This implies that )(25 ENT    and hence )(ENT  . Therefore, if )(ENT   then 

inequalities (4.3.6) and (4.3.8) are strict .                                                                      □ 

 

4.4  Uniqueness of the solution  

 

Theorem 4.4.1. [16]  Let 1T  and 2T  be solutions of (4.2.3), corresponding to the right hand 

sides *

21 , Xgg  , and suppose that  

                 Xgg   ,0,0,21 .  

Then  121 ..,..  oneaineaLTT   and 2..  inea . Consequently, the 

solution of (4.2.3) is unique. 

 

Proof: For   > 0 we denote  

                  )(: 10 xTx  < )(2 xT  

                  )()(: 120 xTxTx   >    

                   )(,min 12 TT  . 

We will also denote the Lebesgue measure in nR  by  L . In order to prove this theorem we 

follow the idea from [8]. We need to show that                      

0)()()( 000   L . We argue by contradiction and assume first that  

)( 0  >  0.  From [ 22 ]  
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      524
1

212

21

5  


dEsdxdaC p

p

jijiL 








  

 

The next step is to estimate  
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

 fgxda
Ljiji 



5  ,                                                (4.4.1) 

 

and 

                 


 hgdEsd
L

p

p

 






5

1

524
1

21

             (4.4.2) 

 

where   fhandasg  00  can be ignored when   is small enough. Finally, 

these estimates give  

 

               0)( 5

15151  





 




 gd
L

                             (4.4.3) 

 

This leads to a contradiction. Similarly we can prove that 0)()( 00  L . In the 

following we give a sketch for the derivation of (4.4.1)–(4.4.3). To derive the estimate 

(4.4.1) we can write              
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1
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3
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1

1

1
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1
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dTTTTE
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    (4.4.4)    
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The last term in (4.4.4) can be decomposed as  
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In fact the first term on the right–hand side is negative as 02

3

21

3

1  TTTT and    

02

** \00  inFE   . To investigate the second term we observe  
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Thus  
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To derive (4.4.2) we observe that .0***

   inFFE  

Moreover, we can show that  
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where .00   asg  Thus we conclude that 
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where  
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Finally, we show that 0)()()( 000   L .  

The steps above imply that 

                


g
L
5  

when   is small enough. Hence  

 

                 0)( 5

15151  





 




 gd
L

. 

 

This is a contradiction, since also )()( 0    > 0. Therefore 0)( 0  . From this 

fact it is straight forward to conclude 0)()( 00  L  .                  □                                       
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