
Deanship of Graduate Studies

Al-Quds University

Finite Volume Evolution Galerkin Schemes for Three
Dimensional Euler Equations System

Raed Dawoud

M.Sc. Thesis

Jerusalem-Palestine

1431/2010

i



Finite Volume Evolution Galerkin Schemes for Three

Dimensional Euler Equations System

By

Raed Dawoud

B.Sc.: College of Science and Technology

Al-Quds University/Palestine

A Thesis Submitted in Partial fulfilment of Requirement for
Degree of Master of Science, Department of Mathematics

/Program of Graduate studies.

Al-Quds University

2010

ii



The Program of Graduate Studies/Department of Mathematics

Deanship of Graduate Studies

Finite Volume Evolution Galerkin Schemes for Three

Dimensional Euler Equations System

By

Student Name: Raed Dawoud

Registration Number: 20714171

Supervisor: Dr. Yousef Zahaykah

Master thesis submitted and accepted date:

The names and signatures of the examining committee members
are as follows:

1- Dr. Yousef Zahaykah Head of Committe, Signature. . . . . .

2- Dr. Taha Abukaff Internal Examiner, Signature. . . . . .

3- Prof Daniel Le Roux External Examiner, Signature. . . . . .

Al-Quds University
2010

iii



Declaration

I certify that the thesis, submitted for the degree of Master, is

the result of my own research except where otherwise acknowl-
edged, and that the thesis (or any part of the same) has not

been submitted for a higher degree to any other university or

institution.

Signed. . . . . .

Raed Dawoud

Date:

iv



Dedication

To my mother

To the soul of my brother
To my father

To my brothers

To my sons
To my wife

To my students

v



Acknowledgment

This work in this thesis has been carried out at the Department

of Mathematics at Al-Quds University. I cannot fully express
my gratitude to my supervisor Dr. Yousef Zahaykah. He is an

exceptional academic advisor, supporting, extraordinary leader

and ready any time to devote his time and efforts to help his
students. In the same time he set an example for me by being

just, open and honest, kind and gentle person, devoted and car-

ing constant source of wisdom and experience.

Also I would like to thank the Claude Bernard Lyon1 University

in France for giving me the chance and the support to stay there

four months to continue the work on my thesis under the super-
vision of Prof. Daniel Le Roux from the Institute of Applied

Mathematics.

My gratitude also goes to Prof Le Roux for his valuable remarks

which substantially improved the final product.

Also great thanks to my internal examiner Dr.Taha Abu-Kaff
for his invaluable remarks.

Finally I would like to thank all the stuff in the Department of
mathematics at AL-Quds university.

vi



Abstract

In this thesis we present new multidimensional schemes within
the frame work of finite volume evolution Galerkin(FVEG) meth-

ods for nonlinear hyperbolic systems of conservation laws. In

these schemes we couple a finite volume formulation with the

approximate evolution operators, where the approximate evolu-
tion operators are constructed using the bicharacteristics of the

multidimensional hyperbolic system, in which all the infinitely

many directions of wave propagations are considered.

We linearize the system of Euler equations at a constant state,

then we derive the exact integral representations for the three
dimensional Euler equations, at this point we mimic Kirchhoff’s

formula that represents the solution of the wave equation and

neglect the part in the integral equations that contains the in-

tegral with respect to time to obtain an approximate evolution
operator, we call it N1 approximate evoluton operator. We de-

rive another approximate evolution operator by applying the

midpoint rule to approximate the integral with respect to time,

we call it EG3 approximate evolution operator.

The derived approximate evolution operators were used to de-

termine the intermediate values of the Euler variables. These
values determine the fluxes throughout the surfaces of each cell

in the discretized domain.

Finally we used the finite volume approach to update the values

of the Euler variables.

The derived FVEG schemes were applied to some numerical

experiments to demonstrate the accuracy and the multidimen-

sionality of the solution.
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Chapter 0

Introduction

The fact that certain quantities such as energy, momentum and

charge are constant in physical processes has led to an increas-

ing number of conservation laws. With the advent of quantum

physics, new conserved quantities such as Baryon and Lepton
numbers have been found. Certain conservation laws which

lead to hyperbolic differential equations are known as hyperbolic

conservation laws which govern a broad spectrum of physical
phenomena in various fields e.g. material science, solid state

physics, astrophysics, cosmology, fluid dynamics, atmospheric

physics and multiphase flows. New problems in plasma physics,

lasers and nonlinear optics created interest in the developments
of the theory of nonlinear hyperbolic equations.

In recent few years major progress has been added in develop-
ing the theoretical and numerical aspects of this field. Examples

of first order hyperbolic systems are wave , Maxwell and Euler

equations. The solution of many hyperbolic equations contains

localized phenomena. For example, sharp transition layers and
discontinuities or complicated patterns in time (chaos). In such

cases the exact solution is very difficult to obtain, hence a good

numerical approximation is needed to resolve the discontinu-
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ities efficiently. Examples of nonlinear waves are solutions to

the Euler equations of gas dynamics, electromagnetic waves in
nonlinear photonic crystals, dynamics of atomic lattices, surface

ocean waves, light propagation along optical wave guides and

traffic problems. Many numerical schemes use the finite element

method (FEM) or the finite volume method (FVM) as a discrete
procedure. The finite element method is mostly used for bound-

ary value problems in the incompressible fluid flow, mechanical

deformations and electromagnetic fields. The advantage of the
finite element method is that it is very natural for problems

that come from a variational formulation. On the other hand

the FVM, based on the integral formulation of the conservation

laws or other balance laws in divergence form, fulfils the discrete
conservation property locally. It may also resolves discontinu-

ities, e.g. shocks, efficiently. The FVM can discretize a domain

in space using triangles, quadrilaterals or other polygons in 2D
and tetrahedral, hexahedra or other polyhedral in 3D proving

the FVM (like the FEM) to be a more suitable discretization

technique than the finite difference method for complex geome-

tries and unstructured grids are needed. Physical conservation
laws are given by integrals over finite volumes and the FVM is

based on the integral formulation of the fluxes over the bound-

ary of the discretization cells which are called control volumes.

Hence the FVM is locally. This property is very important es-
pecially in problems where fluxes are important such as fluid

dynamics and heat transfer. It gives the approximate value for

the derivative of a field at a given point using the values of the
field at a few locations neighbouring the point. The method uses

the divergence theorem, constructs a finite volume around the

point, discretizes the surface bounding the volume and applies
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the conservation law at each finite volume. The FVM is also a

cheap and feasible method for industrial problems and can be
more flexible than finite difference methods.

Many phenomena in nature which lead to multidimensional sys-
tems of hyperbolic differential equations involve infinite direc-

tions of wave propagation, hence for any numerical scheme used

to solve multidimensional hyperbolic differential equations it is

important to take into account the infinitely many directions of
wave propagation, otherwise the solution will suffer from large

discrepancies. Some of the numerical schemes exploit dimen-

sional splitting. The splitting takes into account the mesh ori-

entation which leads to errors in the solution. Flux vector split-
ting schemes (FVS) take into account wave interactions in a few

directions which contribute to the numerical dissipation, see[20].

There are two main classes of finite volume schemes for the solu-

tions of hyperbolic conservation laws: the Godunov-type upwind

schemes and the central schemes. In both types of methods the
approximate solution is realized by a piecewise polynomial which

is reconstructed from the evolving cell-averages. Godunov’s orig-

inal scheme forms the basis of all upwind schemes. Its high or-

der and multidimensional generalizations were constructed, an-
alyzed, and implemented with great success during the 1970s

and 1980s. Upwind schemes evaluate their cell-averages over

the same spatial cells at all time steps. This in turn requires
characteristic information along the discontinuous interfaces of

these spatial cells. It is needed to trace the characteristic fans by

using approximate Riemann solvers, dimensional splitting, etc...

which greatly complicates the upwind algorithm, especially for
more sophisticated problems. The Lax-Friedrichs (LxF) scheme

is the other canonical first-order scheme, which is the basis of
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all central scheme, see [21]. Like the Godunov scheme, it is

based on piecewise-constant approximate solution. However,
its Riemann-solver-free recipe is considerably simpler. Unfor-

tunately, the excessive numerical viscosity in the LxF scheme

yields a relatively poor resolution which seems to have delayed

the development of a high-resolution central scheme, parallel
to the earlier developments of high-resolution upwind schemes.

The common feature of all NT(Nesayahu,H. Tadmor,E.)[22] cen-

tral schemes is the evolution of cell averages over staggered cells,
that is, cells which alternate every other time step. The impor-

tance of staggering is due to the fact that cell interfaces are

secured in neighbourhoods around the smooth midcells of the

previous time step. The main advantage is due to the replace-
ment of costly Riemann characteristic decompositions from the

upwind framework with straightforward quadratures and the di-

mensional splitting errors are avoided. At the same time, the
use of high-order non-oscillatory piecewise polynomials, which

are reconstructed from the staggered cell-averages, retain high

resolution comparable with upwind results. For further study of

these schemes the reader is referred to the literature, see [20, 21]

Morton et al. used the classical characteristic theory for general

linear hyperbolic systems in the context of the finite element
method and derived the so called Evolution Galerkin Schemes

(EG) see e.g [5, 6]. These schemes belong to the category of

upwind schemes and are genuinely multidimensional as they

take into account infinite directions of wave propagation. They
shifted the transport quantities along the bicharacteristics which

were straight lines in this case and then projected on a finite el-

ement space. Ostkamp [18] extended the idea of EG schemes to
the wave equation and to the nonlinear Euler equations in two
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space dimensions, however her scheme involved the calculations

of three-dimensional integrals which were not practically feasible
especially for shallow water and Euler equations. To overcome

this problem Lukacova, Morton and Warnecke [10] proposed the

finite volume evolution Gelarkin schemes (FVEG), namely EG1,

EG2, EG3. In these methods the fluxes are evaluated at the
cell interfaces by using the approximate evolution operators ap-

plied at the quadrature points. Since the approximate evolu-

tion operator involves integration around the sonic circle which
constitutes the base of the characteristic cone, all the infinitely

many directions of wave propagations are taken into account.

These schemes are therefore regarded as truly multidimensional

schemes. Another approximate evolution operator has been de-
rived by Zahaykah which is referred to as EG4, see [19]scheme for

the two and three dimensional wave equation system. This has

been derived from the integral equations by neglecting higher or-
der terms. The approximate evolution operator for the solution

of the three dimensions Euler equations has been derived here.

These methods and their finite volume versions were applied to

the nonlinear Euler equations, as well as to the linearized Euler
equations using a square mesh grid. Like central schemes, these

schemes also do not need Riemann solvers. However, unlike the

upwind schemes and central schemes, the flow variable distribu-

tion inside the solution element (SE) is not calculated through
a reconstruction procedure using its neighbouring values at the

same time level. Instead they are calculated as a part of local

space-time flux conservation.

All the previous work on Euler equations was on the two di-

mensional case, see [8, 11, 12, 13]. The subject here is to gen-
eralize the evolution Galerkin scheme to the three dimensional
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Euler equations. The aim is to construct a method that takes

into a count all the infinitely many directions of propagation
using bicharactristics. Numerical experiments are presented to

demonstrate the accuracy and the multidimensional behaviour

of the solution.

This thesis is organised as follows. we first present a general in-

troduction . In Chapter 0 we present a small introduction about

Euler equations. In Chapter 2 the general theory of bicharac-
teristics have been presented which we used to derive the ex-

act integral representation of the system of Euler equations in

three dimensions. In Chapter 3 we define the evolution Galerkin

method and we derive the approximate evolution operators for
the linearized Euler equations system, also in this chapter nu-

merical algorithms for linearized Euler equations as well as for

nonlinear Euler equations will be explained . In Chapter 4 three
numerical experiments will be presented, two are based on the

linearized Euler equations system. In the first one we solve the

advection equation system, the second one is to simulate the

propagation of an aquistic pulse, and the last one is the so-
called 3d sod problem which well be solved using the nonlinear

form. In the first two experiments we compare with the exact

solution.
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Chapter 1

Introductory to Euler
Equations

A wide variety of problems in mechanics are modelled as a

system of nonlinear hyperbolic conservative partial differential
equations. Euler equations are a system of nonlinear hyperbolic

conservation laws that govern the dynamics of a compressible
material, such as gases, liquids at high pressure. Its a simpler

version of the Navier-Stokes system. The latter contains terms

to represent viscosity and thermal conductivity of the gas. In
astrophysics these are normally not thought to be important.

Using the Euler equations also implies using a fluid approxi-

mation, i.e. the particles interact with each other sufficiently

to establish a Maxwell-Boltzmann distribution. This is mostly
valid, but there are exceptions.

Hyperbolic equations have two important properties:

• They allow discontinuous solutions. In physical terms this

means that the flow can contain shocks or contact discon-

tinuities.
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• One can define the so called characteristics or characteris-

tic speeds. These are the eigenvalues of the problem. The
solution can be written in terms of a sum of eigenvectors,

three in the case of a one-dimensional problems. The three

eigenvectors are so called waves and are physically associ-

ated with the charateritic speeds v, v−s, v+s, the velocity
of the flow, and the velocity of the sound added and sub-

tracted. The physical relevance is that in gas no signal can

travel faster than the local speed of sound, and |v− s| and
|v + s| are the highest possible signal speed within a flow

with velocity v. This also means that the characteristics

delineate a domain of influence in space-time. There is a

close relation between the characteristics and the shocks, if
for example an explosion occurs at a point x, its effect will

spread with the characteristic speed v − s, v + s.

Definition(Conservation laws)

Conservation laws are systems of partial differential equations

that are written in the form

∂u

∂t
+

d
∑

j=1

∂

∂xj

fj(u) = 0, x = (x1, ..., xd)
T ∈ Rd, t > 0

where

u =













u1

.

.

.
up













,

is a vector valued function represents the states, and the func-

tions
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fj =













f1j

.

.

.
fpj













,

are called the flux functions.

In terms of hyperbolic conservation laws Euler equations consist

of three conservation laws.

Conservation of mass

ρt + (ρu)x = 0, (1.0.1)

conservation of momentum

(ρu)t + (ρu2 + p)x = 0, (1.0.2)

conservation of energy

Et + [(E + p)u]x = 0. (1.0.3)

So Euler equations in conserved variables can be expressed as,





ρ

ρu

E





t

+





ρu

ρu2 + p

(E + P )u





x

= 0

where ρ is the density, u is the velocity, p is the pressure, and

E = ρ(1
2
u2 + e) is the energy with internal energy e.

In two and three space dimensions, Euler equations take the

same form with ρv added to the conservation of momentum in

the two space dimensions, and ρv, ρw added in the case of three
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space dimensions, where v and w are the velocities in y and z

directions respectively. That is Euler equations in three space
dimensions are













ρ
ρu

ρv

ρw
E













t

+













ρu
ρu2 + p

ρuv

ρuw
(E + p)u













x

+













ρv
ρuv

ρv2 + p

ρvw
(E + p)v













y

+













ρw
ρuw

ρvw

ρw2 + p
(E + p)w













z

= 0

Another form that is more comprehensible physically is obtained

by working with the primitive variable ρ, u and p instead of the
conserved variables, since the density, velocity and pressure are

more meaningful, (if we want to plot the solution of Euler equa-

tions, these variables that are plotted).

Expanding derivatives in equation (1.0.1), we obtain

ρt + uρx + ρux = 0. (1.0.4)

By expanding the derivatives in the momentum equation 1.0.2,

we get

u[ρt + uρx + ρux] + ρ[ut + uux +
1

ρ
px] = 0. (1.0.5)

Using 1.0.4 and then dividing through by ρ gives

ut + uux +
1

ρ
px = 0. (1.0.6)

In similar way, the energy equation (1.0.3) can be rearranged so

that using (1.0.5)and(1.0.6), we can find that

pt + ρc2ux + upx = 0.
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Thus the quasi-linear form is





ρ

u
p





t

+





u ρ 0

0 u 1/ρ
0 ρc2 u









ρ

u
p





x

= 0. (1.0.7)

Similar systems can be derived for the two and three space di-

mensions. For two dimensions this system reads









ρ

u

v
p









t

+









u ρ 0 0

0 u 0 1/ρ

0 0 u 0
0 ρc2 0 u

















ρ

u

v
p









x

+









v 0 ρ 0
0 v 0 0

0 0 v 1/ρ

0 0 ρc2 v

















ρ
u

v

p









y

= 0.
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Chapter 2

Exact Integral Equations

In this chapter we have two sections. In the first section we

present the general theory of bicharacteristics for general lin-
ear hyperbolic systems while in the second section we use this

general theory to derive the exact integral equations for the lin-

earized Euler equations system in three space dimensions.

2.1 General Theory

In this section we recall the derivation of the exact integral equa-

tions for a general linear hyperbolic system using the concept
of bicharacteristics. The general form of the linear hyperbolic

system is given as

∂u

∂t
+

d
∑

k=1

Ak

∂u

∂xk

= 0, x = (x1, . . . , xd)
T ∈ R

d (2.1.1)

where the coefficient matrices Ak, k = 1, ..., d, are elements

of Rp×pand the dependent variables are u = (u1, ..., up)
T =

u(x, t) ∈ R
p. Let A(n) =

∑d
k=1 nkAk be the pencil matrix,

13



where n = (n1, ..., nd)
T is a directional vector in R

d. The matrix
A(n) has p real eigenvalues λk, k = 1, ..., p, and p corresponding

linearly independent right eigenvectors rk = rk(n), k = 1, ..., p.

Let R = [r1|r2|...|rp] be the matrix of right eigenvectors then

we can define the characteristic variable w = w(n) as ∂w(n) =
R−1∂u. Since system (2.1.1) has constant coefficient matrices

Ak we have w = R−1u or u = R w. Multiplying equation

(2.1.1) by R−1 from the left we get

R−1∂u

∂t
+

d
∑

k=1

R−1AkRR−1 ∂u

∂xk

= 0. (2.1.2)

Let Bk = R−1AkR = (bkij)
p
i,j=1, where k = 1, 2, ..., d, then the

equation (2.1.2) can be rewritten in the following form

∂w

∂t
+

d
∑

k=1

Bk

∂w

∂xk

= 0.

Let us introduce the decomposition Bk=Dk+B′
k, where Dk con-

tains the diagonal part of the matrix Bk. This yields

∂w

∂t
+

d
∑

k=1

Dk

∂w

∂xk

= −
d

∑

k=1

B′
k

∂w

∂xk

=: s. (2.1.3)

where B′
k = (bkij)

p
i,j=1,i6=j .

The i-th bicharacteristic corresponding to the i-th equation of

(2.1.3) is defined as

dxi

dt̃
= bii(n) = (b1ii, b

2
ii, ..., b

d
ii)

T ,

where i = 1, ..., p. Here bkii are the diagonal entries of the matrix

Bk, k = 1, ..., d, i = 1, ..., p.

14



x

t

y

θ

P ′

P = (x, y, t + ∆t)

Qi(n)

Figure 2.1: Bicharacteristics along the Mach cone through P and Qi(n),
d = 2.

We consider the bicharacteristics backwards in time. There-

fore the initial conditions are xi(t + ∆t,n) = x for all w ∈ Rd

and i = 1, ..., p, i.e. xi(t̃,n) = x− bii(n)(t+ ∆t− t̃). Now inte-

gration of the i-th equation of the system (2.1.3) from the point
P down to the point Qi(n), where the bicharacteristic hits the

basic plane of the characteristic cone, see Figure 2.1. Note that

bicharacteristics are straight lines because the system is linear

with constant coefficients. Now the i-th equation becomes

∂wi

∂t
+

d
∑

k=1

bkii
∂wi

∂xk

= −





d
∑

j=1,i6=j

(

b1ij
∂wj

∂x1
+ b2ij

∂wj

∂x2
+ ... + bdij

∂wj

∂xd

)



 = si,

(2.1.4)

where

P ≡ (x, t + ∆t) ∈ R
p × R+

15



is taken to be a fixed point, while

Qi(n) = (x− ∆tbii, t).

Taking a vector

σi = (b1ii, b
2
ii, ..., b

d
ii, 1),

we can define the directional derivative

dwi

dσi

=

(

∂wi

∂x1
,
∂wi

∂x2
, ...,

∂wi

∂xd

,
∂wi

∂t

)

·σi =
∂wi

∂t
+b1ii

∂wi

∂x1
+b2ii

∂wi

∂x2
+...+bdii

∂wi

∂xd

.

Hence the i-th equation (2.1.4) can be rewritten as follows:

dwi

dσi

= si = −
d

∑

j=1,i6=j

(

b1ij
∂wj

∂x1
+ b2ij

∂wj

∂x2
+ ... + bdij

∂wj

∂xd

)

.

Now integration from P to Qi(n) gives

wi(P ) − wi(Qi(n),n) = s′i, i = 1, ..., d. (2.1.5)

where

s′i =

∫ t+∆t

t

si(xi(t̃,n), t̃)dt̃ =

∫ ∆t

0

si(xi(τ,n), t + ∆t− τ)dτ.

Multiplication of equation (2.1.5) by R from the left and (d −
1)−dimensional integration of the variable n over the unit sphere

O in R
d leads to the exact integral equations for (2.1.1)

u(P ) = u(x, t+ ∆t) =
1

|O|

∫

O

R(n)(w1, ..., wp)
TdO+ s̃, (2.1.6)

where

wi = wi(Qi(n), n) i = 1, ..., p

16



and

s̃ = (s̃1, s̃2, ..., s̃p)
T =

1

|O|

∫

O

R(n)s′dO

=
1

|O|

∫

O

∫ ∆t

0

R(n)s(xi(τ,n), t + ∆t− τ)dτdO

and |O| corresponds to the measure of the domain of integra-

tion.

2.2 Exact Integral Equations for the Three

Dimensional Euler Equations System

In this section we will use the general theory of bichacteristics of
linear hyperbolic system to derive the exact integral equations

of the three dimensional Euler equation.

Consider Euler equations system written in primitive variables

Ut + A1(U)Ux + A2(U)Uy + A3(U)Uz = 0, (2.2.7)

x = (x, y, z)T ∈ R3, where

U :=













ρ
u

v

w
p













,
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A1 :=















u ρ 0 0 0

0 u 0 0 1
ρ

0 0 u 0 0

0 0 0 u 0

0 ρc2 0 0 u















,

A2 :=















v 0 ρ 0 0
0 v 0 0 0

0 0 v 0 1
ρ

0 0 0 v 0

0 0 ρc2 0 v















and

A3 :=















w 0 0 ρ 0

0 w 0 0 0
0 0 w 0 0

0 0 0 w 1
ρ

0 0 0 ρc2 w















.

Here ρ indicates the density, u, v and w are the components

of the velocity in x, y and z directions respectively, p denotes

the pressure, and γ is isotropic exponent (γ = 1.4 for dry air).
To derive the integral equations we linearize the system(2.2.7)

by freezing the Jacobian matrices at a constant state U′ =

(ρ′, u′, v′, w′, p′)T . Let c′ be the local speed of sound there,i.e

c′ =
√

γp′

ρ
, then the linearized Euler equations system with

frozen constant coefficients well be in the form

Ut + A1(U
′)Ux + A2(U

′)Uy + A3(U
′)Uz = 0 (2.2.8)

18



where

U :=













ρ

u

v
w

p













,

A1 :=















u′ ρ′ 0 0 0

0 u′ 0 0 1
ρ′

0 0 u′ 0 0

0 0 0 u′ 0

0 ρ′c′2 0 0 u′















,

A2 :=















v′ 0 ρ′ 0 0

0 v′ 0 0 0
0 0 v′ 0 1

ρ′

0 0 0 v′ 0

0 0 ρ′c′2 0 v′















and

A3 :=















w′ 0 0 ρ 0

0 w′ 0 0 0
0 0 w′ 0 0

0 0 0 w′ 1
ρ

0 0 0 ρ′c′2 w′















.

The eigenvalues of the pencil matrix

A(U′) = A1(U
′)n1 + A2(U

′)n2 + A3(U
′)n3 (2.2.9)

19



x

y

z

ϕ

θ

Figure 2.2: spherical coordinates

are
λ1 = u′n1 + v′n2 + w′n3 + c′,

λ2 = λ3 = λ4 = u′n1 + v′n2 + w′n3,

λ5 = u′n1 + v′n2 + w′n3 − c′.

Where

n = (n1, n2, n3)
T = (cos θ sinϕ, sin θsinϕ, cosϕ)T ∈ R

3

with θ ∈ [0, 2π] and ϕ ∈ [0, π], see,Figure2.2 and the correspond-
ing linearly independent eigenvectors are
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r1 :=













−ρ′/c′
n1

n2

n3

−ρ′c′













, r2 :=













0

n2

−n1

0
0













, r3 :=













1

0

0

0
0













,

r4 :=













0
n3

0

−n1

0













, r5 :=













ρ′/c′

n1

n2

n3

ρ′c′













Let R(U′) be the matrix of eigenvectors.
The inverse of R(U′) is

R−1 :=

















0 n1

2
n2

2
n3

2 − 1
2ρ′c′

0 n2 −n2
3+n2

1

n1

n2n3

n1

0

1 0 0 0 − 1
c′

2

0 n3
n2n3

n1

−n2
2+n2

1

n1

0

0 n1

2
n2

2
n3

2
1

2ρ′c′

















Multiplying system (2.2.8) by R−1 from the left yields the char-

acteristic system

Wt + B1(U
′)Wx + B2(U

′)Wy + B3(U
′)Wz = 0 (2.2.10)
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where

B1 :=















u′ − c′n1 −c′n2

2
0 −c′n3

2
0

−c′n2 u′ 0 0 c′n2

0 0 u′ 0 0

−c′n3 0 0 u′ c′n3

0 c′n2

2
0 c′n3

2
u′ + c′n1















,

B2 :=















v′ − c′n2
c′n1

2
0 0 0

c′(n2
1
+n2

3

n1

) v′ 0 0 −c′(n2
1
+n2

3

n1

)

0 0 v′ 0 0

−c′n2n3

n1
0 0 v′ c′n2n3

n1

0 −c′n1

2 0 0 v′ + c′n2















,

and

B3 :=















w′ − c′n3 0 0 c′n1

2 0

−c′n2n3

n1

w′ 0 0 c′n2n3

n1

0 0 w′ 0 0

c′(n2
1
+n2

2

n1

) 0 0 w′ −c′(n2
1
+n2

2

n1

)

0 0 0 −c′n1

2
w′ + c′n3















.

And the chacteristic variables W are

W :=













w1

w2

w3

w4

w5













:= R−1(U′)U :=















1
2(n1u+ n2v + n3w − p

ρ′c′
)

n2u− n1
2+n3

2

n1

v + n2n3

n1

w

ρ− p
c′2

n3u + n2n3

n1

v − n1
2+n2

2

n1

w
1
2
(n1u+ n2v + n3w + p

ρ′c′
)















.
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The quasi diagonalized system of the linearized Euler equations

well be

Wt +













u′ − c′n1 0 0 0 0

0 u′ 0 0 0
0 0 u′ 0 0

0 0 0 u′ 0

0 0 0 0 u′ + c′n1













Wx

+













v′ − c′n2 0 0 0 0

0 v′ 0 0 0

0 0 v′ 0 0
0 0 0 v′ 0

0 0 0 0 v′ + c′n2













Wy

+













w′ − c′n3 0 0 0 0
0 w′ 0 0 0

0 0 w′ 0 0

0 0 0 w′ 0

0 0 0 0 w′ + c′n3













Wz = S (2.2.11)

with

S :=













s1

s2

s3

s4

s5













:=















c′

2

(

n2w2x + n3w4x − n1w2y − n1w4z)

c′n2

(

w1x − w5x) − n1
2+n3

2

n1

(w1y − w5y) +
(

n2n3

n1

)
(

w1z − w5z))

0

c′(n3(w1x − w5x) + n2n3

n1

(w1y − w5y) − n1
2+n2

2

n1

(w1z − w5z))

− c′

2
(n2w2x + n3w4x − n1w2y − n1w4z)















.

Now we will work with the concept of bicharacteristics. The set
of bicharacteristics xi corresponding to the ith equation of the

system (2.2) is defined as
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dxi

dt̃
= bii(n) = (b1

ii,b
2
ii, ...,b

d
ii)

T , i = 1, ..., p.

Here bkii are the diagonal entries of the matrix Bk, k = 1, ..., d,

i = 1, ..., p. Thus
x = biit̃ + c.

Applying the initial condition xi(n, t + ∆t) = x, we get

x = bii(t + ∆t) + c,

which implies that

c = x− bii(t+ ∆t).

Therefore

xi(n, t) = x − bii(t+ ∆t− t̃).

Hence
Qi(xi(n, t), t) = (x − bii∆t, t).

Now substituting for bii, i = 1, 2, 3, 4 from Bk, k = 1, 2, 3 we get

Q1 = (x− (u′ − c′n1)∆t, y − (v′ − c′n2)∆t, z − (w′ − c′n3)∆t, t)

Q2 = Q3 = Q4 = (x− u′∆t, y − v′∆t, z − u′∆t, t)

Q5 = (x− (u′ + c′n1)∆t, y − (v′ + c′n2)∆t, z − (w′ + c′n3)∆t, t)

We integrate the ith equation of the system(2.2.11 ) from the

apex P = (x, y, z, t + ∆t)down to the footpoints Qi(n). Where
the foot points of the corresponding bicharateristics are given

above.

integration of system (2.2.11) along the bicharacteristics gives

the relations for the characteristics variables, which after the
multiplication from the left by the matrix R yields the exact

integral equations.
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Qi(n)
P ′

P = (x, y, t + ∆t)

x

y
t

Figure 2.3: Bicharacteristics along the Mach cone through P and Qi(n),
d = 2.

U(P ) :=
1

4π

∫ 2π

0

∫ π

0













−ρ′

c′
w1 + w3 + ρ′

c′
w5

n1w1 + n2w2 + n3w4 + n1w5

n2w1 − n1w2 + n2w5

n3w1 − n1w4 + n3w5

−ρ′c′w1 + ρ′c′w5













(2.2.12)

+













−ρ′

c′
s1

′ + ρ′

c′
s5

′

n1s1
′ + n2s2

′ + n3s4
′ + n1s5

′

n2s1
′ − n1s2

′ + n2s5
′

n3s1
′ − n1s4

′ + n3s5
′

−ρ′c′s1
′ + ρ′c′s5

′













sinϕdϕdθ

where Si
′ =

∫ t+∆t

t
Si(xi(t̃, θ.ϕ), t̃, θ, ϕ)dt̃.

In the following two lemmas we give some invariance properties
for terms in spherical coordinates.

25



Let f be a continuous function, and consider the unit sphere

O centred at the origin. Let x = cos θ sinϕ, y = sin θ sinϕ, z =
cosϕ. Then the integral of f over O satisfies the following prop-

erty:

Lemma 2.2.1
∫ 2π

0

∫ 2π

π

f(x, y, z) sinϕdϕdθ = −
∫ 2π

0

∫ π

0

f(x, y, z) sinϕdϕdθ.

Proof: The proof follows directly from the fact that the map-
pings

ψ1 : [0, 2π]×[π, 2π] → O ⊂ R
3, (θ, ϕ) 7→ (cos θ sinϕ, sin θ sinϕ, cosϕ),

ψ2 : [0, 2π]×[π, 2π] → O ⊂ R
3, (θ, ϕ) 7→ (− cos θ sinϕ,− sin θ sinϕ,− cosϕ)

are two parametrizations of the same unit sphere O. �

Corollary 2.2.1 Let a ∈ R be a constant. Then

1.
∫ 2π

0

∫ 2π

π
(a+x)f(x, y, z) sinϕdϕdθ = −

∫ 2π

0

∫ π

0 (a+x)f(x, y, z) sinϕdϕdθ.

2.
∫ 2π

0

∫ 2π

π
(a+y)f(x, y, z) sinϕdϕdθ = −

∫ 2π

0

∫ π

0 (a+y)f(x, y, z) sinϕdϕdθ.

3.
∫ 2π

0

∫ 2π

π
(a+z)f(x, y, z) sinϕdϕdθ = −

∫ 2π

0

∫ π

0 (a+z)f(x, y, z) sinϕdϕdθ.

Proof: These properties follow from Lemma 2.2.1 by taking

g = (a+ ξ)f(x, y, z), where ξ ∈ {x, y, z}. �

Lemma 2.2.2 Consider the characteristic variables w1 and w5

and the points Q1 and Q5. Then

1. sin(π + ϕ)w5(Q5(θ, π + ϕ), θ, π + ϕ) = sinϕw1(Q1(θ, ϕ), θ, ϕ).
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2.
sin(π + ϕ) sin(π + ϕ)w5(Q5(θ, π + ϕ), θ, π + ϕ)

= − sinϕ sinϕw1(Q1(θ, ϕ), θ, ϕ).

3.
cos(π + ϕ) sin(π + ϕ)w5(Q5(θ, π + ϕ), θ, π + ϕ)
= − cosϕ sinϕw1(Q1(θ, ϕ), θ, ϕ).

Proof: Using the symmetry between the points Q1 and Q5 we

obtain

w5(Q5(θ, π + ϕ), θ, π + ϕ)

= 1
2

[

P
ρ′c′

(Q5(θ, π + ϕ)) + cos θ sin(π + ϕ)u(Q5(θ, π + ϕ))

+ sin θ sin(π + ϕ)v(Q5(θ, π + ϕ)) + cos(π + ϕ)w(Q5(θ, π + ϕ))

]

= 1
2

[

P
ρ′c′

(Q1(θ, ϕ)) − cos θ sinϕu(Q1(θ, ϕ)) − sin θ sinϕv(Q1(θ, ϕ))

− cosϕw(Q1(θ, ϕ))

]

= −w1(Q1(θ, ϕ), θ, ϕ).

(2.2.13)
Now the three properties follow directly from equation (2.2.13).

�

Then using these results, the exact integral equations will be :

ρ(P ) = ρ(P ′) − p(P ′)

c′2
(2.2.14)

+
1

4π

∫ 2π

0

∫ π

0

[

p(Q)

c′2
− ρ′

c′
u(Q)n1 −

ρ′

c′
v(Q)n2 −

ρ′

c′
w(Q)n3

]

sinϕ dϕ dθ + S̃1
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u(P ) =
2

3
u(P ′) + (2.2.15)

1

4π

∫ 2π

0

∫ π

0

n1

[

− p(Q)

ρ′c′
+ u(Q)n1 + v(Q)n2 + w(Q)n3

]

sinϕ dϕ dθ + S̃2

v(P ) =
2

3
v(P ′) (2.2.16)

+
1

4π

∫ 2π

0

∫ π

0

n2

[

− p(Q)

ρ′c′
+ u(Q)n1 + v(Q)n2 + w(Q)n3

]

sinϕ dϕ dθ +˜S3

w(P ) =
2

3
w(P ′ (2.2.17)

+
1

4π

∫ 2π

0

∫ π

0

n3

[

− p(Q)

ρ′c′
+ n1u(Q) + n2v(Q) + n3w(Q)

]

sinϕ dϕ dθ˜+ S4.

p(P ) =
1

4π

∫ 2π

0

∫ π

0

[

p(Q) − ρ′c′u(Q)n1 − ρ′c′v(Q)n2 − ρ′c′w(Q)n3

]

sinϕ dϕ dθ + S̃5

(2.2.18)

where

S̃1 =
1

4π

∫ 2π

0

∫ π

0

[−ρ′

c′
S1

′ +
ρ′

c′
S ′

5

]

sinϕ dϕ dθ, (2.2.19)

S̃2 =
1

4π

∫ 2π

0

∫ π

0

[

n1S1
′ + n2S2

′ + n3S4
′ + n1S5

′

]

sinϕ dϕ dθ,

(2.2.20)

S̃3 =
1

4π

∫ 2π

0

∫ π

0

[

n2S1
′ − n1S2

′ + n2S5
′

]

sinϕ dϕ dθ, (2.2.21)

S̃4 =
1

4π

∫ 2π

0

∫ π

0

[

n3S1
′ − n1S4

′ + n1S5
′

]

sinϕ dϕ dθ, (2.2.22)

S̃5 =
1

4π

∫ 2π

0

∫ π

0

[

−ρ′c′S1
′ + ρ′c′S5

′

]

sinϕdϕ dθ. (2.2.23)

We will explain the derivation of ρ(P ), and u(P ), and the others

can be similarly handled.
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From equation (2.2.12 ) we see that

ρ(P ) =
1

4π

∫ 2π

0

∫ π

0

[−ρ′
c′
w1 + w3 +

ρ′

c′
w5

]

sinϕ dϕ dθ + S̃1.

(2.2.24)
where S̃1 is defined above. Now since w3 is independent of θ, ϕ

we can find that

1

4π

∫ 2π

0

∫ π

0

w3(Q3) sinϕdϕdθ = ρ(p′) − p(p′)

c′2
.

Using the symetry between the pointsQ1 andQ5 and lemma(2.2.2)
we see that

∫ 2π

0

∫ π

0

−w1(Q1

(

θ, ϕ), θ, ϕ
)

sinϕdϕdθ

=

∫ 2π

0

∫ π

0

−w5(Q5

(

θ, ϕ+ π
)

, θ, ϕ + π) sin(ϕ+ π)dϕdθ

=

∫ 2π

0

∫ 2π

π

−w5(Q5

(

θ, ϕ
)

, θ, ϕ) sinϕdϕdθ

=

∫ 2π

0

∫ π

0

w5(Q5

(

θ, ϕ
)

, θ, ϕ) sinϕdϕdθ.

and hence

∫ 2π

0

∫ π

0

w5(Q5(θ, ϕ), θ, ϕ) sinϕdϕdθ

=

∫ 2π

0

∫ π

0

−w1

(

Q1(θ, ϕ), θ, ϕ
)

sinϕdϕdθ,
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substituting in equation (2.2.24), it comes that

ρ(P ) = ρ(P ′) − p(P ′)

c′2
+

1

4π

∫ 2π

0

∫ π

0

[−2
−ρ′
c′
w1] sinϕdϕdθ + S̃1.

(2.2.25)

Now subistituting for w1 in (2.2.25), we find that

ρ(P ) = ρ(P ′) − p(P ′)

c′2
+

1

4π

∫ 2π

0

∫ π

0

[

p(Q)

c′2
− ρ′

c′
n1u(Q) − ρ′

c′
n2v(Q)

−ρ
′

c′
n3w(Q)

]

sinϕdϕdθ + S̃1.

Where Q := Q1.

To derive u(P ) we recall form equation (2.2.12 ) that

u(P ) =
1

4π

∫ 2π

0

∫ π

0

[

n1w1 +n2w2 +n3w4 +n1w5

]

sinϕdϕdθ+ S̃2.

(2.2.26)
We see that

1

4π

∫ 2π

0

∫ π

0

[

n2w2 + n3w3

]

sinϕdϕdθ

=
1

4π

∫ 2π

0

∫ π

0

[

n2
2u− n2(

n1
2 + n3

2

n1
)v +

n2
2n3

n1
wQ2

+n3
2uQ4 +

n2n
2
3

n1
vQ4 − n3

n1
2 + n2

2

n1
wQ4

]

sinϕdϕdθ

=
1

2π

∫ π

0

[

(n2
2 + n3

2)uQ2 − n2n1vQ2 − n1n3wQ2

]

sinϕdϕdθ
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=
1

4π

∫ 2π

0

∫ π

0

[

(n2
2 + n3

2)uQ2 − n1n2vQ2 − n1n3wQ2

]

sinϕdϕdθ

=
2

3
uQ2

=
2

3
u(P ′).

For
1

4π

∫ 2π

0

∫ π

0

(

n1w1 + n1w5) sinϕdϕdθ

we see that, using (2) of lemma(2.2.2) and (2) of Corollary

(2.2.1) we obtain

∫ 2π

0

∫ π

0

(

cos θ sinϕ sinϕw1(Q1(θ, ϕ), θ, ϕ)dϕdθ

=

∫ 2π

0

∫ π

0

−(cos θ sin(π + ϕ) sin(π + ϕ)w5(Q5(θ, π + ϕ), θ, π + ϕ)dϕdθ

=

∫ 2π

0

∫ 2π

π

−(cos θ sinϕw5(Q5(θ, ϕ), θ, ϕ) sinϕdϕdθ,

=

∫ 2π

0

∫ π

0

(cos θ sinϕw5(Q5(θ, ϕ), θ, ϕ) sinϕdϕdθ.

Therefore
∫ 2π

0

∫ π

0

(

cos θ sinϕw5(Q5(θ, ϕ), θ, ϕ
)

sinϕdϕdθ

=

∫ 2π

0

∫ π

0

(

cos θ sinϕw1(Q1(θ, ϕ), θ, ϕ
)

sinϕdϕdθ.
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so after substituting in equation (2.2.26) we end up with

u(P ) =
2

3
u(P ′) + (2.2.27)

1

4π

∫ 2π

0

∫ π

0

n1[−
p(Q)

ρ′c′
+ n1u(Q) + n2v(Q) + n3w(Q)

]

sinϕ dϕ dθ + S̃2.

Our attention now is to simplify the source terms S̃1, S̃2, S̃3, S̃4, S̃5

which will be used in the derivation of the approximate evolu-

tion operators.
From(2.2.12) we see that

S1 =
c′

2

[

n2w2x + n3w4x + n1w2y − n1w4z

]

=
c′

2

[

n2
2ux − n2

n2
1 + n2

3

n1
vx +

n2
2n3

n1
wx + n3

2ux

+
n2n

2
3

n1
vx − n3

n1
2 + n2

2

n1
wx − n1n2uy + (n1

2 + n3
2)vy

−n2n3wy − n1n3uz − n2n3vz + (n2
1 + n2

2)wz

]

(2.2.28)

=
c′

2

[

(n2
2 + n2

3)ux − n1n2vx − n1n3wx − n1n2uy + (n2
1 + n2

3)vy − n2n3wy

−n1n3uz − n2n3vz + (n2
1 + n2

2)wz

]

. (2.2.29)

In the same procedure we found that

S2 = − 1

ρ′

[

n2px +
n2

1 + n2
3

n1
py −

n2n3

n1
pz

]

(2.2.30)

S4 = − 1

ρ′

[

n3px +
n2n3

n1
py −

n2
1 + n2

2

n1
pz

]

(2.2.31)
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S5 = −c
′

2

[

(n2
2 + n2

3)ux − n1n2vx − n1n3wx + n1n2uy − (n2
1 + n2

3)vy

+n2n3wy + n1n3uz + n2n3vz − (n2
1 + n2

2)wz

]

. (2.2.32)

Now let

S = c′
[

(n2
2+n2

3)ux−n1n2(vx+uy)−n1n3(uz+wx)+(n2
1+n2

3)vy−n2n3(wy+vz)+(n2
1+n2

2)wz

]

.

(2.2.33)

Now simplifying S̃1 we have

S̃1 =
1

4π

∫ 2π

0

∫ π

0

∫ ∆t

0

[−ρ′

c′
S1 +

−ρ′

c′
S5

]

sin ϕ dϕ dθ

=
1

4π

∫ 2π

0

∫ π

0

∫ ∆t

0

[−ρ′

c′
(S1 + S5)

]

sinϕ dϕ dθ

=
1

4π

∫ 2π

0

∫ π

0

∫ ∆t

0

[−ρ′

c′
S(x− (u′ − c′w(θ, ϕ))τ, t + ∆t− τ, θ, ϕ)

]

sinϕ dτdϕ dθ.

(2.2.34)

Following the same procedure we can simplify S̃2,S̃3,S̃4,S̃5, and
we find that

S̃2 =
1

4π

∫ 2π

0

∫ π

0

∫ ∆t

0

[

n1S(x− (u′ − c′w(θ, ϕ))τ, t + ∆t− τ, θ, ϕ)

]

sinϕ dτdϕ dθ

− 1

ρ′4π

∫ 2π

0

∫ π

0

∫ ∆t

0

[px(x, t)(n2
2 + n2

3) − py(x, t)n1n2 − pzn1n3] sinϕ dτdϕ dθ

(2.2.35)

S̃3 =
1

4π

∫ 2π

0

∫ π

0

∫ ∆t

0

[

n2S(x− (u′ − c′w(θ, ϕ))τ, t + ∆t− τ, θ, ϕ)

]

sinϕ dτdϕ dθ

− 1

ρ′4π

∫ 2π

0

∫ π

0

∫ ∆t

0

[py(x, t)(n2
1 + n2

3) − pz(x, t)n2n3 − pxn1n2] sinϕ dτdϕ dθ

(2.2.36)
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S̃4 =
1

4π

∫ 2π

0

∫ π

0

∫ ∆t

0

[

n3S(x− (u′ − c′w(θ, ϕ))τ, t + ∆t− τ, θ, ϕ)

]

sinϕ dτdϕ dθ

− 1

ρ′4π

∫ 2π

0

∫ π

0

∫ ∆t

0

[pz(x, t)(n2
1 + n2

2) − py(x, t)n2n3 − pxn1n3] sinϕ dτdϕ dθ

(2.2.37)

S̃5 = −ρ′c′

4π

∫ 2π

0

∫ π

0

∫ ∆t

0

[

S(x − (u′ − c′w(θ, ϕ))τ, t + ∆t − τ, θ, ϕ)

]

sinϕ dτdϕ dθ

(2.2.38)

hence we have the following integral equations

ρ(P ) = ρ(P ′) − p(P ′)

c′2
+ (2.2.39)

1

4π

∫ 2π

0

∫ π

0

[

p(Q)

c′2
− ρ′

c′
n1u(Q)− ρ′

c′
n2v(Q)− ρ′

c′
n3w(Q)

]

sinϕ dϕ dθ + S̃1

u(P ) =
2

3
u(P ′) + (2.2.40)

1

4π

∫

2π

0

∫ π

0

n1

[

− p(Q)

ρ′c′
+ n1u(Q) + n2v(Q) + n3w(Q)

]

sinϕ dϕ dθ + S̃2

v(P ) =
2

3
v(p′) + (2.2.41)

1

4π

∫ 2π

0

∫ π

0

n2

[

− p(Q)

ρ′c′
+ n1u(Q) + n2v(Q) + n3w(Q)

]

sinϕ dϕ dθ + S̃3

w(P ) =
2

3
w(P ′) + (2.2.42)

1

4π

∫ 2π

0

∫ π

0

n3

[

− p(Q)

ρ′c′
+ n1u(Q) + n2v(Q) + n3w(Q)

]

sinϕ dϕ dθ + S̃4

p(P ) =
1

4π

∫ 2π

0

∫ π

0

[

p(Q)

c′2
− ρ′

c′
n1u(Q)− ρ′

c′
n2v(Q)− ρ′

c′
n3w(Q)

]

sinϕ dϕ dθ + S̃5

(2.2.43)

where S̃1,...,S̃5 is given in equations (2.2.34-2.2.38).
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Chapter 3

Evolution Galerkin Methods

3.1 Definition of Evolution Galerkin Schemes

Consider d = 3. and Let h > 0 be the mesh size parameter. We
construct a mesh for R

3, which consists of the cubic mesh cells

Ωklm =

[

(k − 1

2
)h, (k +

1

2
)h

]

×
[

(l − 1

2
)h, (l +

1

2
)h

]

×
[

(m − 1

2
)h, (m +

1

2
)h

]

=

[

xk − h

2
, xk +

h

2

]

×
[

yl −
h

2
, yl +

h

2

]

×
[

zm − h

2
, zm +

h

2

]

,

where k, l,m ∈ Z. Let us denote by Hκ(R3) the Sobolev space

of distributions with derivatives up to order κ in L2 space,

where κ ∈ N. Consider the general hyperbolic system given
by the equation (2.1.1). Let us denote by E(s) : (Hκ(R3))p →
(Hκ(R3))p the exact evolution operator for the system (2.1.1),

i.e.

u(., t + s) = E(s)u(., t). (3.1.1)

We suppose that Sq
h is a finite element space consisting of piece-

wise polynomials of order q ≥ 0 with respect to the cubic mesh.

Assume a constant time step, i.e. tn = n∆t. Let Un be an

approximation in the space Sq
h to the exact solution u(., tn) at

time tn ≥ 0. We consider Eτ : (L1
loc(R

3)) → (Hκ(R3))p to be
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a suitable approximate evolution operator for E(τ). In practice

we will use restrictions of Eτ to the subspace Sq
h for q ≥ 0. Then

we can define the general class of evolution Galerkin methods.

Definition 3.1.2 Starting from some initial data u0 ∈ Sq
h at

time t = 0, an evolution Galerkin method (EG-method) is re-

cursively defined by means of

Un+1 = PhEτU
n, (3.1.2)

where Ph is the L2−projection given by the integral averages in

the following way

PhU
n|Ωklm

=
1

|Ωklm|

∫

Ωklm

U(x, y, z, tn)dxdy.

We denote by Rh : Sq
h → Sr

h a recovery operator, r > q ≥
0 and consider our approximate evolution operator Eτ on Sr

h.

Taking piecewise constants, the resulting schemes will only be
of first order, even when Eτ is approximated to a higher order.

Higher order accuracy can be obtained either by taking q > 0,

or by inserting a recovery stage Rh before the evolution step in
equation (3.1.2) to give

Un+1 = PhEτRhU
n. (3.1.3)

This approach involves the computation of multiple integrals

and becomes quite complex for higher order recoveries. To avoid

this we will consider evolution Galerkin schemes based on the

finite volume formulation instead.

Definition 3.1.5 Starting from some initial data u0 ∈ Sq
h, the

finite volume evolution Galerkin method (FVEG) is recursively
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defined by means of

Un+1 = Un − 1

h

∫ ∆t

0

3
∑

j=1

δxj
fj(Ũ

n+ τ
∆t )dτ, (3.1.6)

where δxj
fj(Ũ

n+ τ
∆t ) represents an approximation to the face flux

difference and δx is defined by δx = v(x+ h
2
)−v(x− h

2
). The cell

boundary value Ũn+ τ
∆t is evolved using the approximate evolution

operator Eτ to tn + τ and averaged a long the cell boundary, i.e.

Ũn+ τ
∆t =

∑

k,l,m∈Z

(

1

|∂Ωklm|

∫

∂Ωklm

EτRhU
ndS

)

χ∂Ωklm
, (3.1.7)

where χ∂Ωklm
is the characteristic function of ∂Ωklm.

In this formulation a first order approximation Eτ to the exact

operator E(τ) yields an overall higher order update from Un to
Un+1. To obtain this approximation in the discrete scheme it is

only necessary to carry out a recovery stage at each level to gen-

erate a piecewise polynomial approximation Ũn = RhU
n ∈ Sr

h

from the piecewise constant Un ∈ S0
h, to feed into the calculation

of the fluxes. It is important to note that in the updating step

(3.1.6) some numerical quadratures are used instead of the exact

time integration. Similarly, to evaluate the intermediate value

Ũn+ τ
∆t in (3.1.7) either the four dimensional integrals along the

cell-interface and around the Mach cone are evaluated exactly

or by means of suitable numerical quadratures..
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3.2 Approximate Evolution Operators

The key ingredient in our genuinely multidimensional schemes
are the approximate evolution operators that are derived form
the integral equations. The integral equation is obtained using
integration along the bicharacteristics of the system. From these
integral equations one can derive a number of approximate evo-
lution operators.
In this section we will derive two approximate evolution opera-
tors the EG1 and EG3, but in our numerical experiment we con-
sider a third one which we call N1. This approximate evolution
operator(N1) is the simplest one since it depends on neglect-
ing the source terms in the integral equations and consider the
other part as an approximate evolution operator. We examine
this approximate evolution operator in our numerical experi-
ments which gives results which are in good agreement with the
exact solution in the linearized form.

ρ(P ) = ρ(P ′) − p(P ′)

c′2
(3.2.8)

+
1

4π

∫ 2π

0

∫ π

0

[

p(Q)

c′2
− ρ′

c′
u(Q)n1 −

ρ′

c′
v(Q)n2 −

ρ′

c′
w(Q)n3

]

sinϕ dϕ dθ + S̃1

u(P ) =
2

3
u(P ′) + (3.2.9)

1

4π

∫ 2π

0

∫ π

0

n1

[

− p(Q)

ρ′c′
+ u(Q)n1 + v(Q)n2 + w(Q)n3

]

sinϕ dϕ dθ + S̃2

v(P ) =
2

3
v(P ′) (3.2.10)

+
1

4π

∫ 2π

0

∫ π

0

n2

[

− p(Q)

ρ′c′
+ u(Q)n1 + v(Q)n2 + w(Q)n3

]

sinϕ dϕ dθ + S̃3

w(P ) =
2

3
w(P ′) (3.2.11)

+
1

4π

∫ 2π

0

∫ π

0

n3

[

− p(Q)

ρ′c′
+ n1u(Q) + n2v(Q) + n3w(Q)

]

sinϕ dϕ dθ + S̃4.

p(P ) =
1

4π

∫ 2π

0

∫ π

0

[

p(Q) − ρ′c′u(Q)n1 − ρ′c′v(Q)n2 − ρ′c′w(Q)n3

]

sinϕ dϕ dθ + S̃5

(3.2.12)

38



Now the integrals of the source term can be approximated using

the rectangle rule,
∫ ∆t

0

Sj(t+ ∆t− τ, θ, ϕ) = ∆tSj(t, θ, ϕ) + O(∆t2),

and hence we have these approximations

S̃1 =
∆t

4π

∫ 2π

0

∫ π

0

[−ρ′

c′
S(x− (u′ − c′w(θ, ϕ))τ, t + ∆t− τ, θ, ϕ)

]

sinϕ dτdϕ dθ + O(∆t2)

S̃2 =
∆t

4π

∫ 2π

0

∫ π

0

[

n1S(x − (u′ − c′w(θ, ϕ))τ, t + ∆t− τ, θ, ϕ)

]

sin ϕ dτdϕ dθ +

− 1

ρ′

1

4π

∫ 2π

0

∫ π

0

[px(x, t)(n2
2 + n2

3) − py(x, t)n1n2 − pzn1n3] sinϕ : dϕ dθ + O(∆t2)

S̃3 =
∆t

4π

∫ 2π

0

∫ π

0

[

n2S(x − (u′ − c′w(θ, ϕ))τ, t + ∆t− τ, θ, ϕ)

]

sin ϕ dτdϕ dθ

− 1

ρ′

1

4π

∫ 2π

0

∫ π

0

[

py(x, t)(n2
1 + n2

3) − pz(x, t)n2n3 − pxn1n2

]

sinϕ dτ : dϕ dθ + O(∆t2)

S̃4 =
∆t

4π

∫ 2π

0

∫ π

0

[

n3S(x − (u′ − c′w(θ, ϕ))τ, t + ∆t− τ, θ, ϕ)

]

sin ϕ dτdϕ dθ

−∆t

4π

∫ 2πρ′

0

∫ π

0

∫ ∆t

0

[

pz(x, t)(n2
1 + n2

2) − py(x, t)n2n3 − pxn1n3

]

sinϕ dϕ dθ + O(∆t2)

S̃5 = −∆t
ρ′c′

4π

∫ 2π

0

∫ π

0

∫ ∆t

0

[−ρ′

c′
S(x − (u′ − c′w(θ, ϕ))τ, t + ∆t − τ, θ, ϕ)

]

sinϕ dτ dϕ dθ

+O(∆t2)

Lemma 3.2.1

∆t

4π

∫ 2π

0

∫ π

0

S(x− (u′ − c′w(θ, ϕ))τ, t + ∆t− τ, θ, ϕ)

]

sinϕ dτdϕ dθ

=
1

4π

∫ 2π

0

∫ π

0

[2n1uQ + 2n2vQ + 2n3wQ]sinϕdϕdθ

where Q = (x− (u′ − c′w(θ, ϕ))τ, t + ∆t− τ, θ, ϕ))
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Proof: see [19]. �

similarly we can find that

∆t

4π

∫ 2π

0

∫ π

0

[

n1S(x − (u′ − c′w(θ, ϕ))τ, t + ∆t− τ, θ, ϕ)

]

sinϕdϕdθ

=
1

4π

∫ 2π

0

∫ π

0

[

(3n2
1 − 1)uQ + 3n1n2vQ + 3n1n3wQ

]

sinϕdϕdθ

and
∆t

4π

∫ 2π

0

∫ π

0

[

n2S(x − (u′ − c′w(θ, ϕ))τ, t + ∆t− τ, θ, ϕ)

]

sinϕdϕdθ

=
1

4π

∫ 2π

0

∫ π

0

[

(3n1n2)uQ + (3n2
2 − 1)vQ + 3n2n3wQ

]

sinϕdϕdθ

∆t

4π

∫ 2π

0

∫ π

0

[n3S(x − (u′ − c′w(θ, ϕ))τ, t + ∆t− τ, θ, ϕ)sinϕdϕdθ

=
1

4π

∫ 2π

0

∫ π

0

[

(3n1n3)uQ + 3n2n3vQ + (3n3
2 − 1)wQ

]

sinϕdϕdθ.

For the integrals containing px, py, pz need to be replaced by
integrals over the cone mantle. This can be done using Taylor
theorem and integration by parts.
Finally, we arrive to the approximate evolution operator which
called EG3.

ρ(P ) = ρ(P ′) − p(P ′)

c′2
(3.2.13)

+
1

4π

∫ 2π

0

∫ π

0

[

p(Q)

c′2
− 3

ρ′

c′
n1u(Q)− 3

ρ′

c′
v(Q)n2. − 3

ρ′

c′
n3w(Q)

]

sinϕ dϕ dθ,

u(P ) =
2

3
u(P ′) + (3.2.14)

1

4π

∫ 2π

0

∫ π

0

[

− 3n1

p(Q)

ρ′c′
+ (4n2

1 − 1)u(Q) + 4n1n2v(Q) + 4n1n3w(Q)

]

sinϕ dϕ dθ

(3.2.15)
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v(P ) =
2

3
v(P ′) + (3.2.16)

1

4π

∫ 2π

0

∫ π

0

[

− 3n2

p(Q)

ρ′c′
+ 4n1n2u(Q) + (4n2

2 − 1)v(Q) + 4n2n3w(Q)

]

sinϕ dϕ dθ ,

w(P ) =
2

3
w(P ′) + (3.2.17)

1

4π

∫ 2π

0

∫ π

0

[

− 3n3

p(Q)

ρ′c′
+ 4n1n3u(Q) + 4n2n3v(Q) + (4n2

3 − 1)w(Q)

]

sinϕ dϕ dθ,

p(P ) =
1

4π

∫ 2π

0

∫ π

0

[

p(Q) − 3ρ′c′u(Q)n1 − ρ′c′n2v(Q)− ρ′c′n3w(Q)

]

sinϕ dϕ dθ . (3.2.18)

Now we reformulate the integral equations (1.39), (1.40), (1.41)

for u, v, w using the second, third and fourth equation of the

linearized system(2.2) we can replace integrals containing px ,

py , pz and u(P ′), v(P ′), w(P ′) by means of u(P ), v(P ), w(P ).
in the following way.

Using these equations of system (2.2) we see that

1
ρ′
px = −(ut + u′ux + v′uy +w′uz) (3.2.19)

1
ρ′
py = −(vt + u′vx + v′vy +w′vz) (3.2.20)

1
ρ′
pz = −(wt + u′wx + v′wy + w′wz) (3.2.21)

so we have

−1

ρ′

∫ ∆t

0

pxdτ =

∫ ∆t

0

(ut + u′ux + v′uy +w′uz)dτ = u(P )− u(P ′)

(3.2.22)
in the same way it comes

−1

ρ′

∫ ∆t

0

pydτ =

∫ ∆t

0

(vt + u′vx + v′vy + w′vz)dτ = v(P ) − v(P ′)

(3.2.23)
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−1

ρ′

∫ ∆t

0

pzdτ =

∫ ∆t

0

(wt+u
′wx+v′wy+w′wz)dτ = w(P )−w(P ′)

(3.2.24)
depending on equations 3.2.22, 3.2.23, 3.2.24 we can simplify S̃2
which becomes

S̃2 =
∆t

4π

∫ 2π

0

∫ π

0

[n1S(x − (u′ − c′w(θ, ϕ))τ, t + ∆t− τ, θ, ϕ)] sinϕ dϕ dθ +

− 1

4π

∫ 2π

0

∫ π

0

[

px(x, t)(n2
2 + n2

3) − py(x, t)n1n2 − pzn1n3

]

sinϕdϕ dθ + O(∆t2)

=
∆t

4π

∫ 2π

0

∫ π

0

[

n1S(x − (u′ − c′w(θ, ϕ))τ, t + ∆t− τ, θ, ϕ)

]

sin ϕ dϕ dθ

+
2

3
(u(P ) − u(P ′)

in the same procedure we find that

S̃3 =
∆t

4π

∫

2π

0

∫ π

0

[

n2S(x − (u′ − c′w(θ, ϕ))τ, t + ∆t− τ, θ, ϕ)

]

sin ϕ dϕ dθ

+
2

3
(v(P ) − v(P ′).

S̃4 =
∆t

4π

∫ 2π

0

∫ π

0

[

n3S(x − (u′ − c′w(θ, ϕ))τ, t + ∆t− τ, θ, ϕ)

]

sin ϕ dϕ dθ

+
2

3
(w(P ) −w(P ′)).

note that S̃1 and S̃5 unchanged.
Now the time integral is approximated with the rectangular rule
and the second part of the source terms S̃2, S̃3, S̃4 can be eval-
uated using lemma (2.2.1 ).
So we end up with these approximate evolution operators
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ρ(P ) = ρ(P ′) − p(P ′)

c′2
(3.2.25)

+
1

4π

∫

2π

0

∫ π

0

[

p(Q)

c′2
− ρ′

c′
n1u(Q)− ρ′

c′
n2v(Q)− ρ′

c′
n3w(Q)

]

sin ϕdϕ dθ ,

u(P ) =
3

4π

∫

2π

0

∫ π

0

[

− n1

p(Q)

ρ′c′
(4n2

1 − 1)u(Q) (3.2.26)

+4n1n2v(Q) + 4n1n3w(Q)

]

sinϕ dϕ dθ ,

v(P ) =
1

4π

∫ 2π

0

∫ π

0

[

− p(Q)

ρ′c′
+ 4n1n2u(Q) (3.2.27)

+(4n2
2 − 1)v(Q) + 4n2n3w(Q)

]

sinϕ dϕ dθ

w(P ) =
3

4π

∫ 2π

0

∫ π

0

[

− p(Q)

ρ′c′
+ n1n3u(Q) (3.2.28)

+n2n3v(Q) + (4n2
3 − 1)w(Q)

]

sinϕ dϕ dθ,

p(P ) =
1

4π

∫ 2π

0

∫ π

0

[

p(Q)

c′2
− ρ′

c′
u(Q) cos θ sinϕ − ρ′

c′
v(Q) sin θ sinϕ

−ρ′

c′
w(Q) cos ϕ

]

sinϕ dϕ dθ (3.2.29)

3.3 Numerical Algorithms

In the case of Euler equations, we note that due to the effect of
advection the center of the sonic sphere which constitutes the

base of the Mach cone will not coincide with the vertex or the

midpoint in the mesh. This means that any vertex or midpoint
will be shifted according to local speeds. Thus in this case we

need to determine the center of the sonic sphere according to

the local velocities which are compared with the local speed of

sound to decide the kind of the flow (sonic, supersonic,subsonic)
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which will be used to determine the time step, and so we can

explain that in this algorithm for the linearized Euler equations.

3.3.1 First order algorithm for the linearized Euler
equations

• Input the initial data: ρ0
i , u

0
i , v

0
i , w

0
i , p

0
i .

• Determine the center of the sonic sphere using the local

velocities.

• Determine the time step ∆t.

• Perform the time loop

1. Determine the intermediate values: ρ̃
n+1

2

sij
, ũ

n+1

2

sij
, ṽ

n+1

2

sij
,

w̃
n+1

2

sij
p̃

n+1

2

sij
.

2. Update the primitive variables.

3. Apply the boundary conditions.

• End the time loop.

Note that in the case of linearized Euler equations, local vari-

ables are kept constant. This means that all local variables have

the same value at all vertices and midpoints and this value once

assigned outside the time loop does not change with time. With
these known values of the local variables, it is easy to find the

new centers of the bases of the Mach cones. Since local veloci-

ties are constant, the sphere position does not change with time.
The determination of the time step also depends upon the local

velocities i.e. ∆t = hmin CFL/max(|u′| + c′, |v′| + c′, |w′| + c′).
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Note: CFL=Courant-Friedrichs-Lewy.

The approximate evolution operators are applied at the new cen-
ters for the sonic spheres which requires the angular contribution

of the neighbours at that point. The angles are therefore com-

puted with respect to the new origin at all quadrature points.

Note that taking ρ′ = c′ = 1 and neglecting the first equation in
system (2.2.12) gives the advection wave equation system with

propagation speed equal to 1.

pt + (u+ u′ p)x + (v + v′ p)y + (w + w′ p)z = 0,

ut + u′ ux + v′ uy +w′ uz + px = 0,
vt + u′ vx + v′ vy +w′ vz + py = 0,

wt + u′ wx + v′ wy + w′ wz + pz = 0.

(3.3.30)

3.3.2 EG Schemes for Nonlinear Euler Equations

The FVEG schemes that have been established in Section 3.2
for the linearized Euler equations are now extended to the so-

lution of the non-linear Euler equations. In the linearization

process we have treated the non-linear Euler equations by con-
sidering small perturbations in density (ρ), velocities (u, v, w),

sound speed (c) and pressure (p). Example 4.1.2 for the lin-

earized Euler equations that follows bellow demonstrates the

propagation of acoustic, entropy and vorticity pulses along the
diagonal of the mesh. In that case the local variables stayed con-

stant at all points of the mesh and for all time steps. This intro-

duces a considerable simplification to the non-linear phenomena
and hence contributes to the error in evaluation of the physical

quantities like density, velocities and pressure. Many numer-

ical schemes treating non-linear Euler equations carry out no

linearization for example kinetic schemes, central type schemes,
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Godunov type upwind schemes and many others. However EG

and FVEG schemes do need some kind of linearization at an
early stage. In this section we shall use the same approximate

evolution operators as we used for linearized Euler equations,

however the local variables will have different values at different

quadrature points. This means that each vertex and midpoint
of an edge will have a particular value which will be different

than the other points. These values will be calculated by an ap-

propriate averaging procedure at these points. In the next time
steps these variables will have to be recalculated at all points.

In this way the updated values of the physical quantities are

involved in the calculation of local variables at each time step

which brings the non-linear effects into play.
Now due to the effect of advection the center of the sonic sphere

which constitutes the base of the Mach cone does not coincide

with a vertex or a midpoint in the mesh. This means that any
vertex or midpoint will be shifted according to local speeds.

Thus the first order algorithm for non-linear Euler equations

reads

• Input the initial data: ρ0
i , u

0
i , v

0
i , w

0
i , p

0
i .

• Compute the conservative variables.

• Find the center of the sonic sphere using the the initial local
variables

• Find the initial time step

• Perform the time loop

1. Find the local variables: ρ′, u′, v′, w′p′ at all quadra-

ture points.
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2. Find the centres of the sonic spheres using the local

velocities.

3. Find the global maximum of (|u′|+c′, |v′|+c′, |w′|+c′).

4. Find the time step ∆t = (hmin) (CFL)
max(|u′|+c′,|v′|+c′,|w′|+c′)

.

5. Compute the intermediate values: ρ̃
n+1

2

sij
, ũ

n+1

2

sij
, ṽ

n+1

2

sij
,

w̃
n+1

2

sij
, p̃

n+1

2

sij
.

6. Update the conservative variables:

7. Compute the primitive variables.

8. Apply the boundary conditions.

• End the time loop.
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Chapter 4

Numerical Experiments

In this chapter we will consider three numerical experiments

in each we will consider two cases subsonic and supersonic, and

we will try to make comparison between the two cases in each

experiment.

4.1 Linearized Euler

Example 4.1.1

In this experiment we consider the advection wave equation sys-

tem with the following initial data is considered

p(x, y, z, 0) = −(sin(2πx) + sin(2πy) + sin(2πz)) ,

u(x, y, z, 0) = 0 ,

v(x, y, z, 0) = 0 ,

w(x, y, z, 0) = 0 .
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The exact solution is

p(x, y, z, t) = − cos(2πt)(sin 2π(x− u′t) + sin 2π(y − v′t) + sin 2π(z − w′t)) ,

u(x, y, z, t) = sin(2πt) cos 2π(x− u′t) ,

v(x, y, z, t) = sin(2πt) cos 2π(y − v′t) ,

w(x, y, z, t) = sin(2πt) cos 2π(y − w′t) .

For the subsonic case we take u′ = v′ = w′ = 0.5 together with

CFL = 0.5, with absolute time 0.1. The computational domain
is Ω = [−1, 1]× [−1, 1]× [−1, 1]. In Table 4.1 we present the L2-

error results for FVEG-Euler-3D-N1 scheme, where the experi-

mental order of convergence (EOC) = ln
‖UN1

(T )−U
n

N1
‖

‖UN2
(T )−Un

N2
‖/ln(N2/N1),

where N1, N2 represents the number of cells in two meshes. No-

tice that in this table N is the total number of cells in the mesh.
Furthermore for this experiment we implement exact boundary

conditions.

N ‖p(T ) − pn‖ ‖u(T )− un‖ ‖U(T )− Un‖ EOC
20 0.098602327828 0.123327159725 0.23531938789 -
40 0.061987721507 0.062560020999 0.12477091188 0.9153
80 0.035460387807 0.032162217244 0.06595525974 0.9197
160 0.019028736560 0.016923319531 0.03492416386 0.9173

Table 4.1: Advection equation-(subsonic case), FVEG-N1 scheme, T=0.1,
CFL=0.5

Comparison between the exact solution and the approximated

solution for the first order scheme is shown in Figures 4.1, 4.2

These are 1D plots along the line y = 0. The plots shows that the
numerical solution is in good agreement with the exact solution.

We see that by increasing the mesh size that L2 error becomes
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Figure 4.1: Advection equation-(subsonic case),FVEG-N1 scheme, T=0.1,
CFL=0.5, P(x,0,0) N=160, *:numerical solution,- : exact solution
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Figure 4.2: Advection equation-(subsonic case),FVEG-N1 scheme, T=0.1,
CFL=0.5 u(x,0,0), N=160,*:numerical solution, -: exact solution
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more smaller and so the numerical solution becomes more close

to the exact solution.
The second part of the example is the supersonic case, here

we take u′ = v′ = w′ = 0.8 together with CFL = 0.5, also

with absolute time 0.1. The computational domain is Ω =

[−1, 1] × [−1, 1] × [−1, 1]. In Table 4.2 we present the L2-error
results for N1-Euler-3D scheme. Where N here is the total num-

bers of cells in the mesh. Furthermore for this experiment we

implement exact boundary conditions. Comparison between the
exact solution and the approximated solution for the first order

scheme is shown in Figures 4.3, 4.4. It is like the subsonic case,

the increasing of mesh size the decreasing of the L2-error but

here we see that the decreasing in the error is not as that in the
subsonic case. These are 1D plots along the line y = 0.

N ‖p(T ) − pn‖ ‖u(T )− un‖ ‖U(T )− Un‖ EOC
20 0.160592582154 0.108937141433 0.24778770616 -
40 0.092666380757 0.056451512259 0.13461335430 0.8803
80 0.050714556878 0.030029307768 0.07244306802 0.8939
160 0.026651269471 0.016565522521 0.03888862611 0.8975

Table 4.2: FVEG-N1 scheme, advection equation-(supersonic case), T=0.1,
CFL=0.5
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Figure 4.3: FVEG-N1 scheme, advection equation (supersonic case), T=0.1,
CFL=0.5 p(x,0,0), N =160, *:numerical solution,-: exact solution
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Figure 4.4: FVEG-N1 scheme, advection equation (supersonic case), u(x,0,0),
T=0.1, CFL=0.5, N=160*:numerical solution, -: exact solution
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Example 4.1.2

In this experiment we simulate numerically the propagation of
acoustic pulse in a uniform mean flow propagating along the

x-axis. The linearized Euler equations system (2.2.8) has been

considered together with the following initial data.

ϕ(x, y, z, 0) = 1 +
2.5

40
√

8
exp(−40(x2 + y2 + z2)),

u(x, y, z, 0) = 0.5,

v(x, y, z, 0) = 0.0,

w(x, y, z, 0) = 0.0,

p(x, y, z, 0) =
1

γ
+

2.5

40
√

8
exp(−40(x2 + y2 + z2)).

Assume u′ = 0.5 and v′ = w′ = 0, which means that the lo-

cal flow is subsonic. Initially, the acoustic pulse is generated at

(0, 0, 0). The mean flow interacts with this pulse. The inten-

sity, shape and profile of the propagating waves are also affected
by the mean flow. We consider CFL=0.5 and the mesh is con-

sisting of 40, 80 and 160 cells where the extrapolated boundary

conditions are employed. We examine the propagation of the
pulses after time T = 0.5. We plot the pressure p along the line

y = 0 and compare the first order FVEG-Euler-3D scheme(N1)

with the exact solution the numerical solution is in very good

agreement with the exact soluton.

For the supersonic case we assume that the local flow is along
the xaxis with u′ = 1.1 and the CFL =0.5 and as in the subsonic

case we take mesh consisting of 40,80, 160 cells with absolute

time 0.5. in the graph below we can see that the numerical
solution also in good agreement with the exact solution.
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Figure 4.5: FVEG-N1 scheme, aquistic pulse-subsonic case, T=0.5, CFL=0.5
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Figure 4.6: FVEG-N1 scheme, aquistic pulse-supersonic case, T=0.5,
CFL=0.5

54



4.2 Non-linear Euler

Example 4.2.1

We consider non-linear Euler equations and a spherical explosion
problem in a cubic domain Ω = [−1, 1] × [−1, 1] × [−1, 1] as

shown in Figure 4.7. the following initial data is considered

(ρ, u, v, w, p) =

{

(1, 0, 0, 0, 1) if (x2 + y2 + z2) < 0.16

(0.125, 0, 0, 0, 0.1) otherwise .

The pressure and density inside the spherical region of radius 0.4
is greater than that in the outside region. This pressure differ-

ence generates a shock wave expanding towards the boundary of

the domain. A contact discontinuity moves along with the shock
while a spherical rarefaction wave travels towards the origin at

(0,0,0). In graph (4.2) we see density distribution as a function

of x and y on the plane z=0 at time t=0.1. Figure (4.2) we

see the corresponding pressure distribution on the plane z=0.
Figures(4.2, 4.2) represents the density, and the pressure distri-

bution on the xy plane compared with the same variables for the

equivalent problem in the one dimensional case. Note that in
this experiment we use CFL = 0.5 and mesh size is 80×80×80,

and absolute time 0.1 .
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u = 0
w = 0
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(−1,−1) (1,−1)

(1, 1)(−1, 1)

Figure 4.7: Domain for the spherical explosion problem
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Figure 4.8: spherical explosion. Density distribution at t=0.1.
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Figure 4.9: spherical explosion. Pressure distribution at time t=0.1 .

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 4.10: FVEG-Euler-3D-N1 scheme, 1D distribution of pressure
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Figure 4.11: FVEG-N1 scheme, 1D distribution of density

4.3 Conclusion and Outlook

The main aim of this thesis was to solve three dimensional Euler
equations system using Evolution Galerkin method. In chap-
ter 2 the general theory of linear hyperbolic systems of partial
differential equations have been used to derive the exact inte-
gral equations for the linearized system. And in chapter 3 we
derived three approximate evolution operators for the system
namely(N1,EG1,EG3). These operators have been tested exten-
sively on a different numerical experiments in chapter 4 where
we see in these experiments the accuracy and the multidimen-
sional behaviour of the solution.
In this thesis we have tested a first order scheme for the three
dimensional Euler equations system, were a second order scheme
can be derived using a suitable recovery stage which well be our
next aim in the future.
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[5] P. Lin, K.W. Morton and E. Süli. Characteristic Galerkin schemes for
scalar conservation laws in two and three space dimensions. SIAM J.
Numer. Anal., 34(2):779–796, 1997.

[6] P. Lin, K.W. Morton and E. Süli. Euler characteristic Galerkin scheme
with recovery. M2AN , 27(7):863–894, 1993.

[7] R.J. LeVeque. Wave propagation algorithms for multi-dimensional hy-
perbolic systems. J.Comp.Phys., 131:327-353, 1997.
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