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Errors-In-Variables-Based Approach for the
Identification of AR Time-Varying Fading Channels

Ali Jamoos, Eric Grivel, William Bobillet, and Roberto Guidorzi

Abstract—This letter deals with the identification of time-
varying Rayleigh fading channels using a training sequence-based
approach. When the fading channel is approximated by an
autoregressive (AR) process, it can be estimated by means of
Kalman filtering, for instance. However, this method requires the
estimations of both the AR parameters and the noise variances in
the state—space representation of the system. For this purpose, the
existing noise compensated approaches could be considered, but
they usually require a long observation window and do not neces-
sarily provide reliable estimates when the signal-to-noise ratio is
low. Therefore, we propose to view the channel identification as an
errors-in-variables (EIV) issue. The method consists in searching
the noise variances that enable specific noise compensated auto-
correlation matrices of observations to be positive semidefinite. In
addition, the AR parameters can be estimated from the null spaces
of these matrices. Simulation results confirm the effectiveness of
this approach, especially in presence of a high amount of noise.

Index Terms—Autoregressive processes, errors-in-variables,
Rayleigh fading channels.
1. INTRODUCTION

N current mobile communication systems, estimating time-
I varying fading channels plays a key role for coherent symbol
detection at the receiver.

According to the Jakes model, the theoretical power spec-
trum density (PSD) associated with either the real or the imag-
inary part of the time-varying fading channel is U-shaped and
band-limited. Moreover, it exhibits twin peaks at & f,;, where f,
denotes the maximum Doppler frequency. The corresponding
discrete-time autocorrelation function Ry, (n) is a zero-order
Bessel function of the first kind

Rpn(n) = Jo (2m fal'|n|) ey

where f;T is the Doppler rate, and 7' the symbol period.
In recent papers [1]-[3], the channel has been modeled as
a pth-order autoregressive process, denoted by AR(p) and de-

fined as follows:
P

h(n) == aih(n — i) +u(n) 2)

=1
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where {a;};=1, ., are the AR model parameters, and u(n) de-
notes the zero-mean complex white Gaussian driving process
with variance o2.

Using a low order AR model for the channel is a priori de-
batable. On the one hand, some authors (e.g., [2], [3]) motivate
this approximation arguing for the model simplicity, especially
for first- or second-order AR processes, and its usefulness for
channel prediction. On the other hand, from a theoretical point
of view, according to the Kolmogoroff-Szego formula! [4], a
deterministic model should be used for the channel due to the
band-limited nature of its PSD. In between, solutions have been
also studied. First, a sub-sampled ARMA process followed by a
multistage interpolator has been considered for channel simula-
tion [5]. Indeed, when down-sampling, the normalized maximal
Doppler frequency moves towards 1/2. Nevertheless, only a very
high down-sampling factor can lead to a PSD that is never equal
to 0. Second, Baddour et al. [1] have suggested using high order
AR processes for channel simulation. To allow the estimation
of the corresponding AR parameters, they “slightly” modify the
properties of the channel by considering the sum of the theoret-
ical fading process and a zero-mean white process whose vari-
ance ¢ is very small (e.g., e = 1077 for f;7° = 0.01). At that
stage, the AR parameters are estimated with the Yule—Walker
(YW) equations based on the modified autocorrelation function
Re(n) = Jo(2r faTln]) + e8(n).

Taking into account the above results, an AR model whose
order is high enough will be considered in this letter to approxi-
mate the channel fading process. Then, our purpose is to develop
a training sequence-based method that makes it possible to esti-
mate the channel AR parameters, without any a priori informa-
tion about f;. In that case, when considering a linearly modu-
lated signal propagating through a time-varying frequency-flat
Rayleigh fading channel, the received discrete-time signal can
be written as follows:

r(n) = h(n)d(n) + w(n) ©)

where d(n) is the nth transmitted data symbol belonging to a
constellation with unity radius, h(n) is the fading process, and
w(n) is assumed to be a complex additive white Gaussian noise
process with zero-mean and variance o2 . In addition, h(n) and
w(n) are assumed to be statistically independent.

In the time interval allocated to the transmission of the
training sequence, the data modulation can be wiped out by
multiplying the signal samples with the complex conjugate of

the training symbols, as follows:

y(n) = d*(n)r(n) = h(n) 4 b(n) Q)

o2 = exp((1/2x) [T _In W}, (w)dw), where ¥}, (w) is the PSD of the
AR process that fits the theoretical Jakes spectrum.
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where the noise b(n) is zero-mean white Gaussian with variance
o2 = o2

Among the existing estimation methods, Tsatsanis et al.
[6] suggest estimating the AR parameters from the channel
covariance estimates by means of a YW estimator. However,
the method results in biased estimates. Alternative methods
initially developed in other fields than wireless communications
can be considered. Among them, a bias-correction least-square
technique has been presented by Zheng [7], while Davila [8]
has proposed to solve the so-called noise-compensated YW
equations using a subspace-based method. Nevertheless, these
methods may have convergence problems and are outper-
formed by the recursive instrumental variable technique based
on two-cross-coupled Kalman filters proposed in [9]. One
Kalman filter is used to estimate the AR process, while the
second one makes it possible to estimate the corresponding
AR parameters from the estimated AR process. It should be
noted that we have analyzed the relevance of this approach to
estimate multi-carrier direct-sequence code division multiple
access (MC-DS-CDMA) fading channels in [10]. However, the
variance of the additive noise is assumed to be known.

Here, we propose another approach, which views the esti-
mation of the channel AR parameters as an errors-in-variables
(EIV) issue [11]. As suggested by some of the authors in the
framework of control [12], [13] and recently in the field of
speech enhancement [14], the formulation of an EIV estimation
problem consists in determining, on only the basis of noisy ob-
servations y(n) and given (2), the set of r-tuple {a; }i=1,... x>p
that satisfies the condition

[h(n — &) h(n =1)  (h(n) = u(n))] x
[, - a1 1]7=0 (5
or equivalently
Rit'aw - a1 1] =0 (6)

where R{ " denotes the (14 1) x (k+ 1) positive semidefinite
correlation matrix of [A(n — k) -+« h(n — 1) (h(n) — u(n))].

Therefore, due to (6), the estimations of the AR parameters
and the variances of both the measurement noise and the driving
process consists in estimating RI'Z'H and its kernel, for specific
values of x.

The remainder of this letter is organized as follows. The
parametric identification of the fading channel is presented in
Section II. Simulation results are reported in Section III.

II. IDENTIFICATION OF THE CHANNEL AR PARAMETERS

Let N observation samples {y(n)}n=1, .~ be obtained
during the transmission of a training sequence and x be set to p.
In addition, let us define the following four (p + 1) x 1 vectors:

0,1 =[a, --- ar 1]F (7
y(n)=[yn—p) - yn-1) ymn)]" ®)
h(n) = [h(n—p) -+ h(n—1) h@n)]"  ©)
b(n) = [b(n — p) bin—1) bn)]". 10

Given (4), (8), (9), and (10), the observation autocorrelation ma-
trix satisfies:
Rf,"'l =E [y(n)yH(n)] = Rfl'H +0i1,41 (11)

where Rffl = E[h(n)h# (n)], and I, is the identity matrix.
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Due to (5) and (11), it follows that

RV =RPH —diag [0 -+~ 0 o2
p
=Ry — diag [071,, 07] (12)
where
o2 =0} +o2. (13)

By referring to the EIV-based methods [12], [13], the actual
point P* = (02, o2) belongs to the set of solutions P = («, 3),
making the following matrices positive semidefinite:

RyYY(P) = R — diag[fI,, a] > 0. (14)
The set of solutions P = (e, (3) is the convex curve S(R¥*!)
belonging to the first quadrant of the («(3)-plane? and whose
concavity faces the origin (see Fig. 1). In addition, every point P
can be associated with the parameter vector 8,41 (P) satisfying
(6) as follows:
RZTY(P)8, 1 (P) =0. (15)
However, this procedure provides a family of solutions. When
carrying out the EIV method with x = p + 1, i.e., considering a
(p+ 1)th-order AR process, another set of solutions is obtained.
The true solution can hence be extracted since it belongs to both
sets. By extending the right-hand side of the vectors in (8)—-(10)
with a new value at time n + 1, one obtains the (p + 2) x 1
vectors y(n + 1), h(n + 1), and b(n + 1). It follows that

Ry"(P) = RE™ — diag[fly41,0] 20 (16)
and
R} (P)8,12(P) = 0. (17)
When P = P, one has more particularly
— 0
RP+2(PG)[ } =0. (18)
" 0p41(P7)

Given (16) and (18), the actual point P* belongs to both
S(RL*T) and S(RET?) convex curves (see Fig. 1). So, once
the point P” is determined, the parameter vector 6,11 can be
extracted from the null space of RﬁH(P“) using (15).

However, in all practical cases that rely on limited sequences
of data, the EIV assumptions do not hold. Hence, no point P*
belongs to both S(RE*T!) and S(RHT?). Therefore, several
criteria (see, e.g., [13]) have been proposed to apply the EIV
scheme in these cases. The algorithm [13] that will be used
in the following is based on the shift-invariant property of the
dynamic systems described by (18).

1) Compute the estimates of R*! and Rb*+2.

2) Start from generic points P; = (a1,31) on S (f{g’,"‘l) and
P2 = ((12,,[32) on S(R€,+2) such as ,81/0[1 = 52/(12
(see Fig. 1). Note that this is an easily solvable general-
ized eigenvalue problem [15].

2ax corresponds to o2 and stands for the abscissa, while 3 corresponds to o7
and stands for the ordinate.
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Fig. 1. Typical shapes of S(RP*!) and S(RP*?).

3) Compute RV (Py), RET?(P,), and 8,1 (P;) by using
relations (14), (16), and (15), respectively,
4) Compute the following cost function:

0 H
} R{’f“’(Pz)[ (19)

0
0p11(P1) ‘9p+1(P1)} '
5) Search on S(R&+1) for the noise variances that minimize

J(Pr, Py).

J(Py, Py) = [

III. SIMULATION RESULTS

In this section, we carry out a comparative simulation study
on channel identification between the following three methods:

1) proposed EIV-based approach;

2) two-cross-coupled Kalman filters approach [10];

3) Yule—Walker estimator, used, for instance, in [6].

Despite a computational cost higher than [6] and [10], the
proposed approach has various advantages. To illustrate them,
two simulation experiments are carried out.

In the first one, the fading process h(n) is generated ac-
cording to a pth-order autoregressive model-based simulator
with a given Doppler rate f;7'. Thus, when p is set to 2,
according to Table I, the proposed approach yields better AR
parameter estimates than the two other approaches, especially
for low SNR. In addition, it has the advantage of providing
accurate estimates of the measurement noise variance. When
increasing the model order, the proposed approach still results
in better AR PSD estimates than the other approaches. See
Figs. 2 and 3. As pointed out in [1], increasing the model order
allows a better fit between the PSD of the resulting process
and the PSD of the realistic Jakes channel. It should be noted
that for every method, when the model order is getting higher
(for instance, p = 50), the accurate estimation of all the AR
parameters becomes difficult, even at high SNR. This is due
to the U-shaped low-pass band-limited nature of the channel
spectrum or, equivalently, to the positions of the corresponding
AR poles,3 which are close to the unit circle in the z-plane.

3H(z)=1/(14Y, a;z~") = 1/1;(1—p;z~"), where p; is the so-called
pole.
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TABLE I
AVERAGE AR(2) PARAMETER AND MEASUREMENT NOISE VARIANCE
ESTIMATES BASED ON 1000 REALIZATIONS. THE TRUE VALUES ARE
a; = —1.5513,a; = 0.9018, 02 = 0.0625. N = 200 AND f,T = 0.14

SNR 5dB 10 dB 15 dB
0 =0316 o02=0.1 of=0.0316
Proposed a1 -1.5304 -1.5418 -1.5440
a2 0.8798 0.8917 0.8938
&2 0.0752 0.0641 0.0623
&g 0.3121 0.0986 0.0313
Two-cross-coupled a1 -1.1977 -1.3565 -1.4549
Kalman filters [10] a2 0.5979 0.7330 0.8174
63 0.2545 0.1406 0.1046
Yule-Walker a1 -0.7059 -1.0726 -1.3248
[6] a2 0.1632 0.4626 0.6896
&2 0.7717 0.3798 0.1941
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Fig.2. Estimations of AR(5) PSD obtained by using three different approaches.
N = 200, SNR = 30 dB, and f,T = 0.2. Ten realizations are plotted. The
channel is generated from AR(5) model-based simulator.
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Fig. 3. Estimations of AR(20) PSD obtained by using three different ap-
proaches. N = 200, SNR = 30 dB, and f,7" = 0.2. Ten realizations are
plotted. The channel is generated from AR(20) model-based simulator.
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Fig.4. Estimations of AR(5) PSD obtained by using three different approaches.

N = 200, SNR = 30 dB, and f;T = 0.2. Ten realizations are plotted. The
channel is generated from Jakes sum-of-sinusoids simulator.
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Fig. 5. Estimations of AR(20) PSD obtained by using three different ap-
proaches. N = 200, SNR = 30 dB, and f4;7" = 0.2. Ten realizations are
plotted. The channel is generated from Jakes sum-of-sinusoids simulator.

In the second experiment, the fading process h(n) is gen-
erated according to the Jakes sum-of-sinusoids channel simu-
lator with Doppler rate f;7 = 0.2. According to Figs. 4 and 5,
which, respectively, show the estimation of the PSD of AR(S5)
and AR(20) processes modeling the Jakes spectrum, the pro-
posed approach provides closer estimates to the true spectrum
than the other approaches [6], [10].

Once the AR parameters are estimated, the fading process
can be estimated by using Kalman filtering or an H, algo-
rithm [16]. Such an estimation can be included in the design
of receivers such as proposed in [10] for an MC-DS-CDMA
system. In that case, according to the simulation tests we car-
ried out based on the Jakes sum-of-sinusoids channel simu-
lator, the proposed approach yields slightly lower bit-error rate
(BER) than the other approaches. In addition, increasing the
AR model order beyond 5 will not improve much the BER per-
formance of the system. Therefore, although an AR(20) model
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yields much better approximation to the Jakes spectrum than
low-order models, an AR(S) process can reduce the computa-
tional cost of the estimation algorithm.

IV. CONCLUSION

In this letter, an EIV approach makes it possible to estimate
the channel AR parameters and the variances of both the addi-
tive measurement noise and the driving process in a congruent
manner. Unlike existing approaches in the field of mobile
communications, the proposed approach provides reliable
estimates even at low SNR (e.g., SNR = 5 dB) and/or when
the number of samples is limited (e.g., N = 200). In addition,
when dealing with channel estimation, an AR(5) process can
provide a tradeoff between the accuracy of the model, the
computational cost, and subsequent BER.
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