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Introduction

The matrix polynomial or a A-matrix is a matrix-valued function of a complex
variable of the form A(A)= 4 A + 4, A" +---+ 4, where 4,4, ,---, A4, are mxn

matrices of complex numbers. Matrix polynomial is a generalization of the matrix
polynomial A/ — 4 of degree 1, A/ — A is very important in finding the eigenvalues

and eigenvectors of the constant #xn matrix 4.

We can also write the matrix polynomial A(4) in the form A(4) =[a, (A)]},,, so
that when the entries of A(A) are evaluated for a particular value of 4, say 4 =4,

then A(4,)eC"™" and if we take n =1, we get a scalar polynomial a(d).

In chapter one we study the notion and the kinds of a matrix polynomial, the
condition which is necessary for the matrix polynomial to be invertible and the
operations on the matrix polynomial.

In chapter two we turn our attention to the invariant polynomials. The importance
of the invariant polynomials developed in this chapter allows us to obtain a canonical
form of a matrix polynomial without using the elementary row (column) operations
to obtain a canonical form. We also study the generally invertible matrix polynomial,
generalized inverse, right inverse and left inverse of a matrix polynomial.

In chapter three, we study a factorization of selfadjoint matrix polynomial of the
form A(A)=(M(A))"D(A)M(A), where D(A) is a constant matrix or a matrix
polynomial and M (4) is a matrix polynomial.

The study of factorization of a selfadjoint matrix polynomial is very important in

several applied problems, such as filtering, see [1], chapter 9.
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Factorization of matrix polynomials was developed by many researchers as: V. A
Jakubovic, see [9], I. Gohberg, P. Lancaster, and L. Rodman, see [6] and A. C. M.
Ran and L. Rodman, see [15].

In chapter four, standard triple and Jordan chain for a matrix polynomial are used

I . ) 5
to solve the differential equation of the form ZL, x(f) = f(t), where L, eC"™",

i=0

i=0]---.,1, f(t) is a vector-valued function.

In appendix A, we study the Jordan canonical form for a constant matrix and the

exponential of a square matrix.

Remarks:

(i) We will use the following system of notion:
Equation j of chapter i in section k is denoted by (i%.j), similarly definition j of
chapter i in section & is denoted by definition (i£.7) and similar conventions apply

to theorems, corollaries and lemmas.

(i) Here, we mean by a scalar polynomial a polynomial with scalar coefficients not

a polynomial as p(A)=a, aeC.




CHAPTER ONE
MATRIX POLYNOMIALS

This chapter contains definitions, theorems and ideas that we shall need in the
following chapters. It consists of three sections, section one is about the notion
of a matrix polynomial, in section two addition and multiplication of matrix
polynomials are introduced and section three about division of matrix

polynomials.
1.1 The Notion of a Matrix Polynomial

Definition 1.1.1: A matrix polynomial is a matrix-valued function of a complex

variable of the form
A(A)= A4 + AHA"‘ e+ AA+ A,

where A4, A,, -+, 4, are mxn matrices of complex numbers.

Example 1.1.1: The followings are examples of matrix polynomials

@) 44 =

[ Badel =242
24 B81=1

_[1 1}2{1 —1}“{1 2}
0 1 2 -3 0 -1

(i) B(A)=1,A- B, where I, is the identity matrix and Be C"™".

(z1i) C(4)=C, where C e C™", i.e. matrix with constant entries.




Definition 1.1.2: The degree of a matrix polynomial A(4) (denoted by deg A(4)) is

the greatest degree of the scalar polynomials appearing as entries of A(A4).
In example 1.1.1 deg A(1) =2, degB(A)=1 and degC(4)=0.

We call a matrix polynomial A(A)

(i) monic if the leading coefficient 4, =7,
(if) comonicif 4, =1,

(#7i) regular if det A(1)#0,

(iv) unimodular if det A(4) is a nonzero constant independent of 4.

Example 1.1.2:

(i) If det 4, # 0 then 4, exists
A7 AR = A7 AN + A A+t AL+ 4]
T A+ A A et AT AL+ AT A,
Therefore 4, A(A) is a monic matrix polynomial.
(i) If det 4, # 0 then A;' exists
A AA) = A TAA + A, A7+ + A A+ 4]
=AJ AN + AT A AT e A AAHT

Therefore A;' A(A) is a comonic matrix polynomial.
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Since det A(1)= 4* +140, then A(A) is a regular matrix polynomial.

1 4 <24
) AA)=l0 1 &
0 0 1

Since det A(4) =1, then A(A) is unimodular matrix polynomial.

We can transform a comonic matrix polynomial into a monic form, as follows:

Let A(A) be a comonic matrix polynomial, thatis 4, =1,
B(A)= A A1)
= A4, + A4, (A ++ 447 +1,]
=47+ A A+ v 47 +1)]
=A +A_ A+ -+ A +1 A
=1 )+ AA" ++ A A+ A.

Therefore B(A) is a monic matrix polynomial.

Definition 1.1.3: An nxn matrix polynomial A(A) is invertible if there exists an
nx n matrix polynomial B(A) such that A(4)B(A)=1,.

We denote B(A) by (4(4))".

Theorem 1.1.1: A matrix polynomial A(A) is invertible if and only if it is

unimodular




Proof:

If A(A) is invertible then there exists B(4) such that, 4(4)B(1)=1,.

By taking the determinant of both sides, we obtain det A(1)det B(4)=1.

The product of the scalar polynomials det A(4) and det B(4) is a nonzero constant.

This is possible only if they are both nonzero constants.

Therefore A(A) is unimodular.

Conversely, if A(4) is unimodular then det A(4) = const. #0.

The entries of the inverse matrix are equal to the cofactors of A(A4) (i.e. the minors
of A(4) of order n—1 multiplied by 1 or —1) divided by const. # 0.

Therefore the inverse matrix is a matrix polynomial in 4. So B(1)=[4(A)]"' is a

matrix polynomial. ie. A(A) is invertible. (]
1.2 Addition and Multiplication of Matrix Polynomials

Definition 1.2.1: Let A(A)= 44+ A A"+ -+ AA+ A, and

B(A)= B,A"+ B, A"'+ -+ BA+ B, be two matrix polynomials of the

same order »n, then

[.1 m
D(4+B)X+> BA if I<m
i=0

i=I+1

A(A)+ B(A) =1 r:2"'(,4,. +B)A if I=m

n !
SU+BYE+ DS AX  if I>m

L i=0 i=m+i




