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INTRODUCTION

P
roteins are macromolecules consisting of different

numbers and sequences of amino acids, which allow

them to adopt different 3D structures and possess

unique biological functions. Among the most im-

portant of these biological functions are biochemical

reaction catalysis, cellular signal generation, ligand transport,

and structural support. The overall protein structure is flexi-
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ABSTRACT:

Five-nanosecond molecular dynamics (MD) simulations

were performed on human serum albumin (HSA) to

study the conformational features of its primary ligand

binding sites (I and II). Additionally, 11 HSA snapshots

were extracted every 0.5 ns to explore the binding affinity

(Kd) of 94 known HSA binding drugs using a blind

docking procedure. MD simulations indicate that there is

considerable flexibility for the protein, including the

known sites I and II. Movements at HSA sites I and II

were evidenced by structural analyses and docking

simulations. The latter enabled the study and analysis of

the HSA–ligand interactions of warfarin and ketoprofen

(ligands binding to sites I and II, respectively) in greater

detail. Our results indicate that the free energy values by

docking (Kd observed) depend upon the conformations of

both HSA and the ligand. The 94 HSA–ligand binding

Kd values, obtained by the docking procedure, were

subjected to a quantitative structure-activity relationship

(QSAR) study by multiple regression analysis. The best

correlation between the observed and QSAR theoretical

(Kd predicted) data was displayed at 2.5 ns. This study

provides evidence that HSA binding sites I and II interact

specifically with a variety of compounds through

conformational adjustments of the protein structure in

conjunction with ligand conformational adaptation to

these sites. These results serve to explain the high ligand-

promiscuity of HSA. # 2009 Wiley Periodicals, Inc.

Biopolymers 93: 161–170, 2010.
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ble under natural conditions. As such, it is possible that regu-

latory proteins have different binding sites and undergo

ligand-binding site conformational changes during the pro-

cess of ligand binding.1 However, it has been shown that

some monomeric proteins are capable of binding to several

ligands at different sites.2 These types of proteins have been

termed ‘‘ligand promiscuous.’’ This behavior is a feature of

human serum albumin (HSA), the most abundant plasma

protein, and is characterized by its surprising capacity to

bind a large variety of biologically active molecules.3

The reason for the high degree of promiscuity of HSA

remains unclear.4 Therefore, promiscuous proteins, such as

HSA and HIV-1 reverse transcriptase, have been the subject

of an intense scientific debate that is centered around

whether drugs can bind to several protein targets unselec-

tively or in specific forms.5 It has been proposed that promis-

cuous protein activity, in contrast to nonpromiscuous pro-

teins, is predominantly entropy driven, excluding pair-wise

enthalpy interactions.6 As such, a deeper understanding of

the physiochemical and structural properties of HSA may

serve to better elucidate the behavior of these promiscuous

proteins. It is well known that the formation of a ligand–pro-

tein complex depends on atomic charge, steric hindrance,

and hydrophobic properties.7,8 A recent study demonstrated

that inducing conformational disorder may serve to enhance

drug affinity in the protein-drug association process.9 Thus,

HSA protein movements could permit a degree of plasticity,

which in turn might be directly related to a myriad of func-

tions and binding properties that could be used to design

new protein carriers for drugs.10

During the course of drug design, it is important to fully

understand the conformational barriers involved in the

ligand–target recognition process. Such a task can be

achieved through several techniques, including X-ray crystal-

lography, nuclear magnetic resonance (NMR) spectroscopy,

and scanning electron microscopy (SEM). Additionally, com-

putational methods, such as molecular dynamics (MD) sim-

ulations, can be used. MD is a computational method com-

monly used to generate multiple target conformations, allow-

ing significant backbone and amino acid side chain

rearrangements.11,12 It has also been shown that MD yields

better data when mixed with docking simulations that allow

for the visualization of ligand recognition behavior and for

the analysis of free energy values, in comparison with experi-

mental results.13

While X-ray, NMR, and SEM experiments can show

ligand–protein interactions with a high level of molecular

detail, theoretical binding energy calculations by docking

methods can be used to analyze biological processes rapidly

and efficiently. These also enable the calculation of molecular

interaction free energy values.14 Molecular docking is widely

used in drug discovery to aid in understanding the molecular

interactions involved in protein–ligand binding. Historically,

docking protocols have considered both the ligand and pro-

tein, in rigid structure form, as adequate representations of

the protein.15 Subsequently, the ligand is treated as a flexible

entity.16 However, this method typically does not take into

account protein side chains, which are generally more disor-

dered than those in the backbone. As a result, flexible target/

ligand models have been proposed where multiple side chain

conformers are generated, while maintaining fixed backbone

atoms.17 Other newer models have introduced a more accu-

rate description by introducing protein flexibility and its

influence on ligand recognition.18–20

In the present study, MD and docking techniques were

combined to evaluate the binding of 94 different HSA drugs,

which were reported by Colmenarejo et al.21 (see Supporting

Information: Table I-S), on 11 HSA snapshots. These were

extracted every 0.5 ns, during 5 ns of MD simulation, and

were performed using both solvated and ionized HSA condi-

tions. These studies facilitated the evaluation of the contribu-

tion of HSA conformational changes toward its protein

promiscuity. A subset of analyses focused specifically on pro-

tein–ligand interactions of warfarin and ketoprofen.22 All

docking results were validated by a quantitative structure-

activity relationship (QSAR) performed using the multiple

linear regression modeling method.

MD PROTOCOL
Classical MD simulations were carried out using the NAMD

2.6 program23 using the CHARMM27 force field.24 Starting

HSA coordinates were taken from the 1.9 Å resolution crystal

structure of Wardell M. et al., (PDB ID: 1n5u).25 The

included heme group, myristic acid, and water molecules of

the crystal structure were removed. Hydrogen atoms were

added by using the psfgen program included in the VMD

package.26 Next, this structure was neutralized with 14 so-

dium ions after being immersed in a TIP3P water box con-

taining 22,604 water molecules. The equilibration protocol

began with 1500 minimization steps followed by 30 ps of

MD at 310 K with fixed protein atoms. Then, the entire sys-

tem was minimized for 1500 steps (at 0 K) and then heated

gradually from 10 to 310 K by temperature reassignment

during the first 60 ps of a 100-ps equilibration dynamics,

without restraints.27 The final step was a 30 ps NTP dynamics

using the Nose-Hoover Langevin piston pressure control28

at 310 K and 1.01325 bar for density (volume) fitting.

From this point, the simulation was continued in the NTV

ensemble for 5 ns. Periodic boundary conditions and the
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particle-mesh Ewald method29 were applied for a complete

electrostatics calculation. The dielectric water constant was

used, and the temperature was maintained at 310 K using

Langevin dynamics. Nonbonded interactions were calculated

by applying a 10 Å cutoff, with a switching function at 8 Å.

The nonbonded list generation was stopped at 11.5 Å. The

SHAKE method30 was used to provide an integration time

step of 2 fs, while keeping all bonds to hydrogen atoms rigid.

The trajectory was stored every 1 ps and further analyzed

with the VMD program.26 The MD simulation output over

5 ns provided several HSA structures that were sampled every

0.5 ns (see Figure 1) to study the ligand recognition energetic

and binding modes of 94 well-known ligands.21

DOCKING PROTOCOL
Geometry optimization of the ligands reported by Colme-

narejo21 was performed by HYPERCHEM (Version 7.0,

Hypercube, USA, http://www.hyper.com) at the AM1 level.

The AutoDock (3.0.5) program was selected for docking

studies, as this algorithm maintains a rigid macromolecule

while allowing ligand flexibility.16 This program has been

used widely because it displays good free energy correlation

values between docking simulations (observed) and experi-

mental data.31 This program begins with a ligand molecule

in an arbitrary conformation, orientation, and position. It

identifies the most energetically favorable ligand-HSA com-

plexes by using both simulated annealing and genetic algo-

rithms. A GRID-based procedure was utilized to prepare

structural inputs and to define all binding sites.32 A rectangu-

lar lattice (126 3 126 3 126 Å), with points separated by

0.375 Å, was superimposed on the entire protein structure

following a blind docking procedure.33

All docking simulations were conducted using the hybrid

Lamarckian genetic algorithm, with an initial population of

100 randomly placed individuals and a maximum of 1.0 3

107 energy evaluations. All other parameters were maintained

at their default settings. The resulting docked orientations

within a root mean square deviation of 0.5 Å were clustered

together. The lowest energy cluster for each ligand was sub-

FIGURE 1 (A) The a-carbon root mean square distance (RMSD) for HSA during 5 ns of MD

simulations and the time averaged (B) a-carbon and (D) whole RMSD for residues of binding sites

I and II. Comparisons are given in (C) and (E).
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jected to further free energy values and binding geometric

analyses, as previously reported.34

MOLECULAR DESCRIPTORS
Chemical structures of the 94 HSA drug and drug-like com-

pounds reported by Colmenarejo21 were obtained from the

National Center for Biotechnology Information (available at:

http://pubchem.ncbi.nlm.nih.gov/search). These structures

were optimized at the AM1 level of semiempirical theory

using the HYPERCHEM software program. The AM1 geom-

etry optimizations were preceded by the Polak-Rebiere algo-

rithm to reach a 0.01 root mean square gradient (298 K, gas

phase). Esbelen (compound number 8, see Supporting Infor-

mation Table I-S) was removed from this set, as selenium

(Se) is not parameterized in the AM1 semiempirical method.

In this study, a set of 60 molcular descriptors was calculated

using the HYPERCHEM and DRAGON software programs

(see Supporting Information Table II-S). These descriptors

include constitutional, topological, chemical, and quantum

descriptors.

QSAR ANALYSIS
QSAR analysis of docking results was performed using multi-

ple linear regression analysis with stepwise selection and

elimination of variables. This was carried out to model the

observed and theoretical binding affinity (log Kd values) rela-

tionships with a set of 60 descriptors. Some compounds were

removed, due to large DG values (unrealistic Kd values), and

other outliers were discarded from the principal component

analysis.4 As such, the relationship analysis between observed

and docking-calculated log Kd values was conducted for a set

of 78 ligands. Multilinear regression models and cross-valida-

tion parameters at different time values (t) are shown in Sup-

porting Information (Figures 1-S and 2-S, Tables III-S and

IV-S), and a key for descriptor abbreviations used in this

study is provided in Supporting Information (Table II-S).

RESULTS AND DISCUSSION

Molecular Dynamic Simulations
In this study, we used combined MD/docking approaches to

estimate the binding affinities of several HSA ligands and

subsequently carried out QSAR analyses using several ligand

properties. The overall goal of the MD simulation was to

provide a more refined and flexible HSA structure model for

use during the docking procedure, as shown by Alonso

et al.35 The procedure was carried out while accounting for

certain physiological and environmental factors that occur

on proteins, which are not considered in simpler docking

protocols.16 This is mainly because 3D protein structures

placed in the Protein Data Bank must be corrected for

unnatural features, such as bad contacts or missing atoms.

Relaxation of the 3D structure is required when using the

solid-state X-ray in order to obtain conformations adequate

for performing the required docking simulations. This can be

achieved by an MD simulation of protein flexibility (see Fig-

ure 2) taking into account conformational changes in the

FIGURE 2 (A) All HSA conformer structures from MD simula-

tions, from 0 to 5 ns in 0.5 ns increments. (B) HSA conformer

structures at 0 and 5 ns. (C) HSA binding sites (I and II) at 0 and 5

ns. In this figure, the blue coloring5 0 ns and red coloring 5 5 ns.
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binding site region, due to the mobility of its neighboring

protein regions and the intrinsic backbone flexibility of some

amino acid residues.36 It is important to consider this fact

for ligand recognition processes, to improve theoretical bind-

ing energies by computational docking methods. However,

theoretical methods do not consider many factors involved

in ligand–target recognition, which are certainly beyond the

chemical composition of the ligand.

The plot of the backbone a-carbon root mean square dis-

tance (RMSD Ca, Figure 1A) shows a structural transition

during the 5 ns of MD simulation for the whole protein. This

is maintained for the first 2 ns, when the RMSD Ca is raised

from 1.3 to 2.5 Å, reaching �3.0 Å at some points during the

remainder of the simulation. It is well known that HSA pos-

sesses two primary ligand binding sites (I and II). These

binding sites have been identified by X-ray crystallographic

FIGURE 3 Docking interactions of warfarin at site I of all HSA MD snapshots sampled.
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analysis, fluorescence, affinity chromatography, calorimetric

analysis, circular dichroism, and other experimental tech-

niques, some of which have yielded ligand–protein affinities.

Sudlow’s nomenclature places site I in HSA subdomain IIA,

where bulky heterocyclic anions prefer to bind, whereas site

II is placed in subdomain IIIA, which is preferred by aro-

matic carboxylates.37,38 To date, two of the most studied

HSA ligands are warfarin and ketoprofen. It is known that

binding site I is selective for warfarin,39 whereas binding site

II is selective for ketoprofen.40,41 The majority of the residues

that comprise both binding sites shows an averaged RMSD

Ca (�3 ns) for the entire simulation, as illustrated in Figures

1B and 1C. In the case of binding site I, Ser193, Tyr148,

Gln196, and Lys195 show higher mobilities compared with

the remaining residues (Figures 1B and 1D). Although the

side chain of Tyr148 is relatively far from the binding pocket,

the side chains of Lys199, Arg257, and His242 are in direct

contact with the ligands (see Figure 3). As such, their move-

ments would likely affect the estimated affinities for the

ligands over the time course of the MD simulation. Thus,

these could be direct determinants of the ability of this site to

bind to structurally diverse ligands (see Table I). Apparently,

the residues of binding site II displayed lower mobilities

compared to site I (Figures 1B and 1D). However, this is

untrue, as their entire movement was not different (see

Figures 1C and 1E). Only Asn391 and Leu387 showed an

RMSD Ca. Asn391 and Arg485 (whole residue) averaged

significantly higher than other residues, which could be due

to its proximity to the protein surface. This would allow it to

make hydrogen bonding interactions with surrounding water

molecules, except for Leu387. These significant structural

movements showed different affinity values with ketoprofen

(Table I).

MD simulations indicate that there is significant move-

ment for the protein as a whole (Figure 2A), but little move-

ment at sites I and II, according to structural evaluations

(Figures 2B and 2C). These HSA movements were corrobo-

rated by RMSD Ca deviation at sites I and II (Figures 1C and

1E). Such protein flexibility has been associated with changes

in protein function and ligand binding.42,43 This was

observed for HSA, as several HSA subdomain movements

significantly modified binding site behavior. HSA displayed

several structural movements, but it maintained its 3D struc-

ture (not unfolded) under certain pathologies that alter pH,

ionic properties, and osmotic blood properties. This is likely

due to the great number of disulfide Cys-Cys bonds17 pos-

sessed by this protein. Thus, HSA movements are not suffi-

cient to unfold the protein (see Figure 2), reproducing the

environmental behavior of HSA. The results of this work

suggest that HSA flexibility underlies the preferential affinity

for several ligands by this protein, as has been observed for

other known promiscuous proteins, such as CYP450 and

chloroperoxidase.44,45 These MD simulations support the

idea that HSA displays conformational movements that

modify several molecular properties and allow it to bind to

several ligands at different times or even at the same time.46

This supports the notion that the HSA protein is ligand pro-

miscuous, as it shows several binding sites at different time

points within movements that conserve its 3D structure.

Docking

The 11 HSA structures, sampled every 0.5 ns during 5 ns of

MD simulation, were used in docking studies with 94 well-

known ligands, including warfarin39 and ketoprofen.40 These

ligands, in particular, were selected to explore the recognition

behavior for known binding sites I and II, respectively

(Figures 3 and 4). The docking free energy values for each of

the complexes, expressed as an empirical free energy poten-

tial, are shown in Table I for these two compounds. The rela-

tive docking orientations of warfarin with respect to the 11

superimposed structures of HSA binding site I are shown in

Figure 3. A similar picture of the relative orientations of

ketoprofen with respect to the 11 superimposed structures of

HSA binding site II is shown in Figure 4. These figures high-

light the interdependence of HSA binding site conformation

and ligand orientation. In both figures, the backbone and

side chain movements of the residues involved in ligand rec-

ognition at different times (ns), with respect to the native

Table I Free Energy (DG) Values of Warfarin and Ketoprofen at

Sites I and II, Respectively, on All HSA Structures Generated by

MD (5 ns)

t (ns)

Warfarinb

(DG, Kcal/mol)

Ketoprofenc

(DG, Kcal/mol)a

pdb code: 1N5U 28.13 29.6

0 27.66 28.84

0.5 27.54 26.33

1 27.7 26.24

1.5 26.93 26.35

2 27.23 27.19

2.5 27.38 26.10

3 27.12 26.3

3.5 27.78 26.29

4 27.62 26.38

4.5 27.19 26.43

5 27.77 26.13

a Docking values at HSA site II.
b Compound 53 in Table 1-S (Supporting Information).
c Compound 59 in Table 1-S (Supporting Information).
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HSA structure (pdb core, 1N5U), are depicted. As such, it is

evident that both binding sites showed considerable flexibil-

ity despite a significantly higher degree of motility for the

remainder of the protein (Figures 2A and 2C).

These HSA domain and binding site movements enable

ligands to adopt different structural binding modes (see

Figures 3 and 4) and, consequently, different free energy val-

ues (Table I). This process is facilitated by changes in the rel-

ative orientations of amino acids at the binding sites. These

subsequently induce changes in local physicochemical prop-

erties, such as hydrophobicity, steric hindrance effects, and

electronic distributions. Therefore, it is not surprising that

the net effect is a modification of the ligand affinities toward

proteins and protein–protein interactions.47

Although Sudlow’s classification of the binding sites

remains useful,48 some high-affinity drugs do not show spe-

cific preference for site I or II and could simply be binding to

other regions of the HSA molecule (unpublished data). Site

I, also known as the warfarin binding site, is formed by a

pocket located in subdomain IIA of HSA.38 Site I accepts

FIGURE 4 Docking interactions of ketoprofen at site II of all HSA MD snapshots sampled.
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ligands that have dicarboxylic acids and/or bulky heterocyclic

molecules that are characterized by a negative centrally local-

ized charge. This could be due to the presence of Arg257 and

Lys195/199 residues at this binding site, which confer a par-

tial positive character.49 The docking results shown in Figure

3 indicate that warfarin makes several interactions with these

residues, including: p-cation interactions between aromatic

moieties of the ligand and the Arg/Lys side chain amine

group; hydrogen bonding interactions between the hydroxyl

group of Ser192 and oxygen atoms of warfarin, during snap-

shots taken at 4.5 and 5 ns; and p-p interactions with the

aromatic system of Tyr148, during snapshots taken at 3.5 and

4 ns (see Figure 3).

Binding site II is located in subdomain IIIA of HSA and is

known as the benzodiazepine binding site. In addition, ibu-

profen, diazepam, phenylbutazone, and ketoprofen selectively

bind to this site.50 Ligands bound to site II are characterized

by aromatic moieties and carboxylic acids bearing a negatively

charged carboxylate group at the end of the molecule, away

from a hydrophobic center. As previously reported, binding

site II accepts fewer ligands than site I, which could be because

site II is located in a subdomain that corresponds to a more

unstable protein conformation (see Figure 2A) relative to site

I. As a consequence, this small binding site accepts ligands

that display lower overall affinities, as was identified for ibu-

profen by displacement of oleic acid.51 This observation is

consistent with our findings (see Table I). Figure 4 demon-

strates that ketoprofen binds to HSA binding site II through

several p-cation interactions between the basic side chain resi-

due of Arg410, at snapshots taken at 1.5, 2, 2.5, 3.5, 4, and 4.5

ns, and Arg485, at snapshots taken at 3 ns, whereas Lys414, at

snapshots of 1.5, 2, 2.5, 3.5, and 4.5 ns, interacts with the aro-

matic system of ketoprofen. Additionally, p–p interactions

between the aromatic moiety of this ligand and Tyr411 are

also present at snapshots taken at 1 and 2 ns.

Aromatic clusters have been reported to play an impor-

tant role in molecular recognition.52 This behavior can be

corroborated by either experimental procedure or theoretical

simulation. One of these theoretical methodologies involves

docking studies that simulate amino acid side chain move-

ment.18 This procedure does not likely take into considera-

tion the important role that the whole protein movement

plays in the ligand recognition process (see Table I). Figure 2

shows small HSA movements at binding site I, as predicted

by docking simulations. However, there is evidence that these

conformational changes can influence ligand recognition in

different binding geometries and with different free energies

of binding due to changes in the overall chemical environ-

ment. This indicates that minimum protein movements can

display different binding site properties, allowing several

ligand affinities with the same ligand at different time snap-

shots, as was observed in pyruvate kinase.53

Table I shows how the free energy values of warfarin and

ketoprofen docked in HSA. These free affinity values varied

with the individual protein structure sampled at different

simulation times (5 ns), indicating that the HSA free affinity

values for these ligands depend on both protein and ligand

movements (Figures 2–4). These results are consistent with

the observation that site I is more selective for warfarin,

whereas site II is more selective for ketoprofen, in agreement

with reported data.39,40

MD-QSAR Models of Drug Binding to HSA

Our work uses theoretical methods (docking and MD simu-

lations), but few of these models have been explored for pro-

tein–ligand interaction values.19,20 We carried out a QSAR

study by using the ligand descriptor versus Kd values, which

were obtained by docking simulations (observed), to obtain

the Kd values (predicted). Table IV-S (Supporting Informa-

tion) shows cross-validation parameters for the models

obtained at different t values in the 5 ns range. This table

indicates that the model obtained at t5 2.5 ns had the lowest

relative prediction error, the lowest standard error of predic-

tion, and the lowest predictive residual sum of squares value.

As a result, this QSAR model was selected as optimal relative

to all others. The calibration and cross-validation coefficients

of determination for this model were 0.889 and 0.875,

respectively. This indicates that this model can at least

explain the 88.9% and 87.5% variances in the log Kd for the

calibration and prediction, respectively. Figure 5 shows the

predicted and observed log Kd values, along with their resid-

uals for this model.

The regression equation for this model was provided by:

logKd ¼ 2:230 ð�2:906Þ þ 0:207 ð�0:199Þ
nCIC� 0:008 ð�0:018Þ nATþ 0:008� 0:002Þ
W� 0:023 ð�0:011Þ Ref � 0:046 ð�0:029Þ
nHDon� 0:051 ð�0:020Þ DMt� 8:777 ð�5:156Þ
PW2� 0:002 ð�0:000Þ SMTI� 0:035 ð�0:032Þ
log P � 0:003 ð�0:001Þ HF� 0:357 ð�0:164Þ 32

þ 0:826 ð�0:334Þ MNCþ 0:023 ð�0:011Þ HE

þ 4:151 ð�3:434Þ PW4þ 0:021 ð�0:015Þ DMx

þ 0:002 ð�0:002Þ ZM2V;

where N 5 78, R2 5 0.889, R2
CV 5 0.875, PRESS 5 6.960,

SPRESS 5 0.338, PSE 5 0.299, and RSEP 5 5.090%. Here, N

is the number of compounds, R2 is the coefficient of determi-

nation, R2
CV is the cross-validation coefficient of determina-
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tion, PRESS is the predictive residual sum of squares, SPRESS
is the uncertainty of prediction, PSE is the standard error of

prediction, and RSEP is the relative standard error of

prediction.

The above equation shows that the most significant descrip-

tor is the topological descriptor PW2 (path\walk-2-randic

shape index), where log Kd is inversely proportional to PW2.

Another significant descriptor is PW4 (path\walk-4-randic

shape index), where increasing the PW4 value raises the log Kd

value. This means that a greater ligand surface, in general,

increases the protein surface contact on HSA because of an

increase in the number of interactions. This phenomenon has

been widely described for small-protein interactions.54

CONCLUSIONS
We have demonstrated that the combination of MD and

docking procedures provides the best fit for protein–ligand

complexes. This was corroborated and validated with subse-

quent QSAR studies. The results of this study indicate that

HSA movements play an important role in drug recognition.

Although conformational changes were minimal at HSA

binding sites I and II, docked warfarin and ketoprofen dis-

played significantly different interactions. As such, this

approach was able to identify the HSA structures involved in

the recognition process and explains HSA promiscuity. In

addition, this study has also facilitated the identification of

chemical property changes on several HSA structures that

resulted in different docking energy affinities.

This study illustrates that molecular docking/dynamics

can provide a useful and accurate picture of protein–ligand

interactions at the molecular level. This is because MD

mimics certain key physiological conditions including pH,

ion content, solvation, and temperature. As such, it is a good

option in studying and explaining the molecular basis of si-

multaneous protein recognition selectivity. These computa-

tional techniques can also explain the molecular basis of

pharmacologically important events that involve binding site

recognition on HSA sites II and I in drug displacement.

The authors thank Ian Ilizaliturri Flores for building and supporting

two clusters (6 and 20 nodes) used in the MD and docking simula-

tions at ESM-IPN.
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