
Fax +41 61 306 12 34
E-Mail karger@karger.ch
www.karger.com

 Neurodegener Dis 2013;11:102–111 
 DOI: 10.1159/000341999 

 Dissociating the Cognitive Effects of 
Levodopa versus Dopamine Agonists in a 
Neurocomputational Model of Learning in 
Parkinson’s Disease 

 Ahmed A. Moustafa    a, b     Mohammad M. Herzallah    b, c     Mark A. Gluck    b   

  a    Marcs Institute for Brain and Behaviour and Foundational Processes of Behaviour, School of Social Sciences 
and Psychology, University of Western Sydney,  Sydney, N.S.W. , Australia;  b    Center for Molecular and Behavioral 
Neuroscience, Rutgers University,  Newark, N.J. , USA;  c    Al-Quds Cognitive Neuroscience Laboratories,
Al Quds University-Abu Dis,  Abu Dis , Palestinian Territories
 

 Introduction 

 Levodopa (3,4-dihydroxy- L -phenylalanine) and vari-
ous D 2  dopamine agonists such as pramipexole and rop-
inirole are the primary dopamine replacement therapies 
for Parkinson’s disease (PD) patients. Although there are 
many clinical studies of differential effects of levodopa 
versus D 2  dopamine agonists on PD motor symptoms, in-
cluding motor complications and dyskinesia, there are few 
cognitive assessments and no computational studies dis-
sociating their effects on cognition. We provide here a 
computational model that differentiates the role of levodo-
pa versus dopamine agonists on cognition using our prior 
circuit level model of the basal ganglia (BG) and prefrontal 
cortex (PFC;  fig. 1 a). In our model, we incorporate the sim-
plified assumption that dopamine produced from levodo-
pa and D 2  dopamine agonists activate D 2  dopamine recep-
tors, while levodopa is converted to dopamine, which 
binds to D 1  receptors ( fig. 1 b)  [1–3] . Because D 1  receptors 
are associated with learning, working memory, and dyski-
nesia (see Discussion below), our model provides a mech-
anistic account for how levodopa (but not dopamine ago-
nists) enhances learning and working memory, particu-
larly in early stages of PD. We start by describing the 
neural mechanism of levodopa and dopamine agonists.
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 Abstract 

  Background/Aims:  Levodopa and dopamine agonists have 
different effects on the motor, cognitive, and psychiatric as-
pects of Parkinson’s disease (PD).  Methods:  Using a compu-
tational model of basal ganglia (BG) and prefrontal cortex 
(PFC) dopamine, we provide a theoretical synthesis of the 
dissociable effects of these dopaminergic medications on 
brain and cognition. Our model incorporates the findings 
that levodopa is converted by dopamine cells into dopa-
mine, and thus activates prefrontal and striatal D 1  and D 2  do-
pamine receptors, whereas antiparkinsonian dopamine ag-
onists directly stimulate D 2  receptors in the BG and PFC (al-
though some have weak affinity to D 1  receptors).  Results:  In 
agreement with prior neuropsychological studies, our mod-
el explains how levodopa enhances, but dopamine agonists 
impair or have no effect on, stimulus-response learning and 
working memory.  Conclusion:  Our model explains how le-
vodopa and dopamine agonists have differential effects on 
motor and cognitive processes in PD. 
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  Dopamine D 1  and D 2  receptors are abundant in the 
PFC and BG. Physiological and behavioral studies have 
demonstrated that levodopa and dopamine agonists work 
differently on dopamine receptors. Most of the common-
ly used non-ergot dopamine agonists, such as pramipex-
ole and ropinirole, have a high affinity for D 2  receptors. 
However, levodopa is a dopamine precursor, taken up by 
dopamine cells, and converted into dopamine; thus, it acts 
on both D 1  and D 2  dopamine receptors  [1–3] . Based on 
these findings, we will show here how levodopa and do-
pamine agonists may have different effects on cognition. 
We first review experimental studies on the physiological 
and behavioral function of D 1  and D 2  receptors, and then 
discuss neuropsychological studies on the effects of le-
vodopa and D 2  dopamine agonists on motor and cogni-
tive processes. Both behavioral and physiological studies 
provided constraints for our simulation model ( fig. 1 a). 

  Dopamine projections to the BG and PFC fluctuate 
between two different modes of firing patterns: phasic 
and tonic. The phasic mode is fast acting and spans mil-
liseconds, while the tonic mode is long acting and can 
span minutes ( table 1 ). Experimental studies have shown 
that phasic dopamine activates D 1  receptors  [4–6] , where-
as tonic dopamine activates D 2  receptors  [3, 5, 7] . 

  Because both levodopa and dopamine agonists acti-
vate D 2  receptors, we assume that levodopa and dopa-
mine agonists restore tonic activation of dopamine neu-
rons, and thus activate D 2  receptors (although possibly to 
different degrees). However, we assume that levodopa, 
but not D 2  dopamine agonists, increases dopamine levels, 
and thus restores phasic activity of dopamine neurons. 
The assumption that repeated levodopa administration 
enhances both phasic and tonic signals is, indeed, in 
agreement with a physiological study of Harden and 
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  Fig. 1.   a  Schematic of the differential effects of levodopa versus 
dopamine agonists on D 1 /D 2  receptors and phasic and tonic do-
pamine in the striatum/PFC.  b  Model architecture. The striatum 
is important for learning motor responses, whereas the PFC is key 
for higher cognitive functions, such as working memory. Dopa-
mine modulates learning, motor, and cognitive processes in the 
striatum and PFC.  c  Physiological data show that dopamine con-
verted from levodopa binds to D 1  and D 2  receptors, and com-
monly used non-ergot dopamine agonists (DA) to treat Parkin-
son’s disease have a large affinity to D 2  receptors. Behavioral stud-
ies show that levodopa (unlike many D 2  dopamine agonists) 
enhances learning and working memory, but can lead to dyskine-
sia. Our computational model bridges the gap between these 
physiological and behavioral data. 
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Grace  [8] , one of the few studies that recorded dopamine 
activity from parkinsonian rats, and showed that repeat-
ed levodopa administration resulted in an increase in do-
pamine release following spontaneous activation of a 
greater proportion of nigral dopaminergic cells.

  We next discuss the role of D 1  and D 2  receptors in the 
BG and PFC, how they impact motor and cognitive func-
tions, and how these relate to learning and working mem-
ory. In the BG, phasic and tonic dopamine is key for 
learning and the initiation of motor responses  [9] . For 
example, using optogenetic methods, Tsai et al.  [10]  found 
that phasic firing of dopamine cells, which stimulates D 1  
receptors in the BG, is essential for learning. While large 
numbers of D 1  receptors are found in the BG direct path-
way, D 2  receptors are more abundant in the BG indirect 
pathway  [11] . Thus, activating D 2  receptors attenuates the 
inhibitory function of the BG indirect pathway, which in 
turn facilitates the initiation of motor responses.

  Dopamine receptors in the PFC are essential for 
higher cognitive functions such as working memory 
and executive control  [12–14] . An extensive body of ex-
perimental data shows that D 1  receptors in the PFC are 
important for the maintenance of information in work-
ing memory ( table 2 )  [13, 15–17] , while PFC D 2  receptors 
are key for motor responses based on information main-
tained in working memory, a process known as memo-
ry-guided motor responses ( table 2 )  [18] . Our model hy-
pothesizes that learning to maintain information in 
working memory is mediated by D 1  receptors in the 
PFC, as suggested by theoretical  [16]  and experimental 
 [19]  studies. 

  The most commonly addressed areas to investigate ef-
fects of levodopa and D 2  dopamine agonists on cognition 
are learning and working memory. Experimental studies 
have consistently shown that the administration of le-
vodopa to healthy subjects and PD patients enhances 
learning ( table 3 ). Unlike levodopa, most (but not all) D 2  
dopamine agonists were consistently found to impair 
learning in PD patients and healthy subjects ( table 3 ). Our 
model assumes that levodopa enhances learning because 
it increases the levels of dopamine which binds to D 1  re-
ceptors in the BG. Similarly, most (but not all) studies 
have found that the administration of levodopa to PD pa-
tients enhances working memory ( table 4 ). As shown in 
 table 4 , some studies show that dopamine agonists have 
no effect on working memory, though others found that 
some dopamine agonists, such as pramipexole, could im-
pair working memory. Our model hypothesizes that le-
vodopa enhances working memory because it activates 
D 1  receptors in the PFC.

  Model and Tasks 

 Model architecture and learning rules are the same as in our 
previous model of frontostriatal interactions during multicue cat-
egory learning in PD, where we utilize the actor-critic architec-
ture, in which the critic is important for feedback-based learning, 
while the actor is essential for action-selection learning. The crit-
ic sends a teaching signal to the actor to strengthen or weaken 
action-selection learning. However, the critic is not informed 
about the action that the actor selects, but is informed about 
whether the selected action culminated in a rewarding conse-
quence or not. The temporal difference model is utilized to train 
the model  [52] . 

  The model has four modules: PFC/cognitive, striatum/motor 
response, dopamine, and input (not shown;  fig. 1 ). The PFC/cog-
nitive layer is fully connected to the striatum/motor layer. The 
input (not shown) and PFC modules have the same number of 
nodes. Each unit in the input module represents a cue presented 
to the network. The striatum/motor module has three nodes, each 
representing a different motor response. Input patterns presented 
to the network activate their corresponding units in the input 
module. The input module sends topographic projections to the 
PFC layer. We use a winner-take-all network to simulate inhibi-
tory connectivity among PFC neurons. Here, we argue that com-
petitive dynamics among PFC neurons is the brain mechanism 
underlying limited working memory processes. 

Table 1.  Physiological and behavioral differences between phasic 
and tonic dopamine

Phasic Tonic 

Acting fast-acting long-acting
Measured by voltammetry microdialysis
Modulated by glutamate GABA
Behavioral effect learning motor responses
Model learning rate activation function

S ee recent work by Grace [3] for elaboration on differences be-
tween phasic and tonic dopamine firing modes.

Table 2. F unctional significance of D 1  and D 2  receptors in the 
striatum and PFC

Receptor 
type

B rain region

st riatum PFC

D1 learning maintenance of working 
memory

D2 initiation of motor 
responses

motor responses based on 
working memory
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  The simulated striatum in the model learns to map input stim-
uli to responses [for similar ideas see  53–55 ]. Like the PFC mod-
ule, we use a winner-take-all network to simulate inhibitory con-
nectivity among simulated striatal neurons. At the cognitive level, 
the winning node represents the selected motor response. Unlike 
most existing BG models  [54–58] , the BG in our model learns to 
map representations of selected stimuli and working memory in-
formation to motor responses. 

  Unlike prior models, which assume that the effects of levodo-
pa and dopamine agonists on cognition are similar, our new mod-
el simulates the functional contribution of dopamine D 1  and D 2  
receptors in the PFC and BG ( fig. 1 ). In this new model, the stria-
tum is important for learning motor responses, whereas the PFC 
is essential for working memory. Specifically, this model assumes 
that D 1  receptors in the BG are key for motor learning, while D 2  
receptors play a role in the initiation of motor responses. In the 
PFC, D 1  receptors are required for the maintenance of informa-
tion in working memory  [15, 59] . Prefrontal D 2  receptors, on the 
other hand, are important for memory-guided responses  [18]  
( fig. 1 ). We simulated the effects of phasic dopamine by manipu-

lating the learning rate parameter in the PFC and striatal mod-
ules. We also simulated the effects of tonic dopamine by manipu-
lating the effects of gain parameter in sigmoidal activation in the 
simulated brain region  [52] . 

  The model simulates performance in stimulus-response learn-
ing and working memory. The stimulus-response learning task is 
a two-alternative, forced-choice response task in which the sub-
ject (in our case the subject is a single run of the simulation mod-
el) learns to associate different stimuli with different responses, 
based on corrective feedback .  The working memory task is also a 
forced-choice response task, in which, besides a stimulus repre-
sentation and response phases, it also includes delay and probe 
phases. During the delay phase, the model learns to maintain the 
previously presented cue in working memory. The probe stimulus 
triggers the subject to make a motor response based on which cue 
was presented before the delay. The model is rewarded if it makes 
the correct motor response  [60] .

Table 3. S ummary of experimental studies investigating the effects of D 2  dopamine agents on learning tasks in 
animals and humans

S  tudy Subject group Medication used Behavioral 
effects

Stimulus-response learning
L-DOPA monotherapy

Knecht et al. [20] (2004) healthy subjects L-DOPA enhancement
Pavlis et al. [21] (2006) rats L-DOPA enhancement
Gotham et al. [22] (1988) PD patients L-DOPA impairment
Scheidtmann et al. [23] (2001) stroke patients L-DOPA enhancement
Rosser et al. [24] (2008) stroke patients L-DOPA enhancement
Pleger et al. [25] (2009) healthy subjects L-DOPA enhancement
Robinson et al. [26] (2007) parkinsonian mice L-DOPA enhancement
Graef et al. [27] (2010) PD patients L-DOPA enhancement
Floel et al. [28] (2008) healthy subjects L-DOPA enhancement
Pessiglione et al. [29] (2006) healthy subjects L-DOPA enhancement
Beeler et al. [30] (2010) PD patients L-DOPA enhancement
de Vries et al. [31] (2010) PD patients L-DOPA enhancement

DA monotherapy
Breitenstein et al. [32] (2006) healthy subjects pergolide impairment
Pizzagalli et al. [33] (2007) healthy subjects pramipexole impairment
Frank et al. [34] (2006) healthy subjects cabergoline impairment
Santesso et al. [35] (2009) healthy subjects pramipexole impairment
McClure et al. [36] (2010) schizotypal 

personality disorder
pergolide enhancement

DA + L-DOPA
Feigin et al. [37] (2003) PD patients DA + L-DOPA impairment
Shohamy et al. [38] (2006) PD patients DA + L-DOPA impairment
Jahanshahi et al. [39] (2009) PD patients DA + L-DOPA impairment
Housden et al. [40] (2010) PD patients DA + L-DOPA impairment
Mongeon et al. [41] PD patients DA + L-DOPA impairment

DA  = Dopamine agonist; L-DOPA = levodopa.
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  Results 

 We first present our simulation results of the effects of 
levodopa and dopamine agonists on cognition in PD pa-
tients. We then present our simulation results of the dose-
dependent effects of dopamine agonists on cognition in 
healthy subjects.

  Simulation of Effects of Levodopa and Dopamine 
Agonists on Cognition in PD Patients 
 Simulation results show that PD patients are more im-

paired than controls at stimulus-response learning tasks 
( fig. 2 a). In agreement with experimental results ( table 3 ), 
our simulation results show that levodopa enhances stim-
ulus-response learning, while dopamine agonists impair 
this learning. Similarly, our simulation results show that 
levodopa enhances working memory ( fig. 2 b), as reported 
in many neuropsychological studies. Model simulations 
also show that D 2  agonists do not affect working memory. 
In our model, this is because dopamine agonists target D 2  
receptors, and thus do not enhance maintenance of infor-
mation in working memory, a process mediated by D 1  
receptors in the PFC.

  Simulation of Dose-Dependent Effects of Dopamine 
Agonists on Cognition in Healthy Subjects 
 Our model of the cognitive effects of levodopa and 

dopamine agonists in PD patients can also be applied to 
pharmacological studies of healthy individuals. Experi-
mental studies have shown that the effects of D 2  dopa-
mine agonists on cognition depend on the exact dose 
administered to the subjects. For example, studies found 
that in healthy subjects, a low dose (1.25 mg) of the do-
pamine agonist bromocriptine has no effect or impairs 
working memory  [61] , while a high dose (2.5 mg) of bro-
mocriptine enhances working memory  [51, 62] . This is 
in agreement with neuropsychological studies in which 
a low dose of dopamine agonists was found to either im-
pair or have no effect on working memory in PD pa-
tients ( table 4 ). We assume that different doses of D 2  do-
pamine agonists affect tonic firing of dopamine cells, 
such that the higher the dose, the higher the tonic activ-
ity of dopamine neurons. Our model shows that a low 
dose of agonists slightly impairs working memory in 
simulated healthy subjects, while a high dose enhances 
working memory in the model ( fig. 3 b). In the working 
memory simulation, 2 of 100 simulation runs did not 
learn the task, so we removed them from analysis, as is 
the practice in experimental studies. Furthermore, sim-
ulation results show that a low dose of dopamine ago-

Table 4. S ummary of experimental studies investigating the effects of levodopa ( L -DOPA) and D 2  dopamine 
agents on working memory

Study Subject group Medication used Behavioral effects

Working memory
L-DOPA monotherapy

Lange et al. [42] (1992) PD patients L-DOPA enhancement
Lewis et al. [43] (2005) PD patients L-DOPA enhancement
Beato et al. [44] (2008) PD patients L-DOPA enhancement
Marini et al. [45] (2003) PD patients L-DOPA enhancement
Brusa et al. [46] (2003) PD patients L-DOPA –
Costa et al. [47] (2003) PD patients L-DOPA enhancement
Pascual-Sedano et al. [48] (2008) PD patients L-DOPA enhancement
Fernandez-Ruiz et al. [49] (1999) parkinsonian monkeys L-DOPA enhancement

Dopamine agonist monotherapy
Costa et al. [47] (2003) PD patients apomorphine –
Brusa et al. [46] (2003) PD patients pramipexole impairment
Brusa et al. [50] (2005) PD patients pergolide enhancement
McDowell et al. [51] (1998) brain injury bromocriptine –

U nlike pramipexole (which has a high affinity to D2 receptors), most studies that found that levodopa-in-
duced dopamine and pergolide (which has a high affinity to both D1 and D2 receptors) enhance working mem-
ory performance. – = No effect.
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  Fig. 2.  Simulation results of the effects of levodopa and dopamine 
agonists on: stimulus-response learning ( a ) and working memory 
( b ) in PD patients. Levodopa enhances performance in stimulus-
response and working memory tasks, while dopamine agonists 

impair stimulus-response learning and have no effect on working 
memory. HC = Healthy controls; PD = unmedicated PD patients; 
 L -DOPA = PD subjects on levodopa; DA = PD patients on dopa-
mine agonists. Error bars indicate SE. 
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  Fig. 3.  Simulation results of effects of different doses of dopamine 
agonists on stimulus-response learning ( a ) and working memory 
performance ( b ) in healthy subjects.  a  Simulation results of dif-
ferent effects of doses of dopamine agonists on stimulus-response 
learning in healthy subjects. A low-dose of dopamine agonists 
impairs learning, in agreement with experimental results (Santes-
so et al. [35]), and a large dose of dopamine agonists further im-

pairs learning, which is a new prediction of our model.  b  A low 
dose of dopamine agonists impairs working memory  [62] , while 
a large dose of dopamine agonists enhances working memory, in 
agreement with experimental results  [61] . Low-dose dopamine  
here refers to low-dose dopamine agonist (Sultzer et al. [63]). Er-
ror bars indicate SE.   
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nists impairs stimulus-response learning ( fig. 3 a) while 
a higher dose further impairs stimulus-response learn-
ing.

  Discussion 

 Our neurocomputational model simulates the differ-
ential effects of levodopa versus D 2  dopamine agonists on 
cognition. Here, we have assumed that levodopa only ac-
tivates D 1  receptors, while both levodopa and dopamine 
agonists activate D 2  dopamine receptors ( fig. 1 ). Because 
D 1 -receptor activation is associated with learning, work-
ing memory, and dyskinesia, our model provides an ac-
count for how levodopa enhances learning and working 
memory, but is associated with dyskinesia. 

  Interactions between D 1 - and D 2 -Expressing Neurons 
 What is the neural mechanism by which an increase 

in tonic dopamine leads to a decrease in phasic signaling? 
In a recent in vitro study, Taverna et al.  [64]  have shown 
that striatal D 2 -expressing neurons send inhibitory input 
to D 1 -expressing cells. They have found that an efferent 
connection from striatal D 1  to D 2  neurons is almost non-
existent, as we assume in our model. This unidirectional 
connectivity between D 1 - and D 2 -expressing cells might 
explain how an increase in tonic dopamine leads to a de-
crease in phasic signaling. Experimental data show that a 
similar neural mechanism exists in the PFC  [65] : activa-
tion of D 2 -expressing neurons in the PFC  [18]  inhibits D 1  
cells  [15] . A more plausible mechanism is that tonic dopa-
mine stimulates inhibitory D 2  autoreceptors, thereby de-
creasing phasic dopamine responses  [66] . A working hy-
pothesis to provide an explanation for the function would 
be that this connectivity in the PFC (not simulated in our 
model) discontinues the maintenance of information in 
working memory once a motor response is made. The ex-
istence of inhibitory connectivity from D 2  to D 1  neurons 
in the BG and PFC suggests the utilization of an existing 
neural mechanism from motor performance to be appli-
cable as well to cognitive performance (D 2  receptors in-
hibit D 1  receptors in the PFC to discontinue maintenance 
of information in working memory once a response is 
made), which would explain the differential effects of le-
vodopa and D 2  dopamine agonists. 

  Comparison to Prior Theoretical Models 
 The current model addresses important clinical data 

not simulated by prior models of PD and dopamine med-
ications. For example, prior models do not simulate dis-

sociable effects of different PD medications on brain and 
cognition  [52, 67] . Most past models have also ignored 
any potential function of D 2  receptors in the PFC in 
working memory  [67, 68] , arguing for a more important 
role for PFC D 1  receptors. Experimental data, however, 
point to an essential role for both D 1  and D 2  receptors in 
PFC for working memory  [18, 69] . Like our model, a pri-
or model by Helie et al.  [70]  also assumes that PD affects 
prefrontal dopamine. Our model simulates the function-
al contribution of D 1  and D 2  receptors in both the BG and 
PFC in learning and working memory.

  Experimental Data Accounted for by the Model 
 Our computational hypotheses about the different 

functions of D 1  and D 2  receptors are based on findings of 
previous experimental and modeling studies. For exam-
ple, several studies in animals found that D 2  antagonists 
enhance learning  [71–74] . Similarly, Eyny and Horvitz 
 [74]  found that D 2  antagonists enhance learning in rats, 
whereas D 1  antagonists impair learning. The findings 
that D 2  antagonists enhance learning are perhaps puz-
zling. Our model suggests that D 2  antagonists decrease 
the effects of tonic dopamine levels, and thus increase the 
scope of phasic firing of dopamine neurons, which in 
turn enhance learning. Similarly, Smith-Roe and Kelley 
 [75]  found that D 1  agonists improve stimulus-response 
learning. In our modeling framework, D 1  agonists might 
enhance the effect of phasic signaling of dopamine cells, 
which is essential for synaptic modification and learning 
in the corticostriatal pathway  [76] . In agreement with our 
model, physiological studies found that D 1  antagonists 
block learning in the striatum, while D 2  antagonists en-
hance learning  [77] . Gurden et al.  [78]  also found that D 1  
(but not D 2 ) receptors in PFC are important for NMDA-
dependent long-term potentiation (but for different re-
sults, see Xu and Yao  [79] ). Overall, many behavioral and 
physiological data point to specific roles of D 1  and D 2  re-
ceptors in the striatum in learning and initiation of motor 
responses, which are, to a large extent, in agreement with 
our model.

  Limitations and Future Directions for Modeling 
 The limitations of our model suggest several possible 

future directions for theoretical development and com-
putational modeling, which, in turn, would inform fu-
ture experimental and clinical studies. First, our model 
does not simulate the effects of the combination of both 
levodopa and dopamine agonists on cognition, though 
the two medications are commonly used together to treat 
PD symptoms. Our model, however, suggests that adding 
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levodopa to dopamine agonists to treat PD symptoms 
may result in the best of both treatments: although le-
vodopa has a shorter half-life than most dopamine ago-
nists, levodopa perhaps enhances phasic firing of dopa-
mine cells, and thus enhances learning and focused at-
tention. These processes are probably not enhanced with 
dopamine agonists  [80] . Second, we treated dopamine re-
ceptors in the same family (e.g., D 2  and D 3 ) equally with-
in our current model. This is an oversimplification be-
cause research has shown that drugs targeting D 3  recep-
tors have some dissociable effects on behavior compared 
to drugs targeting D 2  receptors, such as methamphet-
amine and quinpirole.

  In recent years, neurocomputational modeling has be-
come an increasingly useful tool for understanding the 
diverse and complex linkages between brain and behav-
ior; we illustrate here how such modeling can also be ap-
plied to creating a closer rapprochement between theo-
retical neuroscience and practical issues in clinical neu-
rology and psychiatry.
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